Feral frogs, native newts, and chemical cues: identifying threats from and management opportunities for invasive African Clawed Frogs in Washington state

David Anderson^{1*}, Olivia Cervantez^{1*}, Gary M. Bucciarelli², Max Lambert³, Megan R. Friesen¹

¹Department of Biology, Saint Martin's University. Lacey, WA USA 98503

²Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA USA 95616

³Science Division, Habitat Program, Washington Department of Fish and Wildlife, Olympia, WA USA 98501

*Anderson and Cervantez contributed equally to this manuscript.

Corresponding Author:

Megan Friesen

5000 Abbey Way SE, Lacey, WA, 98503, USA

Email address: mfriesen@stmartin.edu

Abstract

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis, 4sCF) are native to Southern Africa but have subsequently become invasive on multiple continents - including multiple parts of North America - due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of ACFX. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding ACFX. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral ACFX. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (ACFX. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive ACFX. laevis chemical cues. We also began experimentally testing whether T. granulosa-__which produce the a powerful neurotoxin tetrodotoxin (TTX) – may elicit an anti-predator response in ACFX. laevis, bythat could serve to deterring cooccupation. However, our short-duration experiments found that ACFX. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that ACFX. laevis likely poses a threat to native amphibians, and that these native species which may also be particularly vulnerable to this invasive predator, compared to native predators, and because toxic native newts may not help-limit ACFX. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral ACFX. laevis and provides a foundation for future experiments testing potential management techniques for ACFX. laevis.

Commented [Biol1]: Just for consistency sake, I think you can just drop the AFC name. All other species are just going by their scientific names (e.g., R. aurora), there is not reason to treat Xenopus any differently.

Formatted: Font: Not Italic

Introduction

Invasive species threaten biodiversity globally (Didham *et al.*, 2005; Didham *et al.*, 2007; Pyšek and Richardson, 2010; Ahmed *et al.*, 2022). While some effects of invasive species on native species and ecosystems are easily recognizable, other effects are challenging to identify. In some cases, native species responses that are behaviorally mediated may not be easily measured (Simberloff *et al.*, 2013). Understanding the impacts of invasive species on a particular species or ecosystem is essential for appropriately allocating resources and coordinating management efforts (Epanchin-Niell *et al.*, 2009).

Amphibians globally have experienced tremendous losses and an estimated 41% of amphibian species are listed as threatened on the International Union for Conservation of Nature Red List (IUCN, 2023). Invasive species have contributed greatly to these declines as roughly 16% of threatened amphibian declines and approximately 30% of amphibian extinctions are at least partially attributed to invasive species (Falaschi *et al.*, 2020). The threat of invasive species to amphibians may be greatest from aquatic invasive predators (Kats and Ferrer, 2003) due to predation, competition, hybridization, and disease (Falaschi *et al.*, 2020). In North America, for example, native amphibians are not only threatened by invasive species in general but by competition with and predation by invasive amphibians (Meshaka *et al.*, 2022).

Management approaches for aquatic invaders have been trialed to control the impact on native species. A range of management techniques are used, including trapping and removal or euthanization, habitat modification, and chemical poisoning (Adams and Pearl, 2007; Lorrain-Soligon *et al.*, 2021; Ojala-Barbour *et al.*, 2021). One technique used with varying success for a range of invasive species includes the use of biocontrols. Biocontrols are living organisms that are introduced to an area or whose populations are enhanced to reduce an invasive species' population or impact (Stoner, 2023). While some biocontrol management plans have introduced new problems to ecosystems, the use of native biocontrols has been a successful approach in others (Messing and Wright, 2006). For example, large-bodied groupers (*Epinephelus striatus* and *Myceteroperca tigris*) have been found to actively consume invasive lionfish (*Pterios volitans/milesspp.*) in the Caribbean (Mumby *et al.*, 2011). As such, the act of helping to Amplifying amplifying native species in some locations may help bolster biocontrol efforts.

Animal behavior analyses have become essential tools for conservation and have aided in identifying the impacts of invasive species and effective management techniques (Holway and Suarez, 1999; Berger-Tal et al., 2011). Amphibians are a model species for understanding the role of chemical cues in mediating predator-prey relationships and various non-consumptive interactions (Kiesecker et al., 1996, Grayson et al., 2012). For instance, when presented with a visual cue, Western toad (Anaxyrus Bufo boreas) tadpoles did not exhibit antipredator behavior, however in the presence of a predator chemical cue they display avoidance behaviors (Kiesecker et al., 1996). These same types of analyses can be informative for understanding invasive species impacts as well. For example, Pacific chorus frog (Pseudacris regilla) tadpoles exhibit exhibit avoidance behavior when exposed to chemical cues of invasive bullfrogs (Rana-Lithobates catesbeiana; Chivers et al., 2001). Further, red-legged frog (Rana aurora) tadpoles exhibited high anti-predator refuge use behavior in response to both native and invasive fish and crayfish predator chemical cues, whereas chorus frog (Pseudacris P. regilla) tadpoles only responded to native fish predators but not invasive fish or crayfish chemical cues (Pearl et al., 2003). R. aurora also showed an increase in antipredator behavior when introduced to chemical cues for metabolic

Commented [Biol2]: I would suggest rounding out this example with the specifics here (which taxa are you referring to). And then add a summary/segue sentences to transition to the next idea in the following paragraph

Formatted: Font: Italic

waste of tadpoles, showing a reduction in movement as a main response (Kiesecker et al. 1999). Additionally, *R. aurora*, yet their behavioral responses to introduced bullfrogs appeared to varied vary by population (Kiesecker and Blaustein 1997). Further The ability to identify and apply anti-predator responses can provide native amphibian populations a critical survival advantage, however, – and from the perspective of the invader – the ability for non-native populations of amphibian to be able to identify the chemical cues of native threats also would provide them a survival advantage. For example, studies have found that non-native amphibians, like *L. catesbeiana* and Coquí (*Eleutherodactylus coqui*), sometimes cannot recognize cues from native predators (Garcia et al. 2012, Marcheti and Beard 2021).

