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ABSTRACT
Vocal complexity is central tomany evolutionary hypotheses about animal communica-
tion. Yet, quantifying and comparing complexity remains a challenge, particularly when
vocal types are highly graded. Male Bornean orangutans (Pongo pygmaeus wurmbii)
produce complex and variable ‘‘long call’’ vocalizations comprising multiple sound
types that vary within and among individuals. Previous studies described six distinct
call (or pulse) types within these complex vocalizations, but none quantified their
discreteness or the ability of human observers to reliably classify them. We studied
the long calls of 13 individuals to: (1) evaluate and quantify the reliability of audio-
visual classification by three well-trained observers, (2) distinguish among call types
using supervised classification and unsupervised clustering, and (3) compare the
performance of different feature sets. Using 46 acoustic features, we used machine
learning (i.e., support vector machines, affinity propagation, and fuzzy c-means) to
identify call types and assess their discreteness.We additionally used UniformManifold
Approximation and Projection (UMAP) to visualize the separation of pulses using both
extracted features and spectrogram representations. Supervised approaches showed low
inter-observer reliability and poor classification accuracy, indicating that pulse types
were not discrete. We propose an updated pulse classification approach that is highly
reproducible across observers and exhibits strong classification accuracy using support
vector machines. Although the low number of call types suggests long calls are fairly
simple, the continuous gradation of sounds seems to greatly boost the complexity of this
system. This work responds to calls for more quantitative research to define call types
and quantify gradedness in animal vocal systems and highlights the need for a more
comprehensive framework for studying vocal complexity vis-à-vis graded repertoires.
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INTRODUCTION
Vocal complexity, or the diversity of sounds in a species’ repertoire, is central to many
evolutionary hypotheses about animal communication (Bradbury & Vehrencamp, 2011;
Fischer, Wadewitz & Hammerschmidt, 2017; Freeberg, Dunbar & Ord, 2012; McComb &
Semple, 2005). This complexity has been hypothesized to be shaped by a range of
factors including predation pressure, sexual selection, habitat structure, and social
complexity (Bradbury & Vehrencamp, 2011; Fischer, Wadewitz & Hammerschmidt, 2017).
Two common measures of vocal complexity are: (1) the diversity (or number) of call types
as well as (2) their discreteness or how distinct different call types are from each other. For
instance, within black-capped chickadee (Poecile atricapillus) groups, individuals flexibly
increase the diversity of note types when they are in larger groups, presumably increasing
the number of potential messages that can be conveyed (Freeberg, Dunbar & Ord, 2012).
When comparing across species, similar themes emerge in rodents and primates. Sciurid
species with a greater diversity of social roles have more alarm call types (Blumstein &
Armitage, 1997) and primate species in larger groups with more intense social bonding
have larger vocal repertoires (McComb & Semple, 2005). Further, it has been proposed that
while discrete repertoires facilitate signal recognition in dense habitats, graded repertoires
allow more complexity in open habitats where intermediate sounds communicate arousal
and can be linked with visual signals (Marler, 1975).

Measuring and classifying animal sounds
Quantifying vocal complexity in a standardizedmanner remains a challenge for comparative
analyses. A primary aspect of this challenge is related to the identification and quantification
of discrete call types, which is particularly vexing in repertoires comprising intermediate
calls and in species that exhibit significant inter-individual variation (Fischer, Wadewitz
& Hammerschmidt, 2017). The most common approaches to identifying call types are:
(1) manual (visual or audio-visual) classification of spectrograms by a human observer
and (2) automated (quantitative or algorithmic) using features that are either manually
or automatically measured from spectrograms (Kershenbaum et al., 2016). Audio-visual
classification involves one or more observers inspecting spectrograms visually while
simultaneously listening to the sounds. This method has been applied to the vocalizations
of numerous taxa (e.g., manatees, Trichechus manatus latirostris: Brady et al., 2020;
spear-nosed bats, Phyllostomus discolor : Lattenkamp, 2019; humpback whales, Megaptera
novaeangliae:Madhusudhana, Chakraborty & Latha, 2019; NewZealand kea parrots,Nestor
notabilis: Schwing, Parsons & Nelson, 2012). Audio-visual classification studies often rely
on a single expert observer and only rarely quantify within- or between-observer reliability
(reviewed in Jones, ten Cate & Bijleveld, 2001). On one hand, when classification is done
by a single observer, the study risks idiosyncratic or irreproducible results. On the other
hand, when multiple observers are involved, the study risks inconsistent assessments
among scorers. To assess the reproducibility of a human-based classification scheme, it is
critical to evaluate the consistency of scores within and/or among the human observers
using inter-rater reliability (IRR) statistics such as Cohen’s kappa (Hallgren, 2012). Unlike
other reliability metrics (e.g., percent agreement) Cohen’s kappa corrects for the level of
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agreement expected by chance; in this way, Cohen’s kappa results in a standardized index
of IRR that can be compared across studies (Hallgren, 2012).

To compare and classify acoustic signals, researchers must often make decisions about
which features to estimate, as analyses of the waveform can be computationally costly (but
see Stowell, 2022 for a recent review of computational bioacoustics with deep learning). A
commonly used approach for many classification problems is feature selection, in which
a suite of selected time- and frequency-based characteristics of sounds are measured
and compiled from manually annotated spectrograms (Odom et al., 2021). There is little
standardization concerning the selection of acoustic variables across studies, which often
include a combination of qualitative and quantitative measurements that are manually
and/or automatically (i.e., using a sound analysis program, such as Raven Pro 1.6, K Lisa
Yang Center for Conservation Bioacoustics, 2024) extracted. As an alternative to feature
selection, some researchers use automated approaches wherein the spectral content of
sounds is measured using spectrograms, cepstra, multi-taper spectra, wavelets, or formants
(reviewed in Kershenbaum et al., 2016).

Once features have been manually or automatically extracted, multivariate analyses
can be used to classify or cluster sounds using supervised or unsupervised algorithms,
respectively. In the case of supervised classification, users manually label a subset of
representative sounds which are used to train the statistical model that will subsequently
be used to assign those sound types to their respective class in an unlabeled set of data
(Cunningham, Cord & Delany, 2008). In contrast to supervised classification, clustering
is an unsupervised machine learning approach in which an algorithm divides a dataset
into several groups or clusters such that observations in the same group are similar to
each other and dissimilar to the observations in different groups (Greene, Cunningham &
Mayer, 2008). Thus, in the case of unsupervised clustering, the computer—rather than the
human observer—learns the groupings and assigns labels to each value (Alloghani et al.,
2020).

