Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats

2 3

Gehan El-Akabawy¹²³, Sherif Othman Fathy El-Kersh¹, Ahmed Othman Fathy Othman El-Kersh¹, 4

- 5 Shaimaa Nasr Amin63, Laila Ahmed Rashed6, Noha Samir Abdel Latif630, Ahmed Abdelmagied
- 6 Abdelgawad Elshamey", Mohamed Abdallah Abd El Megied Abdallah", Ibrahim G. Saleh 13,14,
- 7 Zaw Myo Hein¹², Ibrahim El-Serafi¹, Nabil Eid¹⁵

8

- 9 Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United
- Arab Emirates 10
- ² Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United 11
- 12 **Arab Emirates**
- 13 ³ Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University,
- 14 Menoufia, Egypt
- ⁴ Faculty of Medicine, Galala University, Suez, Egypt 15
- ⁵ Department of Periodontology, Faculty of Dentistry, Kafr El Sheikh University, Kafr El Sheikh, 16
- Egypt 17
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite 18
- University, P.O. Box 330127, Zarga 13133, Jordan 19
- 20 Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- 21 ⁸ Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
- ⁹ Department of Medical Pharmacology, Faculty of Medicine Cairo University, Cairo, Egypt 22
- 23 Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
- " Samanoud General Hospital, Samanoud City, Samanoud, Gharbia Governorate, Egypt 24
- 25 Department of Paediatrics, Cairo University, Faculty of Medicine, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, 26
- 27
- 28 ¹⁴ Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai
- 29 University, Kantra, Ismailia, Egypt
- ¹⁵ Department of Anatomy, Division of Human Biology, School of Medicine, International 30
- 31 Medical University, 57000 Kuala Lumpur, Malaysia

32

- Corresponding Author: 33
- Gehan Farouk Ali El-Akabawy, Ph.D. 34
- 35 Current Address
- 36 Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United
- 37 Arab Emirates
- 38 Tel: 00971554200803
- 39 E-mail: g.elakabawy@ajman.ac.ae

Deleted: Kersh³

Formatted: Highlight

41 Permanent Address 42 Menoufia University, Faculty of Medicine, Menoufia, Egypt. 43 E-mail: Gehanakabawy@gmail.com 44 45 **Abstract** Background. Ageing is a key risk factor for cardiovascular disease and is linked to several 46 47 alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular 48 49 dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive 50 51 surgical approach and remarkable proliferative ability. 52 **Aim.** This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. 53 54 Methods. Thirty 9-week-old Sprague—Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was 55 56 administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 x 10 once every 2 weeks. 57 58 **Results.** The transplanted cells migrated to the heart, differentiated into cardiomyocytes, 59 improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, 60 modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had 61 anti-senescent and anti-apoptotic effects. Conclusion. Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing 62 rat model, suggesting their potential as a viable cell therapy for ageing hearts. 63 64 65 **Keywords:** dental pulp stem cell; cardiac ageing; rat model; D-galactose 66 Introduction 67 68

Ageing is a progressive, multifaceted process that is linked to decreased physiological 69 performance and an elevated risk of mortality (Guo et al., 2022). Although cardiac ageing is a 70 natural process, it is linked to various pathological factors that may result in age-related disorders 71 (Redgrave et al., 2023). Extensive research has demonstrated that ageing is linked to changes in 72 cardiac morphology and function, such as an increase in left ventricular hypertrophy and 73 cardiomyocyte volume as well as a decrease in cardiomyocyte number and ventricular 74 dysfunction, emphasizing the pathological impacts of cardiomyocyte senescence (Dai et al., 75 2012; Shimizu et al., 2019). 76 A substantial body of evidence indicates that cardiovascular diseases and mechanisms involved

by mitochondrial malfunction, and the consequent generation of reactive oxygen species (ROS) may lead to age-related cardiac dysfunction (Shimizu et al., 2019). This generation of

in cellular senescence are closely related (Pagan et al., 2022). The ageing heart is accompanied

80 ROS in cardiac tissue triggers the upregulated expression of ageing markers p53, p21, and p16

77

79

Field Code Changed

Deleted: male

Deleted: Thirty male 9-week-old Sprague—Dawley rats

Deleted:)

(Shimizu et al., 2019). These markers are cellular regulatory factors involved in the cell cycle 85 86 and are remarkably upregulated in senescent cells. P53, a key player in the DNA damage response (DDR) pathway, can induce either temporary or permanent cellcycle arrest (cellular 87 senescence). When presented with stimuli triggering DDR, cell-growth arrest and senescence are 88 89 mediated via the murine double minute 2 (MDM2)-P53-P21 and P16-retinoblastoma protein 90 (pRb) pathways. Administration of D-galactose results in the elevated expression of P53, P21, 91 and P16 (Bei et al., 2018, Wand et al., 2022). Sirt1, which is a member of a group of NAD-92 dependent deacetylases collectively referred to as sirtuins, is involved in various molecular 93 pathways, and is recognized as a pivotal protein in the control of ageing and metabolism. Several 94 reports have demonstrated that Sirt1 has a role in regulating cardiac myocyte growth and survival 95 under stress (Alcendor et al., 2007; Cencioni et al., 2015; Lu et al., 2014; Ministrini et al., 2021). 96 Furthermore, an imbalance in apoptotic control may be a major factor in ageing. Mitochondria 97 generate apoptogenic substances, such as cytochrome c, which regulate cellular apoptosis. The 98 ratio of pro- and anti-apoptotic Bcl-2 family members, or pro- and anti-apoptotic proteins, is 99 critical in the intrinsic apoptosis process (Phaneuf et al., 2002, No et. al., 2020). 100 Mesenchymal stem cells (MSCs) have exhibited encouraging therapeutic prospects for numerous 101 disorders and organ repairs. Adult stem cells have been successfully harvested from various organs and can differentiate into various cell phenotypes. Their implantation presents a limited 102 103 risk of tumorigenesis and poses almost no ethical issues (Brown et al., 2018). MSCs have been 104 harvested from bone, adipose, lung, umbilical cord, and dental pulp tissue (Berebichez-Fridman 105 et al., 2019). Growing experimental and clinical evidence supports that MSCs constitute a 106 promising therapeutic approach for the remedy of cardiac dysfunction. They mediate the production of a plethora of growth factors, replace lost cells, and create a niche that promotes 107 108 endogenous cardiac repair (Bahrami et al., 2023; Barrere-Lemaire et al., 2023; Bui et al., 2023; Gu et al., 2023). Limited studies have investigated the potential beneficial effects of MSC 109 injection in animal models of ageing hearts. In rodent ageing models, bone marrow- and adipose-110 derived MSCs have proven their efficacy in improving cardiac function and downregulating 111 112 ageing-linked cardiac damage, which is associated with a downregulation in the expression of 113 apoptosis and senescence markers. However, in these studies, homing, survival, and potential 114 differentiation of MSCs into cardiomyocytes have not been examined (Zhang et al., 2015; Chang 115 et al., 2021). 116 Considering the long-term clinical benefits, autologous MSC transplantation is superior to 117 allogeneic cell transplantation. However, the outcomes of autologous cell therapy remarkably 118 deteriorate with age due to their depletion and limited self-renewal capacity. Recent research has highlighted the impact of ageing and illnesses on both human and rodent tissues, demonstrating 119 120 phenotypic and functional alterations in endogenous MSCs derived from the bone marrow, 121 adipose tissue, and heart (Li et al., 2013, Gnani et al., 2019, Hong et al., 2020, Guo et. al., 2023). 122 Conversely, recent studies have shown that dental pulp stem cells (DPSCs) exhibit resistance to

senescence effects and possess enhanced differentiation potential in vitro and regeneration

capabilities in vivo compared to bone marrow mesenchymal stem cells (BMMSCs) (Ma et al.,

123

124

Deleted: These markers are cellular regulatory factors involved in the cell cycle and are remarkably upregulated in senescent cells. P53, a key player in the DNA damage response (DDR) pathway, can induce either temporary or permanent cellcycle arrest (cellular senescence). When presented with stimuli triggering DDR, cell-growth arrest and senescence are mediated via the murine double minute 2 (MDM2)-P53-P21 and P16retinoblastoma protein (pRb) pathways. Administration of D-galactose results in the elevated expression of P53, P21, and P16 (Bei et al., 2018, Wand et al., 2022). Sirt1, which is a member of a group of NAD-dependent deacetylases collectively referred to as sirtuins, is involved in various molecular pathways

Deleted: (Alcendor et al., 2007; Cencioni et al., 2015; Lu et al., 2014; Ministrini et al., 2021). Furthermore, an imbalance in apoptotic control may be a major factor in ageing. Mitochondria generate apoptogenic substances, such as cytochrome c, which regulate cellular apoptosis.

