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Although a cube cannot represent all of tree space, it is a great improvement over a single
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ABSTRACT8

In this paper, we study the distance matrix as a representation of a phylogeny by way of hierarchical

clustering. By defining a multivariate normal distribution on (a subset of) the entries in a matrix, this

allows us to represent a distribution over rooted time trees. Here, we demonstrate tree distributions

can be represented accurately this way for a number of published tree distributions. Though such a

representation does not map to unique trees, restriction to a subspace, in particular one we call a “cube”,

makes the representation bijective at the cost of not being able to represent all possible trees. We

introduce an algorithm “cubeVB” specifically for cubes and show through well calibrated simulation study

that it is possible to recover parameters of interest like tree height and length. Although a cube cannot

represent all of tree space, it is a great improvement over a single summary tree, and it opens up exciting

new opportunities for scaling up Bayesian phylogenetic inference. We also demonstrate how to use a

matrix representation of a tree distribution to get better summary trees than commonly used maximum

clade credibility trees. An open source implementation of the cubeVB algorithm is available as the

cubevb package for BEAST 2.
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1 INTRODUCTION23

The workhorse of Bayesian phylogenetics is the Markov chain Monte Carlo (MCMC) algorithm, which is24

widely used to reconstruct the evolutionary relationships among a set of biological sequences (Huelsenbeck25

and Ronquist, 2001; Höhna et al., 2016; Suchard et al., 2018; Bouckaert et al., 2019). In practice, MCMC26

is limited to handling phylogenies of at most a few thousand taxa. With the advent of ever cheaper27

sequencing techniques, these algorithms are overwhelmed by the amount of available data. Consequently,28

maximum likelihood methods are employed, which can handle these amounts of data because they are29

based on optimisation algorithms.30

Variational Bayesian (VB) methods (Jordan et al., 1999) are also based on optimisation, so offer the31

prospect of being more scalable than MCMC. VB methods usually represent a posterior distribution as a32

transformation of a multivariate normal distribution on Euclidean space. The form of the transformation is33

crucial in how accurate the posterior distribution can be represented. Usually, stochastic gradient ascent is34

used as the optimisation algorithm, which relies on the transformation being a bijection between trees and35

their transformed representation. This provides a major hurdle for phylogentic inference, since existing36

tree spaces are either not bijective (like spanning trees between points in hyperbolic space (Matsumoto37

et al., 2021; Jiang et al., 2022)) or do not allow representation as a Euclidean space (like ultrametric space38

(Gavryushkin and Drummond, 2016)).39

Prior phylogenetic VB implementations got around these restrictions by being limited to fixed tree40

topologies (Fourment and Darling, 2019; Zhang, 2020). Others do not handle timed trees (Zhang and41

Matsen IV, 2018) which are important to many practical and scientific questions. The ones that handle42

time trees (Zhang and Matsen IV, 2022), have not demonstrated to scale to scale to 1000 taxa.43

Here, we explore matrix representations of tree space. The basic idea is to use a symmetric matrix44

with dimension equal to the number of taxa and apply a hierarchical clustering algorithm like the single45
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link clustering algorithm (Florek et al., 1951) to obtain a tree with internal node heights specified by the46

values of the matrix. The entries in the matrix form a Euclidean space, however there are many ways to47

represent the same tree, so the transformation is not bijective. A “cube” is a matrix where we restrict48

ourselves to the 1-off-diagonal entries of the matrix (and leave the rest at infinity) and the transformation49

becomes a bijection, but cannot represent all possible trees any more. In this paper, we demonstrate it is50

possible to capture the most interesting part of posterior tree space using this approach. We implement51

an algorithm for basic phylogenetic models, infer the parameters of the multivariate normal distribution52

and show through a well calibrated simulation study that it captures important parameters of interest. We53

demonstrate that it scales well.54

Representations similar to the cube representation has been used before in phylogenetic inference.55

For example, in training neural nets to uncover the epidemiological dynamics of outbreaks (Voznica et al.,56

2022), where the “compact bijective ladderised vector” orders taxa so that branch support for taxa on57

the left is maximised. Instead of using the distance between taxa, the distance from internal nodes to58

the root is used. In MCMC, tree proposals like the “node reheight” operator in *BEAST (Heled and59