Enumeration of call types in a repertoire is especially challenging when there are
intermediate forms that fall between categories. These so-called graded call types have
been well documented across primate taxa (Fischer, Wadewitz & Hammerschmidt, 2017;
Hammerschmidt & Fischer, 1998). An alternative to ‘‘hard clustering’’ of calls into discrete
categories (e.g., k-means, k-medoids, affinity propagation), ‘‘soft clustering’’ (e.g., fuzzy
c-means) allows for imperfect membership by assigning probability scores for membership
in each cluster, thereby making it possible to identify call types with intermediate
values (Cusano, Noad & Dunlop, 2021; Fischer, Wadewitz & Hammerschmidt, 2017). Soft
clustering can be used in tandem with hard clustering by also quantifying the degree of
ambiguity (or gradedness) exhibited by particular sounds and continuities across call types.
Thus, soft clustering provides a means of quantifying gradedness in repertoires and can
enable the identification of intermediate members.

Across studies of animal vocal complexity, there is notable variation in the number and
type of feature sets used, ranging from fewer than 10 to more than 100 parameters that are
manually and/or automatically extracted. Table 1 provides a summary of 15 studies that
used supervised classification and unsupervised clustering approaches to identify call types
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Table 1 Review of studies using supervised classification and unsupervised clustering approaches to identify vocal types.

Publication Taxon Goals N Features Classification
(N observers)

Clustering
Method

Wadewitz et al. (2015) Chacma baboon
(Papio ursinus)

Compare hard & soft
clustering, evaluate
influence of features

9, 38, 118
(+ 19 PCA
factors)

A/V* K-means,
Hierarchical
agglomerative
(Ward’s),
Fuzzy c-means

Fuller (2014) Blue monkey
(Cercopithecus mitis
stulmanni)

Catalog vocal signals 18 PCA
factors

A/V (1), DFA** Hierarchical
agglomerative

Fournet, Szabo & Mellinger (2015) Humpback whale
(Megaptera
novaeangliae)

Catalog non-song
vocalizations

15 A/V (1), DFA Hierarchical
agglomerative

Brady et al. (2020) Florida manatee
(Trichechus manatus
latirostris)

Catalog vocal
repertoire

17 A/V (1) Maximum
likelihood,
CART

Hammerschmidt & Fischer (2019) Chacma (Papio ursinus),
olive (P. anubis), and
Guinea baboon (P. papio)

Catalog & compare
vocal repertoires,
Compare A/V to
clustering

9 A/V (multiple),
DFA**

Two-step cluster
analysis

Sadhukhan, Hennelly & Habib (2019) Indian wolf
(Canis lupus pallipes)

Catalog harmonic
vocalizations

8 DFA Hierarchical
agglomerative

Hedwig, Verahrami & Wrege (2019) African forest elephant
(Loxodonta cyclotis)

Catalog vocal
repertoire

23 DFA** PCA

Huijser et al. (2020) Sperm whale
(Physeter macrocephalus)

Catalog coda
repertoires

2 A/V (1) K-means,
Hierarchical
agglomerative

Vester et al. (2017) Long-finned pilot whale
(Globicephala melas)

Catalog vocal
repertoire

14 A/V (2), DFA Two-step cluster
analysis

Soltis et al. (2012) Key Largo woodrat
(Neotoma floridana smalli)

Catalog vocal
repertoire

6 A/V* Multidimensional
scaling analysis
(MDS)

Elie & Theunissen (2016) Zebra finch
(Taeniopygia guttata)

Catalog vocal
repertoire, determine
distinguishing
features

22, 25
(MFCCs)

A/V (1),
Fisher LDA,
Random
Forest

PCA, Gaussian
mixture

Janik (1999) Bottlenose dolphin
(Tursiops truncatus)

Compare A/V to
clustering

20 A/V (5) K-means,
Hierarchical
agglomerative

Cusano, Noad & Dunlop (2021) Humpback whale
(Megaptera novaeangliae)

Differentiate discrete
vs. graded call types

25 A/V* Fuzzy k-means

Garland, Castellote & Berchok (2015) Beluga whale
(Delphinapterus leucas)

Catalog vocal
repertoire

12 A/V* CART,
Random forest

Thiebault et al. (2019) Cape gannet
(Morus capensis)

Catalog repertoire
of foraging calls

12 A/V* Random forest

Notes.
*Study did not report # of observers.
**Leave-one-out.
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across a range of mammalian and avian taxa. Though most studies paired audio-visual
classification with an unsupervised clustering method, a few also included discriminant
function analysis (DFA) to quantify the differences among the human-labeled call types
and/or computer-identified clusters. Authors relied on a broad range of unsupervised
clustering algorithms, though hierarchical agglomerative clustering was the most used
method. Studies that aimed to provide an accurate classification of different call types
often relied on a combination of supervised classification and unsupervised clustering
methods to ensure results were robust and repeatable. However, those that compared
feature sets or clustering methods often reported a lack of agreement on the number
of clusters identified, highlighting the difficulty of the seemingly straightforward task of
identifying and quantifying call types.

Orangutan long call complexity
In the present study, we examine vocal complexity in the long calls of Bornean orangutans
(Pongo pygmaeus wurmbii) by evaluating how the choice of feature inputs and classification
or clustering methods affects the number of call types identified. Orangutans are semi-
solitary great apes who exhibit a promiscuous mating system in which solitary adult males
range widely in search of fertile females (Spillmann et al., 2017). Flanged males (i.e., adult
males who have fully developed cheek pads, throat sacs, and body size approximately twice
that of adult females) emit loud vocalizations, or long calls, which travel up to a kilometer
and serve to attract female mates and repel rival males (Mitra Setia & van Schaik, 2007).
In this social setting, long calls thus hold an important function for coordination among
widely dispersed individuals.

Long calls are complex and variable vocalizations comprising multiple call (or pulse)
types that vary within and among individuals (Askew & Morrogh-Bernard, 2016; Spillmann
et al., 2010). These vocalizations typically begin with a bubbly introduction of soft, short
sounds that build into a climax of high-amplitude frequency-modulated pulses followed by
a series of lower-amplitude and -frequency pulses that gradually transition to soft and short
sounds, similar to the introduction (cf. MacKinnon, 1977, Table 2). Although Davila Ross
& Geissmann (2007) first attempted to classify and name the different elements of these
calls, they noted a ‘‘wide variety of call elements do not belong to any of these note types’’
(Davila Ross & Geissmann, 2007 p. 309).