Taken together, and whether from the perspective of the native or non-native amphibian, a species' ability to recognize and react to chemical cues from taxa which they do not share a recent evolutionary history with can have major impacts on their success. This is particularly true when the dynamics of species interactions change, such as the recent arrival or expansion of a non-native species takes place. African clawed frogs (*Xenopus laevis*, ACF) are a feral amphibian that has potential to have large impacts on native amphibians and as there invasive range increases, this warrants research to investigate native species' response – as well as their own.

ACFX. laevis are native to Southern Africa (Sittert and Measey, 2016), but has have been introduced to many countries around the world (Measey et al., 2012). ACFX. laevis prey voraciously on a diversity of invertebrate and vertebrate animals in freshwater ecosystems (Fibla et al., 2020, Lillo et al., 2011). ACF and are likely successful invaders due to their generalist diet (Courant et al., 2017) and fast maturation times (CITE) and t. As such, there is concern that invasive ACFX. laevis may outcompete native species for shared prey items or directly consume and extirpate native species (Rödder et al., 2017). In the United States, ACFX. laevis have become well established in Florida, Arizona, California, Florida, and Washington, ACFX, laevis in Washington are particularly troublesome because they have spread across multiple cities and counties in the south Puget Sound area and the frogs seem to persist in ponds that freeze in winter (Ojala-Barbour et al., 2021). Although ACFX. laevis were first discovered in Washington in 2015, the threat of ACFX. laevis to native species in Washington or the broader Pacific Northwest region is remains largely unknown, as well nor isas the degree of its spread beyond the three known regions where it currently occurs. Determining the threat to native aquatic species could help identify and refine management targets (Ojala-Barbour et al., 2021). However, current management tools for ACFX. laevis in Washington are also sparse as prior eradication efforts using trapping and poisoning have failed (Ojala-Barbour et al., 2021). Thus, there is an urgent need to understand how much of a threat ACFX. laevis pose to native species, particularly in this region, and what tools might be available to manage ACFX. laevis.

To address the knowledge gaps in our understanding of the degree of threat ACF<u>X</u>. *laevis* pose to native amphibians we used chemical behavioral analyses to explore the threat of and management options for this feral frog. First, we tested whether larvae of a native amphibian species, *R. aurora*, respond to chemical cues from feral ACF<u>X</u>. *laevis* differently than to native amphibian predator chemical cues. This goal emerged from observations showing that ponds without ACF<u>X</u>. *laevis* have diverse native amphibian communities whereas adjacent ponds with ACF<u>X</u>. *laevis* are devoid of native amphibian species (Figure

Commented [Biol3]: Which species tadpoles?

Commented [Biol4R3]: Invasive tadpoles?

Commented [Biol5]: This paper is not cited

Formatted: Font: Italic

Formatted: Font: Italic

Commented [Biol6]: A little more detail to explain this point is needed - like explaining the species

Commented [Bio17]: There were a few idea and different perspectives (native/invasive) being used in this paragraph, and thus we need some way to wrap it all up and package it before transition to the next idea/paragraph . This is the sort of thing I mean but summary and segue sentences at the end of each paragraph.

Commented [Biol8]: I assumed you were using Rödder *et al.*,2017 here but I thought I'd leave it to you.

Formatted: Highlight

Commented [Biol9]: List should be alphabetised unless the order is intended to suggest some thing like rank or importance (if should it should be explained). Also this should be cited.

1; Friesen et al., unpubl). Second, we assessed whether native rough-skinned newts (Taricha granulosa) could be an effective biocontrol against ACFX. laevis by testing whether feral ACFX. laevis responded to newt chemical cues (including toxins). This goal emerged from two observations in early 2022. First, students at Saint Martin's University began assisting the migration of newts across fence barriers that were meant to stop ACFX. laevis from spreading (Figure 2). Although we were regularly catching, marking, and releasing ACFX. laevis in the preceding fall, our trapping in Lacey, WA yielded no ACFX. laevis once additional newts were added to the pond, despite concurrent trapping effort in Issaquah (similar latitude, ~ 100 km east) that yielded hundreds of ACFX. laevis in similar sized ponds over the same timeframe. Second, we temporarily housed an ACFX. laevis with a T. granulosa in our husbandry facilities which resulted in the ACFX. laevis dying in less than 24 h. These two observations led to the hypothesis that ACFX. *laevis* avoided and/ or were harmed by T. granulosa toxins or other cutaneous chemicals. T. granulosa is native to Western Washington and with other -members of the genus Taricha have been the subject of intense study due to their robust cutaneous toxins, particularly tetrodotoxin (TTX; Vaelli et al., 2020). Research has shown that aqueous toxins exuded from these newts can elicit an antipredator behavioral response in larval amphibians, reduce the predatory success of dragonfly larvae, and cause invasive snails to migrate away (Zimmer et al., 2006; Bucciarelli and Kats, 2015; Ota et al., 2018). Accordingly, we predicted that native amphibian larvae would elicit an anti-predator response to a native newt but not an ACFX. laevis and that ACFX. laevis would be deterred by T. granulosa chemical cues.

