Insights into soil nematode diversity and microbiome of Thai Jasmine rice rhizosphere from different paddy fields in Thailand (#93845)

First submission

Guidance from your Editor

Please submit by 3 Feb 2024 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 9 Figure file(s)
- 8 Table file(s)
- 8 Raw data file(s)
- 1 Other file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Insights into soil nematode diversity and microbiome of Thai Jasmine rice rhizosphere from different paddy fields in Thailand

Pongrawee Nimnoi 1, Patawee Pirankham 2, Kittipong Srimuang 3, Pornthip Ruanpanun Corresp. 2

Corresponding Author: Pornthip Ruanpanun Email address: pornthip.r@ku.th

Globally, phytonematodes cause significant crop losses. Understanding the functions played by the plant rhizosphere soil microbiome during phytonematodes infection is crucial. This study examined the distribution of phytonematodes in the paddy fields of five provinces in Thailand, as well as determining the keystone microbial taxa in response to environmental factors that could be considered in the development of efficient biocontrol tactics in agriculture. The results demonstrated that *Meloidogyne graminicola* and Hirschmanniella spp. were the major and dominant phytonematodes distributed across the paddy fields of Thailand. Soil parameters (total P, Cu, Mg, and Zn) were the important factors affecting the abundance of both nematodes. Illumina next-generation sequencing demonstrated the levels of bacterial diversity among all locations were not significant difference. The Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the most abundant bacterial phyla presented at all sites. The numbers of classes of the Acidobacteriae, Clostridia, Bacilli, and Bacteroidia influenced the proportions of *Hirschmanniella* spp., *Tylenchorhynchus* spp., and free-living nematodes in the sampling dirt, whereas the numbers of classes of the Polyangia and Actinobacteria affected the amounts of *Pratylenchus* spp. in both roots and soils. Soil organic matter, N, and Mn were main factors that influenced the structure of bacterial community. Correlations among rhizosphere microbiota, soil nematodes, and soil properties will be informative data in considering phytonematodes management in a rice production system.

¹ Microbiology Division, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand

Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, Thailand

³ Prachinburi Rice Research Center, Division of Rice Research and Development, Rice Department, Ban Sang, Prachin Buri, Thailand

Insights into soil nematode diversity and microbiome of Thai Jasmine rice rhizosphere from different paddy fields in Thailand

4 5

6

Pongrawee Nimnoi¹, Patawee Pirankham², Kittipong Srimuang³, Pornthip Ruanpanun²

7 8

- 9 ¹ Microbiology Division, Department of Science and Bioinnovation, Faculty of Liberal Arts and
- 10 Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- 11 ² Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart
- 12 University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- 13 ³ Prachinburi Rice Research Center, Division of Rice Research and Development, Rice
- 14 Department, Ban Sang, Prachin Buri, Thailand

15

- 16 Corresponding Author:
- 17 Pornthip Ruanpanun²
- 18 1 Moo 6, Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart
- 19 University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand,
- 20 Email address: pornthip.r@ku.th

21 22

Abstract

- 23 Globally, phytonematodes cause significant crop losses. Understanding the functions played by
- 24 the plant rhizosphere soil microbiome during phytonematodes infection is crucial. This study
- 25 examined the distribution of phytonematodes in the paddy fields of five provinces in Thailand, as
- 26 well as determining the keystone microbial taxa in response to environmental factors that could
- 27 be considered in the development of efficient biocontrol tactics in agriculture. The results
- 28 demonstrated that Meloidogyne graminicola and Hirschmanniella spp. were the major and
- 29 dominant phytonematodes distributed across the paddy fields of Thailand. Soil parameters (total
- 30 P, Cu, Mg, and Zn) were the important factors affecting the abundance of both nematodes.
- 31 Illumina next-generation sequencing demonstrated the levels of bacterial diversity among all
- 32 locations were not significant difference. The Acidobacteriota, Proteobacteria, Firmicutes,
- $33 \quad \textit{Actinobacteriota}, \textit{Myxococcota}, \textit{Chloroflexi}, \textit{Verrucomicrobiota}, \textit{Bacteroidota}, \\$
- 34 Gemmatimonadota, and Desulfobacterota were the most abundant bacterial phyla presented at
- 35 all sites. The numbers of classes of the Acidobacteriae, Clostridia, Bacilli, and Bacteroidia
- 36 influenced the proportions of *Hirschmanniella* spp., *Tylenchorhynchus* spp., and free-living
- 37 nematodes in the sampling dirt, whereas the numbers of classes of the *Polyangia* and
- 38 Actinobacteria affected the amounts of Pratylenchus spp. in both roots and soils. Soil organic
- 39 matter, N, and Mn were main factors that influenced the structure of bacterial community.

40 Correlations among rhizosphere microbiota, soil nematodes, and soil properties will be informative data in considering phytonematodes management in a rice production system. 41

42

65 66

67

68 69

70

71 72

73 74

75

76

77

78 79 2015).

Introduction

43 44 Presently, a major challenge for agro-industrial operations is identifying the way to secure food for world's citizenry, which at its current rate of increase is estimated to reach nearly 10 billion. 45 46 While global food demand is expected to double by 2050, the availability and quality of natural resources that support agricultural practices continue to diminish, their scarcity and degradation 47 48 will become more pronounced (World Bank, 2007). Rice, as a staple nourishment, holds significant importance of global food for humankind, extensively traded and captivated in over 49 110 countries globally (Corrêa et al., 2007; Gnamkoulamba et al., 2018; Musarrat et al., 2016). 50 The climate change which has already had adverse global damages on agriculture (*Nimnoi*, 51 52 Pongsilp & Lumyong, 2017), phytonematodes recorded as the leading agents that cause significant yield loss of rice worldwide (Bridge, Luc & Plowright, 1990; De Waele & Elsen, 53 54 2007; Mantelin, Bellafiore & Kyndt, 2017; Ruanpanun & Khun-In, 2015). These pests can adapt well and survive in flooded and irrigated conditions (Fernandez, Cabasan & De Waele, 2014; 55 Win et al., 2013). Among the nematodes known as pathogens of rice, only 29 species have 56 57 caused considerable yield losses (Bridge, Plowright & Peng, 2005). Criconema spp., 58 Dolichodorus spp., Helicotylenchus spp., Heterodera spp., Hirschmanniella spp., Meloidogyne spp., Pratylenchus spp., Scutellonema spp., Tylenchorhynchus spp., and Xiphinema spp. have 59 been predominantly found in the rice rhizosphere and roots (Gnamkoulamba et al., 2018; 60 Musarrat et al., 2016; Shahabi et al., 2016). Damage levels in both direct and indirect ways in 61 rice caused by phytonematodes result in deferred plant growth and maturation, stunting, 62 63 yellowing, and grain yield loss that subsequently reduce the income (Onkendi et al., 2014; Sharma-Poudyal et al., 2005; Win, Kyi & De Waele, 2011). Phytonematode infestations around 64

To cope with this problem, the relationship among phytonematodes, the microbial community and physiochemical soil characteristics is one promising and important way to provide useful information for the implementation of an appropriate soil management program, to limit harmful nematodes to crops. Previous research demonstrated many physiochemical soil traits, such as pH, texture and elements of soil, and organic matter (OM) are correlated with the existence and density of nematodes, as well as with bacterial diversity and bacterial community levels (Huang et al., 2020; Renčo, Gömöryová & Čerevková, 2020; Zhou et al., 2019). Bacterial communities have been revealed to suppress nematode infection with mechanisms that regulate nematode population densities (*Zhou et al., 2019*). Although the impact of soil-borne nematodes on plant-associated microbial communities has been theorized to play significant roles in plant development and yield (Markalanda et al., 2022; Pieterse, De Jonge & Berendsen, 2016; Zhou et al., 2019), less is understood about the specific relationships between phytonematodes and the microbiome in root and of rice. Recently, in Vietnam, Masson et al. (2020) studied the

the world create an estimated annual yield loss up to USD 150 billion (Singh, Singh & Singh,

81

82 83

84

85

86

87

88 89

90

91

microbiome of infected and uninfected rice roots for *Meloidogyne graminicola* (rice root-knot nematode). They revealed that *M. graminicola* infection results in the huge restructuring of bacterial communities by influencing species richness and taxa abundance.

To our knowledge, no research has looked at the association between the phytonematodes population density and the rice root-associated microbiome from the same rice cultivar under different natural environmental conditions, especially in Thailand. Hence, this study's goals were aimed at bacterial diversities and communities of the rhizosphere soil from Thai Hom Mali rice (*Oryza sativa* L.) cv. Khao Dawk Mali 105 (KDML105) from 5 natural paddy fields in Thailand and to elucidate the relationships between phytonematode populations, root-associated bacterial communities, and soil physicochemical factors. The massive data generation and the derived comprehensive versatile knowledge may aid soil management as well as resource conservation in agroecosystem of economic importance.

92 93

94 95

Materials & Methods

Soil sample collection

During September 2022, surveillance was conducted of the phytonematode distribution in five 96 97 notable paddy fields of KDML105 in tillering stage in: Chachoengsao, CCS (13°36'46.1"N 101°16'54.3"E); Nakhon Nayok, NYK (14°16'25.4"N 101°08'37.0"E); Prachin Buri, PAR 98 (14°10'01.3"N 101°35'23.1"E); Pathum Thani, PTT (14°09'32.7"N 100°43'55.4"E); and Phra 99 Nakhon Si Ayutthaya, AYY (14°26'43.6"N 100°45'52.5"E). In each field, 3 sampling areas were 100 101 random to collect soil samples depending on field size. The sampling area measuring 20×20 m was methodically subdivided into a grid pattern of 5×5 m mesh lines to facilitate the collecting of 102 samples. In total, 16 subsamples of rice roots and their rhizosphere soils were collected from 16 103 points of the grid area and then the soils were meticulously combined to create a composite 104 sample weighing 10 kg, which aimed to represent the overall soil composition throughout the 105 study spot. (Win, Kyi & De Waele, 2011). The samples were carefully enclosed in individual 106 plastic pouches, securely sealed, and promptly delivered to the Agricultural Nematology and 107 Microbiology Laboratory for investigation. The soil samples were partitioned into 3 parts; 3 kg 108 for nematode extraction, 5 kg were air-dried for physical and chemical property analysis, and the 109

110111112

Isolation and identification of Nematodes

last 2 kg were kept at 4°C for microbiome preparation.