Formatted: Not Highlight

153 their derived miRNAs and exosomes represent a rich source of nanovesicles for the treatment of age-related disorders, indicating the healthy condition of these cells and emphasizing their 154 suitability for autologous applications (Jezzi et al., 2019). Such suitability, which is attributed to 155 156 the resistance of these cells to ageing process, indicates that they are a promising option for the treatment of age-related diseases. 157 158 A previous study provided the first proof-of-principle that the DPSC secretome protects against 159 D-gal-induced ageing of multiple organs (Kumar et al., 2022). The D-galactose-induced ageing 160 model is well-established and widely recognized. D- galactose treatment can efficiently induce 161 cardiac ageing as indicated by elevated levels of several cardiac ageing markers, including 162 oxidative stress, decreased expression of antioxidants such as superoxide dismutase (SOD), upregulated levels of p53, and enhanced cardiac apoptosis (Bo-Htay et., 2018; Wang et al., 163 164 2022). However, the efficacy of the systemic administration of DPSCs in ameliorating age-165 associated cardiac function and structural deterioration has not yet been evaluated. Several 166 studies have reported the capability of DPSCs to differentiate into cardiomyocytes in vitro (Xin 167 et al., 2013; Sung et al., 2016); however, to the best of our knowledge, such trans-differentiation abilities have not yet been evaluated in ageing hearts. In the current study, we aimed to assess, 168 169 for the first time, the possible efficacy of an intravenous injection of DPSCs in a D-gal-induced rat model of cardiac ageing to evaluate their potential as a preventive therapy for age-associated 170 cardiovascular diseases. 171

2019). Furthermore, DPSCs isolated from elderly individuals demonstrate active metabolism;

Materials & Methods

2.1. Animals

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188 189

190

191

192

193

152

Thirty male Sprague–Dawley rats (8 weeks old, 180–200 g) were purchased from the Theodor Bilharz Research Institute, Imbaba, Egypt, and kept in the animal house of the Faculty of Medicine, Menoufia University, Egypt as previously described by El-Akabawy et al., 2023. The animals were acclimatized to laboratory conditions for 1 week before the start of the experiment. The rats were kept in standard cages: two were rats kept in each cage, under standard laboratory conditions (22 ± 5 °C, 60 ± 5% humidity, and a 12-h/12-h light/dark cycle). Standard laboratory chow and tap water were provided ad libitum. At the end of the experiment, rats were anaesthetized via an intraperitoneal injection of ketamine (90 mg/kg) and xylazine (15 mg/kg) and were decapitated (El-Akabawy et al., 2023). Rats were euthanized in the event of rapid weight loss or impaired ambulation via lethal injection of pentobarbital sodium (200 mg/kg). In this study, no rats were euthanized prior to the planned end of the experiment. All experimental procedures involving animals were approved by the Institutional Review Board of Ajman University, UAE [IRB# M-F-A-11-Oct].

2.2. DPSC isolation and culture

Dental pulp tissues were obtained from the pulpal cavity of Sprague–Dawley male rat incisors (aged 6–8-week-old) and cultured as previously described (Patel et al., 2009). Briefly, the dental pulp tissues were promptly harvested and enzymatically digested in a solution of 3 mg/mL collagenase type 1 (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37 °C. The cells (1 × 10^s)

Deleted: Furthermore, DPSCs isolated from elderly individuals demonstrate active metabolism; their derived miRNAs and exosomes represent a rich source of nanovesicles for the treatment of agerelated disorders, indicating the healthy condition of these cells and emphasizing their suitability for autologous applications (Jezzi et al., 2019). Such suitability, which is attributed to the resistance of these cells to ageing process, indicates that they are a promising option for the treatment of agerelated diseases.

Deleted: The D-galactose-induced ageing model is well-established and widely recognized. D- galactose treatment can efficiently induce cardiac ageing as indicated by elevated levels of several cardiac ageing markers, including oxidative stress, decreased expression of antioxidants such as superoxide dismutase (SOD), upregulated levels of p53, and enhanced cardiac apoptosis (Bo-Htay et., 2018; Wang et al., 2022)...

Formatted: Not Highlight

Deleted: The animals were acclimatized to laboratory conditions for 1 week before the start of the experiment.

Formatted: Not Highlight

- 221 cells) were cultured in T25cm flasks (Falcon). The culture media consisted of Dulbecco's
- 222 Modified Eagle Medium (DMEM) supplemented with 20% foetal bovine serum (FBS, Gibco),
- 100 U/mL penicillin, and 100 μg/mL streptomycin. The flasks were incubated at 37 °C in a 223
- 224 humidified incubator with 5% CO. Media were replaced every three days. The cells were
- 225 passaged at 80% confluence using 0.05% trypsin-EDTA (Sigma-Aldrich) for 3-5 min. To
- 226 evaluate cell viability, the cell suspension was mixed with 0.4% Trypan blue (Gibco), and 10 µL
- 227 of the mixture was loaded in each chamber of a haemocytometer. Counting of the viable and
- non-viable cells was conducted within 5 min. Cells were used at passage 4. 228

229 230

2.3. Flow cytometry

- Cells were resuspended in staining buffer [2% FBS/ phosphate buffered saline (PBS)] and 231
- surface-stained with FITC-conjugated mouse anti-rat CD105 (BioLegend, UK), FITCH-232
- 233 conjugated mouse anti-rat CD90 (BD Pharmingen, USA), PE-conjugated rabbit anti-rat CD34
- 234 (Abcam, UK), or PE-conjugated rabbit anti-rat CD45 (Abcam, UK) at 4 °C for 30 min. Isotype-
- 235 matched antibodies were used as controls. Cells were analysed using an EPICS XL flow
- 236 cytometer (Beckman Coulter) (El-Akabawy et al., 2022).

237 238 2.4. Experimental design

- 239 Rats were randomly divided into three groups: control, D-galactose (D-gal)-treated, and D-gal +
- 240 DPSCs-treated (n = 10 in each group). G Power software was used to determine the sample size.
- 241 Rats (aged 9 weeks) in the D-gal- and D-gal + DPSCs-treated groups were given intraperitoneal
- 242 injections of d-gal (300 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) daily for 8 weeks. Rats in
- 243 the D-gal + DPSCs group received intravenous administration into the tail vein of $1 \times 10^{\circ}$ DPSCs
- labelled with the membrane-bound fluorescent marker PKH26 (Sigma-Aldrich) once every two 244
- 245 weeks (El-Akabawy et al., 2022).

246 247

2.5. Measurement of body weight and the heart index

- Body weights were measured weekly. At the end of the experiment, the rats were anaesthetized via intraperitoneal injection of ketamine (90 mg//kg) and xylazine (15 mg/kg) and were
- 249
- decapitated. Hearts were immediately dissected and weighed. Heart indices were calculated as 250
- 251 follows: heart tissue weight (mg)/final body weight (g) (El-Akabawy et al., 2022).

252 253

248

2.6. Transthoracic echocardiography

- 254 All transthoracic echocardiography (TTE) measurements were performed using a linear
- transducer. A linear-array probe was used at a frequency of 10 MHz and attached to a Mindray 255
- 256 M7 premium (Shenzhen Mindray Bio-Medical Electronics Co., Ltd., PR China) ultrasound
- 257 echocardiography Doppler machine. The rats were anaesthetized by intraperitoneal injection of
- 258 ketamine hydrochloride (25 mg/kg) and xylazine (5 mg/kg). Anaesthesia was followed by hair
- 259 removal from the anterior part of the chest and thereafter, rats were kept on a specialized
- 260 warming table to sustain normothermia (Watson et al., 2019)

Deleted: (aged 9 weeks)

Deleted: received intravenous administration into the tail vein

Deleted: 2.5. Measurement of body weight and the heart index

. [1]

Ejection fraction (EF) and fractional shortening (FS), left ventricular internal dimension at end-systole (LVIDs), left ventricular end-systolic volume (ESV), left ventricular posterior wall thickness at end-diastole (LVPWd), left ventricular internal dimension at end-diastole (LVIDd), and left ventricular end-diastolic volume (EDV) were assessed following the American Society of Echocardiography guidelines. This assessment was performed in a blind manner by an independent experienced researcher.

2.7. Electrocardiogram (ECG) recordings

Three touch electrodes of the PowerLab settings (MLA1214, AD Instruments, New South Wales, Australia) were attached to an animal bioamplifier (FE136 Animal Bio Amp, AD instruments, New South Wales, Australia) and fixed to the animals. Lead placement was conducted according to the lead II configuration for determining heart rate (HR) in small laboratory animals (Stohr, 1998).

stretch of the ECG readings was obtained to calibrate the second channel for simultaneous beats per minute (BPM) recordings. The 'Ratemeter' (within Chart for Powerlab) was utilized simultaneously to measure the HR on channel 2 from the ECG plot in channel 1. HR was adjusted between 0 and 500 BPM. The ratemeter band was adjusted in such a way that the upper boundary remained positioned lower than the R-wave peak, whereas the lower line was higher than the P- and T-waves and any other noise. This facilitated the monitoring of the ECG waves on channel 1 with simultaneous BPM recorded on channel 2. The ECG was recorded at a sampling speed of 500/s and within a voltage range of 500 mV. A high-pass filter was adjusted to 0.3 Hz, and a low-pass filter (50 Hz) was used.

290 The ECG were digitized and stored using standard PC-based hardware (AD Instruments).

291 PowerLab v.7.3.7 was utilized to illustrate the recording diagrams. The recordings were analysed

using LabChart software (AD Instruments), The recorded ECG was used to calculate R-R, ORS,

PR, QT, cQT, and ST intervals using the same software. Throughout the experiment, the rats'

body temperature was sustained at 38 °C. The time at the start of the recording was set as 0.0

minutes. The corrected QT (cQT) was determined using Bazett's formula [QTc = QT/RR1/2]

(Goldenberg et al., 2006) installed in the software.

2.8. Assessment of oxidative stress and antioxidant indices

Malondialdehyde (MDA) and glutathione (GSH) levels, as well as superoxide dismutase (SOD) activity, were measured in the cardiac tissue using a spectrophotometer. Rat cardiac tissues (100 mg) were homogenized in 1 mL of phosphate-buffered saline (PBS; pH 7.0) to assess the MDA level and determine the degree of lipid peroxidation. After mixing the homogenates with 20% trichloroacetic acid (TCA), the mixtures were centrifuged at 5000 rpm for 15 min. A 5% thiobarbituric acid (TBA) solution was added to the supernatants and boiled for 10 min. The absorbance was obtained at 532 nm and a standard curve was used to quantify the MDA levels. The results are presented as nanomoles (nmol) per milligram (mg) of protein.