Methods

Species and sites

We studied feral ACFX. *laevis* captured from stormwater ponds in Lacey and Issaquah, WA and housed in a captive facility at the Saint Martin's University campus in Lacey (animal ethics SMUAE 22_1). Native species were captured from stormwater ponds (Ponds 1, 2, and 3) also in Lacey, WA, where ACFX. *laevis* are not present (Figure 1), with permissions from Washington Department of Fish and Wildlife. On 24 March 2022, two partial *R. aurora* egg masses (~ 50 embryos each) were collected from the Ecology (ECY) stormwater pond ~ 1km northeast of the Lacey stormwater ponds where ACFX. *laevis* inhabit (Figure 1). ACFX. *laevis* are not known to inhabit the ECY pond. ACFX. *laevis* were collected from Pond 1, and newts collected between Pond 1 and 2. *T. granulosa* must reproduce in water and can either live permanently in water or migrate upland after breeding. These newts are predators of amphibian larvae and so ACFX. *laevis* may compete with newts for food.

ACFX. *laevis* and 5 native newts were housed in small groups in 38 L tanks and fed dehydrated and frozen blood worms during the duration of our trials, with tanks cleaned daily or every other day. Tadpoles were housed independently in 0.47 L plastic containers and fed ground up fish flakes (Omega One Super Color Flakes) every other day. Animals were housed in the lab (not euthanized) after trials for future research. *T. granulosa* were captive for at least two weeks prior to any trials.

Predator cues

We housed both partial egg masses together and R. aurora embryos hatched in aged tap water at room temperature from 25 May - 22 June 2022. We exposed tadpoles (Gosner stages 24 - 42) to chemical cues from T. granulosa (a native newt predator) and feral ACFX. laevis. The tadpoles developed during the trials. R. aurora tadpoles were collected from an adjacent pond where no ACFX. laevis were present. We made a chemical stimulus solution by soaking an adult newt or ACFX. laevis in 300 mL of aged tap water for two hours in separate 0 .47 L containers (Figure 3). Untreated aged tap water was used as a control. After two-2 hoursh, the adult amphibians were returned to the housing enclosures. We pipetted 2 mL of the ACFX. laevis cue, newt cue, or control water into R. aurora tadpole experimental containers containing 200 mL of aged tap water. The tadpoles were allowed two-2 minutes of acclimation prior to recording behaviors. After these two acclimation minutesperiod, we recorded tadpole behaviors for 10 minutes. At least three trials of each treatment were conducted each day. We completed 90 trials—(28 ACFX. laevis cues and 31 each for newt cues and controls)—using a total of 17 R. aurora tadpoles. Over the duration of our study, we exposed most tadpoles to all three treatments (control and two cue treatments), although some tadpoles were only exposed to two different treatment types across the study due to logistical constraints. Three replicates of each treatment were done each day and tadpoles were assigned to treatments to ensure they were exposed to different treatments in subsequent trials. Experiments occurred at room temperature and no refugia were added given the small size of the experimental containers. We scored R. aurora larval behaviors into four behavior categories and recorded duration of each: nothing Nothing, foraging Foraging, swimming Swimming, and frantie Frantic swimming Swimming. We defined "nothing Nothing" as sedentary tadpoles displaying no movement, "Foraging" as tadpoles exhibiting mouth movements and pecking at the bottom of the experimental containers, "Swimming" as constant, slow movements in circular patterns around the containers, and "Frantic Swimming" as rapid, erratic movements in variable directions.

Native newt biocontrol

Between 9 June 2022 and 8 September 2022, we performed behavioral choice tests on ACFX. laevis exposed to T. granulosa to test whether ACFX. laevis responded to newt cues. Adult ACFX. laevis and newts were used in the biocontrol experiment and each animal was randomly selected from our husbandry facility. Each choice test was conducted in 2 L of aged tap water inside of a rectangular 38 L aquarium. The aquarium was divided into five sections along the long axis (Figure 4). Mesh pouches made of black window screening were placed inside of the aquarium, adjacent and parallel to each of the two short sides (Figure 4). One pouch was empty (control) and the other contained a newt (treatment). At the initiation of the experiment, we manually agitated each newt for one minutel min, by gently stroking the anterior and posterior sides to promote the production of tetrodotoxin (Bucciarelli and Kats, 2015). Newt movement and direct interaction were 180 constrained by the use of sealed pouches but still allowed ACFX. laevis to be exposed to chemical and visual stimuli. An ACFX. laevis was placed in the center of the tank, parallel

Commented [Biol10]: For measured things - like here, time - use numbers and SI units (so h instead of hour or min for min or s for second).

Commented [Biol11]: 180 what? Degrees (if so add the ° symbol)

to the mesh pouches and facing out of the aquarium. For ten minutes 10 min post-release, we observed ACFX. laevis behavior and the duration spent at various positions within the enclosure. We recorded ACFX. laevis positions based on where they occurred across the five sections in the enclosure and the total amount of time spent in each section. When the ACFX. laevis was on the section with the newt or the section adjacent to the newt, its position was recorded as "Newt" (Figure 4). When the ACFX. laevis were in the middle fifth section, the time was recorded as "Center". When the ACFX. laevis was on the section with the empty mesh bag or the section adjacent to the empty mesh bag, the ACFX. laevis's position was recorded as "Away" from the newt. We performed a total of 50 ACFX. laevis behavioral choice tests: 25 with the newt on the southwest side of the aquarium and 25 with the newt on the northeast side of the aquarium. We switched which side of the aquarium that newts were placed to ensure ACFX. laevis were not responding to other confounding cues in the laboratory.