Drummond, 2009), order taxa through a tree traversal. At binary splits, the first or second branch is60

randomly traversed first, resulting in a random ordering. Then, an internal node is randomly selected,61

and its height is randomly moved (constrained by gene tree heights). Finally, a tree is reconstructed to62

maintain consistency with the ordering and node heights of internal nodes between taxa. Mau et al. (1999)63

refers to this as the “canonical representation” and proposes its use an MCMC proposal as well. This is64

equivalent of selecting a cube with random order consistent with the tree, then perturbing a distance in the65

matrix and reconstructing the tree.66

Matrix and specifically cube representations offer a few other benefits. Many post-hoc analyses such67

as ancestral reconstruction, trait inference or phylogeography are performed on a single summary tree,68

so these analyses do not take phylogenetic uncertainty in account. Though a cube does not represent69

all of tree space, in many situations it captures most of the uncertainty of a posterior distribution, and70

allows taking uncertainty in account in post-hoc analyses. Furthermore, our novel way to represent tree71

space opens up new avenues to implement online algorithms (Bouckaert et al., 2022), allowing rapid72

responses to newly available data. There is also potential for improving summary trees through matrix73

representation of a given tree set, as we will demonstrate.74

2 METHODS75

2.1 Representing trees through a matrix76

The main idea is to represent a posterior tree distribution as a distribution over entries of a matrix, and77

apply the single links clustering algorithm (Algorithm 1) to obtain a tree. The matrix can be interpreted as78

a distance matrix: it must be symmetric, have positive values and the entries on the diagonal are ignored.79

So, for a tree with n taxa there are n(n−1)/2 entries that are relevant: the entries above the diagonal. We80

say a matrix entry is specified if it is finite, and unspecified if it is positive infinite. We say a matrix is81

valid if the tree associated with it through single link clustering only has finite branch lengths.82

Algorithm 1 Single link clustering

Input: n×n matrix M with entries mi j

Let x1, . . . ,xn be n taxa

∀1fifn initialise subtree as single taxon {xi} at height 0

while There is more than 1 subtree do

Let mi j be minimum of M, where xi and x j in different subtrees

Create node x with height mi j

Add branch between x and root of subtree containing xi

Add branch between x and root of subtree containing x j

Return tree with root at last added node

Some properties of this representation with a short justification:83

1. Note that at least n−1 entries must be specified for a matrix to be valid. This follows from the fact84

that there are n−1 internal nodes in a tree, so the single link clustering algorithm requires at least85

n−1 finite heights to specify a tree.86
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Figure 1. Various matrices where x means the entry is specified, and ∞ the entry is unspecified for

n = 6, the associated adjacency graphs for n = 6 and the number of tree topologies they can represent (in

decreasing order).

2. An adjacency graph G over n nodes v1, . . . ,vn can be associated with a matrix M having edges87

ei j between vi and v j where ever mi j is specified. A matrix is valid if and only if the associated88

adjacency graph is connected. This follows from the fact the single link clustering algorithm uses89

entries in the matrix associated with edges in the graph that form a path connecting all nodes. So, it90

is possible for a matrix to have n−1 entries specified, but still not being valid (Fig.1).91

3. To represent a distribution over all possible trees, all entries in the matrix must be specified. This92

follows from the observation that in the set of all trees, for every pair i, j, i ̸= j of taxa xi and x j93

there exists a tree somewhere in the set of all trees such that the pair is connected with the lowest94

internal node (that is parent to both taxa). Since such a cherry can only be formed by the distance95

in the matrix mi j being the smallest, this implies mi j cannot be infinite, so mi j must be specified.96

4. A matrix with n or more entries specified does not form a bijection to trees. Since the single97

link algorithm only uses n−1 entries in the matrix to form the tree, if there are n or more values98

specified in the matrix it is possible to change these values and return the same tree. Therefore,99

there are multiple ways to represent the same tree with different matrices using hence it cannot be a100

bijection.101

5. A matrix with n−1 entries specified forms a bijection to trees when the associated adjacency graph102

is connected. This includes the cube representation that we will have a closer look at later.103

6. Transforming a tree to a matrix consists of populating the specified entries mi j with height of the104

most common recent ancestor of xi and x j in the tree. The single link clustering algorithm then105

retrieves the original tree when applied to the matrix.106

If all entries in the matrix on the first row are specified (i.e. entries m1 j for 1 < j f n) and the107

remainder are not specified (Fig.1), all possible caterpillar trees with cherry containing x1 can be formed.108

Note that there are (n−1)! topologies that can be formed that way.109

If all entries in the matrix that are 1-off-diagonal are specified, the adjacency graph forms a linked chain110

and 1
n+1

�

2n
n

�

(the Catalan number) number of topologies can be represented. We call this configuration a111

cube. Even though the same number of entries are specified, this is less than for the caterpillar trees, but112

will turn out to be more useful in practice. Note that by reordering the taxa it is possible to get the same113

kind of adjacency graph containing all nodes in a chain.114
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Figure 2. Cube over 5 taxa consisting of a taxon ordering A,B,C,D,E and heights h1 for the height

between A and B, height h2 for the heights between B and C, h3 for C and D and height h4 for D and E.

Dashed lines show how the heights are associated with consecutive pairs of taxa in the taxon ordering.