Formatted: Font:12 pt, English (UK) **Formatted:** Font:12 pt, English (UK)

- 307 Based on the suppression of a nitro blue tetrazolium reduction by O₂ produced by the 308 xanthine/xanthine oxidase system, the superoxide dismutase (SOD) activity was determined, and 309 absorbance was obtained at 550 nm. The findings are represented as units (U) per milligram (mg) of protein. One SOD activity unit was considered as the enzyme concentration required to 310 311 generate 50% inhibition in 1 mL reaction solution per mg of tissue protein. 312 To examine GSH concentrations, cardiac tissue homogenates were incubated with a solution of dithiobis nitrobenzoate (DTNB) for 1 h. The absorbance was obtained at 412 nm. A standard 313
- 314 curve was used to determine the GSH level. The results are presented in micromoles (mmol) per 315 mg of protein. 316

2.9. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR)

319 RNA was isolated from cardiac-tissue homogenates of rats in each group using the RNeasy 320 Purification Reagent (Qiagen, Valencia, CA, USA). RNA purity was assessed using a 321 spectrophotometer, ensuring a 260/280 nm absorption ratio of 1.8–2.0 for all samples. Subsequently, cDNA synthesis was performed employing Superscript II (Gibco Life 322 Technologies, Grand Island, NY, USA). Quantitative PCR (qPCR) was performed on a 323 324 StepOneTM instrument with software version 3.1 (Applied Biosystems, Foster City, CA, USA). Reaction mixtures contained SYBR Green Master Mix (Applied Biosystems), gene-specific 325 326 primer pairs (detailed in Table 1), cDNA, and nuclease-free water. Cycling conditions comprised 327 an initial denaturation step at 95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C and 60 s 328 at 60 °C. Data analysis was conducted using the ABI Prism sequence detection system software, 329 and quantification was performed with the Sequence Detection Software v1.7 (PE Biosystems,

330 Foster City, CA). The comparative cycle threshold method (Livak and Schmittgen, 2001) was used to determine relative expression levels of the target gene, with all values normalized to β -331

332 actin mRNA.

333

346

317

318

2.10. Western blot analysis

334 335 Western blot analysis was conducted as previously described by Al-Serwi et al., 2021. Using 336 radioimmunoprecipitation buffer (Sigma-Aldrich), proteins were isolated from the cardiac 337 tissues. The homogenates were centrifuged at $12,000 \times g$ at 4 °C for 20 min and the protein level was measured in lysate aliquots using a protein assay kit (Bio-Rad, Hercules, CA, USA). 338 Samples were boiled at 95 °C for 5 min, separated (20 µg/lane) using 7% sodium dodecyl 339 340 sulphate-polyacrylamide gel electrophoresis, and subsequently transferred to nitrocellulose 341 membranes (Bio-Rad). Next, the membranes were blocked for 1 h at room temperature (RT) 342 using 5% bovine serum albumin in Tris-buffered saline (TBS), and then incubated for 12 h at 343 4 °C with primary antibodies specific for anti-sirt1 (Abcam, Cambridge, UK, cat # ab110304), anti-cleaved caspase-3 (Abcam, Cambridge, UK, cat # ab184787), anti-cytochrome c (Abcam, 344 Cambridge, UK, cat # ab133504), anti-Bax (Abcam, Cambridge, UK, cat # ab32503), and anti-345

Bcl-2 (Abcam, Cambridge, UK, cat ab194583). After rinsing with TBS, the membranes were

incubated with secondary horseradish peroxidase-conjugated anti-rabbit IgG or anti-mouse IgG antibody (1: 3000, Bio-Rad) for 1 h at RT. Proteins were visualized using enhanced chemiluminescence (ECL Plus; Amersham, Arlington Heights, IL, USA) and measured via densitometry using Molecular Analyst Software (Bio-Rad). The relative expression of each protein band was normalized to that of β -actin.

2.11. Histological and immunohistochemical analyses

At the end of the experiment, cardiac tissues were dissected and fixed in 10% formalin and embedded in paraffin wax. For histological assessment, 5-µm left ventricular sections, were deparaffinized, rehydrated using a graded ethanol series (100%, 90%, and 70%), and stained with haematoxylin and eosin (H&E) or Masson's trichrome.

For immunofluorescence staining, cardiac tissue was fixed at 4 °C for 24 h and cryoprotected in 30% sucrose at 4 °C. Using a cryostat, serial sections (40 µm) were obtained and kept at –20 °C until use. The sections were incubated in 10% blocking solution at RT for 30 min and then incubated at 4 °C overnight with the following primary antibodies; rabbit Anti-Cardiac Troponin T antibody (1:2000, Abcam, Cat. #ab209813), rabbit Anti-Cardiac Troponin I antibody (1:1000, Abcam, Cat. #ab209809), or rabbit anti-connexin-34 (1:1000, Abcam, Cat. #ab259276). Thereafter, sections were rinsed with PBS and incubated with a secondary antibody (1:500, Alexa-488, Cat. #A-11034, Molecular Probes) for 1 h. After washing with PBS, the sections were mounted in Fluoroshield mounting medium containing DAPI (Abcam, Cat. #ab104139).

2.12. Quantitative histological assessments

For quantitative evaluation, three H&E- and Masson-stained sections per rat were used. By applying ImageJ software (NIH, Bethesda, Maryland, USA), the H&E- and Masson-stained sections were examined to determine the cardiomyocyte area and Masson's-stained area, respectively. A Leica DMLB2/11888111 microscope equipped with a Leica DFC450 camera was used to require the images.

was used to acquire the images.

Connexin-43 immunofluorescence was measured by randomly capturing five non-overlapping images per slide. A Leica DM5500 B/11888817/12 microscope, fitted with a Leica HI PLAN 10×/0.25 objective and a Leica DFC450C camera, was used to capture the images. Connexin-43-stained spots were manually counted using the plugin/cell counting tool (Rangan and Tesch, 2007) in ImageJ software (National Institutes of Health, Bethesda, Maryland, US), and the average per field for each rat was then calculated. This measurement was performed in a blind manner by an independent experienced researcher. For statistical analysis and comparison, ten animals were used per experimental group.

2.13. Statistical analysis

Statistical analysis was performed as previously described by El-Akabawy et al., 2022. The data are presented as the mean \pm SEM. Normal distributions were assessed using the D'Argostino and

Deleted: 5-μm left ventricular sections

Pearson normality tests, and data were analysed using one- or two-way analysis of variance (ANOVA), followed by a post hoc Bonferroni test. P < 0.05 was considered statistically significant. Statistical analyses were performed using GraphPad Prism 5.03 software (GraphPad Software, San Diego, California, USA). No inclusion/exclusion criteria were applied in this study.

Results

3.1. Characterization of DPSCs

DPSCs derived from the dental pulp tissue of Sprague–Dawley rats were spindle-shaped after 10 days of culture. Flow cytometry was used to characterize the cells at passage 4. The expression of CD90 and CD105 (mesenchymal cell markers), and CD45 and CD34 (hematopoietic lineage markers) were assessed. Over 90% of the cells were identified as CD90+ and CD105+ and less than 10% were identified as CD45+ and CD34+ (Fig. S1). These findings suggest that most of these cells were MSCs.

3.2. DPSC transplantation improves body weight and heart indices

Body weights of the rats in the control, D-gal and transplanted groups did not differ significantly (Fig. 1A). However, the heart index was dramatically increased in aged rats than in control rats, suggesting cardiac hypertrophy. DPSC transplantation dramatically decreased the heart index compared with that of D-gal rats (Fig. 1B), indicating that the transplanted cells improved reduced D-gal-induced hypertrophy.

3.3. Intravenous injection of DPSCs <u>reduces</u> cardiac dysfunction in D-galactose-induced aged rats

Next, we evaluated the effects of DPSC transplantation on D-galactose (D-gal)-induced cardiac ageing in rats using echocardiography. The results revealed widespread LV systolic and diastolic dysfunction, including reduced EF% and FS%, elevated LVIDs, ESV, and LVPWd in D-galtreated rats. Compared to D-galtreated rats, DPSC injection improved EF% [Fig. 2B] and FS% [Fig. 2C] and reduced LVPWd [Fig. 2D] LVIDs (Fig. 2E], ESV [Fig. 2F] measurements. We observed an increase in left ventricular internal dimension at end-diastole (LVIDd) [Fig. 2G] and left ventricular end-diastolic volume (EDV) [Fig. 2H] in aged hearts; however, this difference was not statistically significant. D-gal intraperitoneal injection led to significant changes in the ECG results of treated rats in the form of increased QRS duration and cQT interval, but decreased R amplitude and ST height compared to the control group. Rats in the D-gal + DPSCs group exhibited an improved ECG pattern, as indicated by a significantly decreased QRS duration and cQT interval, and an elevated R amplitude and ST height, compared to the aged group (Table 2).

Deleted: at passage 4.

Deleted: (Fig. S1).

Deleted: BMMSC

Formatted: Strikethrough

Deleted: Body weights of the rats in the control, D-gal and transplanted groups did not differ significantly (Fig. 1A).

However, the heart index was dramatically increased in aged rats than in control rats, suggesting cardiac hypertrophy. DPSC transplantation dramatically decreased the heart index compared with that of D-gal rats (Fig. 1B), indicating that the transplanted cells improved D-gal-induced hypertrophy.

Deleted: improves

Deleted: (Fig. 2B)

Deleted: (Fig. 2C)

Deleted: (Fig. 2D),

Deleted: (Fig. 2E),

Deleted: (Fig. 2F)

Deleted: (Fig. 2G)

Deleted: (Fig. 2H)

3.4. Effect of DPSC transplantation on the expression of connexin-43

The decreased production of the critical gap junction protein, connexin-43, plays a pivotal role in age-related cardiac dysfunction (Rodriguez-Sinovas et al., 2021). To determine whether DPSC transplantation restored connexin-43 expression in the hearts of aged rats, connexin-43 immunoreactive areas were evaluated. In D-gal-treated rats, immunoreactive connexin-43 areas were sparse, and their expression in cardiac tissue markedly decreased, whereas in the D-gal + DPSCs group, they were markedly upregulated (Fig. 3A-D).

