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ABSTRACT
We developed a pathogenicity classifier, named Var3PPred, for identifying pathogenic
variants in genes associated with autoinflammatory disorders. Our comprehensive
approach integrates protein-protein interaction analysis and 3D structural information.
Initially, we collected a dataset of 702missense disease-associated variants from35 genes
linked to systemic autoinflammatory diseases (SAIDs). This dataset, sourced from the
Infevers database, served as the training and test sets. We used the SMOTE algorithm to
balance the dataset comprising 130 benign and 572 pathogenic variations.Our approach
included 3D docking analysis of protein-protein interactions, utilizing data from the
STRING and Intact databases. We weighted ZDOCK and SPRINT values in accordance
withHGPECgene rank scores for robustness. Additionally, we integrated sequential and
structural features, such as changes in folding free energies (11 G), accessible surface
area, volume, per residue local distance difference test (pLDDT) scores, and position
specific independent count (PSIC) scores. These features, calculated using PyRosetta
and AF2 computed structures, provided insights into amino acid conservation at
variant positions and the impact of variants on protein structure and stability. Through
extensive hyperparameter tuning of six machine learning algorithms, we found the
random forest classifier to be the most effective, yielding an AUROC of 99% on the test
set. Var3PPred outperformed three other classifiers, SIFT, PolyPhen, and CADD, on an
unseen test set of a SAID-related gene. This demonstrates its capacity for pathogenicity
classification of SAID variations. The source code for Var3PPred and the predictions
for all 420 missense variants of uncertain significance from the Infevers database are
available on GitHub: (https://github.com/alperbulbul1/Var3PPred).
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INTRODUCTION
The challenge of discerning the pathogenicity of variants of uncertain significance (VUS)
constitutes a significant issue within clinical genomics. Variants that fall into this category
are genetic alterations that exhibit subtle or ambiguous functional consequences, rendering
their classification as either benign or pathogenic difficult. Systemic autoinflammatory
diseases (SAIDs) are marked by recurring bouts of inflammation and fever, which
arise due to dysfunction in the inflammasome mechanism, occurring independently
of autoantibody reactions or microbial infections. The fact that more than half of patients
do not harbor any pathogenic variant in formerly linked disease genes, coupled with the
high prevalence of patients carrying VUS, poses a significant challenge in the diagnosis
and treatment (Karacan et al., 2019). The Infevers database serves as a valuable resource
in the field of autoinflammatory disease, which catalogs a vast collection of data related
to genetic variations, their associated clinical presentations, and their implications in
autoinflammatory disorders (Van Gijn et al., 2018).

Numerous endeavors have been undertaken to categorize VUS within the Infevers
database, employing a combination of clinical curation and advanced computational
techniques such as the random forest algorithm, which achieved an AUROC of 0.91
in the VIPPID model (Papa et al., 2021; Fang et al., 2022). However, these efforts have
yet to yield a comprehensive elucidation or a revelation of the intricate 3D effects of
VUS on protein structures, including their potential to disrupt interactions crucial to
causative proteins. The 3D structure of proteins is important in variant prediction because
it provides crucial information about the protein’s function, stability, and interaction with
other molecules or proteins. Variants can lead to changes in the 3D structure, affecting the
protein’s ability to perform its biological functions, which can have implications for disease
development and progression (Caswell et al., 2022). To facilitate protein-protein docking
the ZDOCK algorithm is used in this study. ZDOCK is a widely recognized algorithm
that performs a full rigid-body search of docking orientations between two proteins,
utilizing a fast Fourier transform (FFT) approach. This allows for the rapid screening of
potential docking configurations, making it an invaluable tool in the initial stages of protein
complex prediction. Additionally, ZDOCK incorporates a novel pairwise statistical energy
potential, which enhances its ability to discriminate between near-native and non-native
protein-protein interactions. Consequently, ZDOCK’s combination of speed and accuracy
makes it a powerful tool in the field of computational biology for predicting the structures
of protein complexes, which is crucial for understanding biological functions (Pierce,
Hourai & Weng, 2011).

Moreover, preceding methods for predicting variant impact, which lack disease-
specificity, have traditionally incorporated evolutionary conservation analysis at variation
sites. In recent times, these methods have converged with those that assess alterations in
the 3D structural stability of proteins. In a recent development, the MutaBind2 tool, an
upgraded version introduced byZhang et al. (2020), employs the11Gvalues of interacting
proteins to forecast variant pathogenicity. However, a limitation of this tool arises from
the fact that most proteins lack experimental 3D structures, which consequently precludes
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their inclusion in the calculations. Among the widely recognized and commonly employed
prediction tools, Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping
(PolyPhen), and Combined Annotation Dependent Depletion (CADD) stand out for their
robust predictive capabilities, which are described below.