TTX Analysis analysis:

We collected toxin samples from *T. granulosa* used in trials by repeatedly stroking the dorsal region of a newt anterior to posterior for one minute and then soaking it in 100 mL of aged tap water for one hour. After soaking the water solution was aliquoted into 1.5 mL screw cap microtubules. The samples were prepared for TTX analysis following methods outlined in Ota et al. (2018). All samples were analyzed using a Shimadzu high-performance liquid chromatography system with fluorescence detection (CITE). The detection limit of the system is below femtomolar concentrations. We evaluated peak area of chromatograms against known TTX standards to determine whether TTX was present in solutions and if so, the approximate molar concentrations.

Statistical Analyses

Predator cues: For the predator cue data, we used linear mixed effects model (Imer function, 'Ime4' package) and likelihood ratio tests (anova function) to test whether *R. aurora* tadpole behavior differed between the three treatments (Newt or ACFX. laevis cues and Controls). We performed models for each of the three active behaviors separately (excluding 'Nothing'). For random effects, we used tadpole identity as well as day-of-year (DOY) as a proxy for tadpole ontogeny and because tadpoles were used for the same treatment type on different days. We visually checked model fit.

Native newt biocontrol: We used linear mixed effects models (Imer function, 'Ime4' package) and likelihood ratio tests (anova function) to test whether feral ACFX. laevis spent disproportionately more time near or away toxic native newts. We used trial day as a random effect in these models and our global model included the two fixed effects of Choice and Side. "Choice" included the three categories - Newt, Center, or Away - which represent the three regions of the experimental tanks where ACFX. laevis spent time. The "Center" category was indicative of a frozen behavior, while movement towards the newt was considered "Newt," and movement opposite was classified as "Away." The "Side" category reflected the northeast or southwest orientation of the experimental tanks where newts were placed on each side for half of the trials. We used likelihood ratio tests to compare the global model to two reduced models containing only one variable and to compare the univariate models to a null model. If Choice was significant, we used Tukey's post hoc tests (glht function, 'multcomp' package) to assess pairwise

Formatted: Font: Italic, Underline

Formatted: Font: Italic, Underline

Commented [Biol12]: Add a citation

Commented [Biol13R12]: I assume Ota et al. 2018... but I will leave it to you

Formatted: Highlight

Commented [Biol14]: See note below for the citation to add here

Commented [Biol15]: CITE: Bates D, Mächler M, Bolker B, Walker S (2015). "Fitting Linear Mixed-Effects Models Using Ime4." *Journal of Statistical* Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Commented [Biol16R15]: All these packages have associated authors and citations

Commented [Biol17]: CITE: Hothorn T, Bretz F, Westfall P (2008). "Simultaneous Inference in General Parametric Models." *Biometrical Journal*, **50**(3), 346–363. differences among Newt, Center, or Away choices. We performed all statistical analyses in R version 4.0.4 (R Core Team 2020).

Results

Predator cues: Our models on individual behaviors found differences in *R. aurora* behavior (p = 0.03). Tukey's post-hoc tests found that *R. aurora* tadpole Swimming rates were reduced in the new ttreatment compared to Control treatments (p = 0.05). Tadpole rates in response to $\frac{ACFX.\ laevis}{ACFX.\ laevis}$ were statistically indistinguishable from both the Control (p = 0.87) and Newt treatments (p = 0.15). For Frantic Swimming (p = 0.09) and Foraging (p = 0.89), our models found no differences in *R. aurora* behavior among treatments.

Native biocontrol: Linear mixed effects models and likelihood ratio tests supported a model containing only the variable Choice (Figure 5; p = 7.99 e -14). Tukey's post hoc tests found that all pairwise comparisons were significant (Center vs Away p = 1.0 e -0.4, Newt vs Away p = 0.003, Newt vs Center p = 1.0 e -0.4) such that feral $\frac{ACF}{X}$ laevis spent the least time in the Center third of the tanks (mean = 8.9 seconds, \pm 1.0 seconds SE), intermediate amounts of time Away from newts (mean = 210.6 seconds, \pm 4.9 seconds SE), and the most time next to the newts (mean = 368.5 seconds, \pm 5.1 seconds SE).

TTX Analysis: We did not detect TTX in the sample solutions. Chromatograms showed no peak at the standard-derived elution time for TTX (Appendix Figure). It is possible that there are TTX analogues in the sample, but without commercially available standards, identification in the scope of this study is not possible. In general, the lack of a TTX peaks in the chromatogram indicates that TTX was at concentrations lower than 10x-15 moles/liter or possibly not present.

Discussion

We Our study adds to the growing body of evidence that feral ACFX. laevis pose a threat to native aquatic species (Kruger et al., 2019, Lafferty & Page 1997, Lillo et al., 2011). Feral ACFX. laevis may be a concerning, hard-to-manage invasive predator in the Pacific Northwest. Our results show that a native species may not recognize ACFX. laevis as a predator and that toxic T. granulosa may be challenging to use as native biocontrols against ACFX. laevis; at least in the short-short-term. In our experiments, native R. aurora tadpoles exhibited strong anti-predator responses to native newt chemical cues by decreasing Foraging and increasing Frantic Swimming, but did not respond to ACFX. laevis chemical cues.

Interestingly, despite native tadpoles responding strongly to newt chemical cues, feral ACFX. *laevis* did not respond to newts. These results underscore the threats that ACFX. *laevis* poses to native species as a predator with few effective management options (Ojala-Barbour *et al.*, 2021).