Deleted: restored

Deleted: (Fig. 3A-D).

3.5. DPSC systemic transplantation attenuates cardiac histopathological alterations in D-galactose-induced aged rats

To examine the alterations in the myocardial architecture of different groups, left ventricular cardiac tissue slides were stained with H&E. The left ventricular cardiac tissue of D-gal-induced ageing rats exhibited a distorted myocardial structure, characterized by a disorganized arrangement of cardiomyocytes and expanded intercellular space (arrows. Fig. A) when compared to the control rats. In contrast, marked improvement was observed in the ageing rats that received DSPSC injection. H&E staining also revealed that the left ventricular cardiomyocyte cross-sectional area was significantly enlarged in D-gal-induced ageing rats, whereas DPSC treatment markedly decreased the cardiomyocyte area in D-gal + DPSC-treated rats (Fig. B). Masson's trichrome staining was used to examine the degree of cardiac fibrosis in the different groups. The collagen-stained area in the interstitial and perivascular areas of the myocardium dramatically increased in D-gal-induced ageing rats. However, DPSC treatment significantly reduced collagen accumulation compared to that in the D-gal group (Fig. 4C and D).

Deleted: arrows,

Deleted: (Fig. B).

Deleted: myocardium

Deleted: (Fig. 4C and D).

Deleted: in
Deleted: , and

Deleted: labelling

Deleted: which is

Deleted: Transplanted DPSCs were distinguished from recipient cells via PKH26 labelling, which is a cell membrane-binding dye with red fluorescence.

Deleted: (Fig. 5 B, F, J, and N).

Deleted: (Fig. 5A-H).

Deleted: (Fig. 5I-P).

3.6. DPSCs migrate to and survive in the cardiac tissue with a few transplanted cells differentiated into cardiomyocytes

An immunofluorescence-based examination of the cardiac tissue of D-gal + DPSCs rats was performed to assess the engraftment of injected DPSCs into the heart. Transplanted DPSCs were distinguished from recipient cells via labelling with PKH26, a cell membrane-binding dye with red fluorescence, PKH26-labelled cells were distributed in the cardiac tissues of the D-gal + DPSCs rats (Fig. 5 B, F, J, and N). Interestingly, a few of the transplanted cells differentiated into cardiomyocytes, as indicated by the colocalization of cardiac troponin T (cTnT) (Fig. 5A-H), or cardiac troponin I (cTnI) with PKH26-labelled cells (Fig. 5I-P).

${\bf 3.7.\,DPSCs\,upregulate\,Sirt1\,expression\,and\,exert\,an\,antioxidative\,effect\,in\,D-galactose-induced\,cardiac\,ageing\,in\,rats}$

We further investigated whether DPSC transplantation has antioxidant effects. Compared with the control rats, we observed that aged rats exhibited higher concentrations of MDA (Fig. 6A),

whereas the SOD (Fig. 6B) and GSH (Fig. 6C), levels were dramatically reduced in aged hearts compared with those in control rats. In D-gal + DPSC-treated rats, MDA concentrations in the cardiac tissue were significantly reduced (Fig. 6A), whereas SOD (Fig. 6B) and GSH (Fig. 6C). Jevels were higher than those in the aged rats (Fig. 6A-C), Sirt1 demonstrated its ability to delay ageing and induce cardiac antioxidative effects (Alcendor et al., 2007; Cencioni et al., 2015; Luet al., 2014; Ministrini et al., 2021), Interestingly, DPSC-treated rats exhibited higher Sirt1 expression than D-gal-treated rats (Fig. 7A),

3.8. DPSCs exhibit anti-apoptotic effects in D-galactose-induced cardiac ageing in rats

Cardiac ageing is linked to a marked reduction in Bcl2, an anti-apoptotic marker, and a significant elevation in Bax and cytochrome c, thereby triggering apoptosis (Pollack et al., 2002) Western blot analysis demonstrated that the mitochondria triggered an increase in the proapoptotic markers Bax (Fig. 7B), cytochrome c (Fig. 7D), and cleaved caspase-3(Fig. 7E), whereas the anti-apoptotic marker Bcl-2 (Fig. 7C) was reduced in D-gal-treated rats. However, in D-gal + DPSC-treated rats, the expression of all upregulated apoptotic markers decreased (Fig. 7B, D, and E), while the expression of Bcl-2 was enhanced (Fig. 7C).

${\bf 3.9.} \ Effects \ of \ DPSC \ administration \ on \ senescence-associated \ markers \ in \ D-galactose-induced \ ageing \ rats$

Senescence-linked β -galactosidase (SA- β -gal) activity is commonly used to recognize cells as senescent. A group of cell cycle regulatory factors, such as P21, and P53, are also considered as senescence markers (Shimizu et al., 2019). The expression of senescence-related markers, such as SA- β -gal (Fig. 8A), p53 (Fig. 8B) and p21 (Fig. 8C), was significantly upregulated in aged rats compared to those in control rats. In D-gal + DPSC-treated rats, DPSCs efficiently reduced the expression of all evaluated ageing markers (Fig. 8A-C).

Discussion

508

509

510

511

512

513

514

515

516

517

518

519 520

521

522

523

524 525

526

527

528

529

530

531

532

533

534

535

536

537

538539

540

541

542

543

544 545

546 547 Ageing is characterized by the progressive aggregation of cellular damage, resulting in the gradual dysfunction of several organs. Age-associated alterations in the heart include left ventricular hypertrophy, upregulated collagen deposition, and cardiac dysfunction. Ageing contributes significantly to the progression of age-associated cardiovascular diseases, leading to a notably elevated prevalence of such conditions in elderly populations. Therefore, there is an immediate need to develop more effective therapeutic approaches to manage cardiac insufficiency associated with ageing (Yan et al., 2021, Xie et al., 2023). A substantial body of evidence suggests the potential of MSCs in the treatment of heart disease (Jeong et al., 2018; Fu et al., 2020; Meng et al., 2022; Kalou. et al., 2023). DPSCs exhibit a range of distinct biological characteristics that confer protective effects on injured tissues, including the cardiac tissue (Gandia et al., 2008; Sui et al., 2020; Song et al., 2023). The current study aimed to investigate, for the first time, the potentially favourable outcomes of the systemic injection of DPSCs in D-galactose (D-gal)-induced aged hearts.

Deleted: (Fig. 6A), Deleted: (Fig. 6B) Deleted: (Fig. 6C) Deleted: (Fig. 6A). Deleted: (Fig. 6B) Deleted: (Fig. 6C). Deleted: (Fig. 6A-C). Deleted: (Alcendor et al., 2007; Cencioni et al., 2015; Lu et al., 2014; Ministrini et al., 2021) **Deleted:** (Fig. 7A). Deleted: (Fig. 7B), Deleted: (Fig. 7D), Deleted: (Fig. 7E), Deleted: (Fig. 7C) Deleted: (Fig. 7B, D, and E) Deleted: (Fig. 7C).

Deleted: (Fig. 8A)
Deleted: (Fig. 8B)
Deleted: (Fig. 8C),
Deleted: (Fig. 8A-C).

Deleted: deposition,

570 571

572

573

574 575

576

577

578

579

580 581

582

583

584

585

586

587

588 589

590

591

592

593

594

595

596 597

598

599

600

601

602

603

604

605

606

607

608

609

Histopathological examination of ageing cardiac tissue revealed cardiomyocyte hypertrophy and enhanced LV fibrosis, consequently reducing LV elasticity and leading to cardiac dysfunction. Ageing hearts exhibit distinctive histological and functional characteristics, such as increased cardiac remodelling and declining cardiac reserve. Compared with normal ageing in rats, D-galinduced ageing models present cardiac structural and functional ageing alterations (Lazzeroni et al., 2022; Wang et al., 2022). In the current study, we demonstrated that D-gal-induced ageing rats had aberrant cardiac structure and enhanced collagen deposition in the perivascular and interstitial areas of the heart. These histopathological alterations in the cardiac structures were reflected in our echocardiography analysis, which revealed an increase in LVIDd and EDV; however, no significant difference was observed when compared with control rats. In contrast, LVIDs, ESV, and LVPWd were markedly increased in aged rats. Echocardiography also revealed worsening cardiac function, as indicated by decreased FS% and ES%. Interestingly, the observed morphological and functional alterations were dramatically improved in the DPSC transplanted group. Our results are in line with those of previous studies, albeit using other source types of MSCs. It has been documented that the systemic injection of adipose-derived stem cells (ADSCs) significantly ameliorated structural alterations and cardiac performance in D-gal-induced ageing rats (Chang et al., 2021). Significant histopathological improvement was also observed in D-gal-induced ageing rats administered intravenous injections of Wharton's jelly stem cells, as indicated by a reduction in collagen and reversal of ageing-induced structural changes (Hu et al., 2022). Intracardiac injection of BMMSCs was also found to ameliorate natural ageing-associated cardiac hypertrophy and fibrosis and enhance cardiac performance, as reflected by increased EF%, FS%, and reduced LVIDs (Zhang et al., 2015). In this study, the cardiac dysfunction observed in aged rats was combined with significant changes in the ECG patterns. Aged rats exhibited an increased ORS duration and cOT interval, along with a decreased R amplitude and ST height compared to that observed in the control group. A decline in the expression of the vital gap junction protein connexin-43, which is responsible for transmitting signals along the conduction pathway and forming a functional syncytium between myocytes (Rodriguez-Sinovas et al., 2021), was also observed. The impact of disturbed functional syncytium on conducting signals could be exacerbated by the loss of cardiomyocytes, which naturally develops during ageing, along with accompanying reactive fibrosis enhancement (Tracy et al., 2020). In our study, DPSC transplantation reduced fibrosis in aged rats and preserved connexin-43 expression, thereby improving ECG alterations. The therapeutic effects of MSCs on cardiac electrical conductivity have also been documented. Li et al. 2018 observed that BMMSC transplantation increased the density of connexin 43, which improved the dispersion of electrical excitation in rats with myocardial infarction. MSC therapy also resulted in a shorter QRS duration and QTc interval, indicating the capability of MSCs to improve cardiac electrical velocity in a murine double infarction model (Park et al., 2022). Most cardiomyocytes do not undergo active proliferation, and the yield rate of cardiomyocytes in the human heart is less than or equal to 1% per year (Gude et al., 2018). Although cardiac