In a seminal article, Chasman & Adams (2001) demonstrated that changes in the
three-dimensional configuration of proteins hold promise for predicting variant
pathogenicity (Wang & Moult, 2001). Initial methods that were rooted in evolutionary
principles, like Henikoff’s approach centered on base changes, were introduced (Ng &
Henikoff, 2001). Subsequently, more sophisticated methodologies evolved, incorporating
techniques for sequence alignment and calculating the impacts of amino acid substitutions,
yielding heightened precision in predictions. Among these methodologies, SIFT and
PolyPhen-2 have emerged as frequently employed tools for their efficacy (Vaser et al., 2016;
Adzhubei et al., 2010).

Machine learning techniques entered the prediction landscape around 2004 with Cai’s
Bayesian network learning approach, based on the evolutionary conservation of regions (Cai
et al., 2004). Meta-prediction methodologies also surfaced, integrating the outcomes of
preceding variation prediction methods into a unified pathogenicity assessment. A prime
exemplar of this paradigm is CADD, which amalgamates diverse pathogenicity approaches,
including GWAS, SIFT, PolyPhen, and more, employing the SVM algorithm to conduct
pathogenicity evaluations (Kircher et al., 2014).

A recent study has shown that the prediction tools CADD, SIFT, and PolyPhen have
achieved ROC AUC values of 0.88, 0.88, and 0.87, demonstrating their high accuracy in
variant impact prediction (Frazer et al., 2021). We compared the predictive performance
of our model with established tools such as SIFT, PolyPhen, and CADD forMEFV exon 2
and exon 10 variants. The SIFT model exhibited an accuracy of approximately 74%, with
five false positives and 13 false negatives among the 59 variants analyzed. PolyPhen showed
a slightly higher accuracy of about 84%, with no false positives but 11 false negatives. The
CADD method, which classifies variations with a Phred score above ten as pathogenic,
achieved an accuracy of around 75%, with eight false positives and nine false negatives.
In contrast, our model outperformed these established methods, demonstrating superior
predictive accuracy with eight false positives and, notably, no false negatives.

METHODS
Dataset construction
A total of 35 genes pertinent to autoinflammatory diseases were listed along with their
respective Online Mendelian Inheritance in Man (OMIM) accession number of associated
diseases. A total of 702 missense variations found in these genes were collected from
the Infevers database (Van Gijn et al., 2018). Interaction partners of these genes were
obtained from the STRING and Intact databases using Cytoscape (Shannon et al., 2003;
Szklarczyk et al., 2019; Hermjakob et al., 2004). A total of 191 distinct interacting partners
of 35 autoinflammatory disease-related proteins were identified. The protein sequences
of 226 genes, which include the 35 autoinflammatory disease-related proteins and their
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Figure 1 The Var3PPred workflow illustrates the systematic data acquisition and processing pipeline.
Variation data is extracted from the Infevers database. Protein-protein interaction data is collated from
the STRING and IntAct databases. The depicted steps include the retrieval of sequences from the UniProt
database, 3D structural modeling via trRosetta, PPI analysis conducted using ZDOCK and SPRINT (val-
ues of which are weighted by HGPEC scores), and11G computations accomplished with PyRosetta. Fur-
thermore, the analysis and evaluation of missense variations involve tools that assess accessible surface
area (ASA), pLDDT, and position-specific independent counts (PSIC). The dataset’s variability is man-
aged using the SMOTE algorithm, and the predictive model is generated employing the random forest
method. Diagram created via Lucidchart (https://lucid.app).

Full-size DOI: 10.7717/peerj.17297/fig-1

191 interacting partners, were retrieved from UniProt (Consortium, 2019). 3D structures
of these 226 proteins were modeled by trRosetta and AF2 (Yang et al., 2020; Jumper et al.,
2021). Pathogenic and benign variations in the 35 autoinflammatory genes were analyzed
for their ZDOCK and SPRINT interaction scores, weighted with 191 interaction partners
sourced from the STRING and IntAct databases (Szklarczyk et al., 2019; Hermjakob et al.,
2004). 3D structures of the proteins were used to obtain the protein-protein complexes
by ZDOCK. Sequence-based PPI scores were obtained by SPRINT tools. An enhanced
11G score has been computed using the PyRosetta Python package’s weighted score
function (Chaudhury, Lyskov & Gray, 2010), in conjunction with the importance scores
of HGPEC genes across 35 autoinflammatory diseases. For the 702 missense variations
identified, scores for ASA, PSIC, pLDDT, and volume of variation were compiled. To
overcome the imbalance between pathogenic and benign variations, the SMOTE algorithm
was used to produce models with higher prediction rates by balancing the ratio between
benign and pathogenic variants. The workflow of Var3PPred was presented in Fig. 1.

Protein structure modelling
The three-dimensional structures of SAID-associated proteins and interaction partners
were modeled using trRosetta (Yang et al., 2020). The initial step of 3D structure
modeling involved performing multiple sequence alignments (MSAs) for each protein
sequence utilizing the HHblits tool with the Pfam database (Remmert et al., 2012;
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El-Gebali et al., 2019). These MSAs serve as crucial input for the subsequent trRosetta-
based structure prediction, providing evolutionary information that aids in defining the
structural constraints.