A modified Baermann tray technique was used for extracting nematodes from the sampling soils (*Schindler*, *1961*). The rice roots were washed carefully under running water to eliminate all traces of dirt particle, meticulously chopped into small pieces (1–2 cm), and then blended in 0.8% NaOCl for 30 s. For 10 minutes, the mixes were left at room temperature before applying a modified Baermann funnel method (*Hooper*, *1986*). Nematode suspensions derived from soil and root samples were obtained following a 48-h incubation period, subsequently subjected to inspection using a stereomicroscope. (Olympus SZ51; Tokyo, Japan). The nematodes without

- any stylets were identified as free-living nematodes. The identification of phytonematodes was
- 121 conducted at the genus level through the analysis of morphological traits (*Tarjan, Esser &*
- 122 Chang, 1977). The body size, stylet length, and vulva position were measured using the CellSens
- imaging software (V1.6) with an Olympus DP26 camera (Tokyo, Japan). *Meloiodogyne* species
- were identified using the perineal pattern of adult females (Hunt and Handoo, 2009) and species-
- specific primers (*Htay et al., 2016*).

Soil physical and chemical property analysis

- Dried sampling soils were passed through a sieve (2 mm and 10 mesh size). The pH and
- 129 electrical conductivity (Ec) were examined (Slavich & Petterson, 1993). Using a pipette-based
- technique, the samples' particle-size distribution was evaluated (Gee & Bauder, 1986). The
- amount of OM in the soil was measured (Walkley & Black 1934). The analysis of the available N
- was conducted (Guebel, Nudel & Giulietti, 1991). The quantity of total P was analyzed (Bray &
- 133 Kurtz, 1945). The amount of Ca, K, and Mg were estimated (Del Castilho & Rix, 1993).
- Elements including, Cu, Fe, Mn, and Zn were also quantified (*Lindsay & Norvell*, 1978).

135136

DNA isolation and next generation sequencing

- 137 Total DNA extraction was performed on three duplicates of soil samples from each location by a
- 138 DNA soil extraction kit of NucleoSpin (Macherey-Nagel, Germany). The amplification of 16S
- 139 rDNA was performed as follows *Apprill et al. (2015)* and *Parada, Needham & Fuhrman (2016)*.
- 140 The PCR results were cleaned up by Vivantis gel extraction kit (Vivantis, Malaysia). The
- amplified DNA libraries were created and determined using Illumina-HiSeq2500 (Illumina,
- 142 USA). Through parallel amplification and sequencing, negative controls (reactions with sterile
- 143 water) were performed.

144145

Bioinformatics analyses

- 146 The FLASH program employed to combine raw reads (*Magoč & Salzberg, 2011*). The raw reads
- 147 were screened by QIIME program for choosing of high-quality sequences (*Caporaso et al.*,
- 148 2010). The UCHIME program employed for determination and elimination of chimera (*Haas et*
- 149 al., 2011). The Uparse program was applied to perform the clustering and species annotation of
- operational taxonomic unit (OTU) (Edgar, 2013). The Mothur program was performed to
- annotate bacterial species (*Quast et al., 2013*; *Schloss et al., 2009*). All OTUs obtained from
- representative reads were analyzed phylogenetically using the MUSCLE tool (*Edgar*, 2004).

153154

Statistical determination

- 155 The beta and alpha diversity parameters as well as sequencing depth were computed with the
- 156 QIIME program (*Caporaso et al., 2010*). The R program was used to display the analyzed data
- 157 (R Core Team, 2013). For determination and reducing dimensionalities of data, the PCoA and
- 158 NMDS were used. The QIIME program was used to determine the similarity between samples

159 by UPGMA method (Caporaso et al., 2010). The LEfSe analysis was computed by LEfSe program to discover high-dimensional biomarker between samples (Segata et al., 2011). The 160 AMOVA and ANOSIM were computed to disclose the significant differences of bacterial 161 communities. The PAST program was employed for canonical correlation analysis (CCA) 162 163 (Hammer, Harper & Ryan, 2001). The ANOVA with Tukey's test was employed to signify the alpha diversity indices, phytonematodes, free-living nematodes, and soil physicochemical 164 parameters. Based on spearman's correlation, the relationships between soil physicochemical 165 factors and phytonematodes, free-living nematodes, and bacterial populations were clarified. The 166 spearman's between-group analysis as well as ANOVA were computed by the SPSS program 167 (IBM, USA). 168

169 170

171

177

184

185

186

187

188 189

190

191

192 193

194

195

196

Results

Diversity of soil nematodes associated with *Oryza sativa* L.

172 The diversity of phytonematodes and free-living nematodes was determined within the 173 rhizosphere soils and roots of the rice collected from five paddy fields of notable provinces in

174 Thailand (Supplementary Table 1). Among all the rhizosphere soils, site PTT had the highest

number of M. graminicola (141.66±38.10 nematodes/500 g soil) which was significantly 175

176 different compared to the other sites, followed by site CCS, PAR, AYY, and NYK, respectively

(Table 1). Site PTT also had the highest number of *Hirschmanniella* spp. (22.00±4.58

nematodes/500 g soil), which was significantly different compared to the other sites. 178

Pratylenchus spp. were found only at sites PAR (11.00±3.60 nematodes/500 g soil) and NYK 179

180 (4.66±0.57 nematodes/500 g soil). Helicotylenchus spp. were found only at sites PTT and CCS,

with site PTT having a significantly higher number compared to site CCS. Sites CCS and NYK 181

were the only ones where Tylenchorhynchus spp. were identified; however, their numbers did 182 183

not differ from each other. The number of free-living nematodes was highest at site AYY

(117.66±29.36 nematodes/500 g soil) which was significant difference compared to the other sites.

Besides the phytonematodes and free-living nematodes in the rhizosphere soils, we also examined their presence within roots. The findings demonstrated that site CCS had the most M. graminicola (3,280.00±603.98 nematodes/3 g root), which was noticeably different from the other sites, followed by sites AYY, PTT, PAR, and NYK, in that order, respectively (Table 2). The number of *Hirschmanniella* spp. was highest at site AYY and was not significantly different compared to the other sites. *Pratylenchus* spp. were found at sites PAR (9.33±2.51 nematodes/3 g root) and NYK (6.33±3.05 nematodes/3 g root). Helicotylenchus spp. and Tylenchorhynchus spp. were detected at the PTT and CCS sites, respectively. The PAR site had the greatest density of free-living nematodes. This study demonstrated that the rhizosphere of rice in PTT province was confronted with severe epiphytotic levels of M. graminicola, Hirschmanniella spp., and Helicotylenchus spp., whereas the greatest concern in regarding the distribution of free-living nematodes in the rhizosphere soil was in AYY (Supplementary Fig. 1).

197 198

Soil parameters

200 The soil physicochemical parameters of each sampling site were characterized. All observed locations, pH and Ec values were in the ranges 4.77–7.81 and 0.37–10.52 ds/m, respectively 201 (Table 3). Site AYY had the highest soil pH, whereas site PAR had the lowest soil pH. The Ec 202 value for site CCS was the highest, while the lowest was at site NYK. Site AYY had the highest 203 amounts of OM (4.41±0.35%) and available N (0.21±0.01%), which were significantly different 204 205 compared to the other sites, followed by sites PTT, NYK, PAR, and CCS, respectively. The amounts of total P at each sampling site differed significantly with each other. Site CCS had the 206 207 highest concentration of total K (235.93±2.37 mg/kg) with both being significantly different compared to the other sites. Total Ca (5301.19±99.21 mg/kg) was significantly the highest at site 208 AYY, whereas it was significantly the lowest at site PAR (381.06±27.27 mg/kg). Site PTT had 209 the highest amount of total Mg (674.91±3.19 mg/kg) which was significantly different compared 210 to the other sites. Total Fe (379.33±4.86 mg/kg) was significantly the highest at site PAR. The 211 amounts of total Mn at each sampling site differed significantly from each other. Site AYY had 212 the greatest amount of total Mn (61.78±0.32 mg/kg) followed by sites PTT, PAR, NYK, and 213 CCS. Site PTT had the highest amounts of total Cu (46.12±0.70 mg/kg) and Zn (15.51±0.86 214 mg/kg), which differed significantly with the other sites. The pH value and amounts of OM, 215 216 available N, total Ca, and Mn at site AYY were the greatest. While concentrations of total P, Mg, 217 Cu, and Zn in site PTT were highest. Site CCS presented the highest Ec value and amount of total K. Amount of total Fe was significantly highest in site PAR. 218

219 220

Sequence analysis, bacterial diversity, and richness indices

The bacterial diversity and richness of all sampling sites were determined. In total, 1,955,800 221 raw sequences were acquired from fifteen DNA samples (3 replicates/field). Tag merge and 222 sequence quality control were performed to retrieve a total of 1,936,693 qualified tags (99.20%) 223 224 of the raw reads). In total, 1,263,601 taxon tags were obtained after removing the potential chimera tags. The tags with $\geq 97\%$ resemblance were assigned into the same OTU. In total, 225 16,338 OTUs were obtained from all sampling sites with 98.79±0.00% of Good's coverage. Fig. 226 1A displays the total tags, taxon tags, unclassified tags, unique tags, and OTU numbers for each 227 replicate. A Venn diagram (Fig. 1B) was used to present the numbers of unique, common, and 228 229 overlapping OTUs between sampling sites. This diagram showed 1,659 OTUs presented across all sampling sites. The greatest number of unique OTUs was found at site CCS (2,560), followed 230 by sites PAR, AYY, PTT, and NYK, in that order. Additional analysis investigated the number 231 of observed species, diversity as indicated by the Shannon-Weaver and Simpson indices, while 232 233 richness was indicated using Chao1 and ACE for each sampling site (Table 4). The results 234 demonstrated that site CCS presented the greatest number of observed species 235 (5,260.00±291.82), followed by sites PAR, PTT, NYK, and AYY, respectively. The higher values for the Shannon-Weaver indice implied greater bacterial diversity at site CCS, followed 236 237 by sites PTT, AYY, PAR, and NYK, respectively, though the values did not differ with all sites significantly. Furthermore, the Chao1 and ACE values indicating bacterial richness illustrated 238

that site CCS had the highest amount of bacterial richness, followed by sites PAR, PTT, and NYK, respectively, whereas site AYY had the lowest amount of bacterial richness. We found that site CCS had the highest numbers of unique OTUs and observed species, and the greatest diversity and richness of bacteria, whereas site NYK showed the lowest number of unique OTUs and the least bacterial diversity. The least number of detected bacterial species and richness were found at site AYY.