Deleted: . Compared with normal ageing in rats, D-gal-induced ageing models present cardiac structural and functional ageing alterations

Deleted: deposition

615 progenitor cells (CPCs) are considered an interesting source of cell therapy, the aged human heart exhibits a remarkable population of senescent CPCs, which may be responsible for the 616 617 development of cardiac malfunction instead of promoting regenerative effects (Shimizu and 618 Minamino, 2019). Previous research has shown that MSCs from various sources possess the 619 ability to differentiate into cardiomyocytes (Toma et al., 2002; Guo et al., 2018; Soltani and 620 Mahdavi, 2022; Zhou et al., 2023). Whether MSCs can differentiate into cardiomyocytes remains debatable. While some studies have speculated that the detected regeneration could be a result of 621 donor cell fusion with recipient cardiomyocytes (Alvarez-Dolado et al., 2003), other studies have 622 623 reported that BMMSCs can give rise to cardiomyocytes under laboratory conditions, even during a lack of cardiomyocytes, thus excluding the likelihood of cell fusion (Pallante et al., 2007). 624 Notably, MSCs derived from various sources are considered safer than genetically engineered 625 626 MSCs due to their reduced risk of oncogenicity or malformation (Hatzistergos et al., 2011). 627 MSCs of different origins exhibit varying capacities for differentiation into cardiomyocytes. The 628 specific differentiation potential of MSCs from specific sources may lead to more favourable 629 outcomes compared to others (Park et al., 2023). To our knowledge, no previous study has examined the differentiation capacity of DPSCs in a cardiac ageing model. In our study, a 630 considerable number of DPSCs migrated and survived in the cardiac tissue, and some cells 631 632 colocalized with cTnT and cTnI. Our results are in line with those of several studies reporting the capability of DPSCs to differentiate into cardiomyocytes (Arminan et al., 2009; Xin et al., 2013; 633 634 Potdar et al., 2015; Sung et al., 2016; Al Madhoun et. al., 2021). However, our results suggested 635 that only a small number of DPSCs differentiated into cardiomyocytes. To further investigate the 636 underlying mechanisms by which the transplanted cells improved the structural and functional 637 alterations in D-gal-induced ageing hearts, we sought to evaluate the potential paracrine effects 638 of the injected DPSCs. Emerging evidence consistently supports the notion that oxidative stress plays a significant role 639 640 in the physiological progression of ageing (Maldonado et al., 2023). When exposed to elevated 641 levels of oxidative stress, p53 displays pro-oxidative activities, intensifying stress levels, and 642 ultimately triggering apoptosis (Liu et al., 2011; Shi et al., 2023). A critical determinant in the 643 ageing process of cardiac tissue is the equilibrium between anti-apoptotic Bcl-2 and pro-644 apoptotic Bax proteins. Bcl-2 inhibits apoptosis by suppressing cytochrome c release from 645 mitochondria (Pollack et al., 2002). Sirtuins, which are a group of nicotinamide adenine 646 dinucleotide (NADb)-dependent histone deacetylases, are thought to regulate cardiac ageing by 647 influencing mitochondrial stress responses. Sirt1 activation has been suggested to increase the 648 expression of antioxidant enzymes, such as SOD and catalase, leading to the inhibition of ROS generation, which is a key player in oxidative stress, (Alcendor et al., 2007; Cencioni et al., 649 650 2015). In our study, ageing hearts demonstrated increased oxidative stress and increased 651 expression of p53, pro-apoptotic BAX, and cytochrome c, and a decrease in the antioxidant

markers SOD, Bcl-2, and Sirt1. DPSC transplantation significantly ameliorated these changes.

Our results are in line with those of previous studies. Various MSC sources have demonstrated the ability to exhibit antioxidant capacity, primarily through the upregulation of glutathione

652

653

654

Deleted: catalase, leading to the inhibition of ROS generation, which is a key player in oxidative stress

transferase (GST) and the increased activity of SOD. This, in turn, modulates the genes driven by the antioxidant response element (Xia et al., 2021). In studies involving D-gal-stressed H9c2 cells, the culturing of these cells with a conditioned medium derived from MSCs led to significant improvements in cell viability, upregulation of SOD expression, downregulation of oxidative stress levels, and inhibition of p53 activity (Hu et al., 2022). In the context of D-galinduced ageing in rats, adipose tissue-derived mesenchymal stem cells (ADMSCs) exhibited a downregulation in mitochondria-triggered apoptotic markers, including Bax, cytochrome c, and cleaved caspase-3. Conversely, it has been reported that ADMSCs upregulate Bcl-2 and Sirt1 expression compared to other treatment groups (Chang et al., 2021). Our findings support those of previous studies demonstrating the antioxidant and anti-apoptotic capabilities of DPSCs (Song et al., 2015; Ullah et al., 2018; Hernandez-Monjaraz et al., 2020; El-Kersh et al., 2020; Al-Serwi et al., 2021). Our results demonstrated that antioxidant and anti-apoptotic capabilities of transplanted DPSCs are mediated by downregulation of the expression of p53, pro-apoptotic BAX, and cytochrome c and upregulation of the antioxidant markers SOD, Bcl-2, and Sirt1, In cultured cardiac myocytes, conditioned medium derived from DPSCs significantly inhibits apoptosis under hypoxic/serum deprived conditions. It also reduced the expression of proinflammatory genes induced by lipopolysaccharide. Notably, the anti-apoptotic effect of the conditioned medium of DPSCs was found to be more efficacious than that of conditioned media derived from BMSCs or ADSCs on cardiac myocytes (Yamaguchi, et al., 2015).

Conclusions

658

659

660

661

662

663

664

665

666 667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

693

694

Our results reveal that the systemic injection of DPSCs ameliorated cardiac structural and functional alterations occurring in a rat model of D-gal-induced cardiac ageing. Our findings support the beneficial effects of intravenously transplanted DPSCs on ageing-related cardiac structural and functional changes. However, to examine whether the transplanted cells could reverse ageing-induced changes, further studies are needed wherein DPSCs should be transplanted after cardiac ageing has been established. In addition, before initiating clinical trials, additional studies are required to promote the differentiation of these cells into cardiomyocytes in vivo. Furthermore, a deeper understanding of the underlying mechanisms responsible for the favourable outcomes of DPSC-secreted factors is crucial.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Authorship contribution statement

All authors contributed equally to this study.

Deleted: Our results demonstrated that antioxidant and anti-apoptotic capabilities of transplanted DPSCs are mediated by downregulation of the expression of p53, pro-apoptotic BAX, and cytochrome c and upregulation of the antioxidant markers SOD, Bcl-2, and Sirt1

Deleted: ameliorated

Formatted: Not Highlight

Deleted: in a rat model of D-galinduced cardiac ageing. Our findings support the beneficial effects of intravenously transplanted DPSCs on ageing-related cardiac structural and functional changes. However, to examine whether the transplanted cells could reverse ageing-induced changes, further studies are needed wherein DPSCs should be transplanted after cardiac ageing has been established. In addition, before initiating clinical trials, additional studies are required to promote the differentiation of these cells into cardiomyocytes in vivo. Furthermore, a deeper understanding of the underlying mechanisms responsible for the favourable outcomes of DPSCsecreted factors is crucial.

724	
725	Funding
726	This research project was funded by the Deanship of Research and Graduate Studies, Ajman
727	University, UAE (grant no. 2022-IRG-MED-5).
728	
729	Availability of data and materials
730	The raw data are available in the Supplemental Files.
 731	
732	
733	References
734	1- Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. 2021.
735	Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief
736	Review. Front Cell Dev Biol 9:717624.
737	https://doi.org/10.3389/fcell.2021.717624
738	2- Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T,
739	Vatner SF, Sadoshima J. 2007. Sirt1 regulates aging and resistance to oxidative
740	stress in the heart. Circ Res 100(10):1512-1521.
741	https://doi.org/10.1161/01.RES.0000267723.65696.4a
742	3- Al-Serwi, R. H., El-Kersh, A. O. F. O., & El-Akabawy, G. 2021. Human dental
743	pulp stem cells attenuate streptozotocin-induced parotid gland injury in rats. Stem
744	cell research & therapy, 12(1), 577. https://doi.org/10.1186/s13287-021-02646-6
745	4- Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K,
746	Lois C, Morrison SJ, Alvarez-Buylla A. 2003. Fusion of bone-marrow-derived
747	cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):

968-973. https://doi.org/10.1038/nature02069

https://doi.org/10.1007/s12010-023-04446-5

5- Arminan A, Gandia C, Bartual M, Garcia-Verdugo JM, Lledo E, Mirabet V, Llop

cells. Stem Cells Dev 18(6):907-918. https://doi.org/10.1089/scd.2008.0292

6- Bahrami N, Ale-Ebrahim, M, Asadi Y, Barikrow N, Salimi A, Roholah F. 2023.

and a Modified PGS-co-PCL Film in an Experimental Model of Myocardial

7- Barrere-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. 2023.