Analysis of variations’ protein structure and motifs: 11G, pLDDT,
ASA, and PSIC scores
The process of predicting the protein structure entails a deep residual network-based
prediction of inter-residue orientations and distances, which guide the folding of the
protein into its final 3D form. Furthermore, to assess the structural implications of 702
variations on the 3D structure of corresponding proteins, they were modified using
PyRosetta (Chaudhury, Lyskov & Gray, 2010). Also, the change in the Gibbs free energy
(11G) due to the variation was calculated with PyRosetta’s 11G module.

From the AlphaFold Protein Structure Database, we extracted the AF2 computed
structures of 35 proteins. Using these structures, we obtained/calculated the pLDDT
scores, which quantify the local protein structure prediction confidence and the relative
surface accessible surface area by the DSSP (Dictionary of Secondary Structure of Proteins)
module available in the Biopython package (Cock et al., 2009). The PSIC scores for both
the wild-type and variant amino acids were obtained from the pre-computed profiles of
PolyPhen database. These scores provide insights into the possible impacts of amino acid
substitutions on protein function and stability.

Handling missing data involves a systematic imputation strategy where each feature
exhibiting missing values is modeled as a dependent function of other available features,
employing a sequential, round-robin methodology. This process is operationalized using
the fancyimputer package in Python, which facilitates advanced statistical techniques
for effective and accurate data imputation (Rubinsteyn & Feldman, 2016). The imputation
strategy employed is IterativeImputation, amultivariate imputer that estimates each feature
from all the others. This approach imputes missing values by modeling each feature with
missing values as a function of other features in a round-robin fashion.

3D and sequence-based protein–protein interaction analysis
Structural protein files in pdb format obtained from the trRosetta tool were preliminary
for the ZDOCK tool (Pierce, Hourai & Weng, 2011). Structural protein files in pdb format
received from the trRosetta tool were preliminary for the ZDOCK tool. Surface amino
acids of proteins are marked, and electrostatic charges of atoms are calculated according
to UNICHARMM data. The GNU-parallel tool is used to run processes in parallel on
high-performance computers (Tange, 2018). Interaction partners of SAID-associated
genes obtained from STRING and Inact databases were examined with ZDOCK, and the
highest score was obtained. Proteins’ sequences in fasta format are accepted in the prepared
pdb files. Similar sub-sequences are obtained using the PAM120 scoring matrix. Then,
interaction scores of mutant interactions are obtained by trained interactions (Li & Ilie,
2017). Pairwise interaction scores of Protein interactions ZDOCK and SPRINT are shown
in Table S2.
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Weighting interaction scores with the HGPEC gene rank score in
SAIDs
Random walk with restart algorithm on a heterogeneous network (RWRH) is used to get
the genes’ SAIDs disease relatedness score.

P t+1
= (1−γ )W ′P t

+γP0 (1)

The RWRH formula is represented at Eq. (1) as Le & Pham (2017) described, where
P t is the probability vector at iteration t t, γ is the restart probability, and W is the
transition probability matrix of the network. The matrix W is constructed by combining
the gene-disease and disease-gene interaction probabilities, normalized to ensure that each
row sums to one. The initial probability vector P0 is set based on the diseases of interest,
with non-zero probabilities assigned to the corresponding nodes in the network. The
RWRH algorithm iteratively updates the probability vector until convergence, with the
final probabilities indicating the relatedness of each gene to the specified diseases. By tuning
the parameter γ , researchers can control the balance between exploration of the network
and focus on the initial disease nodes, allowing for the identification of both closely and
distantly related genes.

The pre-existing ‘Disease Similarity Network 15’, integratedwithin theHGPEC toolset, is
a pivotal resource for discerning disease similarity in SAIDs. The prioritization process ranks
genes based on their relevance in the recommended human Protein-Protein Interaction
(PPI) network and similar selected diseases incorporated in the HGPEC (Le & Pham,
2017). These rank scores will later be used in weighting ZDOCK and SPRINT data, as
shown in Table S3.

SPRINT and ZDOCK interaction scores were then calculated for all interaction partners
of SAID-related genes corresponding to a single mutation, yielding a comprehensive
interaction score.

The total score for a mutation was calculated by averaging all weighted interaction scores
associated with the mutated protein, as depicted by Eq. (2):

Wv =

∑
[G−Vi]Vri
Vrsum

. (2)

G is the interaction score of the mutated protein with its interaction partner in the
network. Vi is the interaction score of a wild-type protein with its interaction partner in
the network. Vri is the HGPEC gene rank score of the interaction partner of SAID-related
gene. Vrsum is the sum of all Vri values for all interactions of the mutated protein.

The overall fraction summarizes all the individual weighted interaction scores for the
mutated protein. It is divided by the sum of all HGPEC gene rank scores of interaction
partners of SAID-related genes. This fraction provides the average weighted interaction
score for the mutated protein across all its interactions.

