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Abstract

Background. Ageing is a key risk factor for cardiovascular disease and is linked to several
alterations in cardiac structure and function, including left ventricular hypertrophy and increased
cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular
dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem
cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive
surgical approach and remarkable proliferative ability.

Aim. This study is the first to investigate the outcomes of the systemic transplantation of DPSCs
in a D-galactose (D-gal)-induced rat model of cardiac ageing.

Methods. Thirty 9-week-old Sprague—Dawley male rats were randomly assigned into three groups:

Field Code Changed
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control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was
administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were
intravenously injected with DPSCs at a dose of 1 x 10° once every 2 weeks.

Results. The transplanted cells migrated to the heart, differentiated into cardiomyocytes,
improved cardiac function, upregulated Sirtl expression, exerted antioxidative effects,
modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had
anti-senescent and anti-apoptotic effects.

Conclusion. Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing
rat model, suggesting their potential as a viable cell therapy for ageing hearts.

Keywords: dental pulp stem cell; cardiac ageing; rat model; D-galactose

Introduction
Ageing is a progressive, multifaceted process that is linked to decreased physiological
performance and an elevated risk of mortality (Guo et al., 2022). Although cardiac ageing is a
natural process, it is linked to various pathological factors that may result in age-related disorders
(Redgrave et al., 2023). Extensive research has demonstrated that ageing is linked to changes in
cardiac morphology and function, such as an increase in left ventricular hypertrophy and
cardiomyocyte volume as well as a decrease in cardiomyocyte number and ventricular
dysfunction, emphasizing the pathological impacts of cardiomyocyte senescence (Dai et al.,
2012; Shimizu et al., 2019).
A substantial body of evidence indicates that cardiovascular diseases and mechanisms involved
in cellular senescence are closely related (Pagan et al., 2022), The ageing heart is accompanied

by mitochondrial malfunction, and the consequent generation of reactive oxygen species
(ROS) may lead to age-related cardiac dysfunction (Shimizu et al., 2019). This generation of
ROS in cardiac tissue triggers the upregulated expression of ageing markers p53, p21, and p16
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(Shimizu et al., 2019). These markers are cellular regulatory factors involved in the cell cycle
and are remarkably upregulated in senescent cells. P53, a key player in the DNA damage
response (DDR) pathway, can induce either temporary or permanent cellcycle arrest (cellular

senescence). When presented with stimuli triggering DDR, cell-growth arrest and senescence are
mediated via the murine double minute 2 (MDM?2)-P53-P21 and P16-retinoblastoma protein
Rb) pathways. Administration of D-galactose results in the elevated expression of P53, P21
and P16 (Bei et al., 2018, Wand et al., 2022). Sirtl, which is a member of a group of NAD-
dependent deacetylases collectively referred to as sirtuins, is involved in various molecular
pathways and is recognized as a pivotal protein in the control of ageing and metabolism. Several

reports have demonstrated that Sirt1 has a role in regulating cardiac myocyte growth and survival

under stress (Alcendor et al., 2007; Cencioni et al., 2015 Lu et al., 2014: Ministrini et al., 2021).
Furthermore, an imbalance in apoptotic control may be a major factor in ageing. Mitochondria

generate apoptogenic substances, such as cytochrome ¢, which regulate cellular apoptosis, The

ratio of pro- and anti-apoptotic Bcl-2 family members, or pro- and anti-apoptotic proteins, is

critical in the intrinsic apoptosis process (Phaneuf et al., 2002, No et. al., 2020).

Mesenchymal stem cells (MSCs) have exhibited encouraging therapeutic prospects for numerous

disorders and organ repairs. Adult stem cells have been successfully harvested from various
organs and can differentiate into various cell phenotypes. Their implantation presents a limited
risk of tumorigenesis and poses almost no ethical issues (Brown et al., 2018). MSCs have been
harvested from bone, adipose, lung, umbilical cord, and dental pulp tissue (Berebichez-Fridman
et al., 2019). Growing experimental and clinical evidence supports that MSCs constitute a
promising therapeutic approach for the remedy of cardiac dysfunction. They mediate the
production of a plethora of growth factors, replace lost cells, and create a niche that promotes
endogenous cardiac repair (Bahrami et al., 2023; Barrere-Lemaire et al., 2023; Bui et al., 2023;
Gu et al., 2023). Limited studies have investigated the potential beneficial effects of MSC
injection in animal models of ageing hearts. In rodent ageing models, bone marrow- and adipose-
derived MSCs have proven their efficacy in improving cardiac function and downregulating
ageing-linked cardiac damage, which is associated with a downregulation in the expression of
apoptosis and senescence markers. However, in these studies, homing, survival, and potential
differentiation of MSCs into cardiomyocytes have not been examined (Zhang et al., 2015; Chang
et al., 2021).