Mesenchymal stromal cells for improvement of cardiac function following acute

Ischemia-Reperfusion Injury. Appl Biochem Biotechnol.

M, Barea J, Montero JA, Sepulveda, P. 2009. Cardiac differentiation is driven by

NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem

Combined Application of Human Amniotic Membrane Mesenchymal Stem Cells

748

749

750

751

752

753

754

755

756

757

758 759 Formatted: Font:Times, 12 pt, Font color: Auto, English (UK), Pattern: Clear

Deleted: The data that support the findings of this study are available from the authors upon reasonable request from the corresponding author.

Formatted: Font:Times, 12 pt, Not Bold

Formatted: Highlight

764
765
766
767
768
/69
770
771
772
774
774 775
776
777
777 778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803

myocardial infarction: a matter of timing. Physiol Rev. https://doi.org/10.1152/physrev.00009.2023

- 8- Bei Y, Wu X, Cretoiu D, Shi J, Zhou Q, Lin S, Wang H, Cheng Y, Zhang H, Xiao J, Li X. 2018. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell Cardiol 115:130-141. https://doi: 10.1016/j.yjmcc.2018.01.007
- 9- Berebichez-Fridman R, Montero-Olvera PR. 2018. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264-e277. https://doi.org/10.18295/squmj.2018.18.03.002
- 10- Bui TQ, Binh NT, Pham TL, Le Van T, Truong NH, Nguyen DP, Luu T, Nguyen-Xuan Pham T, Cam Tran T, Nguyen HT, Thuy-Trinh N, Tran PA. 2023. The Efficacy of Transplanting Human Umbilical Cord Mesenchymal Stem Cell Sheets in the Treatment of Myocardial Infarction in Mice. Biomedicines 11(8). https://doi.org/10.3390/biomedicines11082187
- 11- Bo-Htay C, Palee S, Apaijai N, Chattipakorn SC, Chattipakorn N. 2018. Effects of d-galactose-induced ageing on the heart and its potential interventions. J Cell Mol Med 22(3):1392-1410. https://doi: 10.1111/jcmm.13472
- 12-Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. 2019. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 13(9):1738-1755. https://doi.org/10.1002/term.2914
- 13- Cencioni C, Spallotta F, Mai A, Martelli F, Farsetti A, Zeiher AM, Gaetano C. 2015. Sirtuin function in aging heart and vessels. J Mol Cell Cardiol 83:55-61. https://doi.org/10.1016/j.yjmcc.2014.12.023
- 14- Chang YM, Shibu MA, Chen CS, Tamilselvi S, Tsai CT, Tsai CC, Kumar KA, Lin HJ, Mahalakshmi B, Kuo WW, Huang CY. 2021. Adipose derived mesenchymal stem cells along with Alpinia oxyphylla extract alleviate mitochondria-mediated cardiac apoptosis in aging models and cardiac function in aging rats. J Ethnopharmacol 264:113297. https://doi.org/10.1016/j.jep.2020.113297
- 15- Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. 2012. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492-1526. https://doi.org/10.1089/ars.2011.4179
- 16-El-Akabawy G, Aabed K, Rashed LA, Amin SN, AlSaati I, Al-Fayez, M. 2022. Preventive effects of bone marrow-derived mesenchymal stem cell transplantation in a D-galactose-induced brain aging in rats. Folia Morphol (Warsz) 81(3):632-649. https://doi.org/10.5603/FM.a2021.0073
- 17-El-Akabawy, G., El Kersh, S. O. F., Rashed, L. A., Amin, S. N., & El-Sheikh, A. A. K. 2023. Transplantation of bone marrow-derived mesenchymal stem cells

Deleted: Bei Y, Wu X, Cretoiu D, Shi J, Zhou Q, Lin S, Wang H, Cheng Y, Zhang H, Xiao J, Li X. 2018. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell Cardiol 115:130-141.

Formatted: Highlight

819 ameliorated dopamine system impairment in a D-galactose-induced brain ageing 820 in rats. Folia morphologica 82(4), 841-853. 821 https://doi.org/10.5603/FM.a2022.0097 18-El-Kersh A, El-Akabawy G, Al-Serwi RH. 2020. Transplantation of human 822 823 dental pulp stem cells in streptozotocin-induced diabetic rats. Anat Sci Int 95(4): 523-539. https://doi.org/10.1007/s12565-020-00550-2 824 825 19-Fu H, Chen Q. 2020. Mesenchymal stem cell therapy for heart failure: a meta-826 analysis. Herz 45(6):557-563. https://doi.org/10.1007/s00059-018-4762-7 20- Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, 827 Sanchez-Torrijos J, Paya R, Mirabet V, Carbonell-Uberos F, Llop M, Montero J 828 A, Sepulveda, P. 2008. Human dental pulp stem cells improve left ventricular 829 830 function, induce angiogenesis, and reduce infarct size in rats with acute 831 myocardial infarction. Stem Cells 26(3):638-645. 832 https://doi.org/10.1634/stemcells.2007-0484 833 21-Gnani D, Crippa S, Della Volpe L, Rossella V, Conti A, Lettera E, Rivis S, Ometti M, Fraschini G, Bernardo ME, Di Micco R. 2019. An early-senescence 834 835 state in aged mesenchymal stromal cells contributes to hematopoietic stem and 836 progenitor cell clonogenic impairment through the activation of a pro-837 inflammatory program. Aging Cell 18(3):e12933. 838 https://doi.org/10.1111/acel.12933 839 22-Goldenberg I, Moss AJ, Zareba W. 2006. QT interval: how to measure it and 840 what is "normal". Journal of cardiovascular electrophysiology 17(3):333–336. 841 https://doi.org/10.1111/j.1540-8167.2006.00408.x 842 23-Gu JJ, Li HX, Wei W, Sun XL, Li BC, Chen Y, Li J, Gu X. 2023. Bone marrow 843 mesenchymal stem cell transplantation alleviates radiation-induced myocardial 844 fibrosis through inhibition of the TGF-beta1/Smad2/3 signaling pathway in rabbit 845 model. Regen Ther 24:1-10. https://doi.org/10.1016/j.reth.2023.04.003 846 24- Gude NA, Broughton KM, Firouzi F, Sussman MA. 2018. Cardiac ageing: 847 extrinsic and intrinsic factors in cellular renewal and senescence. Nat Rev Cardiol 848 15(9):523-542. https://doi.org/10.1038/s41569-018-0061-5 849 25- Guo E, Sun L, Chen W, Liu C, Chen K, Jiang X, Qin X, Su J, Yang F, Tian H. 850 2023. Young human PRP promotes the rejuvenation of aged bone marrow 851 mesenchymal stem cells and the therapeutic effect on ischemic heart disease. Eur 852 J Pharmacol 950:175775. https://doi.org/10.1016/j.ejphar.2023.175775 853 26- Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. 2022. Aging and aging-854 related diseases: from molecular mechanisms to interventions and treatments. 855 Signal Transduct Target Ther 7(1):391. https://doi.org/10.1038/s41392-022-01251-0 856 857 27- Guo X, Bai Y, Zhang L, Zhang B, Zagidullin N, Carvalho K, Du Z, Cai B. 2018. 858 Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow:

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891 892
892 893
893 894
894 805

896 897 new regulators and its implications. Stem Cell Res Ther 9(1):44. https://doi.org/10.1186/s13287-018-0773-9

- 28- Hatzistergos KE, Blum A, Ince T, Grichnik JM, Hare, JM. 2011. What is the oncologic risk of stem cell treatment for heart disease? Circ Res 108(11):1300-1303. https://doi.org/10.1161/CIRCRESAHA.111.246611
- 29-Harkin, A., O'Donnell, J. M., & Kelly, J. P. 2002. A study of VitalView for behavioural and physiological monitoring in laboratory rats. Physiology & behavior 77(1), 65–77. https://doi.org/10.1016/s0031-9384(02)00810-7
- 30- Hernandez-Monjaraz B, Santiago-Osorio E, Ledesma-Martinez E, Aguiniga-Sanchez I, Sosa-Hernandez NA, Mendoza-Nunez VM. 2020. Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int 2020: 8890873. https://doi.org/10.1155/2020/8890873
- 31- Hong Y, He H, Jiang G, Zhang H, Tao W, Ding Y, Yuan D, Liu J, Fan H, Lin F, Liang X, Li X, Zhang Y. 2020. miR-155-5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 19(4):e13128. https://doi.org/10.1111/acel.13128
- 32- Hu WS, Liao WY, Chang CH, Chen TS. 2022. Paracrine IGF-1 Activates SOD. Expression and Regulates ROS/p53 Axis in the Treatment of Cardiac Damage in D-Galactose-Induced Aging Rats after Receiving Mesenchymal Stem Cells J Clin Med 11(15). https://doi.org/10.3390/jcm11154419
- 33- Jeong H, Yim HW, Park HJ, Cho Y, Hong H, Kim NJ, Oh IH. 2018. Mesenchymal Stem Cell Therapy for Ischemic Heart Disease: Systematic Review and Meta-analysis. Int J Stem Cells 11(1):1-12. https://doi.org/10.15283/ijsc17061
- 34- Jezzi I, Pagella P, Mattioli-Belmonte M, Mitsiadis TA. 2019. The effects of ageing on dental pulp stem cells, the tooth longevity elixir. Eur Cell Mater 37:175-185. https://doi.org/10.22203/eCM.v037a11
- 35- Kalou Y, Al-Khani AM, Haider KH. 2023. Bone Marrow Mesenchymal Stem Cells for Heart Failure Treatment: A Systematic Review and Meta-Analysis. Heart Lung Circ 32(7):870-880. https://doi.org/10.1016/j.hlc.2023.01.012:
- 36- Kumar A, Mahajan A, Kumari P, Singh J, Raik S, Saha L, Pal A, Medhi B, Rattan V, Bhattacharyya S. 2022. Dental pulp stem cell secretome ameliorates Dgalactose induced accelerated aging in rat model. Cell Biochem Funct 40(5): 535-545. https://doi.org/10.1002/cbf.3723
- 37- Lazzeroni D, Villatore A, Souryal G, Pili G, Peretto G. 2022. The Aging Heart: A Molecular and Clinical Challenge. Int J Mol Sci 23(24). https://doi.org/10.3390/ijms232416033
- 38- Li JY, Ke HH, He Y, Wen LN, Xu WY, Wu ZF, Zhao YM, Zhong G Q 2018. Transplantation of mesenchymal stem cells modulated Cx43 and Cx45