Machine learning models training and evaluation
In selecting these six machine learning algorithms for our study, we aimed to encompass
a diverse range of approaches to evaluate their performance on complex biological data.
Random forest and AdaBoost, both tree-based ensemble methods, were chosen for their
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proven effectiveness in handling high-dimensional data and their ability to improve
predictive accuracy through ensemble learning. Linear SVM and logistic regression
represent linear models, which, despite their simplicity, are powerful tools for classification
tasks and provide a baseline for comparison with more complex models. KNN, a non-
parametric method, was included for its simplicity and intuitive approach to classification
based on proximity in the feature space. Lastly, QDA, a parametric discriminant analysis
technique, was selected for its ability to model complex decision boundaries when the
data is assumed to follow a Gaussian distribution. Together, these algorithms offer a
comprehensive overview of the performance of different machine learning approaches on
biological data, with the Python Scikit-learn package providing a consistent and efficient
framework for their implementation and evaluation (Pedregosa et al., 2011).

Before training models, the imbalance between benign (130) and pathogenic (572)
variants number in the dataset was balanced by employing the Synthetic Minority Over-
sampling Technique (SMOTE) (Chawla et al., 2002).

These models were trained on a dataset of 80% missense variations dataset, with
respective 11G values, weighted SPRINT scores, ZDOCK scores, pLDDT scores, ASA,
mutant amino-acid volumes, as well as wild-type and mutant PSIC scores. Subsequently,
20% of the dataset was partitioned off for model testing. Each model’s hyper-parameters
were optimized according to their performance on the training set. The explored hyper-
parameters for each model included:

• ‘Random forest’: Number of estimators (700, 800, 900,1000), maximum depth of the
trees (None, 5, 10, 20, 30), minimum samples required to split an internal node (2, 5,
10), and minimum samples required at each leaf node (1, 2, 4).
• ‘Linear SVM’ and ‘Logistic Regression’: Regularization parameter (0.1, 1, 10, 100).
• ‘K-nearest neighbor’: Number of neighbors to use (3, 5, 10, 15).
• ‘AdaBoost’: Number of estimators (10, 50, 100, 200).

Following training, models were evaluated on the test data using metrics, including
Receiver Operating Characteristic Area Under Curve (ROC AUC), F1 score, balanced
accuracy, accuracy, and Matthews correlation coefficient (MCC). Moreover, the models
were subjected to rigorous validation via 20-fold cross-validation on the training data, with
performance assessed using the same metrics as applied to the test predictions.

We compared various features and their interaction pairs within the context of
the previously mentioned machine learning algorithms. To optimize performance,
hyperparameter tuning was conducted for each of these models.

Feature importance, decision-making progress, and features paired interaction impact
on model decision of selected models were evaluated with SHapley Additive exPlanations
(SHAP) algorithm (Lundberg & Lee, 2017).

An in-depth analysis of the features and their interactions was conducted by generating
scatter plots for paired features, providing a comprehensive visual representation of the data
distribution. To delineate the decision boundaries established by the predictive models, 2D
contour plots were produced. Thereby allowing an intuitive understanding of the models’
decision-making patterns. These models are also trained in 80% of the balanced dataset.
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Figure 2 (A) PPI network of SAID-associated genes and their interaction partners, with orange repre-
senting SAID-associated proteins and blue representing their interaction partners. (B) A subnetwork
spotlighting the inflammasome complex, encompassing the following genes:MEFV, PSITPIP1,NLRP2,
NLRP3,NLRP7,NLRP12,NLRC4,NOD2, TRAP1,MVK, TNFRSF11A, RIPK1, IKBKG, TNFRSF1A, and
TNFAIP3. This complex plays a critical role in inflammatory responses. (C) Immunoproteasome com-
plex participates in Major Histocompatibility Complex (MHC) post-processing. The genes involved in-
clude PSMB4, PSMG2, PSMB10, PSMB8, and PSMA3. (D) LACC1 gene has been associated with juve-
nile idiopathic arthritis, and its interaction partners (E) SH3BP2 and CDC42 PPI interactions, which
associated with Cherubism, a rare autoinflammatory bone disorder, while CDC42 is associated with
the CDC42-associated autoinflammatory disease (CDC42-AID).

Full-size DOI: 10.7717/peerj.17297/fig-2

The performance of each model was evaluated using the remaining 20% of the data, which
was reserved for testing.

RESULTS
The inflammasome complex subnetwork underscores the critical role of this intracellular
protein complex in the inflammatory responses associated with SAIDs. Genetic variants in
the genes encoding inflammasome components can lead to autoinflammatory diseases. For
example, mutations in the MEFV gene, which encodes pyrin, are associated with Familial
Mediterranean Fever (FMF), a disease characterized by fever, serositis, and arthritis
(Aksentijevich & Schnappauf, 2021) (Fig. 2B).

Inflammasomes are cytosolic multiprotein oligomers of the innate immune system
responsible for the activation of inflammatory responses. Variations or dysregulation
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in these genes could lead to aberrant activation of inflammasomes, thereby triggering
the uncontrolled inflammation observed in SAIDs. Moreover, the interconnectedness
observed in the inflammasome complex subnetwork suggests that these genes might
not function in isolation but contribute collectively to the disease phenotype through
synergistic or cumulative effects. It consists of various sensors, including NLRP1, NLRP3,
NLRC4, and pyrin, which detect pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs). The activation of these sensors leads to
the assembly of the inflammasome complex, which in turn activates caspase-1, resulting
in the processing and release of pro-inflammatory cytokines IL-1β and IL-18 (Fernandes et
al., 2020) (Fig. 2B).