245246

272

273274

275

276

277

278

NGS and bacterial communities

247 In all sampling sites, the phylum Acidobacteriota was most abundant (10.18–36.26%), followed by Proteobacteria (12.80-30.24%), Firmicutes (5.25-10.40%), Actinobacteriota (3.08-9.11%), 248 Chloroflexi (4.27-9.01%), Myxococcota (2.12-8.84%), Verrucomicrobiota (3.36-7.33%), 249 Bacteroidota (1.64-5.63%), Gemmatimonadota (1.43-5.33%), and Desulfobacterota (0.66-250 4.23%). Based on the biomarker analysis, the LDA score illustrated statistically unique 251 communities at each sampling site. As depicted in Supplementary Fig. 2A, there were 252 differences in the bacterial community composition at each sampling site. The relative 253 abundance of the phyla Chloroflexi, Gemmatimonadota, and Bacteroidota exhibited a 254 statistically significant increased at site PTT. The phyla Actinobacteriota and Cyanobacteria 255 256 were more abundant at site PAR, whereas the Verrucomicrobiota were significantly abundant at 257 site NYK and similarly, the *Nitrospirota* at site CCS and both the *Myxococcota* and Desulfobacterota were the significantly predominant phyla at site AYY. However, there were 258 also statistically distinguishable variations in the phyla among samples. For example, the 259 variability of the phylum Edwardsbacteria was shown to be statistically significant across the 260 sites PTT, AYY, and PAR. Similarly, the phylum *Latescibacterota* exhibited considerable 261 262 variability across the sites CSS, NKY, and PTT. The phylum *Nitrospirota* was variable among all sites significantly (Supplementary Fig. 2B). Moreover, evaluating the top-10 predominant 263 bacterial classes distributed in the soil at each sampling site (Table 5), site NYK had the highest 264 265 numbers of Acidobacteriae and Verrucomicrobiae, which differed significantly with the other 266 sites. The numbers of alpha-proteobacteria and *Anaerolineae* were highest at sites CCS and PTT, respectively. The amounts of *Bacilli* and *Bacteroidia* were highest at site PTT. Site AYY had the 267 highest number of gamma-proteobacteria. Site PAR had the highest numbers of Clostridia and 268 Actinobacteria. Sites AYY and PTT had the highest numbers of Polyangia, which differed 269 significantly with other sites. 270 271

Heat map analysis was employed to determine more clearly the distribution at the genus level which contributed to the structure of community at each sampling site (Fig. 2). At site NYK, the more predominant genera were the *Bryobacter*, ADurb.Bin063-1 (*Verrucomicrobia* bacterium), *Candidatus_Soilbacter*, *Candidatus_Koribacter*, and *Candidatus_Udaeobacter*. The *Bifidobacterium*, WPS-2 (*Eremiobacterota*), WD2101 soil group (*Planctomycetes*), *Acidibacter*, *Pseudomonas*, *Burkholderia*, *Caballeronia*, *Paraburkholderia*, *Pantoea*, *Faecalibacterium*, and *Bacteroides* were the predominant genera at site PAR. The most abundant genera at site PTT were the *Gemmatimoonas*, *Sphingomonas*, and *Latescibacterota*. The *Thioalkalispira*-

285

286

287

288

289

290

291292

293

294

295296

297

298

Sulfurivermis, Sporacetigenium, Ellin6067 (beta-proteobacteria), Anaeromyxobacter,
 Mycoplasma, MND1, and Thiobacillus were the common genera at site AYY. The A21b
 (uncultured bacterium), Subgroup_13 (Acidobacteria), Subgroup_2 (Acidobacteria), RCP2-54
 (uncultured bacterium), and Bacteriap25 (uncultured bacterium) were more abundant than other
 genus at site CCS.

The AMOVA results showed major variations in the structure of community among the sites (Fs=14.22; P<0.001). In addition, the inter- and inner-site variations in the bacterial community composition were measured using ANOSIM. The results showed that the inter-site variations in the bacterial community composition were greater than for inner-site variations (R=1). The PCoA and NMDS analyses provided convincing evidence of variations in the bacterial community composition across the different sampling sites (Fig. 3A and B). The bacterial community structures of sites PTT and AYY were closer to each other. Furthermore, the beta diversity heat map representing an explicit comparison of bacterial communities based on their composition confirmed that the bacterial community composition of site PTT was most closely related to AYY at 0.183 (Fig. 4), whereas the bacterial community composition of site AYY was the most dissimilar to site NYK (0.341) followed by site PAR (0.338). These results were supported by the UPGMA dendrogram (Fig. 5) that showed the relationships for the relative abundance of each sampling site at the phylum level. The created dendrogram consisted of 2 main different clusters. The first cluster formed of sites PTT, AYY, and CCS, with sites PTT and AYY closer to each other but linked together with site CCS. The second cluster was composed of site NYK together with site PAR.

299300301

302 303

304

305

306

307 308

309

310311

312

313314

315316

317

Effect of environmental constituents on soil bacterial community and nematodes distribution

Regarding the influences of the soil physicochemical parameters on the soil bacterial communities, the analysis presented the soil pH was the most positively correlated with the members of the *Polyangia* and most negatively correlated with the members of the Acidobacteriae (Supplementary Table 2). The Ec and total K content were the most positively correlated with members of the *Anaerolineae* and the most negatively correlated with members of the *Verrucomicrobiae*. The OM was the most positively correlated with members of the alpha-proteobacteria. The available N was the most positively correlated with the bacterial community and most negatively correlated with members of the alpha-proteobacteria. Total P and Mn were the most positively correlated with members of the *Bacteroidia* and the most negatively correlated with members of the *Acidobacteriae*. Total Ca was the most positively correlated with members of the alpha-proteobacteria and *Acidobacteriae*. Total Mg was the most positively correlated with members of the *Anaerolineae* and the most negatively correlated with members of the *Verrucomicrobiae*. Total Fe was the most negatively correlated with members of the *Verrucomicrobiae*. Total Fe was the most negatively correlated with members of the

319

320

321 322

323

324

325

326

327

328

329

330

331

332

333

334 335

336

337

338

339 340

341

342

343 344

345

346

347 348

349

350 351

352

353 354

355

356 357 Anaerolineae. Total Cu and Zn were the most positively correlated with members of the Anaerolineae and the most negatively correlated with members of the Acidobacteriae.

In addition, after evaluating the effect of the soil physicochemical parameters on phytonematodes and free-living nematodes in the rhizosphere soils, soil pH was the most positively correlated with free-living nematodes and the most negatively correlated with Pratylenchus spp. (Supplementary Table 2). The Ec was the most positively correlated with Helicotylenchus spp. and the most negatively correlated with Pratylenchus spp. The OM and available N were the most negatively correlated with *Tylenchorhynchus* spp. The total P was the most positively correlated with *Hirschmanniella* spp. and the most negatively correlated with Tylenchorhynchus spp. The total K and Mg were the most positively correlated with Helicotylenchus spp. and the most negatively correlated with Pratylenchus spp. In contrast, the total Fe was the most positively correlated with *Pratylenchus* spp. and the most negatively correlated with *Helicotylenchus* spp., whereas total Ca was negatively correlated with Pratylenchus spp. Total Mn was the most positively correlated with free-living nematodes and the most negatively correlated with *Tylenchorhynchus* spp. Total Cu and Zn were the most positively correlated with M. graminicola and the most negatively correlated with Pratylenchus spp. The correlations between soil nematodes and the microbiome were investigated (Supplementary Table 3). The results showed that *Hirschmanniella* spp. were the most positively correlated with members of the *Bacteroidia*. *Pratylenchus* spp. were the most positively correlated with members of the *Actinobacteria* and the most negatively correlated with members of the *Polyangia*. Tylenchorhynchus spp. were the most negatively correlated with members of the Clostridia and Bacilli. Free-living nematodes in soils were the most negatively correlated with members of the Acidobacteriae.

The influences of the soil physicochemical parameters on phytonematodes and free-living nematodes within roots were evaluated. The results presented that soil pH and Ec were the most positively correlated with M. graminicola and the most negatively correlated with Pratylenchus spp. The OM and total Mn were the most negatively correlated with *Tylenchorhynchus* spp., whereas total P was the most positively correlated with *Helicotylenchus* spp. The total contents of K. Ca, and Mg were the most positively correlated with M. graminicola and the most negatively correlated with *Pratylenchus* spp. Fe concentration was the most positively correlated with *Pratylenchus* spp. and the most negatively correlated with *Tylenchorhynchus* spp. The total Cu and Zn were the most positively correlated with *Helicotylenchus* spp. and the most negatively correlated with *Pratylenchus* spp. The results of the correlations between nematodes within roots and the microbiome are provided in Supplementary Table 3. M. graminicola was the most negatively correlated with the members of the Actinobacteria. Pratylenchus spp. were the most positively correlated with members of the Actinobacteria and the most negatively correlated with members of the *Polyangia*. In addition, the CCS analysis showed that soil pH, Ec, total Ca, K, Mg, and Fe were factors that affected the bacterial community composition and diversity of phytonematodes and free-living nematodes in the rhizosphere and roots of rice (Supplementary Fig. 3).