Considering the long-term clinical benefits, autologous MSC transplantation is superior to
allogeneic cell transplantation. However, the outcomes of autologous cell therapy remarkably
deteriorate with age due to their depletion and limited self-renewal capacity. Recent research has
highlighted the impact of ageing and illnesses on both human and rodent tissues, demonstrating
phenotypic and functional alterations in endogenous MSCs derived from the bone marrow,
adipose tissue, and heart (Li et al., 2013, Gnani et al., 2019, Hong et al., 2020, Guo et. al., 2023).
Conversely, recent studies have shown that dental pulp stem cells (DPSCs) exhibit resistance to
senescence effects and possess enhanced differentiation potential in vitro and regeneration
capabilities in vivo compared to bone marrow mesenchymal stem cells (BMMSCs) (Ma et al.,
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2019). Furthermore, DPSCs isolated from elderly individuals demonstrate active metabolism:
their derived miRNAs and exosomes represent a rich source of nanovesicles for the treatment of

age-related disorders, indicating the healthy condition of these cells and emphasizing their
suitability for autologous applications (Jezzi et al., 2019). Such suitability, which is attributed to

the resistance of these cells to ageing process, indicates that they are a promising option for the
treatment of age-related diseases,

A previous study provided the first proof-of-principle that the DPSC secretome protects against
D-gal-induced ageing of multiple organs (Kumar et al., 2022). The D-galactose-induced ageing
model is well-established and widely recognized. D- galactose treatment can efficiently induce
cardiac ageing as indicated by elevated levels of several cardiac ageing markers, including
oxidative stress, decreased expression of antioxidants such as superoxide dismutase (SOD)
upregulated levels of p53. and enhanced cardiac apoptosis (Bo-Htay et., 2018; Wang et al.,
2022), However, the efficacy of the systemic administration of DPSCs in ameliorating age-
associated cardiac function and structural deterioration has not yet been evaluated. Several
studies have reported the capability of DPSCs to differentiate into cardiomyocytes in vitro (Xin
etal.,2013; Sung et al., 2016); however, to the best of our knowledge, such trans-differentiation
abilities have not yet been evaluated in ageing hearts. In the current study, we aimed to assess,
for the first time, the possible efficacy of an intravenous injection of DPSCs in a D-gal-induced
rat model of cardiac ageing to evaluate their potential as a preventive therapy for age-associated

cardiovascular diseases.

Materials & Methods

2.1. Animals

Thirty male Sprague-Dawley rats (8 weeks old, 180-200 g) were purchased from the Theodor
Bilharz Research Institute, Imbaba, Egypt, and kept in the animal house of the Faculty of Medicine,
Menoufia University, Egypt as previously described by El-Akabawy et al., 2023. The animals were
acclimatized to laboratory conditions for 1 week before the start of the experiment, The rats were

kept in standard cages: two were rats kept in each cage, under standard laboratory conditions (22 :

+ 5 °C, 60 = 5% humidity, and a 12-h/12-h light/dark cycle). Standard laboratory chow and tap
water were provided ad libitum. At the end of the experiment, rats were anaesthetized via an
intraperitoneal injection of ketamine (90 mg/kg) and xylazine (15 mg/kg) and were decapitated
(El-Akabawy et al., 2023). Rats were euthanized in the event of rapid weight loss or impaired
ambulation via lethal injection of pentobarbital sodium (200 mg/kg). In this study, no rats were
euthanized prior to the planned end of the experiment. All experimental procedures involving
animals were approved by the Institutional Review Board of Ajman University, UAE [IRB# M-F-
A-11-Oct].

2.2. DPSC isolation and culture

Dental pulp tissues were obtained from the pulpal cavity of Sprague—Dawley male rat incisors
(aged 6-8-week-old) and cultured as previously described (Patel et al., 2009). Briefly, the dental
pulp tissues were promptly harvested and enzymatically digested in a solution of 3 mg/mL
collagenase type 1 (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37 °C. The cells (1 x 10¢
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cells) were cultured in T25cm flasks (Falcon). The culture media consisted of Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 20% foetal bovine serum (FBS, Gibco),
100 U/mL penicillin, and 100 pg/mL streptomycin. The flasks were incubated at 37 °C in a
humidified incubator with 5% CO.. Media were replaced every three days. The cells were
passaged at 80% confluence using 0.05% trypsin—EDTA (Sigma-Aldrich) for 3-5 min. To
evaluate cell viability, the cell suspension was mixed with 0.4% Trypan blue (Gibco), and 10 L.
of the mixture was loaded in each chamber of a haemocytometer. Counting of the viable and
non-viable cells was conducted within 5 min. Cells were used at passage 4.

2.3. Flow cytometry

Cells were resuspended in staining buffer [2% FBS/ phosphate buffered saline (PBS)] and
surface-stained with FITC-conjugated mouse anti-rat CD105 (BioLegend, UK), FITCH-
conjugated mouse anti-rat CD90 (BD Pharmingen, USA), PE-conjugated rabbit anti-rat CD34
(Abcam, UK), or PE-conjugated rabbit anti-rat CD45 (Abcam, UK) at 4 °C for 30 min. Isotype-
matched antibodies were used as controls. Cells were analysed using an EPICS XL flow
cytometer (Beckman Coulter) (El-Akabawy et al., 2022).

2.4. Experimental design

Rats were randomly divided into three groups: control, D-galactose (D-gal)-treated, and D-gal +
DPSCs-treated (n = 10 in each group). G Power software was used to determine the sample size.
Rats (aged 9 weeks) jn the D-gal- and D-gal + DPSCs-treated groups were given intraperitoneal
injections of d-gal (300 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) daily for 8 weeks. Rats in
the D-gal + DPSCs group received intravenous administration into the tail vein of 1 x 10° DPSCs

labelled with the membrane-bound fluorescent marker PKH26 (Sigma-Aldrich) once every two
weeks (El-Akabawy et al., 2022).