The immunoproteasome complex, which includes genes such as PSMB4, PSMG2,
PSMB8, PSMB10, and PSMA3, plays a crucial role in the post-processing of major
histocompatibility complex (MHC) proteins.Mutations in these genes have been associated
with autoinflammatory diseases, such as proteasome-associated autoinflammatory
syndrome (PRAAS) and Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy
and Elevated temperature (CANDLE) syndrome. These diseases are characterized by
systemic and organ-specific inflammatory damage resulting from defective regulation of
the innate immune system. For example, compound heterozygousmutations in the PSMB8
gene have been identified in patients with CANDLE syndrome, leading to severe systemic
inflammation, lipodystrophy, and growth retardation (Boyadzhiev et al., 2019) (Fig. 2C).

Further highlighting the intricacy of the molecular landscape in SAIDs, interactions
involving genes like LACC1, associated with Juvenile Idiopathic Arthritis, as well as
SH3BP2 and CDC42, associated with distinct autoinflammatory disorders, were also
observed (Figs. 2D, 2E). The HGPEC tool is instrumental in dissecting this complexity.
This gene prioritization tool considers several crucial factors: disease similarity networks,
protein-protein interactions, and established associations between diseases and genes .

We have emphasized the significance of detailing their functional domains, interactions,
and the location of selectedmutations. Additionally, the domains of pathogenic and benign
variations are represented in Table S4, based on InterPro domain predictions. The analysis
of variant data revealed a predominant occurrence of certain protein domains impacted by
genetic variations: the GHMP kinase N-terminal domain, the TNFR/NGFR cysteine-rich
region, and the NACHT nucleoside triphosphatase domain. These domains are frequently
represented among the variants studied.The distribution of 703 benign and pathogenic
variants is delineated in Fig. S3.

Applying the HGPEC tool in this context has led to identifying and ranking 226 genes
associated explicitly with SAIDs. These genes have been systematically listed and ranked
based on their relevance to these diseases, as detailed in Table S1.

Upon examining the interaction data, benign interactions were quantified at 1,290,
while those involving pathogenic variations stood at 4,249. Intriguingly, the mean ZDOCK
score for benign variations surpassed that of pathogenic variations, implying that benign
variations foster stronger interactions compared to both wild-type protein interactions and
those involving pathogenic variations.
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Figure S1 presents pair-wise unweighted density plots of ZDOCK and SPRINT
interaction scores for benign variations, wild-type (no-mutation) interactions, and
pathogenic variations. The scatter plots show that benign variations exhibit a more diffuse
distribution, indicating a wider range of interaction scores. In contrast, the distribution
of pathogenic and wild-type variations is more concentrated, with scores falling within a
narrower range.

The existence of multiple saddle points in the interaction between pathogenic and
benign variants can likely be attributed to the intricate interplay among diverse proteins
where these variations manifest multiply. This complexity is underscored by the findings in
Table S2, which reveal that specific genes harbor a higher prevalence of well-documented
pathogenic variations. Among these, MEFV, NOD2, MVK, NLRP3, and TNFRSF1A stand
out as genes with the most significant associations with diseases.

The observed range of interaction scores for benign proteins extends from 184 to
15,508, indicating a broad spectrum of interaction intensities within non-pathogenic
contexts. Contrastingly, interactions involving wild-type proteins exhibit a narrower range
of scores, spanning from 28.5 to 851, with a noted variability as indicated by an unspecified
standard deviation. This suggests a more constrained range of interaction dynamics for
normal protein forms. Additionally, a contributing factor to the elevated scores observed
in the SPRINT ranking system can be attributed to the high HGPEC rank scores associated
with proteins that possess pathogenic variations. This correlation implies that proteins
with disease-causing mutations tend to have higher interaction and rank scores in these
specific assessment systems, highlighting the distinct functional implications of pathogenic
versus benign protein interactions.

Variations localized in such less accessible regions are believed to have a heightened
potential to disrupt the protein’s structural and functional dynamics, contributing to
disease manifestation (Laddach, Ng & Fraternali, 2021). Conversely, the higher ASA in
benign variations suggests these variations make more exposed regions or don’t change
the ASA in the wild-type, where they might not significantly impact the protein’s function.
ASA showed a mean of 0.498924 for benign and 0.216563 for pathogenic variations.

The volume of mutants possibly showed a mean of 0.496082 for benign variations
and 8.850164 for pathogenic variations (Fig. 3). The more considerable average change
in residue volume in pathogenic variations might suggest that these variations could
significantly alter the protein’s structure in a specific domain.