395 396

397

Discussion

Rice is a globally significant agricultural crop cultivated on a massive scale (Gnamkoulamba et 359 al., 2018). Phytonematodes are one of the barriers to improved rice production. Even though 360 over 4,100 species of phytonematodes have been reported, including endo- and ecto-parasites 361 (Decraemer & Hunt, 2006) a mere 29 species have been identified as having a direct correlation 362 with yield reductions in rice production (Bridge, Plowright & Peng. 2005). The occurrence of 363 364 nematode attacks has the potential to facilitate the infection process of other pathogens (De Waele & Elsen, 2007). Our results demonstrated that the most prevalent genera of 365 366 phytonematodes associated with rice agriculture in various agroecological zones of Thailand included M. graminicola, Hirschmanniella spp., Pratylenchus spp., Helicotylenchus spp., and 367 Tylenchorhynchus spp. Notably, M. graminicola and Hirschmanniella spp. had their highest 368 density in soil collected from site PTT. In addition, they were both predominant within roots 369 collected from sites CCS and AYY, while the amounts of free-living nematodes in the soil and 370 roots were highest at sites AYY and PAR. The widespread presence of nematodes in rice fields 371 in Luzon, the Philippines, was investigated by Pascual et al. (2014). They reported that 372 Helicotylenchus, Hirschmanniella, Meloidogyne, Criconema, Xiphinema, Pratylenchus, and 373 Tylenchorhynchus were the more prevalent and abundant genera. The genera Meloidogyne, 374 375 Suctellonema, Heterodera, Hirschmanniella, Pratylenchus, and Helicotylenchus contained the 376 major phytonematodes mainly distributed in paddy fields in Togo (Coyne et al., 2000). Gnamkoulamba et al. (2018) recorded the genera Helicotylenchus, Hirschmanniella, 377 Meloidogyne, and Suctellonema were in both soil and root samples of rice in different 378 agroecosystems in Togo. According to our findings, M. graminicola and Hirschmanniella spp. 379 were reported as the dominant group of nematodes more frequently found within the soils and 380 381 roots of rice (Bridge, Plowright & Peng, 2005; Eche et al., 2013), with M. graminicola has been documented as being highly adapted to flooded environments, leading to better survival in soil 382 environments (Bridge, Plowright & Peng, 2005). Musarrat et al. (2016) found these nematodes 383 384 in a rice-growing area in Pakistan. The present study detected free-living nematodes from rice 385 roots. This was not surprising, as nematode-fungal pathogen disease complexes have been reported in general with nematode infection. Some species of free-living nematodes are 386 fungivores, which have feeding disposition on fungi, including fugal plant pathogen, so they can 387 invade plant roots to obtain food (Zhang et al., 2020). Different factors affect the distribution of 388 nematodes, such as the production system, rice variety, intercropping with other crops, and 389 390 rainfall (Gnamkoulamba et al., 2018). However, the high levels of nematode density and diversity observed in the present study suggested that the rice cultivation in Thailand is being 391 392 confronted with the severe endo- and epi-phytotic nematodes. These results could be ascribed to 393 the escalating intensification of rice cultivation in Thailand. 394

The activity of soil-dwelling organisms is influenced by physicochemical soil qualities, whereas the establishment of a nematode population in the soil is influenced by a range of abiotic and biotic factors (*Al-Ghamdi, 2021*). De Oliveira Cardoso et al. (2012) have reported the physicochemical properties of soil had an impact on the density and structural diversity of

421

422

423 424

425

426

427 428

429

430

431

432 433

434

435 436

437

398 nematode communities. Our findings demonstrated that soil at site PTT that had the highest numbers of M. graminicola, Hirschmanniella spp., and Helicotylenchus spp., contained the 399 significantly highest concentrations of total P, Mg, Cu, and Zn. The rice roots at site AYY had 400 the highest number of *Hirschmanniella* spp. Also had the significantly highest levels of soil OM. 401 402 available N, total Ca, Mn, and pH. Rice roots at site CCS that had the significantly highest number of M. graminicola also had the highest soil Ec value and total K content. These results 403 suggested that the establishment of infection by M. graminicola could be significantly associated 404 with soil parameters including Ec and the levels of total K, P, Mg, Cu, and Zn. Many soil factors 405 (including the quantity of OM, levels of available N, total Ca, and Mn, and pH) could support 406 infection by *Helicotylenchus* spp. These findings appeared to be consistent with other reports that 407 demonstrated the contents of soil elements, such as OM, P, Ca, Mg, and K, supported the 408 establishment of phytonematodes in the soil (Al-Ghamdi, 2021; Dias-Arieira et al., 2021; Leiva 409 et al., 2020). Furthermore, our results showed that a higher soil pH and level of OM supported 410 411 higher populations of phytonematodes and free-living nematodes. This finding was consistent with Casto et al. (1990) and Al-Ghamdi (2021) who reported that pH and OM played important 412 roles in the proportion of soil nematodes. The distribution of soil nematodes was negatively 413 correlated with the pH; soil acidity affected nematode populations, such as M. incognita and 414 415 Radopholus similis that were presented at reduced levels in acidic soils (Davide, 1980; Gade & Hiware, 2017). The soil OM content positively supported the high proportions of free-living 416 nematodes by promoting bacteria and fungi growth that were essential foods for the nematodes 417 (Cadet & Spaull, 2003). 418 419

Understanding the role that the plant rhizosphere soil microbiome plays during PPN infection is considerable and should be investigated. Previous research documented the significance of microbial communities present in soil in control of phytonematodes (Silva et al., 2022; Zhou et al., 2019). Thus, the current study conducted an extensive evaluation of bacterial diversity and community composition in soils infested with nematodes, with a focus on the influence of environmental conditions. The findings showed there were not any significant differences in bacterial diversity across the sampled locations. Nevertheless, site CCS exhibited the greatest number of detected species and bacterial richness. Our results may indicate an effect of nematode density and diversity on the observed species and bacterial richness. Nematodes have been reported to graze on bacteria, which may affect the bacterial community by accelerating bacterial turnover (Cheng et al., 2016; Djigal et al., 2004). Silva et al. (2022) concluded that bacterial richness in a community was reduced as a response to the numbers of nematodes in infested soil. Furthermore, the present study found that the phyla Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the top-10 regarding bacterial abundance in all the sampled soils. This data was according to the results from other studies. For example, Silva et al. (2022) reported that Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, and Gemmatimonadota were the most common bacterial groups in soil samples in Brazil. Masson et al. (2020) found that the Acidobacteriota, Proteobacteria,

438 Actinobacteriota, Verrucomicrobia, Nitrospirae, and Fibrobacteres were the predominant phyla of highly M. graminicola-infested fields in Vietnam. The bacterial phyla Acidobacteriota, 439 Proteobacteria, Actinobacteriota, and Gemmatimonadota were the highest abundant in 440 phytonematode-suppressive soils (Harkes et al., 2020). Members of the Acidobacteriota, 441 442 Proteobacteria, Firmicutes, and Actinobacteriota exhibited a broad metabolic diversity and possess the ability to colonize various ecosystems. These bacterial groups possess a multitude of 443 genes associated with stress resistance, carbon degradation, phosphate solubilization, and 444 antibiotic production. These genetic traits contribute to their adaptive capabilities and enable 445 their successful survival in soil, thereby establishing them as dominant microbial groups 446 447 (Pongsilp & Nimnoi, 2022). In addition, our results demonstrated that the soil pH, OM, Ec, and total Ca, K, Mg, and Fe were factors affecting bacterial diversity. Our result is compatible with 448 prior research that has noted the influence of many soil variables, including pH, OM, N, K, Mg, 449 and Zn concentrations, as well as nutrient availability and hydrocarbon bioavailability, on the 450 451 variability of bacterial communities and their diverse composition (Achife, Bala & Oyeleke, 2021; Nimnoi & Pongsilp, 2022; Pongsilp & Nimnoi, 2020). By changing the amount of nutrients 452 available in the environment, the relationship between soil minerals and bacteria can influence 453 biogeochemical cycling (Pongsilp & Nimnoi, 2020; Vu et al., 2022). Correlations between the 454 455 bacterial microbiome and phytonematodes were found, which were greater than in the roots. The numbers of Acidobacteriae, Clostridia, Bacilli, Bacteroidia, Polyangia, and Actinobacteria 456 influenced the proportions of Hirschmanniella spp., Pratylenchus spp., Tylenchorhynchus spp., 457 and free-living nematode in the soil samples, whereas only the numbers of *Polyangia* and 458 Actinobacteria affected the numbers of M. graminicola and Pratylenchus spp. within the roots. 459 460 Castillo, Vivanco & Manter (2017) reported correlations between dominant bacteria and nematode populations. The alpha-proteobacteria, Rhodoplanes, Phenylobacterium, and 461 Kaistobacter have been found to be correlated with the Meloidogyne, while the Bacteroidia and 462 gamma-proteobacteria have been reported to be correlated with the Pratylenchus. Members of 463 464 the Bacilli, Polyangia, Actinobacteria, and Acidobacteriae are important contributors to ecosystems, since they are particularly abundant and ubiquitous in nature, such as in the soil, 465 roots, water, and sediment (Eichorst, Breznak & Schmidt, 2007; Nimnoi, Pongsilp & Lumyong, 466 2011; Nimnoi & Pongsilp, 2022). Furthermore, they have been noted for their effects on the 467 468 control of biogeochemical cycles, the degradation of biopolymers, the release of exopolysaccharides, and the encouragement of plant development (Kalam et al., 2020; 469 Matsumoto et al., 2021; Puri, Padda & Chanway, 2018; 2020). Additionally, they can synthesize 470 diverse natural compounds that produce biomedically and industrially useful chemicals, such as 471 472 antifungals, antibiotics, and antinematodal agents, which can be applied in regulating and affecting diverse microorganisms in ecosystems (Atta, 2009; Crits-Christoph et al., 2018; 473 474 Hadjithomas et al., 2015; Mahajan, 2012; Nigris et al., 2018; Parsley et al., 2011; Reichenbach, 2001). 475 476 Notably, biocontrol plant diseases and plant growth-promoting bacteria, such as genera 477 Bryobacter, Acidibacter, Pseudomonas, Burkholderia, Caballeronia, Paraburkholderia, and

478 Sphingomonas, were the predominant bacterial groups identified in the sampling soils in the present investigation. These genera have been found in soils where there has been significant 479 suppression of soilborne disease through biocontrol, including phytonematodes, as well as plant 480 growth promotion. *Pseudomonas* spp. are chitinolytic and hydrogen cyanide-producing bacteria 481 482 that can be applied for the biocontrol of nematodes (Ha et al., 2014; Kang, Anderson & Kim, 2018; Lee et al., 2011). Burkholderia, Caballeronia, Paraburkholderia, and Sphingomonas have 483 been stated to function biological nitrogen fixation, increase nutrient uptake, and confer diseases 484 resistance against a bacterial pathogen (Matsumoto et al., 2021; Puri, Padda & Chanway, 2018; 485 2020). The establishment of Acidibacter in many plant species has been reported in association 486 487 with soil iron and nutrient cycles, and soil pollution treatments (*Huang et al.*, 2020; Jiao et al., 2018; Liu et al., 2016). The genus Bryobacter has been noted as beneficial microorganism for 488 leguminous plants by playing roles in the degradation of minerals, promotion of plant growth, 489 nitrogen fixation, and the suppression of plant disease (Li et al., 2023; Luis et al., 2018; Xiao et 490 491 al., 2017). Nematodes and the microbial community have been reported for their activities in response to environmental impacts and eco system conversions (Briar, Grewal & Somasekhar, 492 2007; Renčo, Gömöryová & Čerevková, 2020). The present results have provided comprehensive 493 data that could be beneficial for designing an appropriate cultivation method to control rice 494 diseases caused by phytonematodes and to preserve soil quality for sustainable management. 495