R. aurora tadpoles exhibit more antipredator behavior towards native newts than to feral ACFX. laevis. Newts elicited a classic anti-predator behavioral syndrome in tadpoles by causing tadpoles to be sedentary with bouts of Frantic Swimming compared to more typical cruising Swimming and Foraging behaviors (Watkins 1996, Laurila et al., 1997; Van Buskirk 2001; Bridges, 2002; Gabor et al., 2019,). ACFX. laevis cues elicited no such response in R. aurora tadpoles. These findings suggest that native Pacific Northwest amphibians have evolved to exhibit antipredator behavior towards native predators but are unable to recognize invasive amphibian predator cues. This indicates R. aurora tadpoles are potentially vulnerable to ACFX. laevis predation. However, the overall predation risk from ACFX. laevis to R. aurora remains unclear as we did not perform feeding trials. Further research could clarify whether invasive ACFX. laevis consume native amphibian larvae at high enough rates to cause population-level impacts. Additionally, because continued exposure to a predator cue can change the response of the cue receiver, it is possible that responses could have changed over the course of the trials (Kruger et al., 2019).

For this work, we focused on antipredator behaviors in *R. aurora* tadpoles – a species that has a relatively is regionally listed as stable-Stablepopulation status, despite experiencing population declines primarily due to forest loss (Washington herp Herp atlas Atlas, 2009), but has been listed as imperial is other part of its range (e.g., within Canada; Environment Canada, 2016). Beyond the direct potential impacts to *R. aurora*, like predation, this work highlights how ACFX. laevis may be a threat to other native species - including more sensitive species - which may not recognize it as a predator. For instance, our source ACFX. laevis population in Lacey, WA is less than 35 km away from known populations of federally threatened Oregon spotted frogs (*R. pretiosa*) in Thurston County. Given the close proximity, of invasive ACFX. laevis to federally listed amphibians, there is a need to proactively manage the spread of ACFX. laevis and understand impacts to sensitive species, particularly if these species are naive to ACFX. laevis predator cues.

Beyond impacts to amphibians, there is also a need to understand potential impacts to native fishes. For instance, the same nearby habitats that host federally threatened *R. pretiosa* Oregon Spotted Frogs also are home to Olympic Mudminnows mudminnows (*Novumbra hubbsi*), a state-sensitive species that is small (< 80 mm long) and potentially vulnerable to ACFX. *laevis* predation. Furthermore, diverse salmonid species occur near invasive ACFX. *laevis* populations in Washington (Ojala-Barbour *et al.*, 2021) that may also fall with this invasive frog's dietary range. Salmonids in the Pacific Northwest are culturally, ecologically, and economically important and several are listed under the U.S. Endangered Species Act (Quinn, 2018). Invasive ACFX. *laevis* have been repeatedly detected in and adjacent to water bodies with various salmon species, including kokanee salmon (*Oncorhynchus nerka*). Although adult salmon are too large for ACFX. *laevis* to consume, embryonic and fry life stages may be vulnerable to ACFX. *laevis* predation, particularly if salmon are naive to ACFX. *laevis* predator cues.

We anticipated that native newts might serve as a potential biocontrol agent against ACFX. *laevis*. Although the neurotoxin TTX has been extensively studied in *Taricha* newts for its anti-predatory

Commented [Biol18]: This one ought to do: Environment Canada. 2016. Management Plan for the Northern Red-legged Frog (Rana aurora) in Canada [Proposed]. Species at Risk Act Management Plan Series. Environment Canada, Ottawa. 4 pp.+ Annex. properties (Zimmer et al., 2006; Bucciarelli and Kats, 2015; Ota et al., 2018), to our knowledge it has not been studied for potential biocontrol purposes. We were motivated to test whether- T. granulosa might be an effective biocontrol because several casual observations suggested that ACFX. laevis may be sensitive to newt toxins. In particular, we anticipated that T. granulosa would be so toxic as to elicit a relatively rapid behavioral response in ACFX. laevis. However, the presence of newts in our study appeared to attract rather than deter ACFX. laevis. There are multiple reasons for this. First, we conducted relatively short-duration trials to assess ACFX. laevis behavior. Longer trials may reveal different patterns if aqueous TTX takes longer than 10 minutes to influence ACFX. laevis physiology. Second, additional work may benefit from testing different densities of newts as higher doses of TTX may be needed to influence ACFX. laevis. Third, our experiments did not allow ACFX. laevis to directly interact with newts. Although we attempted to digitally stimulate TTX in the T. granulosa, our experimental design limited interspecific interactions that could have produced ecologically relevant exposures. Regardless, the potential utility of T. granulosa as a biocontrol is probably greater through passive toxicity rather than through consumption. Other types of biocontrol could include large invertebrates, which ACFX. laevis have been shown to exhibit antipredator behavior to (e.g., measured as a decrease in activity toward when exposed to a predatory beetle, Dytiscus dimidiatus, and crayfish, Procambarus clarkii; Kruger et al., 2019). Finally, ACFX, laevis may be attracted to visual cues more so than chemical ones. One study found that removing ACFX. laevis was most successful when traps were baited with conspecifics (Lorrain-Soligon et al., 2021).; This this result, in tandem with our findings, suggests that ACFX, laevis may generally respond to visual cues like movement. Future studies may benefit from testing the response of ACFX. laevis strictly to chemical cues. Although the ability to produce a powerful neurotoxin makes Taricha newts a tantalizing potential candidate for ACFX. laevis biocontrol, additional research is needed to assess if this is a viable and ecologically neutral management option.