This structural alteration could impact the protein’s function, possibly explaining the
pathogenic nature of these variations. Conversely, the more minor change in volume in
benign variationsmight indicate less structural disruption, allowing the protein tomaintain
its function. The mean pLDDT score, indicative of structural confidence, was 75.115158
for benign variations and 91.201447 for pathogenic variations. Higher pLDDT scores
in pathogenic variations might suggest that these variations are located in structurally
confident regions of the protein. A high pLDDT score is indirectly related to the robust
structure of domains, meaning highly confident regions are more rigid according to the
high correlation of experimental structural models. Variations in those regions may cause
unaccepted malformation in protein function followed by protein structure. In contrast,
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Figure 3 Pairwise scatter, density, and regression plots of ZDOCK,11G, SPRINT, ASA, pLDDT,
1 volume, wild-type, andmutant PSIC. Orange represents benign variants, while blue represents
pathogenic variants.

Full-size DOI: 10.7717/peerj.17297/fig-3

low-confident regions could be considered as more fluctuating domains. These regions
could also be pathogenic and benign because loop formation is essential in various protein
functions and could be non-conserved regions. Changes in this protein region may not
play an important role in protein stability, structure, and function.

PSIC scores for wild-type and mutant proteins showed mean values of −1.83 (benign)
and −1.31 (pathogenic) for wild-type PSIC and −2.73 (benign) and −3.49 (pathogenic)
for mutant PSIC. Higher wild-type PSIC scores in pathogenic variations might suggest that
these variations occur at more conserved positions, where variations could significantly
disrupt protein function.

Comparison of variants features
Examined ZDOCK, SPRINT, 11G, ASA, and volume change of variations; particularly,
benign variations show higher means and standard deviations for ZDOCK and SPRINT
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values than pathogenic variations. Interestingly, the scenario is reversed for 11G values,
where pathogenic variations exhibit higher distribution and mean values than benign
ones. This differential pattern can be visualized effectively via scatter plots, as shown in
Fig. 3. Specifically, pathogenic variations present a broader 11G distribution on the
y-axis, whereas benign variations show a more concentrated distribution. Conversely,
the ZDOCK data offer a wider range for benign variations. Moreover, the pLDDT
score shows comparable separability to SPRINT in distinguishing between benign and
pathogenic variants. Additionally, the wild-type PSIC and mutant PSIC scores, indicative
of conservation values, are negatively correlated, further emphasizing their relevance in
variant segregation.

It is also worth mentioning that pathogenic variants show broader separation in the
ASA values. Although the mean Volume of variations is similar for benign and pathogenic
variants, this feature demonstrates better separation of variants in combination with the
pLDDT value. This suggests the potential utility of incorporating these diverse features in
comprehensive variant classification frameworks. ZDOCK and SPRINT have a positive
correlation of 0.089. This might indicate that variations have a more substantial impact on
protein-protein interactions and also tend to have a stronger impact on domain-domain
interactions. 11G and the Volume of the mutation have a positive correlation of 0.14,
suggesting that variations causing more extensive changes in residue volume might
also cause more significant changes in protein stability. SPRINT and pLDDT have a
strong negative correlation of −0.54, suggesting that variations affecting domain-domain
interactions tend to occur in regions of lower structural confidence. ASA and pLDDT
have a strong negative correlation of −0.71, indicating that residues with higher structural
confidence tend to be less exposed. ASA and SPRINT have a positive correlation of
0.462608, suggesting that variations in more exposed residues might have a stronger
impact on domain-domain interactions. Wild-type PSIC and ASA have a strong negative
correlation of −0.49, suggesting that more conserved positions tend to be less exposed.
According to Fig. 3, the most separable pair-wised features are pLDDT and volume of
mutation, and SPRINT features separate benign and pathogenic variants when paired with
all other features.

Machine learning models
Comparison results with other models are given in Table 1. The best model is the random
forest model algorithm according to ROC AUC and balanced accuracy metrics. The
comparative analysis of machine learning algorithms for predicting SAIDs associated
variations reveals significant variations in the performance of all the tested models.
Tree-based methods such as random forest and AdaBoost displayed superior predictive
power across multiple evaluation metrics, particularly regarding the ROC AUC, accuracy,
and F1 score, achieving scores of approximately 0.995, 0.978, and 0.95 for both models,
respectively. Random Forest, an ensemble learning method that operates by constructing
multiple decision trees, demonstrated the highest MCC of 0.90, indicating its robust
reliability and strong binary classification abilities. Similarly, the AdaBoost algorithm,
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Table 1 Performance metrics for machine learning models on the test dataset. Each model was evaluated based on ROC AUC, accuracy, F1 score,
precision, recall, balanced accuracy, and MCC. The bolded values indicate the highest scores in each metric.

Models ROC AUC Accuracy F1 Test Precision Recall Balanced accuracy MCC

Random forest 0.994911 0.95 0.95 0.97 0.94 0.952555 0.904074
Linear SVM 0.899831 0.88 0.87 0.87 0.87 0.877333 0.754667
Logistic regression 0.900673 0.88 0.89 0.87 0.9 0.876339 0.754644
K-nearest neighbour 0.916666 0.88 0.87 0.98 0.79 0.883302 0.774468
Quadratic discriminant analysis 0.914753 0.75 0.79 0.7 0.91 0.736952 0.509542
AdaBoost 0.977655 0.95 0.95 0.95 0.95 0.947428 0.894857

known for focusing on classification problems where instances are weighted, also presented
a high performance with an MCC of around 0.89.