Spillmann and colleagues (2010) presented the most detailed description of orangutan
long calls in which they identified six different pulse types (Table 2). Thus far, however,
there has been o attempt to systematically compare and classify pulses across observers
or quantify how discrete these sounds are. Further, no studies have described the process
for or the number of observers classifying sound types nor the reliability of classifications
within or among observers. Thus, it is presently unclear how well pulse types can be
discriminated by human observers or quantitative classification tools, thereby limiting our
ability to repeat, reproduce, and replicate these studies.

The present study aims to evaluate vocal complexity in orangutan long calls by comparing
different approaches to identifying the number of discrete calls and estimating the degree
of gradedness in a model vocal system. Specifically, the objectives of our study are to: (1)
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Table 2 Names and descriptions of sound labels used in previous studies, using Spillmann et al. (2010) labels as reference.

Sound type MacKinnon (1974) Davila Ross & Geissmann (2007) Spillmann et al. (2010)

Grumbles bubbly introduction bubbling ‘‘preceding bubbling-like elements
that are low in loudness’’

Bubbles n/a bubbling ‘‘low amplitude, looks like a
cracked sigh’’

Roar ‘‘climax of full roars’’ roar ‘‘more rounded and lower in
frequency’’

Low Roar n/a n/a ‘‘half the fundamental frequency at
the highest point than roar’’

Volcano Roar n/a n/a ‘‘sharp tip and higher frequency
than roar’’

Huitus n/a huitus ‘‘high amplitude with steeply ascending and
descending part that are not connected’’

Intermediary n/a intermediary ‘‘low amplitude, frequency modulation
starts with a rising part followed by a
falling part that changes again into a
rising and ends with a falling part’’

Sigh ‘‘tails off gradually into
a series of sighs’’

sigh ‘‘low amplitude, starts with a short
rising part and changes in a
long falling part’’

evaluate and quantify the reliability of manual audio-visual (AV) classification by three
well-trained observers, (2) classify and cluster call types using supervised classification
(support vector machines) and unsupervised hard (affinity propagation) and soft (fuzzy
c-means) clustering methods, and (3) compare the results using different feature sets (i.e.,
feature engineering, complete spectrographic representations). Based on these findings, we
explore and assess alternative classification systems for identifying discrete and graded call
types in this system. Portions of this text were previously published as part of a preprint
(Erb et al., 2023).

MATERIALS & METHODS
Ethical note
This research was approved by the Institutional Animal Care and Use Committee of
Rutgers, the StateUniversity ofNew Jersey (protocol number 11-030 granted to ErinVogel).
Permission to conduct the research was granted to WME by the Ministry of Research and
Technology of the Republic of Indonesia (RISTEK Permit #137/SIP/FRP/SM/V/2013-
2015). The data included in the present study comprise recordings collected during passive
observations of wild habituated orangutans at distances typically exceeding 10 m. The
population has been studied since 2003 and individual orangutans were not disturbed by
observers in the execution of this study.

Study site and subjects
We conducted our research at the Tuanan Orangutan Research Station in Central
Kalimantan, Indonesia (2◦09′06.1′′S; 114◦26′26.3′′E). Tuanan comprises approximately
1,200 hectares of secondary peat swamp forest that was selectively logged prior to the
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establishment of the study site in 2003 (see Erb et al., 2018 for details). For the present study,
data were collected between June 2013 and May 2016 by WME and research assistants (see
Acknowledgments) during focal observations of adult flanged male orangutans. Whenever
flanged males were encountered, our field team followed them until they constructed a
night nest and we returned to the nest before dawn the next morning to continue following
the same individual. All subjects were individually recognized based on unique facial
features, scars, and broken or missing digits. Individuals were followed continuously for
five days unless they were lost or left the study area. During 316 partial- and full-day focal
observations, we recorded 932 long calls from 22 known individuals.

Long call recording
During observations, we used all-occurrences sampling (Altmann, 1974) of long calls
noting: time, GPS location, stimulus (preceded within 15 min by another long call, tree
fall, approaching animal, or other loud sounds), and any accompanying movements or
displays. Recordings of long calls were made opportunistically, using a Marantz PMD-660
solid-state recorder (44,100 Hz sampling frequency, 16 bits: Marantz, Kanagawa, Japan)
and a Sennheiser directional microphone (K6 power module and ME66 recording head:
Sennheiser,Wedemark, Germany). Observersmade voice notes at the end of each recording
noting the date and time, orangutan’s name, height(s), distance(s), and movement(s), as
well as the gain and microphone directionality (i.e., directly or obliquely oriented).

Long call analysis
Manual annotations and human labeling are very time-intensive, and we did not have the
resources available to analyze all 932 recordings. Because there was a very uneven sampling
among individuals (range = 1–280, mean = 42.4 + 68.9 SD), we wanted our final dataset
of call measurements to include the largest number of males for which we had enough
high-quality recordings to allow us to investigate within- and among-individual variation
for parallel investigations. Thus, prior to beginning our analyses, we selected a subset of
recordings from 13 males from whom we had collected at least 10 high-quality long call
recordings. When more than 10 long call recordings were available for a given individual,
we randomly selected 10 of his recordings, stratified by study year, to balance our dataset
across individuals and years. The final dataset comprised 130 long calls, 10 from each of 13
males.

Prior to annotating calls, we used Adobe Audition 14.4 to downsample recordings to
5,100Hz (cf.Hammerschmidt & Fischer, 2019). This step was taken to reduce the size of files
for storage and processing speed, and did not affect the frequencies analyzed for this study.
We then generated spectrograms in Raven Pro 1.6 (K Lisa Yang Center for Conservation
Bioacoustics, 2024) with a 512-point (92.9 ms) Hann window (3 dB bandwidth= 15.5 Hz),
with 90%overlap and a 512-pointDFT, yielding time and frequencymeasurement precision
of 9.25 ms and 10.8 Hz. Three observers (WME, WR, HK) annotated calls by drawing
selections that tightly bounded the start and end of each pulse (Fig. S1) and assigned call
type labels using the classification scheme outlined in Table 2. Except for huitus pulses (for
which the rising and falling sounds are broken by silence), we operationally defined a pulse
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as the longest continuous sound produced on a single exhalation. Because most long calls
are preceded and/or followed by a series of short bubbling sounds, we used a threshold
duration of ≥ 0.2 s to differentiate pulses from these other sounds. Most selections were
drawn with a fixed frequency range from 50 Hz to 1 kHz that captured the range of the
fundamental frequency; however, in cases where the maximum fundamental frequency
exceeded 1 kHz (e.g., huitus and volcano roars), selections were drawn from 50 Hz to 1.5
kHz. Occasionally, we manually reduced the frequency range of selections if there were
disturbing background sounds, but only if this did not affect measures of the fundamental
frequency contour or high-energy harmonics. We noted whether selections were tonal
(i.e., the fundamental frequency contour was fully or partially visible) and whether they
contained disturbing background noises such as birds, insects, or breaking branches.