2.5. Measurement of body weight and the heart index

Body weights were measured weekly. At the end of the experiment, the rats were anaesthetized
via intraperitoneal injection of ketamine (90 mg/ /kg) and xylazine (15 mg/kg) and were
decapitated. Hearts were immediately dissected and weighed. Heart indices were calculated as
follows: heart tissue weight (mg)/final body weight (g) (El-Akabawy et al., 2022).

2.6. Transthoracic echocardiography

All transthoracic echocardiography (TTE) measurements were performed using a linear
transducer. A linear-array probe was used at a frequency of 10 MHz and attached to a Mindray
M7 premium (Shenzhen Mindray Bio-Medical Electronics Co., Ltd., PR China) ultrasound
echocardiography Doppler machine. The rats were anaesthetized by intraperitoneal injection of
ketamine hydrochloride (25 mg/kg) and xylazine (5 mg/kg). Anaesthesia was followed by hair
removal from the anterior part of the chest and thereafter, rats were kept on a specialized
warming table to sustain normothermia (Watson et al., 2019)
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Ejection fraction (EF) and fractional shortening (FS), left ventricular internal dimension at end-
systole (LVIDs), left ventricular end-systolic volume (ESV), left ventricular posterior wall
thickness at end-diastole (LVPWd), left ventricular internal dimension at end-diastole (LVIDd),
and left ventricular end-diastolic volume (EDV) were assessed following the American Society
of Echocardiography guidelines. This assessment was performed in a blind manner by an
independent experienced researcher.

2.7. Electrocardiogram (ECG) recordings
Three touch electrodes of the PowerLab settings (MLA1214, AD Instruments, New South
Wales, Australia) were attached to an animal bioamplifier (FE136 Animal Bio Amp, AD
instruments, New South Wales, Australia) and fixed to the animals. Lead placement was
conducted according to the lead II configuration for determining heart rate (HR) in small
laboratory animals (Stohr, 1998).

ECG recordings were performed as previously described. by Harkin et al., 2022. A

stretch of the ECG readings was obtained to calibrate the second channel for simultaneous beats
per minute (BPM) recordings. The 'Ratemeter' (within Chart for Powerlab) was utilized
simultaneously to measure the HR on channel 2 from the ECG plot in channel 1. HR was
adjusted between 0 and 500 BPM. The ratemeter band was adjusted in such a way that the upper
boundary remained positioned lower than the R-wave peak, whereas the lower line was higher
than the P- and T-waves and any other noise. This facilitated the monitoring of the ECG waves
on channel 1 with simultaneous BPM recorded on channel 2. The ECG was recorded at a
sampling speed of 500/s and within a voltage range of 500 mV. A high-pass filter was adjusted
to 0.3 Hz, and a low-pass filter (50 Hz) was used.

The ECG were digitized and stored using standard PC-based hardware (AD Instruments).
PowerLab v.7.3.7 was utilized to illustrate the recording diagrams. The recordings were analysed
using LabChart software (AD Instruments). The recorded ECG was used to calculate R-R, QRS,
PR, QT, cQT, and ST intervals using the same software. Throughout the experiment, the rats’
body temperature was sustained at 38 °C. The time at the start of the recording was set as 0.0
minutes. The corrected QT (cQT) was determined using Bazett's formula [QTc = QT/RR1/2]
(Goldenberg et al., 2006) installed in the software.

2.8. Assessment of oxidative stress and antioxidant indices

Malondialdehyde (MDA) and glutathione (GSH) levels, as well as superoxide dismutase (SOD)
activity, were measured in the cardiac tissue using a spectrophotometer. Rat cardiac tissues (100
mg) were homogenized in 1 mL of phosphate-buffered saline (PBS; pH 7.0) to assess the MDA
level and determine the degree of lipid peroxidation. After mixing the homogenates with 20%
trichloroacetic acid (TCA), the mixtures were centrifuged at 5000 rpm for 15 min. A 5%
thiobarbituric acid (TBA) solution was added to the supernatants and boiled for 10 min. The
absorbance was obtained at 532 nm and a standard curve was used to quantify the MDA levels.
The results are presented as nanomoles (nmol) per milligram (mg) of protein.
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Based on the suppression of a nitro blue tetrazolium reduction by O, produced by the
xanthine/xanthine oxidase system, the superoxide dismutase (SOD) activity was determined, and
absorbance was obtained at 550 nm. The findings are represented as units (U) per milligram (mg)
of protein. One SOD activity unit was considered as the enzyme concentration required to
generate 50% inhibition in 1 mL reaction solution per mg of tissue protein.

To examine GSH concentrations, cardiac tissue homogenates were incubated with a solution of
dithiobis nitrobenzoate (DTNB) for 1 h. The absorbance was obtained at 412 nm. A standard
curve was used to determine the GSH level. The results are presented in micromoles (mmol) per
mg of protein.

2.9. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR)

RNA was isolated from cardiac-tissue homogenates of rats in each group using the RNeasy
Purification Reagent (Qiagen, Valencia, CA, USA). RNA purity was assessed using a
spectrophotometer, ensuring a 260/280 nm absorption ratio of 1.8-2.0 for all samples.
Subsequently, cDNA synthesis was performed employing Superscript II (Gibco Life
Technologies, Grand Island, NY, USA). Quantitative PCR (qPCR) was performed on a
StepOneTM instrument with software version 3.1 (Applied Biosystems, Foster City, CA, USA).
Reaction mixtures contained SYBR Green Master Mix (Applied Biosystems), gene-specific
primer pairs (detailed in Table 1), cDNA, and nuclease-free water. Cycling conditions comprised
an initial denaturation step at 95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C and 60 s
at 60 °C. Data analysis was conducted using the ABI Prism sequence detection system software,
and quantification was performed with the Sequence Detection Software v1.7 (PE Biosystems,
Foster City, CA). The comparative cycle threshold method (Livak and Schmittgen, 2001) was
used to determine relative expression levels of the target gene, with all values normalized to f3-
actin mRNA.