Formatted: Highlight

898	expression in rats with myocardial infarction. Cytotechnology 70(1):225-234.
899	https://doi.org/10.1007/s10616-017-0136-x
900	39-Li SH, SunZ, Brunt KR, Shi X, Chen MS, Weisel RD, Li RK. 2013.
901	Reconstitution of aged bone marrow with young cells repopulates cardiac-
902	resident bone marrow-derived progenitor cells and prevents cardiac dysfunction
903	after a myocardial infarction. Eur Heart J 34(15):1157-1167.
904	https://doi.org/10.1093/eurheartj/ehs072
905	40-Liu D, Xu Y. 2011. p53, oxidative stress, and aging. Antioxid Redox Signal,
906	15(6):1669-1678. https://doi.org/10.1089/ars.2010.3644
907	41-Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using
908	real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods 25(4):402-
909	408. https://doi.org/10.1006/meth.2001.1262
910	42- Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP.
911	2014. Downregulation of Sirt1 as aging change in advanced heart failure. J
912	Biomed Sci 21(1): 57. https://doi.org/10.1186/1423-0127-21-57
913	43-Ma L, Hu J, Cao Y, Xie Y, Wang H, Fan Z, Zhang C, Wang J, Wu CT., Wang S.
914	2019. Maintained Properties of Aged Dental Pulp Stem Cells for Superior
915	Periodontal Tissue Regeneration. Aging Dis 10(4)793-806.
916	https://doi.org/10.14336/AD.2018.0729
917	44- Maldonado E, Morales-Piso S, Urbina F, Solari A. 2023. Aging Hallmarks and
918	the Role of Oxidative Stress. Antioxidants (Basel) 12(3).
919	https://doi.org/10.3390/antiox12030651
920	45- Meng H, Cheng W, Wang L, Chen S, Teng Y, Lu Z, Li Y, Zhao M. 2022.
921	Mesenchymal Stem Cell Exosomes in the Treatment of Myocardial Infarction: a
922	Systematic Review of Preclinical In Vivo Studies. J Cardiovasc Transl Res
923	15(2):317-339. https://doi.org/10.1007/s12265-021-10168-y
924	46- Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG.
925	2021. Sirtuin 1 in Endothelial Dysfunction and Cardiovascular Aging. Front
926	Physiol 12:733696. https://doi.org/10.3389/fphys.2021.733696
927	47- No MH, Choi Y, Cho J, Heo JW, Cho E J, Park DH, Kang JH, Kim CJ, Seo D Y,
928	Han J, Kwak HB. 2020. Aging Promotes Mitochondria-Mediated Apoptosis in
929	Rat Hearts. Life (Basel) 10(9). https://doi.org/10.3390/life10090178
930	48- Pagan LU, Gomes MJ, Gatto M, Mota GAF, Okoshi K, Okoshi MP. 2022. The
931	Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel) 11(2).
932	https://doi.org/10.3390/antiox11020336
933	49- Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, Edelberg JM.
934	2007. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-

dependent paracrine mechanisms. Circ Res 100(1):e1-11. https://doi.org/10.1161/01.RES.0000253487.02398.85

934 935

936

Field Code Changed

50- Park YS, Park BW, Choi H, Lee SH, Kim M, Park HJ, Kim IB. 2022. Chorion-derived perinatal mesenchymal stem cells improve cardiac function and vascular regeneration: Preferential treatment for ischemic heart disease. Hellenic J Cardiol 66:52-58. https://doi.org/10.1016/j.hjc.2022.05.010 51- Patel, M., Smith, A. J., Sloan, A. J., Smith, G., & Cooper, P. R. (2009). Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol, 54(10), 898-908. https://doi.org/10.1016/j.archoralbio.2009.06.008 52- Phaneuf S, Leeuwenburgh C. 2002. Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 282(2):R423-430. https://doi.org/10.1152/ajpregu.00296.2001 53- Pollack M, Phaneuf S, Dirks A, Leeuwenburgh C. 2002. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann NY Acad Sci 959:93-107. https://doi.org/10.1111/j.1749-6632.2002.tb02086.x 54- Potdar PD, Jethmalani YD. 2015. Human dental pulp stem cells: Applications in future regenerative medicine. World J Stem Cells 7(5):839-851. https://doi.org/10.4252/wjsc.v7.i5.839

- 55- Rangan GK, Tesch GH. 2007. Quantification of renal pathology by image analysis. Nephrology (Carlton) 12(6):553-558. https://doi.org/10.1111/j.1440-1797.2007.00855.x
- 56- Redgrave RE, Dookun E, Booth LK, Camacho Encina M, Folaranmi O, Tual-Chalot S, Gill JH, Owens WA, Spyridopoulos I, Passos JF, Richardson GD. 2023. Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction. NPJ Aging 9(1):15. https://doi.org/10.1038/s41514-023-00113-5
- 57- Ribeiro ASF, Zerolo BE, Lopez-Espuela F, Sanchez R, Fernandes VS. 2023. Cardiac System during the Aging Process. Aging Dis 14(4):1105-1122. https://doi.org/10.14336/AD.2023.0115
- 58- Rodriguez-Sinovas A, Sanchez JA, Valls-Lacalle L, Consegal M, Ferreira-Gonzalez I. 2021. Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094413
- 59- Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB. 2021. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med 172:298-311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013
- 60- Shimizu I, Minamino T. 2019. Cellular senescence in cardiac diseases. J Cardiol 74(4):313-319. https://doi.org/10.1016/j.jjcc.2019.05.002
- 61- Soltani L, Mahdavi AH. 2022. Role of Signaling Pathways during Cardiomyocyte Differentiation of Mesenchymal Stem Cells. Cardiology 147(2): 216-224. https://doi.org/10.1159/000521313

977	62-Song M, Jue SS. Cho YA, Kim EC. 2015. Comparison of the effects of human
978	dental pulp stem cells and human bone marrow-derived mesenchymal stem cells
979	on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973-983.
980	https://doi.org/10.1002/jnr.23569
981	63- Song WP, Jin LY, Zhu MD, Wang H, Xia DS. 2023. Clinical trials using dental
982	stem cells: 2022 update. World J Stem Cells 15(3):31-51.
983	https://doi.org/10.4252/wjsc.v15.i3.31
984	64- Stohr W. 1998. Long-term heart rate telemetry in small mammals: a
985	comprehensive approach as a prerequisite for valid results. Physiol Behav 43:567
986	-76.
987	65- Sui B, Wu D, Xiang L, Fu Y, Kou X, Shi S. 2020. Dental Pulp Stem Cells: From
988	Discovery to Clinical Application. J Endod 46(9S):S46-S55.
989	https://doi.org/10.1016/j.joen.2020.06.027
990	66- Sung IY, Son HN, Ullah I, Bharti D, Park JM, Cho YC, Byun JH, Kang YH,
991	Sung SJ, Kim JW, Rho GJ, Park, BW. 2016. Cardiomyogenic Differentiation of
992	Human Dental Follicle-derived Stem Cells by Suberoylanilide Hydroxamic Acid
993	and Their In Vivo Homing Property. Int J Med Sci 13(11):841-852.
994	https://doi.org/10.7150/ijms.16573
995	67-Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. 2002. Human
996	mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult
997	murine heart. Circulation 105(1):93-98. https://doi.org/10.1161/hc0102.101442
998	68-Tracy E, Rowe G, LeBlanc, A J. 2020. Cardiac tissue remodeling in healthy
999	aging: the road to pathology. Am J Physiol Cell Physiol 319(1):C166-C182.
1000	https://doi.org/10.1152/ajpcell.00021.2020
1001	69- Ullah I, Choe YH, Khan M, Bharti D, Shivakumar SB, Lee HJ, Son YB, Shin Y,
1002	Lee SL, Park BW, Ock SA, Rho GJ. 2018. Dental pulp-derived stem cells can
1003	counterbalance peripheral nerve injury-induced oxidative stress and supraspinal
1004	neuro-inflammation in rat brain. Sci Rep 8(1): 15795.
1005	https://doi.org/10.1038/s41598-018-34151-x
1006	70- Wang SS, Zhang X, Ke ZZ, Wen XY, Li WD, Liu WB, Zhuang XD, Liao LZ.
1007	2022. D-galactose-induced cardiac ageing: A review of model establishment and
1008	potential interventions. J Cell Mol Med 26(21):5335-5359.
1009	https://doi.org/10.1111/jcmm.17580
1010	71- Watson C JE, Hunt F, Messer S, Currie I, Large S, Sutherland A, Crick K,
1011	Wigmore SJ, Fear C, Cornateanu S, Randle LV, Terrace JD, Upponi S, Taylor,
1012	R, Allen, E, Butler, AJ, Oniscu, GC. 2019. In situ normothermic perfusion of
1013	livers in controlled circulatory death donation may prevent ischemic
1014	cholangiopathy and improve graft survival. Am J Transplant 19(6)
1015	:1745-1758. https://doi.org/10.1111/ajt.15241