While our research indicated that invasive ACFX. laevis are chemically cryptic predators that could pose a risk to native species and which are not readily deterred by newt chemical cues (including toxins), the chemical mechanisms underlying the relationships we explored warrants further attention. The newts used in our research were collected at our field site and kept in a laboratory setting for 1-2 months prior to our experiments. Because of the conflicting observations that motivated our experiment and our experimental findings, we analyzed aqueous newt extracts to determine if TTX was present and estimated concentrations. This analysis found no detectable TTX in the solutions which may have affected chemical cues between the newts and ACFX. laevis in this study. Even so, this analysis found possible TTX analogues and/or relevant metabolites. While some research has indicated that TTX may increase in captive newts (Hanifin et al., 2002), other research shows lower TTX levels in newts compared to wild individuals (Gall et al., 2022). There is also evidence that TTX is linked to the newt microbiome, potentially indicating our captive setting did not allow for proper microbe growth (Vaelli et al., 2020; Gall et al., 2022). Further, TTX concentrations vary and fluctuate within and among T. granulosa populations (Bucciarelli et al. 2016; Reimche et al. 2020) and so our population may inherently maintain low amounts of TTX or at the time of sampling, possessed relatively low toxin concentrations. Interestingly, our results clearly show that native R. aurora larvae-tadpoles respond to newt chemical cues, regardless of whether TTX or some other possible analogue was the constituent molecule of the solution. It may have also suggest their ability to detect it in concentrations, while our methods could not.

Formatted: Font: Italic

These findings highlight new opportunities for understanding the chemical ecology of newts and their interactions with other species.

Conclusion

We aimed to identify the roles that chemical cues play in mediating the relationships between invasive ACFX. laevis and native amphibian prey and toxic newts. We found that: (1) native R. aurora tadpoles show strong anti-predator responses to newts but do not recognize ACFX. laevis as predators and (2) ACFX. laevis were attracted rather than deterred by T. granulosa chemical cues in short-duration trials. The lack of anti-predator responses to invasive ACFX. laevis may provide a foraging advantage over native amphibian predators and suggest ACFX. laevis have potential to have detrimental effects on native species populations. It is also possible that introduced ACFX. laevis do not have a response to the defenses of native species because they have not co-evolved with the mechanism. Our work has begun to uncover some of the mechanisms that may allow ACFX. laevis to threaten native species and highlights new areas of research to improve management of this global invader.

Acknowledgments

We would like to thank the Washington Department of Fish and Wildlife. We are also grateful to Jacie Fabela and Quin Butler for their assistance in animal care during our trials. Additionally, Rebecca Lavier, Hannah Dotterweich, Panos Stratis helped with animal trapping. This research was done under Saint Martin's University animal ethics permit SMUAE 22_1. State permissions were under the programmatic permit issued to WDFW employees for capturing and handling wildlife.

Commented [Biol19]: It is also appropriate to thank you three anonymous reviewers for their work

Literature Cited

Adams MJ, Pearl CA. 2007. Problems and opportunities managing invasive bullfrogs: is there any hope? In: Gherardi F ed. Biological invaders in inland waters: Profiles, distribution, and threats. Invading Nature - Springer series in Invasion Ecology. Dordrecht: Springer Netherlands, 679–693. DOI: 10.1007/978-1-4020-6029-8 38.

Ahmed DA, Hudgins EJ, Cuthbert RN, Kourantidou M, Diagne C, Haubrock PJ, Leung B, Liu C, Petrovskii S, Beidas A, Courchamp F. 2022. Managing biological invasions: the cost of inaction. Biol Invasions 24:1927-1946. DOI: 10.1007/s10530-022-02755-0.

Berger-Tal O, Polak T, Oron A, Lubin Y, Kotler BP, Saltz D. 2011. Integrating animal behavior and conservation biology: a conceptual framework. *Behavioral Ecology* 22:236–239. DOI: 10.1093/beheco/arq224.

Bridges C. 2002. Tadpoles balance foraging and predator avoidance: effects of predation, pond drying, and hunger. *Journal of Herpetology* 36:627–34. DOI: 10.2307/1565933.

Bucciarelli GM, Green DB, Shaffer HB, Kats LB. 2016. Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proceedings of the Royal Society B: Biological Sciences, 283(1831), 20160468.

Bucciarelli GM, Kats LB. 2015. Effects of newt chemical cues on the distribution and foraging behavior of stream macroinvertebrates. *Hydrobiologia* 749:69–81. DOI: 10.1007/s10750-014-2146-4.

Chivers DP, Wildy EL, Kiesecker JM, Blaustein AR. 2001. Avoidance response of juvenile Pacific treefrogs to chemical cues of introduced predatory bullfrogs. *Journal of Chemical Ecology* 27:1667–1676. DOI: 10.1023/a:1010418526991.

Courant, J., Vogt, S., Marques, R., Measey, J., Secondi, J., Rebelo, R., De Villiers, A., Ihlow, F., De Busschere, C., Backeljau, T. and Rödder, D. 2017. Are invasive populations characterized by a broader diet than native populations?. *PeerJ*, 5, p.e3250.

Didham R, Tylianakis J, Gemmell N, Rand T, Ewers R. 2007. Interactive effects of habitat modification and species invasion on native species decline. *Trends in Ecology & Evolution* 22:489–496. DOI: 10.1016/j.tree.2007.07.001.

Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ. 2005. Are invasive species the drivers of ecological change? *Trends in Ecology & Evolution* 20:470–474. DOI: 10.1016/j.tree.2005.07.006.

Epanchin-Niell R, Englin J, Nalle D. 2009. Investing in rangeland restoration in the arid west, USA: countering the effects of an invasive weed on the long-term fire cycle. *Journal of Environmental Management* 91:370–379. DOI: 10.1016/j.jenvman.2009.09.004.