Our selected feature set comprised 25 extractedmeasurements made in Raven (Table S1)
as well as an additional 19 measurements estimated using the R package warbleR (Araya-
Salas & Smith-Vidaurre, 2017). A recent study of baboon vocalizations showed that a
higher number of correlated features leads to better hard and soft clustering results
than analyses based on fewer features (i.e., 38 or 118 features produced better results
compared to 9 features, and 19 PCA-derived factors performed worst: Wadewitz et al.,
2015). Prior to analyzing sounds in warbleR, we filtered out all pulse selections that were
atonal or contained disturbing background noise, resulting in 2,270 clips. Two additional
measurements (minimum and maximum) of the fundamental frequency (F0) were made
using the ‘‘freq_ts’’ function in warbleR with the following settings: wavelength = 512,
Hanning window, 70% overlap, 50–1,500 Hz, threshold = 85%. We then saved printed
spectrograms depicting the F0 contours for each. One observer (WME) visually screened
the minimum and maximum values of the F0 contours and scored them as accurate or
inaccurate. After removing those pulses for which one or both F0measures were inaccurate,
the final full dataset comprised 1,033 pulses from 117 long calls for which all 46 parameters
were measured.

Audio-visual analysis
To assess the inter-rater reliability (IRR) of the audio-visual analysis, we randomly selected
300 pulses (saved as individual .wav files). We included this step to remove any bias that
may be introduced by information about the position or sequence of a pulse-type within a
long call (cf. Fournet, Szabo & Mellinger, 2015). Using the spectrograms and descriptions of
pulse types published by Spillmann et al. (2010), three observers (WME, WR, HK) labeled
each sound as one of six pulse types (Fig. 1). Prior to completing this exercise, all observers
had at least six months’ experience classifying pulse types, which involved routine feedback
and three-way discussion. We used the R package irr (Gamer et al., 2012) to calculate
Cohen’s kappa (a common statistic for assessing IRR for categorical variables) for each
pair of observers, and averaged these values to provide an overall estimate of IRR (Light’s
kappa) across all pulse types (cf. Hallgren, 2012; Light, 1971).

Supervised classification
For the supervised classification analysis, one observer (WME)manually classified all pulses
(N = 1,033). We then used support vector machines (SVM) in the R package e1071 (Meyer
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Figure 1 Spectrogram depicting long call pulse types. Pulses include HU= huitus, VO= volcano, HR
= (high) roar, LR= low roar, IN= intermediary, SI= sigh. Spectrograms produced in Raven Pro 1.6.

Full-size DOI: 10.7717/peerj.17320/fig-1

et al., 2021) to evaluate how well pulse types could be discriminated using a supervised
machine learning approach. SVMs are commonly used for supervised classification and
have been successfully applied to the classification of primate calls (Clink & Klinck, 2020;
Fedurek, Zuberbühler & Dahl, 2016; Turesson et al., 2016). We compared the effect of
‘linear’, ‘polynomial’, ‘radial’, and ‘sigmoid’ kernel types on the accuracy for each class,
using the default values for the gamma and cost parameters. We randomly subset our
data into 60/40 split (where 60% of the data was used for training and 40% was used for
testing over 10 iterations), and found that the ‘linear’ kernel type led to the highest mean
accuracy across classes. Following this, we report supervised classification accuracy using
SVM wherein we randomly divided our full dataset into a 60/40 split over 10 different
iterations. Lastly, we used SVM recursive feature elimination to rank variables in order of
their importance for classifying call types (cf. Clink, Crofoot & Marshall, 2019). For each of
the top five most influential variables identified by recursive feature elimination, we used
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nonparametric Kruskal-Wallis tests due to the non-normal distribution of the residuals
when applying linear models. We followed these with Dunn’s test of multiple comparisons
to examine differences among pulse types and unsupervised clusters (described below)—
applying the Benjamini–Hochberg adjustment to control the false discovery rate—using
the R package FSA (Ogle et al., 2022).

Unsupervised clustering
For the unsupervised analysis, we used both hard- and soft-clustering approaches. For hard
clustering, we used affinity propagation, which has the advantage that it does not require
the user to identify the number of clusters a priori; further, because all data points are
considered simultaneously, the results are not influenced by the selection of an initial set
of points (Frey & Dueck, 2007). Using the R package apcluster (Bodenhofer, Kothmeier &
Hochreiter, 2011), we systematically varied the value of ‘q’ (the sample quantile threshold,
where q= 0.5 results in the median) in 0.25 increments from 0 to 1; the q parameter can
influence the number of clusters returned by the algorithm. We used silhouette coefficients
to quantify the stability of the resulting clusters (cf. Clink & Klinck, 2020). By comparing
the mean silhouette coefficient for each of the cluster solutions (Wang et al., 2007), we
found that q= 0 produced the most appropriate cluster solution and thus we report the
results from this model.

For the soft clustering analysis, we used C-means fuzzy clustering. In this analysis,
each pulse is assigned a membership value (m) that ranges from 0 = none to 1 = full
accordance for each of the clusters. We first determined the optimal number of clusters
(c) by evaluating measures of internal validation and stability generated in the R package
clValid (Brock et al., 2008) when c varied from 2 (the minimum) to 7 (one more than the
previously described number of pulse types). We then systematically varied the fuzziness
parameter µfrom 1.1 to 5 (i.e., 1.1, 1.5, 2, 2.5, etc.: cf. Zhou, Fu & Yang, 2014) using the
R package cluster (Maechler et al., 2021). When µ= 1, clusters are tight and membership
values are binary; however, as µincreases, cases can show partial membership to multiple
clusters, and the clusters themselves thereby become fuzzier and can eventually merge,
leading to fewer clusters (Fischer, Wadewitz & Hammerschmidt, 2017). We used measures
of internal validity (connectivity, silhouette width, and Dunn index) and stability (average
proportion of non-overlap = APN, average distance = AD, average distance between
means = ADM, and figure of merit = FOM) to evaluate the cluster solutions in the R
package clValid (Brock et al., 2008). Once we had identified the best solution, we calculated
typicality coefficients to assess the discreteness of each pulse, wherein higher values indicate
pulses that are well separated from other clusters and lower values indicate pulses that are
intermediate between classes (cf. Cusano, Noad & Dunlop, 2021; Wadewitz et al., 2015).