2.10. Western blot analysis
Western blot analysis was conducted as previously described by Al-Serwi et al., 2021. Using
radioimmunoprecipitation buffer (Sigma-Aldrich), proteins were isolated from the cardiac

tissues. The homogenates were centrifuged at 12,000 x g at 4 °C for 20 min and the protein level
was measured in lysate aliquots using a protein assay kit (Bio-Rad, Hercules, CA, USA).
Samples were boiled at 95 °C for 5 min, separated (20 pg/lane) using 7% sodium dodecyl
sulphate—polyacrylamide gel electrophoresis, and subsequently transferred to nitrocellulose
membranes (Bio-Rad). Next, the membranes were blocked for 1 h at room temperature (RT)
using 5% bovine serum albumin in Tris-buffered saline (TBS), and then incubated for 12 h at

4 °C with primary antibodies specific for anti-sirt]1 (Abcam, Cambridge, UK, cat # ab110304),
anti-cleaved caspase-3 (Abcam, Cambridge, UK, cat # ab184787), anti-cytochrome ¢ (Abcam,
Cambridge, UK, cat # ab133504), anti-Bax (Abcam, Cambridge, UK, cat # ab32503), and anti-
Bcl-2 (Abcam, Cambridge, UK, cat ab194583). After rinsing with TBS, the membranes were
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incubated with secondary horseradish peroxidase-conjugated anti-rabbit IgG or anti-mouse
IgG antibody (1: 3000, Bio-Rad) for 1 h at RT. Proteins were visualized using enhanced
chemiluminescence (ECL Plus; Amersham, Arlington Heights, IL, USA) and measured via
densitometry using Molecular Analyst Software (Bio-Rad). The relative expression of each
protein band was normalized to that of [3-actin.

2.11. Histological and immunohistochemical analyses

At the end of the experiment, cardiac tissues were dissected and fixed in 10% formalin and
embedded in paraffin wax. For histological assessment, 5-um left ventricular sections were de-
paraffinized, rehydrated using a graded ethanol series (100%, 90%, and 70%), and stained with
haematoxylin and eosin (H&E) or Masson’s trichrome.

For immunofluorescence staining, cardiac tissue was fixed at 4 °C for 24 h and

cryoprotected in 30% sucrose at 4 °C. Using a cryostat, serial sections (40 wm) were obtained
and kept at —20 °C until use. The sections were incubated in 10% blocking solution at RT for 30
min and then incubated at 4 °C overnight with the following primary antibodies; rabbit Anti-
Cardiac Troponin T antibody (1:2000, Abcam, Cat. #ab209813), rabbit Anti-Cardiac Troponin I
antibody (1:1000, Abcam, Cat. #ab209809), or rabbit anti-connexin-34 (1:1000, Abcam, Cat.
#ab259276). Thereafter, sections were rinsed with PBS and incubated with a secondary antibody
(1:500, Alexa-488, Cat. #A-11034, Molecular Probes) for 1 h. After washing with PBS, the
sections were mounted in Fluoroshield mounting medium containing DAPI (Abcam, Cat.
#ab104139).

2.12. Quantitative histological assessments

For quantitative evaluation, three H&E- and Masson-stained sections per rat were used. By
applying Image] software (NIH, Bethesda, Maryland, USA), the H&E- and Masson-stained
sections were examined to determine the cardiomyocyte area and Masson’s-stained area,
respectively. A Leica DMLB2/11888111 microscope equipped with a Leica DFC450 camera
was used to acquire the images.

Connexin-43 immunofluorescence was measured by randomly capturing five non-overlapping
images per slide. A Leica DM5500 B/11888817/12 microscope, fitted with a Leica HI PLAN
10x/0.25 objective and a Leica DFC450C camera, was used to capture the images. Connexin-43-
stained spots were manually counted using the plugin/cell counting tool (Rangan and Tesch,
2007) in ImageJ software (National Institutes of Health, Bethesda, Maryland, US), and the
average per field for each rat was then calculated. This measurement was performed in a blind
manner by an independent experienced researcher. For statistical analysis and comparison, ten
animals were used per experimental group.

2.13. Statistical analysis
Statistical analysis was performed as previously described by El-Akabawy et al., 2022. The data

are presented as the mean + SEM. Normal distributions were assessed using the D’ Argostino and
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Pearson normality tests, and data were analysed using one- or two-way analysis of variance
(ANOVA), followed by a post hoc Bonferroni test. P < 0.05 was considered statistically
significant. Statistical analyses were performed using GraphPad Prism 5.03 software (GraphPad
Software, San Diego, California, USA). No inclusion/exclusion criteria were applied in this
study.

Results

3.1. Characterization of DPSCs
DPSCs derived from the dental pulp tissue of Sprague—Dawley rats were spindle-shaped after 10

of CD90 and CD105 (mesenchymal cell markers), and CD45 and CD34 (hematopoietic lineage
markers) were assessed. Over 90% of the cells were identified as CD90+ and CD105+ and less
than 10% were identified as CD45+ and CD34+ (Fig. S1). These findings suggest that most of

these cells were MSCs.