Meanwhile, other models, including linear support vector machine (SVM), logistic
regression, K-nearest neighbour, and quadratic discriminant analysis, yielded relatively
lower performance metrics, with the ROC AUC ranging from 0.90 to 0.92 and MCC
from 0.51 to 0.77. These differences underline the effectiveness of ensemble tree-based
methods in handling the complexity and high dimensionality of biological data, yielding
promising results for predicting variants. The random forest algorithm has been selected
for subsequent investigations based on the performance metrics across multiple machine
learning models.

The superior performance of tree-based methods such as random forest and AdaBoost
in our study can be attributed to their inherent ability to handle the complexity and
high dimensionality of biological data. These methods effectively capture non-linear
relationships and interactions between features, which are common in biological datasets.
The ensemble approach of random forest, which combines multiple decision trees, helps
in reducing overfitting and improving the generalization of the model. Each tree in the
ensemble is built on a random subset of the data and features, leading to diverse trees that
capture different aspects of the data. This diversity helps in achieving high accuracy and
robustness in the predictions.

AdaBoost, on the other hand, focuses on instances that are difficult to classify, iteratively
adjusting the weights of these instances to improve the model’s performance. This adaptive
weighting scheme allows AdaBoost to concentrate on the areas of the data where the
model’s performance is weak, leading to a more refined and accurate classification (Tang,
Henderson & Gardner, 2021).

In contrast, other models like linear SVM, logistic regression, K-nearest neighbor,
and quadratic discriminant analysis may not be as effective in capturing the complex
patterns present in biological data. These models have limitations in modeling non-linear
relationships and may struggle with the high dimensionality of the data, leading to lower
performance metrics compared to tree-based methods. The linear nature of SVM and
logistic regression, the distance-based approach of KNN, and the assumption of a Gaussian
distribution in QDA may not be well-suited for the intricate structure of biological data,
highlighting the advantage of using ensemble tree-based methods for such tasks (Singh,
2019; Dreiseitl et al., 2001; Kim et al., 2011).
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Figure 4 Random forest (SMOTE) model metrics. (A) Random forest model’s feature interaction plot
according to SHAP values. (B) Random forest model’s test data decision plot. (C) Random forest cross-
validated (kfold= 20) ROC curve. (D) Random forest model’s feature importance bar plot. (E) Random
forest model’s features impact score according to SHAP value. (F) Random forest model’s confusion ma-
trix on test data.

Full-size DOI: 10.7717/peerj.17297/fig-4

In addition to the models mentioned, we also evaluated a basic shallow fully connected
neural network (multilayer perceptron), which achieved an accuracy of approximately
0.85. While this performance is commendable, it still falls short of the 0.98 ROC AUC
achieved by the random forest model. Furthermore, a single decision tree model exhibited
lower accuracy compared to the random forest, with its performance being sensitive to the
random seed used during model creation, indicating variability in its predictive capability.

The most important figures are the wild-type and mutant PSIC scores. The weighted
SPRINT interaction score is the third most important feature in the random forest model.
Also SHAP impact score of the feature correlated with feature importance (Figs. 4D, 4E).
However, in the decision plot, which was employed with 20% test data, some of the test
variant’s prediction scores were determined with other features like ASA, pLDDT, and
ZDOCK (Fig. 4B).

According to the results of this model, the ROC AUC value is 99%, according to the
average of 20 split cross-validations. Other metrics are given below.

• F1 test result: 0.990280
• Precision: 0.993148
• Recall: 0.987684
• Accuracy: 0.956031
• ROC AUC: 0.9946581
• Balanced Accuracy: 0.990332
• MCC: 0.981044
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In a comprehensive evaluation across six machine learning models, the pairing of
SPRINT and wild-type PSIC stood out, achieving an accuracy of 72% in random forest,
linear SVM, KNN, and AdaBoost. This combination also exhibited 71% and 68% accuracy
in logistic regression and QDA, respectively. Other notable pairings include pLDDT with
wild-type PSIC (71%accuracy) andpLDDTwith SPRINT (70%accuracy). Interestingly, the
ZDOCK and SPRINT combination was examined in two scenarios, registering accuracies
of 73% and 71%. Additionally, combinations like wild-type PSIC with ASA, pLDDT with
ASA, 11G with SPRINT, and SPRINT with ASA achieved accuracies hovering around
67% to 70%. The least-performing pairing was ZDOCKwith ASA, which reached 61%. The
results emphasize the importance of feature pairing in enhancing predictive accuracy in
machine learning models (Fig. 5). The learning curve analysis reveals convergence between
test and training data, suggesting proper model fitting Fig. S2.

The train and prediction regions, according to the dual selections of the features of the
created models, are shown in Fig. 5. Here, blue regions are determined to predict benign
variations, and red areas are determined to predict pathogenic variations. The locations of
the dual feature data in these regions are seen as a scatter plot.