Commented [Biol20]: So of they citation are not formatted correct. Check that they all match formatting. I caught one while I was editing but there a bunch more

Falaschi M, Melotto A, Manenti R, Ficetola GF. 2020. Invasive species and amphibian conservation. *Herpetologica* 76:216. DOI: 10.1655/0018-0831-76.2.216.

Fibla P, Serrano JM, Cruz-Jofré F, Fabres AA, Ramírez F, Sáez PA, Otálora KE, Méndez MA. 2020. Evidence of predation on the helmeted water toad *Calyptocephalella gayi* (Duméril & amp; Bibron, 1841) by the invasive African clawed frog *Xenopus laevis* (Daudin 1802). *Gayana* (Concepción) 84:64–67. DOI:10.4067/S0717-65382020000100064.

Gabor CR, Perkins HR, Heitmann AT, Forsburg ZR, Aspbury AS. 2019. RoundupTM with corticosterone functions as an infodisruptor to antipredator response in tadpoles. *Frontiers in Ecology and Evolution* 7:114. DOI: 10.3389/fevo.2019.00114.

Gall BG, Stokes AN, Brodie ED, Brodie ED. 2022. Tetrodotoxin levels in lab-reared rough-skinned newts (*Taricha granulosa*) after 3 years and comparison to wild-caught juveniles. *Toxicon* 213:7–12. DOI: 10.1016/j.toxicon.2022.04.007.

Garcia, T. S., Thurman, L. L., Rowe, J. C., & Selego, S. M. (2012). Antipredator behavior of American bullfrogs (Lithobates catesbeianus) in a novel environment. Ethology, 118(9), 867-875.

Grayson KL, De Lisle SP, Jackson JE, Black SJ, Crespi EJ. 2012. Behavioral and physiological female responses to male sex ratio bias in a pond-breeding amphibian. *Frontiers in Zoology* 9:24. DOI: 10.1186/1742-9994-9-24.

Hanifin CT, Brodie ED, Brodie ED. 2002. Tetrodotoxin levels of the rough-skin newt, *Taricha granulosa*, increase in long-term captivity. *Toxicon* 40:1149–1153. DOI: 10.1016/S0041-0101(02)00115-0.

Holway DA, Suarez AV. 1999. Animal behavior: an essential component of invasion biology. *Trends in Ecology & Evolution* 14:328–330. DOI: 10.1016/S0169-5347(99)01636-5.

IUCN Red List of Threatened Species. Available at https://www.iucnredlist.org/en (accessed January 17, 2023).

Kats LB, Ferrer RP. 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. *Diversity and Distributions* 9:99–110. DOI: 10.1046/j.1472-4642.2003.00013.x.

Kiesecker JM, Chivers DP, Blaustein AR. 1996. The use of chemical cues in predator recognition by western toad tadpoles. *Animal Behaviour* 52:1237–1245. DOI: 10.1006/anbe.1996.0271.

Kiesecker, J.-M., & Blaustein, A.-R. (1997). Population differences in responses of redlegged frogs (*Rana aurora*) to introduced bullfrogs. *Ecology*, -78(6), 1752-1760.

Kruger, N., Measey, J., Herrel, A., & Secondi, J. (2019). Anti-predator strategies of the invasive African clawed frog, *Xenopus laevis*, to native and invasive predators in western France. *Aquatic Invasions* 14.

Lafferty, K. D., & Page, C. J. (1997). Predation on the endangered tidewater goby, Eucyclogobius newberryi, by the introduced African clawed frog, Xenopus laevis, with notes on the frog's parasites. *Copeia*, 1997(3), 589-592.

Laurila A, Kujasalo J, Ranta E. 1997. Different antipredator behaviour in two anuran tadpoles: effects of predator diet. *Behavioral Ecology and Sociobiology* 40:329–336. DOI: 10.1007/s002650050349.

Lillo, F., Faraone, F. P., & Lo Valvo, M. (2011). Can the introduction of Xenopus laevis affect native amphibian populations? Reduction of reproductive occurrence in presence of the invasive species. *Biological Invasions*, *13*, 1533-1541.

Lorrain-Soligon L, Cavin T, Villain A, Perez E, Kelley D, Secondi J. 2021. Effects of conspecific lures, call playbacks, and moonlight on the capture rate of *Xenopus laevis*, a major invasive amphibian. *Management of Biological Invasions* 12:716–726. DOI: 10.3391/mbi.2021.12.3.13.

Marchetti, J. R., & Beard, K. H. (2021). Predator–Prey Reunion: Non-native Coquí Frogs Avoid Their Native Predators. Ichthyology & Herpetology, 109(3), 791-795.

Measey GJ, Rödder D, Green SL, Kobayashi R, Lillo F, Lobos G, Rebelo R, Thirion J-M. 2012. Ongoing invasions of the African clawed frog, *Xenopus laevis*: a global review. *Biological Invasions* 14:2255–2270. DOI: 10.1007/s10530-012-0227-8.

Meshaka WE, Collins SL, Bury RB, McCallum ML. 2022. Exotic amphibians and reptiles of the United States. University Press of Florida. DOI:10.2307/j.ctv28m3hcp.

Messing RH, Wright MG. 2006. Biological control of invasive species: solution or pollution? *Frontiers in Ecology and the Environment* 4:132–140. DOI: 10.1890/1540-9295(2006)004[0132:BCOISS]2.0.CO;2.

Mumby PJ, Harborne AR, Brumbaugh DR. 2011. Grouper as a natural biocontrol of invasive lionfish. *PloS One* 6:e21510. DOI: 10.1371/journal.pone.0021510.