3.2. DPSC transplantation improves body weight and heart indices
Body weights of the rats in the control, D-gal and transplanted groups did not differ significantly
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(Fig. 1A). However, the heart index was dramatically increased in aged rats than in control rats,
suggesting cardiac hypertrophy. DPSC transplantation dramatically decreased the heart index
compared with that of D-gal rats (Fig. 1B), indicating that the transplanted cellsgmproved
reduced D-gal-induced hypertrophy.

A2

3.3. Intravenous injection of DPSCs reduces cardiac dysfunction in D-galactose-induced
aged rats

Next, we evaluated the effects of DPSC transplantation on D-galactose (D-gal)-induced cardiac
ageing in rats using echocardiography. The results revealed widespread LV systolic and diastolic
dysfunction, including reduced EF% and FS%, elevated LVIDs, ESV, and LVPWd in D-gal-

left ventricular end-diastolic volume (EDV) (Fig. 2H) jn aged hearts; however, this difference
was not statistically significant. D-gal intraperitoneal injection led to significant changes in the
ECQG results of treated rats in the form of increased QRS duration and cQT interval, but

decreased R amplitude and ST height compared to the control group. Rats in the D-gal + DPSCs
group exhibited an improved ECG pattern, as indicated by a significantly decreased QRS
duration and cQT interval, and an elevated R amplitude and ST height, compared to the aged
group (Table 2).

J
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3.4. Effect of DPSC transplantation on the expression of connexin-43

The decreased production of the critical gap junction protein, connexin-43, plays a pivotal role in
age-related cardiac dysfunction (Rodriguez-Sinovas et al., 2021). To determine whether DPSC
transplantation restored connexin-43 expression in the hearts of aged rats, connexin-43

immunoreactive areas were evaluated. In D-gal-treated rats, immunoreactive connexin-43 areas
were sparse, and their expression in cardiac tissue markedly decreased, whereas in the D-gal +
DPSCs group, they were markedly upregulated (Fig. 3A-D),

3.5. DPSC systemic transplantation attenuates cardiac histopathological alterations in D-
galactose-induced aged rats

To examine the alterations in the myocardial architecture of different groups, left ventricular
cardiac tissue slides were stained with H&E. The left ventricular cardiac tissue of D-gal-induced
ageing rats exhibited a distorted myocardial structure, characterized by a disorganized
arrangement of cardiomyocytes and expanded intercellular space (arrows. Fig. A) when

compared to the control rats. In contrast, marked improvement was observed in the ageing rats
that received DSPSC injection. H&E staining also revealed that the left ventricular
cardiomyocyte cross-sectional area was significantly enlarged in D-gal-induced ageing rats,
whereas DPSC treatment markedly decreased the cardiomyocyte area in D-gal + DPSC-treated
rats (Fig. B). Masson's trichrome staining was used to examine the degree of cardiac fibrosis in

the different groups. The collagen-stained area in the interstitial and perivascular areas of the
myocardium dramatically increased in D-gal-induced ageing rats. However, DPSC treatment

significantly reduced collagen accumulation compared to that in the D-gal group

(Fig. 4C and D).
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differentiated into cardiomyocytes
An immunofluorescence-based examination of the cardiac tissue of D-gal + DPSCs rats was Deleted: , and
performed to assess the engraftment of injected DPSCs into the heart. Transplanted DPSCs were
distinguished from recipient cells via labelling with PKH?26, a cell membrane-binding dye with ' Deleted: labelling
red fluorescence, PKH26-1abelled cells were distributed in the cardiac tissues of the D-gal + Deleted: which is

DPSCs rats (Fig. 5 B, F. J. and N). Interestingly, a few of the transplanted cells differentiated

into cardiomyocytes, as indicated by the colocalization of cardiac troponin T (¢TnT) (Fig. SA-
H), or cardiac troponin I (cTnl) with PKH26-1abelled cells (Fig. 5I-P),

3.7. DPSCs upregulate Sirtl expression and exert an antioxidative effect in D-galactose-
induced cardiac ageing in rats

We further investigated whether DPSC transplantation has antioxidant effects. Compared with
the control rats, we observed that aged rats exhibited higher concentrations of MDA (Fig. 6A).
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compared with those in control rats. In D-gal + DPSC-treated rats, MDA concentrations in the Sy { Deleted: (Fig. 6B) }
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Jevels were higher than those in the aged rats (Fig. 6A-C), Sirt] demonstrated its ability to delay [ Deleted: (Fig. 6C) }
ageing and induce cardiac antioxidative effects (Alcendor et al., 2007; Cencioni et al., 2015; Lu {Deleted: (Fig. 6A). }
et al., 2014: Ministrini et al., 2021), Interestingly, DPSC-treated rats exhibited higher Sirtl [ Deleted: (Fig. 6B) }
expression than D-gal-treated rats (Fig. 7A), { Deleted: (Fig. 6C). J
3.8. DPSCs exhibit anti-apoptotic effects in D-galactose-induced cardiac ageing in rats ». { Deleted: (Fig. 6A-C). }
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whereas the anti-apoptotic marker Bcl-2 (Fig. 7C) was reduced in D-gal-treated rats. However, in . [ Deleted: (Fig. 7B), }
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7B. D, and E), while the expression of Bcl-2 was enhanced (Fig. 7C)., { eleted: (Fig. 7D), }
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3.9. Effects of DPSC administration on senescence-associated markers in D-galactose- . { Deleted: (Fig. 7C) }
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Senescence-linked -galactosidase (SA-f3-gal) activity is commonly used to recognize cells as { Deleted: (Fie. 7C }
senescent. A group of cell cycle regulatory factors, such as P21, and P53, are also considered as eleted: (RN
senescence markers (Shimizu et al., 2019). The expression of senescence-related markers, such
as SA-B-gal (Fig. 8A), p53 (Fig. 8B) and p21 (Fig. 8C), was significantly upregulated in aged [ Deleted: (Fig. 8A }
rats compar.ed to those in control rallts. In D-gal + PPSC—treated rats, DPSCs efficiently reduced { Deleted: (Fig. 8B) }
the expression of all evaluated ageing markers (Fig. 8A-C), [ J
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Ageing is characterized by the progressive aggregation of cellular damage, resulting in the
gradual dysfunction of several organs. Age-associated alterations in the heart include left