496 497

498

Conclusions

The differences in soil properties, and numbers of nematodes and bacterial communities in the 499 soils sampled reveal the clear impact of biotic and abiotic soil characteristics on ecosystem 500 501 variables. We demonstrated that M. graminicola, Hirschmanniella, Pratylenchus, Helicotylenchus, and Tylenchorhynchus were the dominant phytonematodes distributed in soil 502 across rice fields in Thailand. The high-throughput sequencing analysis clarified that 503 504 Acidobacteriota, Proteobacteria, Firmicutes, Actinobacteriota, Myxococcota, Chloroflexi, 505 Verrucomicrobiota, Bacteroidota, Gemmatimonadota, and Desulfobacterota were the predominant bacterial phyla that had established niches in the sampled soils. The numbers of 506 Acidobacteriae, Clostridia, Bacilli, and Bacteroidia influenced the proportions of 507 Hirschmanniella spp., Tylenchorhynchus spp., and free-living nematodes in the soil samples, 508 whereas the numbers of *Polyangia* and *Actinobacteria* affected the numbers of *Pratylenchus* spp. 509 510 in both the roots and soils. The components of total P, K, Mg, Ca, Cu, and Zn, as well as the pH, Ec, and OM of the soil influenced the composition of the bacterial and nematode communities. 511 Our findings provided insights into correlations among rhizosphere microbiota, nematode, and 512 513 soil properties, contributing to the potential development of suitable management programs to reduce phytonematodes in rice production systems. 514

515

516517

518	Acknowledgements
519	-
520	
521	References
522	Achife CE, Bala JD, Oyeleke SB. 2021. Microbial population of soil and water around
523	petroleum depot Suleja, Nigeria, and their hydrocarbon utilization. <i>International Journal</i>
524	of Life Sciences and Biotechnology 4:90–113 DOI 10.38001/ijlsb.791853.
525	Al-Ghamdi AAM. 2021. Relationship between nematodes and some soil properties in the
526	rhizosphere of banana plants. International Letters of Natural Sciences 82:1-12 DOI
527	10.56431/po5usqt.
528	Apprill A, McNally S, Parsons R, Weber L. 2015. Minor revision to V4 region SSU rRNA
529	806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic
530	Microbial Ecology 75 :129–137 DOI 10.3354/ame01753.
531	Atta HM, Ahmad MS. 2009. Antimycin-A antibiotic biosynthesis produced by Streptomyces
532	sp. AZ-AR-262: taxonomy, fermentation, purification and biological activities.
533	Australian Journal of Basic and Applied Sciences 3:126–135.
534	Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of
535	phosphorus in soils. Soil Science 59 :39–45.
536	Briar SS, Grewal PS, Somasekhar N. 2007. Soil nematode community, organic matter,
537	microbial biomass and nitrogen dynamics in field plots transitioning from conventional
538	to organic management. Applied Soil Ecology 37:256–266 DOI
539	10.1016/j.apsoil.2007.08.004.
540	Bridge J, Luc M, Plowright RA. 1990. Nematode parasites of rice. In: Luc M, Sikora RA,
541	Bridge J, eds. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture.
542	Wallingford: CAB International, 69–108.
543	Bridge J, Plowright RA, Peng D. 2005. Nematode parasite of rice. In: Luc M, Sikora RA,
544	Bridge J, eds. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture.
545	Wallingford: CAB International, 87–130.
546	Cadet P, Spaull VW. 2003. Effect of nematodes on sustainability of sugarcane production
547	in South Africa. Field Crops Research 83 :91–100 DOI 10.1016/S03784290(03)00066-2.
548	Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010.
549	QIIME allows analysis of high-throughput community sequencing data. <i>Nature Methods</i>
550	7:335–336 DOI 10.1038/nmeth.f.303.
551	Castillo JD, Vivanco JM, Manter DK. 2017. Bacterial microbiome and nematode
552	occurrence in different potato agricultural soils. <i>Microbial Ecology</i> 74 :888–900 DOI
553 554	10.1007/s00248-017-0990-2. Costro CE Polon NO. McKinney HE Thomason H 1000. Strong repellency of the root knot
554	Castro CE, Belser NO, McKinney HE, Thomason IJ. 1990. Strong repellency of the root knot
555	nematode, Meloidogyne incognita by specific inorganic ions. Journal of Chemical

Ecology~16:1199-1205~DOI~10.1007/BF01021019.

- Cheng Y, Jiang Y, Wu Y, Valentine TA, Li H. 2016. Soil nitrogen status modifies rice root
 response to nematode-bacteria interactions in the rhizosphere. *PLoS ONE* 11:e0148021
 DOI 10.1371/journal.pone.0148021.
- Corrêa PC, Schwanz da Silva F, Jaren C, Afonso Júnior PC, Arana I. 2007. Physical and
 mechanical properties in rice processing. *Journal of Food Engineering* 79:137–142.
 DOI 10.1016/j.jfoodeng.2006.01.037.
- Coyne DL, Hunt DJ, Plowright RA, Darboe MLK. 2000. Further observations on
 nematodes associated with rice in Côte d'Ivoire, The Gambia, Guinea and Togo.
 International Journal of Nematology 2:123–130.
- Crits-Christoph A, Diamond S, Butterfield CN, Thomas BC, Banfield JF. 2018. Novel soil
 bacteria possess diverse genes for secondary metabolite biosynthesis. *Nature* 558: 440–444 DOI 10.1038/s41586-018-0207-y.
- Davide RG. 1980. Influence of cultivar, age, soil texture, and pH on *Meloidogyne incognita* and *Radopholus similis* on banana. *Plant Disease* 64:571–573 DOI 10.1094/PD-64571.
- De Oliveira Cardoso M, Pedrosa EMR, Rolim MM, Silva EFFE, de Barros PA. 2012.
 Effects of soil mechanical resistance on nematode community structure under
 conventional sugarcane and remaining of Atlantic Forest. *Environmental Monitoring and* Assessment 184:3529–3544 DOI 10.1007/s10661-011-2206-4.
- De Waele D, Elsen A. 2007. Challenges in tropical nematology. *Annual Review of Phytopathology* 45:457–485 DOI 10.1146/annurev.phyto.45.062806.094438.
- Decraemer W, Hunt DJ. 2006. Structure and classification. In: Perry RN, Moens M, eds.
 Plant Nematology. Wallingford: CABI Publishing, 3–32.
- Del Castilho P, Rix I. 1993. Ammonium acetate extraction for soil heavy metal speciation;
 model aided soil test interpretation. *International Journal of Environmental Analytical* Chemistry 51:59–64 DOI 10.1080/03067319308027611.
- Dias-Arieira CR, Ceccato FJ, Marinelli EZ, Vecchi JLB, Arieira GO, Santana Gomes SM.
 2021. Correlations between nematode numbers, chemical and physical soil properties,
 and soybean yield under different cropping systems. *Rhizosphere* 19:100386 DOI
 10.1016/j.rhisph.2021.100386.
- Djigal D, Brauman A, Diop T, Chotte JL, Villenave C. 2004. Influence of bacterial
 feeding nematodes (Cephalobidae) on soil microbial communities during maize
 growth. *Soil Biology and Biochemistry* 36:323–331 DOI 10.1016/j.soilbio.2003.10.007.
- Eche NM, Iwuafor ENO, Amapui S, Bruns MAV. 2013. Effect of long-term soil management
 practices on nematode population in an Alfisol under continuous maize in Northern
 Guinea Savanna of Nigeria. *International Journal of Agricultural Policy and Research* 1:80–86.
- Edgar RC. 2004. Muscle: multiple sequence alignment with high accuracy and high
 throughput. *Nucleic Acids Research* 32:1792–1797 DOI 10.1093/nar/gkh340.
- Edgar RC. 2013. Uparse: highly accurate OTU sequences from microbial amplicon reads.
 Nature Methods 10: 996–998 DOI 10.1038/nmeth.2604.

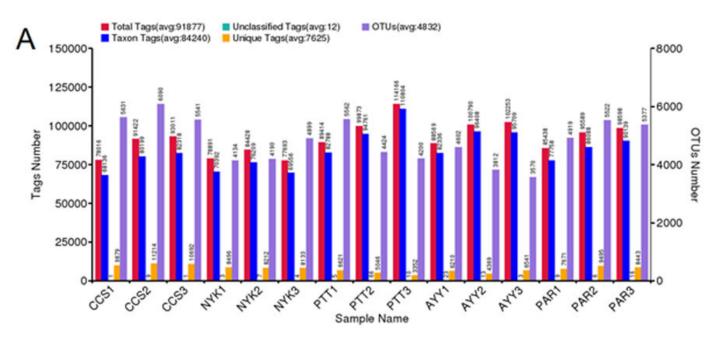
- Eichorst SA, Breznak JA, Schmidt, TM. 2007. Isolation and characterization of soil
 bacteria that define *Terriglobus gen.* nov., in the phylum *Acidobacteria*. *Applied and* Environmental Microbiology 73:2708–2717 DOI 10.1128/AEM.02140-06.
- Fernandez L, Cabasan MTN, De Waele D. 2014. Life cycle of the rice root-knot
 nematode *Meloidogyne graminicola* at different temperatures under non-flooded and
 flooded conditions. *Archives of Phytopathology and Plant Protection* 47:1042–1049
 DOI 10.1080/03235408.2013.829627.
- Gade RB, Hiware CJ. 2017. Studies on the soil nematode diversity in relation to the soil parameters from sugarcane fields of Aurangabad District Maharashtra State, India.
 International Journal for Research in Applied Science & Engineering Technology 5: 1632–1640 DOI 10.22214/ijraset.2017.9238.
- Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, ed. Methods of Soil
 Analysis, Part 1. Madison: Soil Science Society of America, Inc., 383–411.
- Gnamkoulamba A, Tounou AK, Tchabi A, Kolombia YA, Agboka K, Tchao M, Adjevi
 AKM, Batawila K. 2018. Occurrence, abundance and distribution of plant
 parasitic nematodes associated with rice (*Oryza* spp.) in different rice agroecosystems
 in Togo. *International Journal of Biological and Chemical Sciences* 12:618–635 DOI
 10.4314/ijbcs.v12i2.1.
- Guebel DV, Nudel BC, Giulietti AM. 1991. A simple and rapid micro-Kjeldahl method for
 total nitrogen analysis. *Biotechnology Techniques* 5:427–430 DOI 10.1007/BF00155487.
- 617 **Ha WJ, Kim YC, Jung H, Park SK. 2014.** Control of the root-knot nematode (*Meloidogyne* spp.) on cucumber by a liquid bio-formulation containing chitinolytic bacteria, chitin and their products. *Research in Plant Disease* **20**:112–118 DOI 10.5423/RPD.2014.20.2.112.
- Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. 2011.
 Chimeric 16S rRNA sequence formation and detection in Sanger and 454 pyrosequenced
 PCR amplicons. *Genome Research* 21:494–504 DOI 10.1101/gr.112730.110.
- Hadjithomas M, Chen IMA, Chu K, Ratner A, Palaniappan K, Szeto E, et al. 2015. IMG
 ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel
 secondary metabolites. *mBio* 6:e00932–15 DOI 10.1128/mBio.00932-15.
- Hammer Ø, Harper D, Ryan P. 2001. PAST: paleontological statistics software package
 for education and data analysis. *Palaeontologia Electronica* 4:1–9.
- Harkes P, Van Steenbrugge JJM, Van Den Elsen SJJ, Suleiman AKA, De Haan JJ,
 Holterman MHM, Helder J. 2020. Shifts in the active rhizobiome paralleling low
 Meloidogyne chitwoodi densities in fields under prolonged organic soil management.
 Frontiers in Plant Science 10: 1697 DOI 10.3389/fpls.2019.01697.
- Hooper DJ. 1986. Extraction of free-living nematode stages from soil. In: Southey JF, ed.
 Laboratory Methods for Work with Plant and Soil Nematodes. London: Her Majesty's
 Stationery Oce, 5–22.
- Htay C, Peng H, Huang W, Kong L, He W, Holgado R, Peng D. 2016. The development and molecular characterization of a rapid detection method for rice rootknot nematode