Ojala-Barbour R, Visser R, Quinn T, Lambert M. 2021. African clawed frog (*Xenopus laevis*) risk assessment, strategic plan, and past management for Washington State Department of Fish and Wildlife. Washington State Department of Fish and Wildlife. Available at https://wdfw.wa.gov/sites/default/files/publications/02267/wdfw02267.pdf (accessed 9 April 2023)

Ota WM, Olsen B, Bucciarelli GM, Kats LB. 2018. The effect of newt toxin on an invasive snail. *Hydrobiologia* 817:341–348. DOI: 10.1007/s10750-018-3568-1.

Pearl CA, Adams MJ, Schuytema GS, Nebeker AV. 2003. Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the pacific northwestern United States. *Journal of Herpetology* 37:572–576. DOI: 10.1670/134-02N. Pyšek P, Richardson DM. 2010. Invasive species, environmental change and management, and health. *Annual Review of Environment and Resources* 35: 25-55. DOI: 10.1146/annurev-environ-033009-095548.

Quinn T. 2018. The behavior and ecology of pacific salmon and trout. University of Washington press.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for statistical computing. Available at www.R-project.org (accessed 9 April 2023).

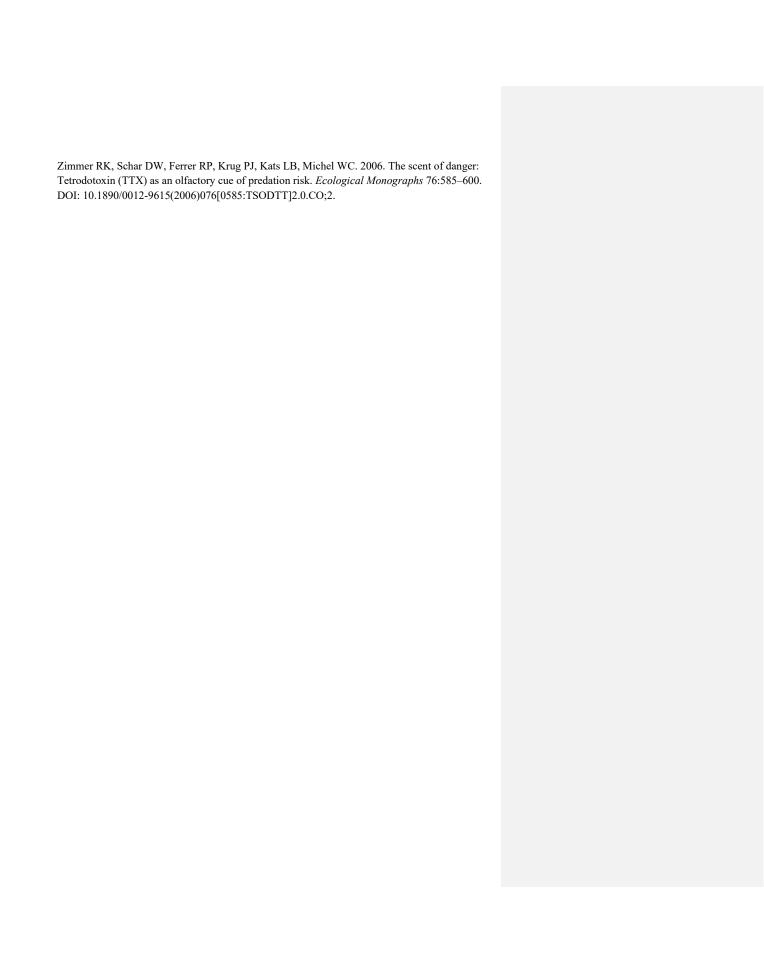
Reimche JS, Brodie ED, Stokes AN, Ely EJ, Moniz HA, Thill VL, Hallas JM, Pfrender ME, Brodie ED, Feldman CR. 2020. The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator—prey pairs. *Journal of Animal Ecology* 89:1645–1657. DOI: 10.1111/1365-2656.13212.

Rödder D, Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, De Busschere C, Backeljau T. 2017. Global realized niche divergence in the African clawed frog *Xenopus laevis*. *Ecology and Evolution* 7:4044–4058. DOI: 10.1002/ece3.3010.

Simberloff D. 2013. Invasive species: what everyone needs to know. Oxford University Press.

van Sittert L, Measey GJ. 2016. Historical perspectives on global exports and research of African clawed frogs (*Xenopus laevis*). *Transactions of the Royal Society of South Africa* 71:157–166. DOI: 10.1080/0035919X.2016.1158747.

Stoner K. 2023. Approaches to the biological control of insect pests. Available at https://portal.ct.gov/CAES/Fact-Sheets/Entomology/Approaches-to-the-Biological-Control-of-Insect-Pests (accessed January 23, 2023).


Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. 2020. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. *eLife* 9:e53898. DOI: 10.7554/eLife.53898.

Van Buskirk, Mccollum. 2000. Functional mechanisms of an inducible defence in tadpoles: morphology and behaviour influence mortality risk from predation. *Journal of Evolutionary Biology* 13:336–347. DOI: 10.1046/j.1420-9101.2000.00173.x.

Washington Herp Atlas. 2009. A cooperative effort of Washington Natural Heritage Program, Washington Department of Fish and Wildlife, U.S.D.I. Bureau of Land Management, and U.S. Forest Service. Available at

https://wdfw.wa.gov/sites/default/files/publications/02135/wdfw02135.pdf.

Watkins TB. 1996. Predator-mediated selection on burst swimming performance in tadpoles of the pacific tree frog, *Pseudacris regilla*. *Physiological Zoology* 69:154–167. DOI: 10.1086/physzool.69.1.30164205.