ventricular hypertrophy, upregulated collagen deposition, and cardiac dysfunction. Ageing [ Deleted:

deposition,

contributes significantly to the progression of age-associated cardiovascular diseases, leading to
a notably elevated prevalence of such conditions in elderly populations. Therefore, there is an
immediate need to develop more effective therapeutic approaches to manage cardiac
insufficiency associated with ageing (Yan et al., 2021, Xie et al., 2023). A substantial body of
evidence suggests the potential of MSCs in the treatment of heart disease (Jeong et al., 2018; Fu
et al., 2020; Meng et al., 2022; Kalou. et al., 2023). DPSCs exhibit a range of distinct biological
characteristics that confer protective effects on injured tissues, including the cardiac tissue
(Gandia et al., 2008; Sui et al., 2020; Song et al., 2023). The current study aimed to investigate,
for the first time, the potentially favourable outcomes of the systemic injection of DPSCs in D-
galactose (D-gal)-induced aged hearts.
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Histopathological examination of ageing cardiac tissue revealed cardiomyocyte hypertrophy and
enhanced LV fibrosis, consequently reducing LV elasticity and leading to cardiac dysfunction.
Ageing hearts exhibit distinctive histological and functional characteristics, such as increased
cardiac remodelling and declining cardiac reserve. Compared with normal ageing in rats. D-gal-
induced ageing models present cardiac structural and functional ageing alterations (LLazzeroni et

al., 2022; Wang et al., 2022). In the current study, we demonstrated that D-gal-induced ageing
rats had aberrant cardiac structure and enhanced collagen deposition in the perivascular and
interstitial areas of the heart. These histopathological alterations in the cardiac structures were
reflected in our echocardiography analysis, which revealed an increase in LVIDd and EDV;
however, no significant difference was observed when compared with control rats. In contrast,
LVIDs, ESV, and LVPWd were markedly increased in aged rats. Echocardiography also

revealed worsening cardiac function, as indicated by decreased FS% and ES%. Interestingly, the
observed morphological and functional alterations were dramatically improved in the DPSC
transplanted group. Our results are in line with those of previous studies, albeit using other
source types of MSCs. It has been documented that the systemic injection of adipose-derived
stem cells (ADSCs) significantly ameliorated structural alterations and cardiac performance in
D-gal-induced ageing rats (Chang et al., 2021). Significant histopathological improvement was
also observed in D-gal-induced ageing rats administered intravenous injections of Wharton’s
jelly stem cells, as indicated by a reduction in collagen and reversal of ageing-induced structural
changes (Hu et al., 2022). Intracardiac injection of BMMSCs was also found to ameliorate
natural ageing-associated cardiac hypertrophy and fibrosis and enhance cardiac performance, as
reflected by increased EF%, FS%, and reduced LVIDs (Zhang et al., 2015).

In this study, the cardiac dysfunction observed in aged rats was combined with significant
changes in the ECG patterns. Aged rats exhibited an increased QRS duration and cQT interval,
along with a decreased R amplitude and ST height compared to that observed in the control
group. A decline in the expression of the vital gap junction protein connexin-43, which is
responsible for transmitting signals along the conduction pathway and forming a functional
syncytium between myocytes (Rodriguez-Sinovas et al., 2021), was also observed. The impact of
disturbed functional syncytium on conducting signals could be exacerbated by the loss of
cardiomyocytes, which naturally develops during ageing, along with accompanying reactive
fibrosis enhancement (Tracy et al., 2020). In our study, DPSC transplantation reduced fibrosis in
aged rats and preserved connexin-43 expression, thereby improving ECG alterations. The
therapeutic effects of MSCs on cardiac electrical conductivity have also been documented. Li et
al. 2018 observed that BMMSC transplantation increased the density of connexin 43, which
improved the dispersion of electrical excitation in rats with myocardial infarction. MSC therapy
also resulted in a shorter QRS duration and QTc interval, indicating the capability of MSCs to
improve cardiac electrical velocity in a murine double infarction model (Park et al., 2022).