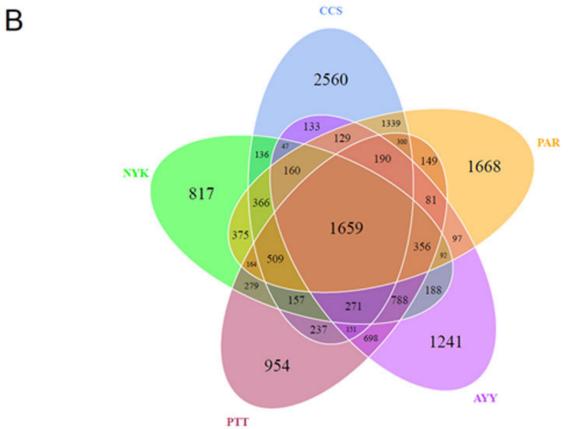
- (Meloidogyne graminicola). European Journal of Plant Pathology 146:281–291 DOI
 10.1007/s10658-016-0913-y.
- Huang K, Jiang Q, Liu L, Zhang S, Liu C, Chen H, Ding W, Zhang Y. 2020. Exploring the
 key microbial changes in the rhizosphere that affect the occurrence of tobacco root knot
 nematodes. AMB Express 10:72 DOI 10.1186/s13568-020-01006-6.
- Hunt DJ, Handoo ZA. 2009. Taxonomy, identification and principal species. In: Perry RN,
 Moens M, Starr JL, eds. *Root-knot Nematodes*. Wallingford: CABI publishing, 55–97.
- Jiao S, Chen W, Wang JL, Du NN, Li QP, Wei GH. 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. *Microbiome* 6: 146 DOI 10.1186/s40168-0180526-0.
- Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL, 2020.
 Recent understanding of soil Acidobacteria and their ecological significance: a critical review. *Frontiers in Microbiology* 11:580024 DOI 10.3389/fmicb.2020.580024.
- Kang BR, Anderson AJ, Kim YC. 2018. Hydrogen cyanide produced by *Pseudomonas chlororaphis* O6 exhibits nematicidal activity against *Meloidogyne hapla*. The Plant
 Pathology Journal 34:35–43 DOI 10.5423/PPJ.OA.06.2017.0115.
- Lee JH, Ma KC, Ko SJ, Kang BR, Kim IS, Kim YC. 2011. Nematicidal activity of a
 nonpathogenic biocontrol bacterium, *Pseudomonas chlororaphis* O6. *Curren Microbiology* 62:746–751 DOI 10.1007/s00284-010-9779-y.
- Leiva NPF, Santana-Gomes SM, Zabini AV, Velázquez LMG, Dias-Arieira CR. 2020. Soil chemical properties and their relationship with phytonematode populations inside and outside patches of soybean fields. *Rhizosphere* 12:100231 DOI 10.1016/j.rhisph.2020.100231.
- Li L, Yang X, Tong B, Wang D, Tian X, Liu J, Chen J, Xiao X, Wang S. 2023.
 Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in *Cinnamomum migao*. Frontiers in Microbiology 14:1078886
 DOI 10.3389/fmicb.2023.1078886.
- Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron,
 manganese, and copper. *Soil Science Society of America Journal* 42:421–428 DOI
 10.2136/sssaj1978.03615995004200030009x.
- Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, Ding W. 2016. Using community analysis to
 explore bacterial indicators for disease suppression of tobacco bacterial wilt. *Scientific Reports* 6: 36773 DOI 10.1038/srep36773.
- Luis DA, Mariana P, Hugo RB, Ana ED, John LB, Mario AA. 2018. Marchantia liverworts
 as a proxy to plants' basal microbiomes. *Scientific Reports* 8:12712 DOI
 10.1038/s41598-018-31168-0.
- Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve
 genome assemblies. *Bioinformatics* 27:2957–2963 DOI 10.1093/bioinformatics/btr507.
- Mahajan GB. 2012. Antibacterial agents from actinomycetes a review. Frontiers in Bioscience
 4:240–253 DOI 10.2741/e373.

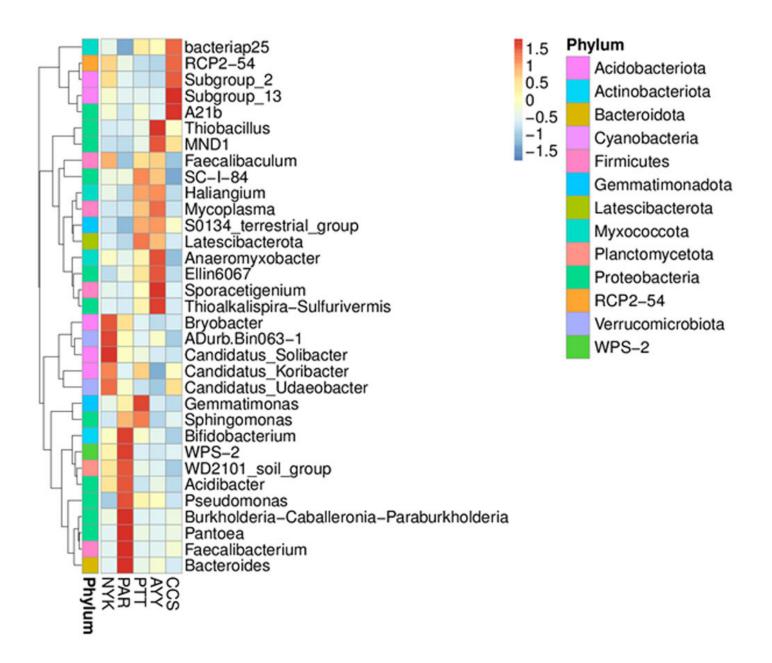
- 677 **Mantelin S, Bellafiore S, Kyndt T. 2017.** *Meloidogyne graminicola*: a major threat to rice agriculture. *Molecular Plant Pathology* **18**:3–15 DOI 10.1111/mpp.12394.
- Markalanda SH, McFadden CJ, Cassidy ST, Wood CW. 2022. The soil microbiome
 increases plant survival and modifies interactions with root endosymbionts in the field.
 Ecology and Evolution 12:e8283 DOI 10.1002/ece3.8283.
- Masson AS, Bich HH, Simonin M, Thi HN, Czernic P, Moulin L, et al. 2020. Deep
 modifications of the microbiome of rice roots infected by the parasitic nematode
 Meloidogyne graminicola in highly infested fields in Vietnam. *FEMS Microbiology* Ecology 96:fiaa099 DOI 10.1093/femsec/fiaa099.
- 686 **Matsumoto H, Fan X, Wang Y, Kusstatscher P, Duan J, Wu S, et al. 2021.** Bacterial seed 687 endophyte shapes disease resistance in rice. *Nature Plants* **7**: 60–72 DOI10.1038/s41477-688 020-00826-5.
- Musarrat AR, Shahina F, Shah AA, Feroza K. 2016. Community analysis of plant
 parasitic and free living nematodes associated with rice and soybean plantation from
 Pakistan. Applied Ecology and Environmental Research 14:19–33 DOI
 10.15666/aeer/1405 019033.
- Nigris S, Baldan E, Tondello A, Zanella F, Vitulo N, Favaro G, et al. 2018. Biocontrol traits
 of *Bacillus licheniformis* GL174, a culturable endophyte of Vitis vinifera cv. Glera. *BMC Microbiology* 18:133 DOI 10.1186/s12866-018-1306-5.
- Nimnoi P, Pongsilp N, Lumyong S. 2011. Actinobacterial community and diversity in rhizosphere soils of *Aquilaria crassna* Pierre ex Lec assessed by RT-PCR and PCR DGGE. *Biochemical Systematics and Ecology* 39:509–519 DOI 10.1016/j.bse.2011.07.010.
- Nimnoi P, Pongsilp N, Lumyong S. 2017. The establishment and activity of bacterial
 inoculant immobilized in agar compared with those of alginate and perlite after being
 introduced into soil. *Chiang Mai Journal of Science* 44:751–767.
- Nimnoi P, Pongsilp N. 2022. Insights into bacterial communities and diversity of mangrove forest soils along the upper gulf of Thailand in response to environmental factors.
 Biology 11:1787 DOI 10.3390/biology11121787.
- Onkendi EM, Kariuki GM, Marais M, Moleleki LN. 2014. The threat of root-knot
 nematodes (*Meloidogyne* spp.) in Africa: a review. Plant Pathology 63:727–737 DOI
 10.1111/ppa.12202.
- Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit
 rRNA primers for marine micro-biomes with mock communities, time series and global
 field samples. *Environmental Microbiology* 18:1403–1414 DOI
 10.1111/14622920.13023.
- Parsley LC, Linneman J, Goode AM, Becklund K, George I, Goodman RM, et al. 2011.
- Polyketide synthase pathways identified from a metagenomic library are derived from soil *Acidobacteria*. *FEMS Microbiology Ecology* **78**:176–187 DOI 10.1111/j.1574-
- 716 6941.2011.01122.x.