Non-linear dimensionality reduction techniques have recently emerged as fruitful
alternatives to traditional linear techniques (e.g., principal component analysis) for
classifying animal sounds (Sainburg, Thielk & Gentner, 2020). Uniform Manifold
Approximation and Projection (UMAP) is a state-of-the-art unsupervised machine
learning algorithm (McInnes, Healy & Melville, 2018) that has been applied to visualizing
and quantifying structures in animal vocal repertoires (Sainburg, Thielk & Gentner, 2020).
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Like ISOMAP and t-SNE, UMAP constructs a topology of the data and projects that graph
into a lower-dimensional embedding (McInnes, Healy & Melville, 2018; Sainburg, Thielk &
Gentner, 2020). UMAP has been shown to preserve more global structure while achieving
faster computation times (McInnes, Healy & Melville, 2018) and has been effectively applied
tomeaningful representations of acoustic diversity (reviewed in Sainburg, Thielk & Gentner,
2020). This approach removes any a priori assumptions about which acoustical features
are most salient or easily measured by humans.

We applied UMAP separately to the 46-feature set and to time-frequency representations
of extracted pulses. For the former, we used the default settings of the umap function in the
R package umap (Konopka, 2023). In the latter case, we used as power density spectrograms
of 0.9-s duration audio clips centered at the temporal midpoint of annotated pulses as
inputs. This threshold was identified through trial-and-error as the value that allowed
us to capture as much of each pulse as possible without including parts of the preceding
or subsequent pulse. By using the midpoint, we could align each pulse while retaining
important information about F0 shape (i.e., some pulses, like HU and VO are defined by
the shape of the F0 at the midpoint). The chosen duration was fixed irrespective of the
selection duration. This means that, for short selections, the spectrograms also included
sounds outside of the original selection. Short-time Fourier transforms of the clips were
computed, using SciPy’s (https://scipy.org/) spectrogram function, with a Hann window
of 50 ms and 50% frame overlap (20 Hz frequency resolution, 25 ms time resolution).
Spectral levels were converted to the decibel scale by applying 10×log10. The bandwidth
of the resulting spectrograms was limited to 50–1,000 Hz prior to UMAP computation
to suppress the influence of low-frequency noise on clustering. We used the default
settings in the UMAP function from the Python package umap-learn (McInnes, Healy
& Melville, 2018) to compute the low-dimensional embeddings. Finally, we calculated
Hopkin’s statistic of clusterability on the resultant UMAP using the R package factoextra
(Kassambara & Mundt, 2020).

Bootstrapping observations and features
To investigate how varying the number of observations (i.e., pulses) and features impacted
our results, we applied a bootstrapping approach wherein we randomly selected a fixed
number of observations or features and re-ran 25 iterations of the unsupervised cluster
analysis for each permutation. We systematically varied the number of randomly-selected
observations from 100–900 in increments of 100 (i.e., 100, 200, 300, etc.) and varied
the number of randomly-selected features from 2–40 (i.e., 2, 4, 6, 8, 16, 32, and 40). We
calculated the number of clusters returned for each iteration of both unsupervised clustering
methods, as well as mean typicality for fuzzy clustering and classification accuracy for SVM.
Unbalanced data for both supervised classification and unsupervised clustering can lead
to poor model performance and generalizability, as algorithms are biased towards high
performance for the majority class (Fernández et al., 2018). Therefore, to ensure our results
were not influenced by our unbalanced dataset we randomly chose 39 samples from each
pulse type (as 39 was the minimum number in a single class) and used the unsupervised
algorithms (affinity propagation clustering and fuzzy clustering) as described above.

Erb et al. (2024), PeerJ, DOI 10.7717/peerj.17320 11/29

https://peerj.com
https://scipy.org/
http://dx.doi.org/10.7717/peerj.17320


Revised classification approach
Finally, we reviewed the outputs of our unsupervised clustering approaches to assess the
putative number of pulses and graded variants. To identify a simple, data-driven, repeatable
method for manually classifying pulse types, we began by pooling the typical pulses that
belonged to each of the clusters identified by fuzzy clustering. Because F0 is a highly
salient feature in long call spectrograms, our approach focused on the shape and height
(or maximum frequency) of this feature. Using our revised definitions, we repeated the
(1) audio-visual analysis and calculated IRR using manual labels from the same 300 pulses
reviewed by the same three observers as before, and (2) SVM classification of 500 randomly
selected pulses scored by a single observer (WME) following the methods described above.

RESULTS
Audio-visual analysis
Based on manual labels from three observers using audio-visual classification methods,
we calculated Light’s kappa κ = 0.554 (i.e., the arithmetic mean of Cohen’s Kappa for
observers 1–2 = 0.47, 1–3 = 0.59, and 2–3 = 0.60), which indicated only moderate
agreement among observers (Landis & Koch, 1977). Classification agreement varied widely
by pulse type (Fig. 2, Table 3), whereas huitus and sigh pulse types showed high agreement
among observers (mean 2.88 and 2.77, respectively, where 3 indicates full agreement), low
roar and volcano pulse types showed very low agreement (mean 2.08).

Supervised classification using extracted feature set: support vector
machines
We tested the performance of SVM for the classification of orangutan long call pulse types
using our full acoustic feature dataset. Using a 60/40 split across 20 iterations, we found the
average classification accuracy of pulse types was 71.1% (range: 68.1–73.7± 0.003 SE). SVM
classification accuracy was higher than IRR agreement scores for some pulse types (high
roar, low roar, and sigh), though human observers were better at discriminating huitus,
volcano, and intermediary pulses (Fig. 3). Classification accuracy was highly variable across
pulse types. Whereas sighs and huituses were classified with the highest accuracy (93 and
74%, respectively), volcanoes and intermediaries were classified with the lowest accuracy
(33 and 27%, respectively: Fig. 3, Table 3). The confusion matrix (Table 4) summarizes
the classification results for each pulse type (based on 60/40 split across 20 iterations) and
shows that huitus pulses were equally often classified as huitus and volcano (33% each) and
volcano pulses were most often classified as high roars (87%), whereas intermediary pulses
were most often classified as low roars (39%) and sighs (37%). Low roars were correctly
classified in 57% of cases, and were most often misclassified as either sighs (26%) or high
roars (13%).