Most cardiomyocytes do not undergo active proliferation, and the yield rate of cardiomyocytes in
the human heart is less than or equal to 1% per year (Gude et al., 2018). Although cardiac
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progenitor cells (CPCs) are considered an interesting source of cell therapy, the aged human
heart exhibits a remarkable population of senescent CPCs, which may be responsible for the
development of cardiac malfunction instead of promoting regenerative effects (Shimizu and
Minamino, 2019). Previous research has shown that MSCs from various sources possess the
ability to differentiate into cardiomyocytes (Toma et al., 2002; Guo et al., 2018; Soltani and
Mahdavi, 2022; Zhou et al., 2023). Whether MSCs can differentiate into cardiomyocytes remains
debatable. While some studies have speculated that the detected regeneration could be a result of
donor cell fusion with recipient cardiomyocytes (Alvarez-Dolado et al., 2003), other studies have
reported that BMMSCs can give rise to cardiomyocytes under laboratory conditions, even during
a lack of cardiomyocytes, thus excluding the likelihood of cell fusion (Pallante et al., 2007).
Notably, MSCs derived from various sources are considered safer than genetically engineered
MSC:s due to their reduced risk of oncogenicity or malformation (Hatzistergos et al., 2011).
MSCs of different origins exhibit varying capacities for differentiation into cardiomyocytes. The
specific differentiation potential of MSCs from specific sources may lead to more favourable
outcomes compared to others (Park et al., 2023). To our knowledge, no previous study has
examined the differentiation capacity of DPSCs in a cardiac ageing model. In our study, a
considerable number of DPSCs migrated and survived in the cardiac tissue, and some cells
colocalized with cTnT and c¢Tnl. Our results are in line with those of several studies reporting the
capability of DPSCs to differentiate into cardiomyocytes (Arminan et al., 2009; Xin et al., 2013;
Potdar et al., 2015; Sung et al., 2016; Al Madhoun et. al., 2021). However, our results suggested
that only a small number of DPSCs differentiated into cardiomyocytes. To further investigate the
underlying mechanisms by which the transplanted cells improved the structural and functional
alterations in D-gal-induced ageing hearts, we sought to evaluate the potential paracrine effects
of the injected DPSCs.

Emerging evidence consistently supports the notion that oxidative stress plays a significant role
in the physiological progression of ageing (Maldonado et al., 2023). When exposed to elevated
levels of oxidative stress, p53 displays pro-oxidative activities, intensifying stress levels, and
ultimately triggering apoptosis (Liu et al., 2011; Shi et al., 2023). A critical determinant in the
ageing process of cardiac tissue is the equilibrium between anti-apoptotic Bcl-2 and pro-
apoptotic Bax proteins. Bcl-2 inhibits apoptosis by suppressing cytochrome c release from
mitochondria (Pollack et al., 2002). Sirtuins, which are a group of nicotinamide adenine
dinucleotide (NADp)-dependent histone deacetylases, are thought to regulate cardiac ageing by
influencing mitochondrial stress responses. Sirtl activation has been suggested to increase the
expression of antioxidant enzymes, such as SOD and catalase, leading to the inhibition of ROS
generation, which is a key player in oxidative stress (Alcendor et al., 2007; Cencioni et al.,

2015). In our study, ageing hearts demonstrated increased oxidative stress and increased
expression of p53, pro-apoptotic BAX, and cytochrome c, and a decrease in the antioxidant
markers SOD, Bcl-2, and Sirt1. DPSC transplantation significantly ameliorated these changes.
Our results are in line with those of previous studies. Various MSC sources have demonstrated
the ability to exhibit antioxidant capacity, primarily through the upregulation of glutathione
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transferase (GST) and the increased activity of SOD. This, in turn, modulates the genes driven by
the antioxidant response element (Xia et al., 2021). In studies involving D-gal-stressed H9c2
cells, the culturing of these cells with a conditioned medium derived from MSCs led to
significant improvements in cell viability, upregulation of SOD expression, downregulation of
oxidative stress levels, and inhibition of p53 activity (Hu et al., 2022). In the context of D-gal-
induced ageing in rats, adipose tissue-derived mesenchymal stem cells (ADMSCs) exhibited a
downregulation in mitochondria-triggered apoptotic markers, including Bax, cytochrome c, and
cleaved caspase-3. Conversely, it has been reported that ADMSCs upregulate Bcl-2 and Sirtl
expression compared to other treatment groups (Chang et al., 2021). Our findings support those
of previous studies demonstrating the antioxidant and anti-apoptotic capabilities of DPSCs (Song
et al., 2015; Ullah et al., 2018; Hernandez-Monjaraz et al., 2020; El-Kersh et al., 2020; Al-Serwi
et al., 2021). Our results demonstrated that antioxidant and anti-apoptotic capabilities of

transplanted DPSCs are mediated by downregulation of the expression of p53. pro-apoptotic
BAX, and cytochrome ¢ and upregulation of the antioxidant markers SOD, Bcl-2, and Sirtl, In

cultured cardiac myocytes, conditioned medium derived from DPSCs significantly inhibits
apoptosis under hypoxic/serum deprived conditions. It also reduced the expression of
proinflammatory genes induced by lipopolysaccharide. Notably, the anti-apoptotic effect of the
conditioned medium of DPSCs was found to be more efficacious than that of conditioned media
derived from BMSCs or ADSCs on cardiac myocytes (Yamaguchi. et al., 2015).