- 72- Xia C, Dai Z, Jin Y, Chen P. 2021. Emerging Antioxidant Paradigm of Mesenchymal Stem Cell-Derived Exosome Therapy. Front Endocrinol (Lausanne) 12:727272. https://doi.org/10.3389/fendo.2021.727272
- 73- Xie S, Xu SC, Deng W, Tang Q. 2023. Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther 8(1):114. https://doi.org/10.1038/s41392-023-01378-8
- 74- Xin LZ, Govindasamy V, Musa S, Abu Kasim, NH. 2013. Dental stem cells as an alternative source for cardiac regeneration. Med Hypotheses 81(4):704-706. https://doi.org/10.1016/j.mehy.2013.07.032
- 75- Yamaguchi S, Shibata R, Yamamoto N, Nishikawa M, Hibi H, Tanigawa T, Ueda M, Murohara T, Yamamoto A. 2015. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 5: 16295. https://doi.org/10.1038/srep16295
- 76- Yan M, Sun S, Xu K, Huang X, Dou L, Pang J, Tang W, Shen T, Li J. 2021. Cardiac Aging: From Basic Research to Therapeutics. Oxid Med Cell Longev 2021:9570325. https://doi.org/10.1155/2021/9570325
- 77- Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W, Du W, Wu Y, Zhao T, Xu C, Lu Y. 2015. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med 4(5):494-502. https://doi.org/10.5966/sctm.2014-0206
- 78- Zhou P, Yu S N, Zhang HF, Wang YL, Tao P, Tan YZ, Wang HJ. 2023. c-kit(+)VEGFR-2(+) Mesenchymal Stem Cells Differentiate into Cardiovascular Cells and Repair Infarcted Myocardium after Transplantation. Stem Cell Rev Rep 19(1):230-247. https://doi.org/10.1007/s12015-022-10430-z

Figure Legends

Figure 1. Body weight (A) and heart index (B) were assessed in control, aged (D-gal), and transplanted (D-gal + DPSCs) rats; P < 0.001 vs. control rats; P < 0.01 vs. aged rats. Data are expressed as means \pm SEM. N = 10 per group.

Figure 2. DPSCs attenuate cardiac function alterations in D-gal-induced cardiac ageing at 2 weeks post-transplantation after the last DPSC injection, Representative echocardiographic images from rats of control, D-gal, and D-gal + DPSCs groups (A). Ejection fraction (EF)% (B). fraction shortening (FS)% (C), left ventricular posterior wall thickness at end-diastole (LVPWd) (D), left ventricular internal dimension at end systole (LVIDs) (E), left ventricular end-systolic volume (ESV) (F), left ventricular internal dimension at end-diastole (LVIDd) (G), and left ventricular end-diastolic volume (EDV) (H) were measured using echocardiography. *P < 0.05,

Boleted: Figure 1. Body weight (A) and heart index (B) were assessed in control, aged (D-gal), and transplanted (D-gal + DPSCs) rats; P < 0.001 vs. control rats; P < 0.01 vs. aged rats. Data are expressed as means \pm SEM. N = 10 per group.

Deleted: at 2 weeks post-transplantation after the last DPSC injection

Deleted: (A). Ejection fraction (EF)% (B), fraction shortening (FS)% (C), left ventricular posterior wall thickness at end-diastole (LVPWd) (D), left ventricular internal dimension at end systole (LVIDs) (E), left ventricular end-systolic volume (ESV) (F),

1070 **P < 0.01, ***P < 0.001, compared with the control group; P < 0.05, "P < 0.01, compared with 1071 the D-gal group. Data are expressed as mean \pm SEM. N = 10 per group.

Figure 3. DPSCs upregulated connexin 43 expression in D-gal-induced ageing heart at 2 weeks post-transplantation of the last DPSC injection, Representative connexin-43 immunofluorescence images (A-C) and number of connexin-43 spots in ventricular cardiac tissue (D) of control, ageing (D-gal), and transplanted (D-gal + DPSCs) rats. ***P < 0.001 vs. control rats; "P < 0.01 vs. aged rats. Data are expressed as mean \pm SEMs. N = 10 per group. Scale bar = 500 μ m.

Figure 4. Transplanted DPSCs improved the cardiac histopathological alterations and cardiac fibrosis in D-gal-induced ageing rats at 2 weeks post-transplantation of the last DPSC injection. Representative haematoxylin and eosin staining of cross (A) and longitudinal (B) section of the left ventricle. Representative Masson's trichrome staining and extent of fibrosis (C and D) in the control, ageing (D-gal) and transplanted (D-gal + DPSCs) groups. ***P < 0.001, compared with the control group; "P < 0.001, compared with the D-gal group. Data are expressed as mean \pm SEM. N = 10 per group. Scale bars = $100 \mu m$ (A) and $500 \mu m$ (C).

 Figure 5. Survival and differentiation of transplanted DPSCs into cardiac cells in the transplanted (D-gal + DPSCs) group at 2 weeks post-transplantation of the last DPSC injection. Some PKH26-labelled DPSCs coexpressed cardiac troponin T (cTNT) (A–D) or cardiac troponin I (cTNI) (I–L). The boxed areas in A–D and I–L appear at a higher magnification in E–H and M–P, respectively. Inserts show a higher magnification of the boxed regions in E–H and M–P. PKH26-labelled cells (red) B, F, J, N; cTNT-positive cells (green) C, G; cTNI-positive cells (green) K, O; DAPI-stained nuclei (blue) A, E, I, M. Merged images (D, H, L, P). Scale bars = 100 µm (A–D and I–L), and 50 µm (E–H and M–P).

 Figure 6. DPSCs induced antioxidative effect on D-gal-induced ageing rats at 2 weeks post-transplantation of the last DPSC injection, Status of malondialdehyde (MDA, A), superoxide dismutase (SOD, B), and glutathione (GSH, C) in the hearts of control, aged (D-gal), and transplanted (D-gal + DPSCs) rats. *** P < 0.001 compared with control; "P < 0.001. Data are expressed as mean \pm SEM. N = 10 per group.

Figure 7. DPSCs upregulated Sirt1 expression and exerted anti-apoptotic effects in D-gal-induced aged hearts, at 2 weeks post-transplantation of the last DPSC injection, A) Western blotting analysis showing the expressions of Sirt1 and apoptotic markers in the hearts of control, aged (D-gal), and transplanted (D-gal + DPSCs) rats. B) Densitometry analysis of apoptosis-associated protein levels in different experimental groups. ***P < 0.001 compared with control; "P < 0.001. Data are expressed as mean \pm SEM. N = 10 per group.

 Deleted: at 2 weeks post-transplantation of the last DPSC injection

Deleted: at 2 weeks post-transplantation of the last DPSC injection.

Deleted: cross (A) and longitudinal (B) section of the left ventricle.

Deleted: Scale bars = $100 \mu m$ (A) and $500 \mu m$ (C).

Deleted: transplanted (D-gal + DPSCs) group at 2 weeks post-transplantation of the last DPSC injection. Some PKH26-labelled DPSCs coexpressed

Deleted: at 2 weeks post-transplantation of the last DPSC injection

Deleted: .

Deleted: at 2 weeks post-transplantation of the last DPSC injection

1126	Figure 8. Protective effects of DPSCs assayed on senescence-associated markers in D-gal-
1127	induced aged heart at 2 weeks post-transplantation of the last DPSC injection, Gene expression
1128	of senescence-associated markers such as senescence-linked β-galactosidase (SA-β-gal, A), p53
1129	(B), and p21(C), in the heart of control, aged (D-gal), and transplanted (D-gal + DPSCs) rats as
1130	measured by RT-qPCR. *** P < 0.001 compared with control; " P < 0.001. Data are expressed as
1131	mean \pm SEM. N = 10 per group.
1132	
1133 1134	Figure S1. Characterization of the dental pulp stem cell (DPSC) population. The cell-surface phenotype of the DPSCs was assessed by flow cytometry at passage 4 using antibodies against

phenotype of the DPSCs was assessed by flow cytometry at passage 4 using antibodies against CD90, CD105, CD45, and CD34. In total, 90.1%, and 94.6% of the cells expressed CD90 and CD105, respectively, whereas only 3.4% and 8.6 % expressed CD45 and CD34, respectively.

1135

1136

Deleted: on

Deleted: senescence-associated markers

Deleted: at 2 weeks post-transplantation

of the last DPSC injection

Deleted: senescence-associated markers such as senescence-linked β-galactosidase (SA- β -gal, A), p53 (B), and p21(C)

Deleted: at passage 4

Page 5: [1] Deleted Dr. Gehan Elakabawy جيهان فاروق علي العقباوي 05/03/2024 22:00:00

2.5. Measurement of body weight and the heart index

Body weights were measured weekly. At the end of the experiment, the rats were anaesthetized via intraperitoneal injection of ketamine (90 mg//kg) and xylazine (15 mg/kg) and were decapitated. Hearts were immediately dissected and weighed. Heart indices were calculated as follows: heart tissue weight (mg)/final body weight (g).

Page 16: [2] DeletedDr. Gehan Elakabawy جيهان فاروق علي العقباوي 05/03/2024 22:04:00

Bei Y, Wu X, Cretoiu D, Shi J, Zhou Q, Lin S, Wang H, Cheng Y, Zhang H, Xiao J, Li X. 2018. miR-21 suppression prevents cardiac alterations induced by d-galactose and doxorubicin. J Mol Cell Cardiol 115:130-141.

https://doi: 10.1016/j.yjmcc.2018.01.007

Page 16: [3] DeletedDr. Gehan Elakabawy جيهان فاروق علي العقباوي 05/03/2024 22:04:00

Bo-Htay C, Palee S, Apaijai N, Chattipakorn SC, Chattipakorn N. 2018. Effects of d-galactose-induced ageing on the heart and its potential interventions. J Cell Mol Med 22(3):1392-1410. https://doi: 10.1111/jcmm.13472