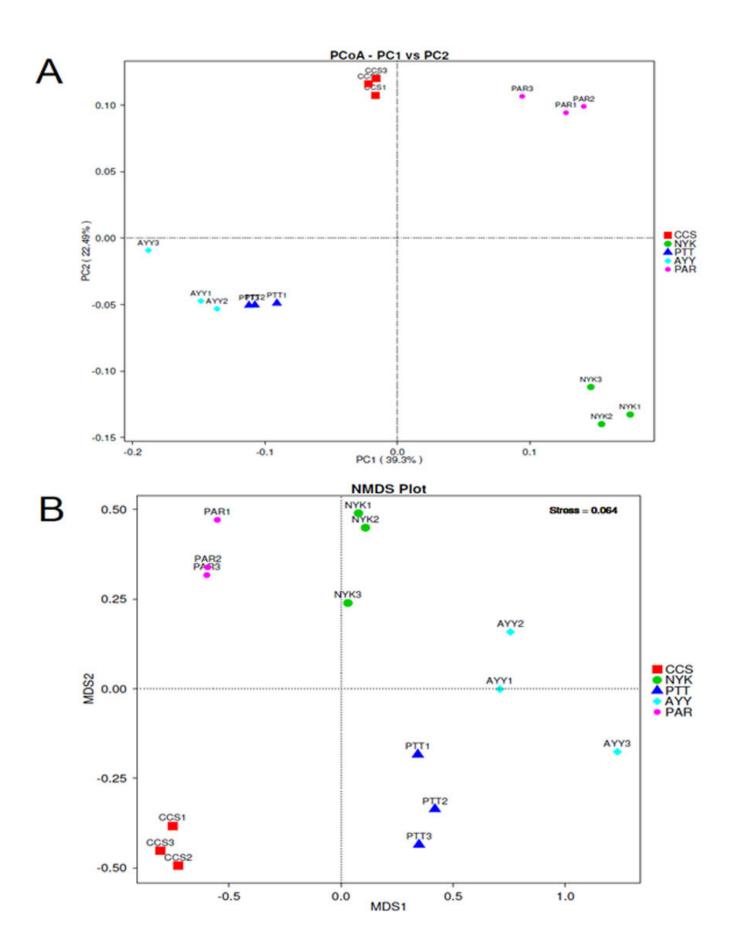
- 717 Pascual MLD, Decraemer W, De Ley IT, Vierstraete A, Steel H, Bert W. 2014.
- Prevalence and characterization of plant-parasitic nematodes in lowland and upland rice agro-ecosystems in Luzon, Philippines. *Nematropica* **44**:166–180.
- Pieterse CMJ, De Jonge R, Berendsen RL. 2016. The soil-borne supremacy. *Trends in Plant Science* 21:171–173 DOI 10.1016/j.tplants.2016.01.018.
- Pongsilp N, Nimnoi P. 2020. Inoculation of *Ensifer fredii* strain LP2/20 immobilized in agar
 results in growth promotion and alteration of bacterial community structure of Chinese
 kale planted soil. *Scientific Reports* 10:15857 DOI 10.1038/s41598-020-72986-5.
- Pongsilp N, Nimnoi P. 2022. Paenibacillus sp. strain OL15 immobilized in agar as a potential
 bioremediator for waste lubricating oil-contaminated soils and insights into soil bacterial
 communities affected by inoculations of the strain and environmental factors. Biology 11:
 727 DOI 10.3390/biology11050727.
- Puri A, Padda KP, Chanway CP. 2018. Evidence of endophytic diazotrophic bacteria in lodgepole pine and hybrid white spruce trees growing in soils with different nutrient statuses in the West Chilcotin region of British Columbia, Canada. Forest Ecology and Management 430:558–565 DOI 10.1016/j.foreco.2018.08.049.
- Puri A, Padda KP, Chanway CP. 2020. Can naturally-occurring endophytic nitrogen fixing
 bacteria of hybrid white spruce sustain boreal forest tree growth on extremely
 nutrient poor soils? *Soil Biology and Biochemistry* 140:107642 DOI
 10.1016/j.soilbio.2019.107642.
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA
 ribosomal RNA gene database project: improved data processing and web based tools.
 Nucleic Acids Research 41:D590–D596 DOI 10.1093/nar/gks1219.
- 740 R Core Team. 2013. R: a language and environment for statistical computing; R foundation
 741 for statistical computing: Vienna. http://www.R-project.org.
- Reichenbach H. 2001. Myxobacteria, producers of novel bioactive substances. *Journal of Industrial Microbiology and Biotechnology* 27:149–156 DOI 10.1038/sj.jim.7000025.
- Renčo M, Gömöryová E, Čerevková A. 2020. The Effect of soil type and ecosystems on
 the soil nematode and microbial communities. *Helminthologia* 57:129–144 DOI
 10.2478/helm-2020-0014.
- Ruanpanun P, Khun-In A. 2015. First report of *Meloidogyne incognita* caused root knot
 disease of upland rice in Thailand. *Journal of the International Society for Southeast* Asian Agricultural Sciences 21:68–77.
- Schindler AF. 1961. A simple substitute for a Baermann funnel. *The Plant disease reporter* 45:
 747–748.
- 752 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Holliste, EB, et al. 2009.
- 753 Introducing mother: open-source, platform-independent, community-supported
- software for describing and comparing microbial communities. *Applied and*
- 755 Environmental Microbiology **75**:7537–7541 DOI 10.1128/AEM.01541-09.

- 756 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011.
- 757 Metagenomic biomarker discovery and explanation. Genome Biology **12**:R60 DOI 10.1186/gb-2011-12-6-r60.
- Shahabi S, Kheiri A, Rakhshandehroo F, Jamali S. 2016. Occurrence and distribution of nematodes in rice fields in Guilan province, Iran and the first record of *Mylonchulus polonicus* (Stefanski, 1915) Cobb, 1917 (Nematoda: Mononchina). *Journal of Plant Protection Research* 56:420–429 DOI 10.1515/jppr-2016-0062.
- Sharma Poudyal D, Pokharel BRR, Shrestha SM, Khatri-Chetri GB. 2005. Effect of
 inoculum density of rice root knot nematode on growth of rice cv. Masuli and
 nematode development. Australasian Plant Pathology 34:181–185 DOI
 10.1071/AP05011.
- Silva JCP, Nunes TCS, Guimarães RA, Pylro VS, Costa LSAS, et al. 2022. Organic practices
 intensify the microbiome assembly and suppress root-knot nematodes. *Journal of Pest Science* 95:709–721 DOI 10.1007/s10340-021-01417-9.
- Singh S, Singh B, Singh AP. 2015. Nematodes: a threat to sustainability of agriculture.
 Procedia Environmental Sciences 29:215–216 DOI 10.1016/j.proenv.2015.07.270.
- Slavich PG, Petterson GH. 1993. Estimating the electrical conductivity of saturated paste
 extracts from 1:5 soil: Water suspensions and texture. *Australian Journal of Soil Research* 31:73–81 DOI 10.1071/SR9930073.
- Tarjan AC, Esser RP, Chang SL. 1977. Interactive diagnostic key to plant parasitic, free living
 and predaceous nematodes. https://nematode.unl.edu/key/nemakey.htm (accessed 17
 August 2021).
- Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, et al. 2022. Soil
 mineral composition and salinity are the main factors regulating the bacteria
 community associated with the roots of coastal sand dune halophytes. *Biology* 11:695
 DOI 10.3390/biology11050695.
- Walkley AJ, Black IA. 1934. Estimation of soil organic carbon by the chromic acid
 titration method. *Soil Science* 37:29–38.
- Win PP, Kyi PP, De Waele D. 2011. Effect of agro-ecosystem on the occurrence of the rice
 root-knot nematode *Meloidogyne graminicola* on rice in Myanmar. *Australasian Plant Pathology* 40:187–196 DOI 10.1007/s13313-011-0029-y.
- Win PP, Kyi PP, Maung ZTZ, De Waele D. 2013. Population dynamics of *Meloidogyne* graminicola and *Hirschmanniella oryzae* in a double rice-cropping sequence in the
 lowlands of Myanmar. *Nematology* 15:795–807 DOI 10.1163/1568541100002719.
- World Bank. 2007. World development report 2008: agriculture for development.
 http://hdl.handle.net/10986/5990. (accessed 20 August 2021).
- Xiao X, Fan M, Wang E, Chen W, Wei G. 2017. Interactions of plant growth promoting
 rhizobacteria and soil factors in two leguminous plants. *Applied Microbiology and Biotechnology* 101: 8485–8497 DOI 10.1007/s00253-017-8550-8.

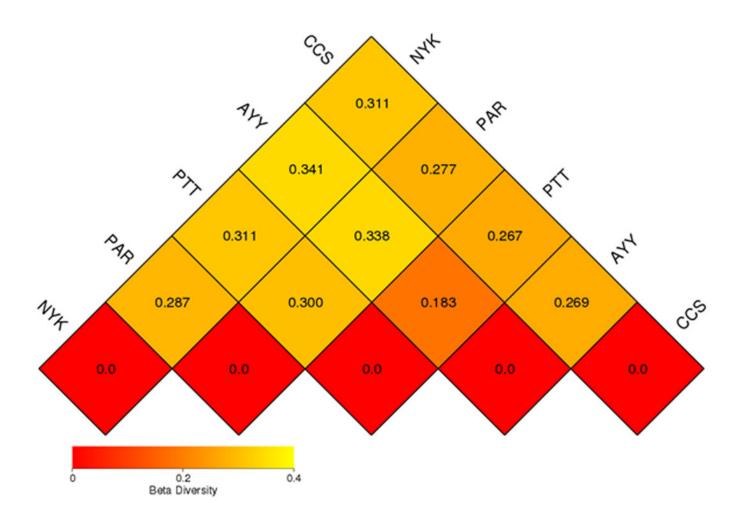



795	Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. 2020. Fungi-nematode interactions:
796	diversity, ecology, and biocontrol prospects in agriculture. Journal of Fungi 6: 206
797	DOI 10.3390/jof6040206.
798	Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, et al. 2019. Rhizosphere
799	microbiomes from root knot nematode non-infested plants suppress nematode infection.
800	<i>Microbial Ecology</i> 78 :470–481 DOI 10.1007/s00248-01901319-5.