Comparison with other prediction methods (SIFT, Polyphen, CADD)
A comparative analysis was conducted to benchmark the predictive capabilities of our
model against three widely used variation prediction methods: SIFT, PolyPhen, and
CADD. The test set for this comparison included 59 variations from exons 2 and 10 of the
MEFV gene.

Our analysis revealed that our model outperforms these established methods in its
predictive capacity. The SIFT model yielded a higher number of false positives (five) and
false negatives (13), thereby suggesting a lower accuracy. Similarly, the PolyPhen tool, while
showing no false positives, had 11 false negatives. The CADD method, which classified
variations with a Phred score above ten as pathogenic, resulted in eight false positives and
nine false negatives. In stark contrast, our model demonstrated superior performance with
eight false positives and, notably, no false negatives. This result underscores the robustness
of our model, highlighting its potential to offer improved accuracy for predicting the
pathogenicity of genetic variants in the context of SAIDs Fig. 6. Moreover, Var3PPred
achieves a higher ROC AUC of 0.99 (Fig. 4C) compared to 0.92 for AlphaMissense, 0.92
for BayesDel, 0.91 for MetaLR, 0.90 for MetaSVM, 0.85 for DEOGEN2, 0.85 for ClinPred,
0.80 for DANN, 0.79 for FATHMM, and 0.75 for Eigen-raw (Fig. 6E).

The prediction results for 420 missense VUS in genes associated with SAIDs and
associated domains are available on our GitHub page for further reference and analysis.
Our prediction model evaluated VUS, 23.61%) as benign and 76.39% as pathogenic.

CONCLUSION
Classifying variants of uncertain significance (VUS) can be challenging due to the lack
of protein function information of many of these variants. Attempts have been made to
classify VUS in the Infevers database using clinical curation and random forest algorithms
(Accetturo et al., 2020).
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Figure 5 Pairwise comparison of the feature distributions were shown alongwith the decision bound-
aries of six hyper-parameter optimized classifiers including random forest, linear support vector ma-
chine, logistic regression, K-nearest neighbors, quadratic discriminant analysis and AdaBoost.

Full-size DOI: 10.7717/peerj.17297/fig-5

Examples of VUS classification in the Infevers database for specific genetic variants
associated with autoinflammatory diseases include the V198M variant in the MVK gene
and the PSTPIP1 p.Gln219His variant (Vuran & Berdeli, 2022). The PSTPIP1 p.Gln219His
variant is not classified in Infevers and is considered a VUS with the ACMG criteria
(Prados-Castaño et al., 2022).
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Figure 6 Comparison of prediction tools with Var3PPred at MEFV exon 2 and 10 variants and overall
SAIDs associated variants (A) SIFT prediction tool confusionmatrix, (B) PolyPhen prediction tool con-
fusionmatrix, (C) CADD prediction tool confusionmatrix, (D) Var3PPred confusionmatrix, (E) ROC
curves were generated for SAID-associated variants using the following prediction tools: AlphaMis-
sense, BayesDel, ClinPred, DANN, DEOGEN2, Eigen-raw, FATHMM,MetaLR, andMetaSVM.

Full-size DOI: 10.7717/peerj.17297/fig-6

Incorporating protein structural analysis into variant classification workflows can aid
in the classification of VUS and provide insights into the mechanisms of pathogenicity.
However, the interpretation of variants that cause gain-of-function can be challenging, as
their effects on protein structure are likely to be more variable and subtler and may require
retention of the active form and structure of a protein (Caswell et al., 2022).

Thismethod, developed for predicting variations, is based on protein-protein interaction
and the effect of variations on 3-dimensional protein stability to predict variation
pathogenicity. Protein-protein interactions affect many intracellular and extracellular
functions. These interactions are based on because the impact of variations on protein-
protein interactions will disrupt wild-type cell organization (Titeca et al., 2019). Previous
studies have shown that variations in the only known genes of these diseases cause the
disease in most patients. Suppose patients with this disease do not have a known variation
in the disease gene. In that case, it is expected to originate from the genes that interact
with this gene or from the variant of unknown significant larvae within the gene (Wong et
al., 2020). In complex diseases, determining the genes according to the subgroups of the
diseases is likely to give more meaningful results. For example, gene weighting will provide
more meaningful results than the sub-clinical types of multiple sclerosis, relapse remitting
multiple sclerosis, secondary progress multiple sclerosis, and primary progress multiple
sclerosis (Kiselev et al., 2019).

Before using this prediction tool genome-wide, the clinical data of the patients should
be examined well. Unbiased test results will not give meaningful results, especially in rare
diseases, since the prevalence of the diseases is 1/2000 (Joseph, Gyorkos & Coupal, 1995).

In the machine-learning methods used, random forest is the method that gives the best
results in both data sets. The ROC AUC value is 99% in the test dataset. Similar patterns
were seen in other machine-learning techniques. The KNN model has more false negative
values than others. The most important limitation is that only missense variations are used.
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In future models, it is aimed to carry out patient-specific variant prediction with variant
classification, which can be obtained by using the weighting method according to the
symptom similarity of the diseases.
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