Recursive feature elimination revealed that center frequency, peak frequency, mean
peak frequency, and third and first frequency quartiles were the most influential variables
(Table 3). In all five influential features, high roars, huituses, and volcanoes overlapped,
and in four of five features, intermediaries overlapped low roars (Fig. S2, Table S2). All
other pairwise comparisons of pulse types showed significant differences in all features.
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Figure 2 Audio-visual classification agreement across observers. Stacked barplots indicating (top) clas-
sification agreement by pulse type between observer 1–2 and observer 1–3 and (bottom) the number of
observers who agreed on the pulse types assigned by observer 1; the average agreement index is indicated
below each pulse type and demonstrates high agreement for HU and SI (≥2.77), but low agreement for
VO and LR (2.08).

Full-size DOI: 10.7717/peerj.17320/fig-2

Table 3 Mean pulse-type values for A/V agreement index (A/V), SVM pulse classification accuracy (SVM), typicality coefficient (Typicality),
and frequency measures (center, peak, mean peak, third quartile, and first quartile).

Pulse A/V SVM Typicality Center Peak Mean peak 3rd quart 1st quart

HU 2.88 74% 0.90 443.3 421.0 436.4 585.3 370.3
VO 2.08 33% 0.98 483.1 442.3 505.6 592.6 376.7
HR 2.37 64% 0.94 440.0 409.9 450.1 533.8 358.7
LR 2.08 56% 0.81 266.3 252.2 271.8 312.0 231.4
IN 2.13 27% 0.84 249.7 242.7 244.6 288.8 225.5
SI 2.77 93% 0.97 203.0 201.1 194.6 239.1 172.5
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Figure 3 Barplot of classification accuracy for Spillmann et al. (2010) pulse scheme. Comparison of
classification accuracy of audio-visual classification (AV), calculated as the average agreement between
three observer pairs compared to supervised machine learning classification (SVM).

Full-size DOI: 10.7717/peerj.17320/fig-3

Table 4 Confusionmatrix showing the number of pulses incorrectly (i.e., classification differed from
human observer) and correctly assigned (in bold) using SVM classification. The number of pulses as-
signed to each pulse type is reported in the final column.

Pulse HU VO HR LR IN SI Count

HU 5 5 3 0 0 2 15
VO 0 2 13 0 0 0 15
HR 0 9 39 8 1 2 59
LR 0 2 9 41 1 19 72
IN 0 0 0 22 14 21 57
SI 0 0 0 15 4 176 195

Unsupervised clustering using extracted feature set: hard and soft
clustering
Affinity propagation resulted in four clusters with an average silhouette coefficient of 0.32
(range: −0.22–0.61). Of these four clusters, two (clusters 616 and 152: Fig. 4) had higher
silhouette coefficients (0.45 and 0.29, respectively) and separated the higher-frequency
pulses (i.e., huitus, volcano, and high roar pulses) from lower-frequency ones (i.e., low
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Figure 4 Stacked barplots of affinity propagation clusters. The barplots show the number of calls in
each cluster classified by pulse type.

Full-size DOI: 10.7717/peerj.17320/fig-4

roar, intermediary, and sigh). The remaining two clusters had lower silhouette coefficients
(cluster 16 = 0.19, cluster 812 = 0.21) and both contained calls from all six pulse types
(Fig. 4). We analyzed the separation of unsupervised clusters using the influential features
identified from recursive feature elimination (Fig. S2). Two of the four clusters (16 and
152) overlapped in four of five features. These clusters primarily comprised high roars,
volcanoes, and huituses.

In a final approach to clustering our extracted feature set, we used c-means fuzzy
clustering to provide another estimate of the number of clusters in our dataset and
quantify the degree of gradation across pulse types. All three internal validity measures
(connectivity, Dunn, and silhouette) and three of four stability measures (APN, AD,
and ADM) indicated that the two-cluster solution was optimal. Only FOM indicated a
three-cluster solution was marginally more stable (0.855 for 2 vs. 0.860 for three clusters).
We found that mu = 1.1 yielded the highest average silhouette width (0.312); silhouette
widths decreased as mu increased.
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Figure 5 Typicality coefficients for each pulse type. (A) Histogram showing the distribution of coeffi-
cients and (B) boxplot showing typicality values for each pulse type. Typicality thresholds were calculated
following (Wadewitz et al., 2015). Typical calls were those whose typicality coefficients exceeded 0.976 and
atypical calls were those below 0.855.

Full-size DOI: 10.7717/peerj.17320/fig-5

Typicality coefficients were high overall (mean: 0.92 + 0.006 SE, Fig. 5) but varied widely
by pulse type. Whereas volcanoes and sighs had the highest typicality coefficients (0.98
and 0.97, respectively) and intermediaries and low roars had the lowest coefficients (0.84
and 0.81, respectively, Table 3). Pairwise comparisons of typicality coefficients showed that
typicality coefficients for low roars and intermediaries were significantly lower than those
of all other pulse types but did not significantly differ between these two pulses (Fig. S2,
Table S2).

We determined the thresholds for typical (>0.976) and atypical calls (<0.855) (cf.
Wadewitz et al., 2015). Overall, 69% of calls were ‘typical’ for their cluster and 17% were
‘atypical’; however, pulse types varied greatly (Fig. 6). Whereas sighs and volcanoes had a
high proportion of typical calls (85% and 80% respectively), low roars and intermediaries
had a high proportion of atypical calls (44% and 40% respectively).

Typical calls were found in both clusters (Fig. 6). Typical calls in cluster one included
high roars, huituses, low roars, and volcanoes and those in cluster two included sighs,
low roars, and intermediaries. Whereas typical sighs, huituses, and volcanoes were each
found in only one cluster (and only 1–2 intermediaries and high roars were typical for
a secondary cluster), 24% of low roars belonged to a secondary cluster. Overall, cluster
one comprised 189 typical and 99 atypical calls (53% and 28% of 353 calls, respectively)
and cluster two comprised 526 typical and 75 atypical calls (77% and 11% of 680 calls,
respectively), indicating that calls in cluster two were better separated from other call types
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Figure 6 Stacked barplots of typical calls. (A) the proportion of each pulse type that was typical for each
cluster and (B) the number of typical calls in each cluster classified by pulse type.