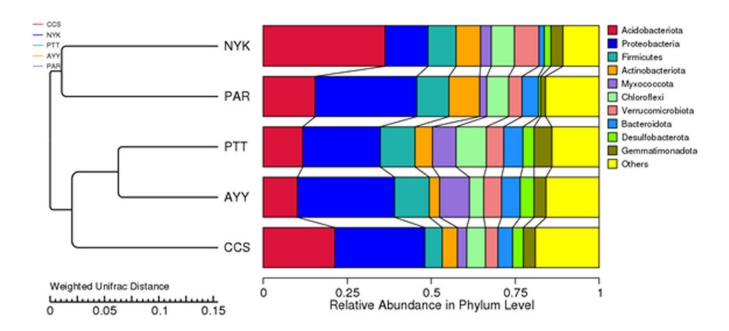

Tags and OTU numbers of each sampling location (A) and Venn diagram presenting the numbers of unique, common, and overlapping OTUs between each sampling site (B).



Heat map analysis of distribution of genus in each sampling location.



PCoA (A) and NMDS (B) analyses bacterial composition similarity among sampling sites.



Beta diversity heat map of the dissimilarity coefficient between each sample.

The UPGMA dendrogram of relative abundance at phylum level from each sampling site.

Table 1(on next page)

Soil nematodes from rhizosphere collected from rice fields.

* All values are represented as (mean±SD) based on triplicate samples **Values with the same letters in the column are not significantly different (*P*>0.05) according to Tukey's test CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

Table 1

2 Soil nematodes from rhizosphere collected from rice fields.

Samplin	n No. of plant-parasitic nematode/500 g soil*							
g site	M. graminicola	Hirschmanniella spp.	Pratylenchus spp.	Helicotylenchus spp.	Tylenchorhynchus spp.	nematode/ 500 g soil*		
CCS	39.33±15.04a**	7.33±7.50a	0.00	9.66±9.86a	5.00±1.73a	39.66±34.15a		
NYK	18.00±5.00a	4.33±2.30a	$4.66\pm0.57a$	0.00	$4.66\pm2.08a$	$26.33\pm3.05a$		
PTT	141.66±38.10b	22.00±4.58b	0.00	46.33±16.25b	0.00	$51.33\pm20.55a$		
AYY	34.00±9.84a	9.00±3.60a	0.00	0.00	0.00	117.66±29.36b		
PAR	36.00±10.00a	9.33±4.16ab	$11.00\pm3.60b$	0.00	0.00	48.00±9.00a		

^{*} All values are represented as (mean±SD) based on triplicate samples

- **Values with the same letters in the column are not significantly different (P>0.05) according to Tukey's test
- 5 CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani
- 6 province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

7

8

9

10

11

12

13

Table 2(on next page)

Soil nematodes in roots collected from rice fields.

* All values are represented as (mean±SD) based on triplicate samples **Values with the same letters in the column are not significantly different (*P*>0.05) according to Tukey's test CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

1 Table 2

2 Soil nematodes in roots collected from rice fields.

Sampling	No. of plant-parasitic nematode/3g root*						
site	M. graminicola	Hirschmanniella spp.	Pratylenchus spp.	Helicotylenchus spp.	Tylenchorhynchus spp.	nematode /3 g root*	
CCS	3280.00±603.98c**	6.00±4.35a	0.00	0.00	10.00±8.18a	0.00	
NYK	38.66±8.14a	13.00±4.58a	$6.33\pm3.05a$	0.00	0.00	$3.33\pm1.52a$	
PTT	307.66±76.10a	10.00±8.18a	0.00	$6.66\pm3.78a$	0.00	4.00±2.00a	
AYY	1846.00±406.73b	14.33±3.51a	0.00	0.00	0.00	0.00	
PAR	116.00±24.43a	11.66±3.51a	9.33±2.51a	0.00	0.00	$16.66\pm5.68b$	

^{*} All values are represented as (mean±SD) based on triplicate samples

- **Values with the same letters in the column are not significantly different (P>0.05) according to Tukey's test
- 5 CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani
- 6 province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

Table 3(on next page)

Soil physicochemical properties from each sampling site.

*All values are represented as (mean±SD) based on triplicate samples **Values with the same letters in the row are not significantly different (*P*>0.05) according to Tukey's test CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

1 Table 3

2 Soil physicochemical properties from each sampling site.

Parameter			Sampling s	ite	
	CCS	NYK	PTT	AYY	PAR
рН	5.94	5.21	6.53	7.18	4.77
Electrical conductivity (ds m ⁻¹)	10.52	0.37	0.84	0.79	0.42
Sand (%)	59.20	47.17	6.00	11.10	35.61
Silt (%)	32.19	40.49	34.18	34.04	52.9
Clay (%)	8.61	12.34	59.82	54.87	11.48
Soil texture	Sandy Loam	Loam	Clay	Clay	Silt Loam
Organic matter (%)*	0.51±0.01a**	$1.81\pm0.26c$	2.44±0.49d	4.41±0.35e	$1.18\pm0.25b$
Available N (%)*	$0.02\pm0.00a$	$0.09\pm0.00c$	$0.11 \pm 0.00 d$	$0.21\pm0.01e$	$0.07 \pm 0.00b$
Total P (mg kg ⁻¹)*	$18.57 \pm 0.23b$	$8.49\pm0.43a$	48.48±0.41e	$26.23 \pm 0.27c$	29.64±0.15d
Total K (mg kg ⁻¹)*	235.93±2.37e	11.98±0.69b	228.05±2.35d	$185.51 \pm 0.34c$	15.23±0.11a
Total Ca (mg kg ⁻¹)*	3044.04±64.14c	518.55±33.28b	3138.17±31.85c	5301.19±99.21d	381.06±27.27a
Total Mg (mg kg ⁻¹)*	633.41±28.11d	$7.11\pm0.12a$	674.91±3.19e	397.76±3.35c	29.38±0.60b
Total Fe (mg kg ⁻¹)*	116.76±0.30a	230.37±27.88c	177.65±0.57b	238.90±4.18c	379.33±4.86d
Total Mn (mg kg ⁻¹)*	$2.29\pm0.07a$	$8.25 \pm 0.33b$	59.99±1.18d	$61.78 \pm 0.32e$	$16.08\pm0.38c$
Total Cu (mg kg ⁻¹)*	$1.69\pm0.01b$	$0.45\pm0.01a$	46.12±0.70d	$7.26\pm0.08c$	$0.93\pm0.04ab$
Total Zn (mg kg ⁻¹)*	$0.81 \pm 0.02a$	$0.70\pm0.00a$	15.51±0.86c	$2.07\pm0.05b$	$0.72\pm0.02a$

^{3 *}All values are represented as (mean±SD) based on triplicate samples

- **Values with the same letters in the row are not significantly different (P>0.05) according to Tukey's test
- 5 CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani
- 6 province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

Table 4(on next page)

Indices of bacterial richness and diversity of soil from each location.

*All values are represented as (mean \pm SD) based on triplicate samples **Values with the different letters in the column are significantly different ($P \le 0.05$) according to Tukey's test CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

1 Table 4

2 Indices of bacterial richness and diversity of soil from each location.

Sampling	Observed species*	Diversity indices *		Richness indices*		
site		Shanon- Simpson		Chao1	ACE	
		Weaver	•			
CCS	5260.00±291.82b**	10.20±0.32a	0.99±0.00a	5613.21±414.84b	5715.23±408.28c	
NYK	4023.66±411.68ba	$9.68\pm0.24a$	$0.99\pm0.00a$	4378.77±484.18ab	4424.89±466.56ab	
PTT	4205.66±774.84ab	$9.99\pm0.54a$	$0.99\pm0.00a$	4886.85±569.25ab	5024.60±510.50abc	
AYY	3644.00±472.95a	9.87±0.31a	$0.99\pm0.00a$	3963.25±516.43a	4094.70±493.20a	
PAR	4752.66±260.34ab	$9.82 \pm 0.08a$	$0.99\pm0.00a$	5318.71±313.10b	5438.49±355.40bc	

^{*}All values are represented as (mean±SD) based on triplicate samples

- **Values with the different letters in the column are significantly different ($P \le 0.05$) according to Tukey's test
- 5 CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani
- 6 province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

Table 5(on next page)

Top 10 most abundance of bacterial classes presents in each observed location.

*All values are represented as (mean \pm SD) based on triplicate samples **Values with the different letters in the column are significantly different ($P \le 0.05$) according to Tukey's test CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.

1 Table 5

2 Top 10 most abundance of bacterial classes presents in each observed location.

Sampling	Class*									
site		gamma-	alpha-							
	Acidobacteriae	proteobacteria	proteobacteria	Clostridia	Verrucomicrobiae	Bacilli	Bacteroidia	Anaerolineae	Polyangia	Actinobacteria
CCS	$17.35\pm1.42c$	$18.68\pm2.84b$	$8.11\pm0.42c$	$3.25\pm0.64a$	2.57±0.24a	1.49±0.16a	$3.39\pm0.71b$	2.39±0.57a	1.43±0.15a	1.49±0.38a
NYK	33.24±4.00d	$6.64\pm0.39a$	6.15±0.03ab	$4.71\pm1.22a$	$7.19\pm1.22c$	3.35±0.19a	$1.47\pm0.98a$	1.31±0.91a	$1.41\pm0.10a$	2.96±0.12ab
PTT	5.82±0.42a	15.99±3.58ab	7.09±1.11bc	5.41±0.48a	$4.74\pm0.24b$	4.74±0.81a	$5.30\pm0.71c$	$5.64\pm0.49b$	$4.53\pm0.58b$	2.82±0.96ab
AYY	$4.76\pm0.87a$	24.30±6.56b	4.50±0.40a	5.66±3.11a	$4.83\pm1.12b$	$4.63\pm2.68a$	$4.64\pm0.22bc$	$2.74\pm0.94a$	4.53±0.85b	1.44±0.73a
PAR	11.85±0.88b	19.03±4.05b	11.19±0.84d	$5.70\pm1.24a$	3.80±0.45ab	3.50±0.51a	4.03±0.50bc	1.47±0.12a	0.95±.011a	4.14±0.90b

- *All values are represented as (mean±SD) based on triplicate samples
- **Values with the different letters in the column are significantly different ($P \le 0.05$) according to Tukey's test
- 5 CCS, sampling from Chachoengsao province; NYK, sampling from Nakhon Nayok province; PTT, sampling from Pathum Thani
- 6 province; AYY, sampling from Phra Nakhon Si Ayutthaya province; PAR, sampling from Prachin Buri province.