Conclusions
Our results reveal that the systemic injection of DPSCs ameliorated, cardiac structural and

functional alterations occurring in a rat model of D-gal-induced cardiac ageing. Our findings
support the beneficial effects of intravenously transplanted DPSCs on ageing-related cardiac

structural and functional changes. However, to examine whether the transplanted cells could
reverse ageing-induced changes, further studies are needed wherein DPSCs should be

transplanted after cardiac ageing has been established. In addition, before initiating clinical trials,
additional studies are required to promote the differentiation of these cells into cardiomyocytes

in vivo. Furthermore. a deeper understanding of the underlying mechanisms responsible for the
favourable outcomes of DPSC-secreted factors is crucial.,
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Figure Legends

Figure 1. Body weight (A) and heart index (B) were assessed in control, aged (D-gal), and
transplanted (D-gal + DPSCs) rats; “P < 0.001 vs. control rats; ‘P < 0.01 vs. aged rats. Data are
expressed as means + SEM. N = 10 per group.
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Figure 2. DPSCs attenuate cardiac function alterations in D-gal-induced cardiac ageing at 2
weeks post-transplantation after the last DPSC injection, Representative echocardiographic
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fraction shortening (FS)% (C), left ventricular posterior wall thickness at end-diastole (LVPWd)
(D), left ventricular internal dimension at end systole (LVIDs) (E), left ventricular end-systolic
volume (ESV) (F), left ventricular internal dimension at end-diastole (LVIDd) (G), and left

ventricular end-diastolic volume (EDV) (H) were measured using echocardiography. *P < 0.05,
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**P <0.01,***P <0.001, compared with the control group; ‘P < 0.05, P < 0.01, compared with
the D-gal group. Data are expressed as mean + SEM. N = 10 per group.

Figure 3. DPSCs upregulated connexin 43 expression in D-gal-induced ageing heart at 2 weeks
post-transplantation of the last DPSC injection, Representative connexin-43 immunofluorescence

images (A-C) and number of connexin-43 spots in ventricular cardiac tissue (D) of control,
ageing (D-gal), and transplanted (D-gal + DPSCs) rats. ***P < 0.001 vs. control rats; P <0.01
vs. aged rats. Data are expressed as mean + SEMs. N = 10 per group. Scale bar = 500 um.

Figure 4. Transplanted DPSCs improved the cardiac histopathological alterations and cardiac

fibrosis in D-gal-induced ageing rats at 2 weeks post-transplantation of the last DPSC injection.
Representative haematoxylin and eosin staining of cross (A) and longitudinal (B) section of the

left ventricle, Representative Masson's trichrome staining and extent of fibrosis (C and D) in the

control, ageing (D-gal) and transplanted (D-gal + DPSCs) groups. ***P < 0.001, compared with
the control group; P < 0.001, compared with the D-gal group. Data are expressed as mean +
SEM. N = 10 per group. Scale bars = 100 um (A) and 500 um (C).

Figure 5. Survival and differentiation of transplanted DPSCs into cardiac cells in the transplanted ’

(D-gal + DPSCs) group at 2 weeks post-transplantation of the last DPSC injection. Some
PKH26-labelled DPSCs coexpressed, cardiac troponin T (¢TNT) (A-D) or cardiac troponin I

(cTNI) (I-L). The boxed areas in A—D and I-L appear at a higher magnification in E-H and M—
P, respectively. Inserts show a higher magnification of the boxed regions in E-H and M-P.
PKH26-labelled cells (red) B, F, J, N; cTNT-positive cells (green) C, G; cTNI-positive cells
(green) K, O; DAPI-stained nuclei (blue) A, E, I, M. Merged images (D, H, L, P). Scale bars =
100 um (A-D and I-L), and 50 um (E-H and M-P).

Figure 6. DPSCs induced antioxidative effect on D-gal-induced ageing rats at 2 weeks post-
transplantation of the last DPSC injection, Status of malondialdehyde (MDA, A), superoxide

dismutase (SOD, B), and glutathione (GSH, C) in the hearts of control, aged (D-gal), and
transplanted (D-gal + DPSCs) rats. *** P < 0.001 compared with control; P < 0.001. Data are
expressed as mean = SEM. N = 10 per group.

Figure 7. DPSCs upregulated Sirtl expression and exerted anti-apoptotic effects in D-gal-
induced aged hearts at 2 weeks post-transplantation of the last DPSC injection, A) Western
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blotting analysis showing the expressions of Sirtl and apoptotic markers in the hearts of control,
aged (D-gal), and transplanted (D-gal + DPSCs) rats. B) Densitometry analysis of apoptosis-
associated protein levels in different experimental groups. ***P < 0.001 compared with control;
“P <0.001. Data are expressed as mean + SEM. N = 10 per group.
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Figure 8. Protective effects of DPSCs assayed on senescence-associated markers jn D-gal-

induced aged heart at 2 weeks post-transplantation of the last DPSC injection, Gene expression

of senescence-associated markers such as senescence-linked [-galactosidase (SA- [3-gal, A), p53
(B), and p21(C) in the heart of control, aged (D-gal), and transplanted (D-gal + DPSCs) rats as

measured by RT-qPCR. ***P < 0.001 compared with control; P < 0.001. Data are expressed as

mean + SEM. N = 10 per group.

Figure S1. Characterization of the dental pulp stem cell (DPSC) population. The cell-surface
phenotype of the DPSCs was assessed by flow cytometry at passage 4 psing antibodies against

CD90, CD105, CD45, and CD34. In total, 90.1%, and 94.6% of the cells expressed CD90 and
CD105, respectively, whereas only 3.4% and 8.6 % expressed CD45 and CD34, respectively.
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2.5. Measurement of body weight and the heart index

Body weights were measured weekly. At the end of the experiment, the rats were
anaesthetized via intraperitoneal injection of ketamine (90 mg/ /kg) and xylazine (15 mg/kg)
and were decapitated. Hearts were immediately dissected and weighed. Heart indices were
calculated as follows: heart tissue weight (mg)/final body weight (g).
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