Full-size DOI: 10.7717/peerj.17320/fig-6

than those in cluster one. We compared typical calls in each cluster and found that calls in
different clusters significantly differed from each other in all five influential features (Fig.
S2, Table S2A).

UMAP visualization of extracted features and spectrograms
We used UMAP to visualize the separation of individual pulses using our extracted feature
set, comparing the cluster results from affinity propagation and fuzzy clustering with
manual classification (Fig. 7). We also used UMAP to visualize the separation of pulses
based on the power density spectrograms (Fig. 7). For both datasets, it appears that there
are two loose and incompletely separated clusters as well as a smaller number of pulses
that grade continuously between the two clusters. The Hopkins statistic of clusterability for
the extracted feature set was 0.940 and 0.957 for the power spectrograms, both of which
indicate strong clusterability of calls.
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Figure 7 UMAP projection of 46-feature dataset and power density spectrograms. Colors indicate four
clusters identified using unsupervised affinity propagation (upper left), two clusters and typical calls iden-
tified by fuzzy clustering (upper right), six pulse types labeled by human observer using the extracted fea-
ture set (lower left), and raw power density spectrograms (lower right).

Full-size DOI: 10.7717/peerj.17320/fig-7

Assessment of sample size on cluster solutions
Bootstrapping a random selection of observations had a clear influence on the number
of clusters returned by affinity propagation, but not on fuzzy clustering (Fig. S3). Affinity
propagation returned two to six clusters depending on the number of samples, wherein
larger sample sizes led to more clusters. However, the number of clusters appeared to
plateau at four when 500 or more observations were included in the analysis. Fuzzy
clustering returned a two-cluster solution regardless of the number of observations and
there were no substantial differences in the mean typicality coefficients across the range
of samples we evaluated. Although there was substantial variation in SVM classification
accuracy for sample sizes smaller than 200 observations, there was no clear change in mean
SVM classification accuracy with increasing sample size.
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Bootstrapping a random selection of features appeared to have a less predictable
influence on the number of clusters returned by both affinity propagation and fuzzy
clustering (Fig. S4). For affinity propagation, there was a broad range of cluster solutions
(from 2–9) across feature number; however, the four- or five-cluster solutions were the
most common across all iterations. Across all values we tested, fuzzy clustering produced
two to six clusters, but the two-cluster solution was themost common across all numbers of
features. Notably, when 40 features were randomly selected, only the two-cluster solution
was returned across all 25 iterations. When we randomly selected 39 samples from each
pulse type and ran the unsupervised clustering analyses over 25 iterations, we found that
fuzzy clustering reliably returned two clusters, whereas affinity returned three or four
clusters, with the majority (22 of 25 iterations) returning three clusters.

Identification and evaluation of a revised classification approach
Collectively, our unsupervised clustering approaches showed broad agreement for two
relatively discrete clusters with graded pulses occurring along a spectrum between the two
classes. To describe these classes, we first pooled the typical pulses in each of the clusters
identified by fuzzy clustering. In cluster 1, the mean value for F0 max was 764.3 Hz± 351.5
SD Hz (range = 320–1,500); whereas for those pulses belonging to cluster 2, the mean
value of F0 max was 225.3± SD 67.9 SD Hz (range= 80–440). Pulses that were not typical
for either cluster had a mean F0 max of 345.8 ± 159.9 SD Hz. Based on these patterns,
as well as the shape of the F0 contour (a feature that was commonly used to distinguish
among pulse types in previous studies), we created an updated protocol for manually
labeling pulses as follows: Roar (R) = F0 ascends and reaches its maximum (>350 Hz) at
or near the midpoint of the pulse before descending, Sigh (S) = F0 descends and reaches
its maximum (typically, but not always <350 Hz) at the start of the pulse (i.e., no ascending
portion of F0), and Intermediate (I) = either (a) maximum F0 value occurs at the start of
the pulse but with an ascending portion later in pulse, or (b) F0 ascends and reaches its
maximum (<350 Hz) at or near the midpoint of the pulse.

Using these revised definitions, we repeated the audio-visual analysis and calculated
IRR using manual labels from the same 300 pulses reviewed by the same three observers.
These revised definitions yielded Light’s kappa κ = 0.825 (i.e., the arithmetic mean
of Cohen’s Kappa for observers 1–2 = 0.84, 1–3 = 0.86, and 2–3 = 0.78), indicating
‘‘Almost Perfect’’ agreement among observers (cf. Landis & Koch, 1977 for Kappa values
≥0.81). Classification agreement varied only slightly by pulse type, with roars showing
the highest agreement among observers (mean 2.92, where 3 indicates full agreement),
and intermediaries and sighs showing slightly lower agreement (mean 2.79 and 2.72,
respectively). Using a 60/40 split across 20 iterations, we found the average classification
accuracy of pulse types using SVM was 84.2% (range: 80.0–87.5 ± 0.005 SE). SVM
classification accuracy was lower than IRR agreement scores for most pulse types (Fig. 8)
but both roars and sighs were classified with high agreement (>85%) using both methods.
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Figure 8 Barplot of classification accuracy for revised pulse scheme. Comparison of classification accu-
racy of audio-visual classification (AV), calculated as the average agreement between three observer pairs
compared to supervised machine learning classification (SVM).

Full-size DOI: 10.7717/peerj.17320/fig-8

DISCUSSION
Herewe present an extensive qualitative and quantitative assessment of the vocal complexity
of the long-call vocalizations of Bornean orangutans vis-à-vis the diversity and discreteness
of pulse types. Relying on a robust dataset comprising 46 acoustic measurements of 1,033
pulses from 117 long calls recorded from 13males, we compared the performance of human
observers and supervised and unsupervised machine-learning techniques to discriminate
unique call (or pulse) types. Although it is possible, if not likely, that our approach removed
biologically relevant information related to the sequence of sounds within the long calls,
our goal was to evaluate how well pulses could be discriminated into different types based
on a set of absolute measurements.

Three human observers performed relatively well at discriminating two pulse types—
huitus and sigh—but our inter-rater reliability score (i.e., Light’s kappa) showed only
moderate agreement across the six pulse types. Although support vector machines (SVM)
performed better than human observers in classifying some pulse types (though not huitus,
volcano, and intermediary pulses), the overall accuracy was only 71%. SVM’s were best at
discriminating sigh pulse types, and showed similar performance to humans—and were
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better than humans at discriminating high and low roars—but performed relatively poorly
for the others. Poor classification accuracy across audio-visual and supervised machine
learning approaches indicates that these six pulse types are not discrete.

Having demonstrated that these six pulse types were not well discriminated, we turned
to unsupervised clustering to characterize and classify the diversity of pulses comprising
orangutan long calls.Whereas hard clustering, such as affinity propagation, seeks to identify
a set of high-quality exemplars and corresponding clusters (Frey & Dueck, 2007), soft, or
fuzzy, clustering is an alternative or complementary approach to evaluate and quantify
the discreteness of call types within a graded repertoire (Cusano, Noad & Dunlop, 2021;
Fischer, Wadewitz & Hammerschmidt, 2017; Wadewitz et al., 2015). Although the hard
and soft unsupervised techniques yielded different clustering solutions—four clusters for
affinity propagation and two for fuzzy c-means—both methods showed relatively poor
separation across pulse types. Importantly, both hard and soft clustering solutions separated
high-frequency pulses (i.e., huitus, volcano, and high roar) from low-frequency ones (i.e.,
low roar, intermediary, and sigh), but low roars and intermediaries showed low typicality
coefficients and occurred in both fuzzy clusters. Together, the results of unsupervised
clustering support our interpretation of the manual and supervised classification analysis
that orangutan long calls contain a mixture of discrete and graded pulse types, confirming
previous researchers’ observations that many of the sounds in orangutan long calls do not
clearly belong to any pulse type (Davila Ross & Geissmann, 2007).

We used a final approach, UMAP, to visualize the separation and quantify the
clusterability of call types. Because the number and type of features selected can have
a strong influence on the cluster solutions and their interpretations (Fischer et al., 2016;
Wadewitz et al., 2015), we compared the results of our extracted 46-feature dataset with
raw power density spectrograms as inputs. Both datasets yielded similarly high Hopkin’s
statistic values, indicating strong clusterability of calls. At the same time, both datasets
generated a V-shaped cloud of points showing two large loose clusters with a spectrum of
points lying along a continuum between them.

Based on our comprehensive evaluation of orangutan pulse types, we concluded that
orangutan calls could be classified—by humans and machines—into three pulse types
with reasonably high accuracy. Accordingly, we have proposed a revised approach to
the classification of orangutan pulses that we hope improves reproducibility for future
researchers. We recommend using the following terms, already in use by orangutan
researchers to categorize the range of pulse types comprising orangutan long calls: (1) ‘Roar’
for high-frequency pulses, (2) ‘Sigh’ for low-frequency pulses, and (3) ‘Intermediate’ for
graded pulses that fall between these two extremes. Althoughmany pulse types were not well
differentiated by humans or machines in this study, we do not intend to suggest that other
workers were unable to make those distinctions or that orangutans cannot perceive them.
Rather, we demonstrate that some of the pulse types identified in previous studies could not
be replicated here using audio-visual methods and that clustering approaches did not show
strong support for them. Thus, we propose an alternative approach, informed by machine
learning, that improves human reproducibility. Although unsupervised methods did not
clearly separate huitus pulses from other roars, human observers and SVM performed well
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in distinguishing these sounds. Thus, future workers may wish to retain this pulse type in
classification tasks.

We have reported detailed descriptions of each of these pulse types and demonstrated
that they can be relatively easily and reliably identified among different observers and
exhibit high classification accuracy using SVM. While we hope this classification scheme
can be adopted by orangutan researchers, we caution that there is known geographic
variation in the acoustic properties of long calls (cf. Delgado et al., 2009; Davila Ross &
Geissmann, 2007) and, thus, there could be population-level differences in pulse types
as well. Regardless of the population under investigation, our results emphasize the
importance of conducting rigorous IRR testing in studies that rely on humans scoring
spectrograms (cf. Jones, ten Cate & Bijleveld, 2001).

Taken together, our results suggest that orangutan long calls comprise relatively few
(two to four) loosely differentiated call types. This apparent low diversity of call types
could suggest that these vocalizations are not particularly complex. Like the long-calls of
other apes (chimpanzees, Pan troglodytes schweinfurthii: Arcadi, 1996; Marler & Hobbett,
1975; gibbons, Hylobates spp: Marshall & Marshall, 1976), orangutan long calls typically
comprise an intro and/or build-up phase (quiet, staccato grumbles, not analyzed in the
present study), climax (high-energy, high-frequency roars), and a let-down phase (low-
energy, low-frequency sighs). The low number of discrete pulse types could be interpreted
as support for the hypothesis that long-distance signals have been selected to facilitate
signal recognition in dense and noisy habitats (Marler, 1975). Yet, there is a full spectrum
of intermediate call types that yield a continuous gradation of sounds across phases and
pulses, that can be combined into variable sequences within a single long call vocalization
(Lameira et al., 2023). These features would seem to greatly boost the potential complexity
of this signal.

To date, only a handful of studies have quantified the gradedness of animal vocal
systems (but see Cusano, Noad & Dunlop, 2021; Fischer, Wadewitz & Hammerschmidt,
2017; Taylor, Dezecache & Davila Ross, 2021; Wadewitz et al., 2015). Consequently, we
are still lacking a comprehensive framework through which to quantify and interpret
vocal complexity vis-à-vis graded repertoires (Fischer, Wadewitz & Hammerschmidt, 2017).
Future research will explore the production of graded call types across individuals and
contexts to examine the sources of variation and the potential role of graded call types in
orangutan communication.

CONCLUSIONS
We evaluated a range of manual and automated supervised and unsupervised approaches
that have been used to classify and cluster sounds in animal vocal repertoires.We combined
traditional audio-visual methods and modern machine learning techniques that relied on
human eyes and ears, a set of 46 features measured from spectrograms, and raw power
density spectrograms to triangulate diverse datasets and methods to answer a few simple
questions: how many pulse types exist within orangutan long calls, how can they be
distinguished, and how graded are they? While each approach has its strengths and
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limitations, taken together, they can lead to a more holistic understanding of call types
within graded repertoires and contribute to a growing body of literature documenting the
graded nature of animal communication systems.
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