We will use a multivariate normal distribution N(µ,Σ) with mean vector µ and covariance matrix Σ115

of dimension k. Here n−1 f k f n(n−1)/2, where each of the k dimensions is associated with an entry116

in the matrix. To estimate µ and Σ for a tree set, simply construct the branch length matrix for each tree117

in the set and take the average for each entry (that is specified) and covariance for each pairs of specified118

entries.119

To get a sample of trees, draw a random sample from this distribution, exponentiate each of the values120

and populate the matrix with its values. Then run single link clustering to obtain the tree. Algorithm 2121

shows this in more detail.122

Algorithm 2 Sample from posterior

Input: Multivariate normal distribution N(µ,Σ) of dimension k

where µ the vector of mean values and Σ the covariance matrix.

Input: list of k matrix entries

Let AAT = Σ be the Cholesky decomposition of Σ

Draw k independent standard normal values z = {z1, . . . ,zk}
Let x = µ +Az

Fill the matrix M with the k entries of exp(x) and leave the rest unspecified

Return tree by applying single link clustering on M

2.2 Cube space123

An alternative way to represent a cube configuration in a matrix is to consider an order of the taxa and a124

vector that represents the height of the internal nodes between two consecutive taxa in the ordering. Fig.2125

illustrates this: the height h1 corresponds to a matrix entry for A and B, the height h2 for B and C etc., this126

way forming the cube configuration from the previous subsection. But we can consider this an ordering127

A,B,C,D,E and gaps h1 to h4 between consecutive nodes in the ordering.128

One nice property of cube space is that it only contains n−1 heights, and forms a bijection under129

the single link clustering transformation. However, it is obviously limited in that it cannot represent130

all of tree space, our expectation is that it can represent a large part of posterior space. Consider three131

taxa, A,B,C ordered alphabetically, then there are three possible topologies: ((A,B),C), (A,(B,C)) and132

((A,C),B). The first two are represented in the cube, but the last one is missing, so at least two thirds of133

the posterior can be represented. In practice, posteriors will be skewed towards a dominant topology, so134
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the first topology may have 60% support, the second 30% and leaving only 10% for the topology that is135

missed out. In this three taxon example, this means that 90% of the posterior can be captured. This is136

30% better than using a summary tree that would only cover the first topology.137

The method for learning a multivariate normal distributions over cube heights is the same as for138

matrices.139

2.3 Variational Bayesian approach140

The application of cube space we are most interested in is Bayesian inference through a variational141

Bayesian distribution. To this end, we have to infer the mean vector µ and covariance matrix Σ from an142

alignment and phylogenetic model. For each of the parameters of the model, we need a transformation so143

that the transformed parameter is normally distributed. We employ the following transformations:144

• for scale parameters (like κ of the HKY model, birth rate of the Yule model) we use a log-transform.145

• for location parameters we use no transform.146

• for multi dimensional parameters that are constrained to sum to 1, e.g. frequencies of substitution147

models, we use a stick breaking transform (Betancourt, 2012).148

• for the tree we use the matrix transform. Note that internal node heights are log-transformed.149

Given a phylogenetic model that specifies a tree prior, site model and branch rate model, the parameters150

of the model (including the tree) and associated transformations, Algorithm 3 outlines how we can infer151

µ and Σ. The strategy is to get a reasonably good value for µ first, and infer Σ afterwards. To this end the152

first step is finding a state with high probability, ideally the maximum a posteriori probability (MAP) state,153

since it corresponds to the mode of the multivariate normal distribution, and thus should get us reasonably154

close to where µ should be.155

Algorithm 3 Cube-VB

Input: posterior distribution over a set of parameters

Input: set of parameters (including tree) and their transforms

0. Initialise tree by UPGMA

1. Find high posterior state of tree and other parameters

2. Randomly initialise ordering of taxa that is compatible with tree from step 1

3. Sample trees restricted to cube space, using MCMC

4. Estimate µ and Σ based on transformed MCMC samples

The tree is initialised using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) RR156

(1958), a hierarchical clustering algorithm that produces a rooted time tree. The topology of the tree and157

timing of the tree can potentially be adjusted in the next step.158

In our implementation, the tree and all other parameters are then optimised using simulated annealing159

(Van Laarhoven et al., 1987). This is a general purpose optimisation algorithm that, like MCMC, randomly160

explores the state space, but it differs from MCMC in the acceptance criterion of a proposed state. Higher161

posterior proposals are always accepted, and lower posterior proposals are accepted with a probability162

proportional to the change in posterior weighted by a temperature that decreases over time. We found that163

using a temperature schedule that decreases fairly fast to the end temperature, but repeatedly resets to164

the start temperature instead of a long monotonically decreasing temperature allowed escape from local165

minima more efficiently. For the proposals used in simulated annealing we can use standard MCMC166

operators implemented in BEAST 2.167

To complete the cube-transform for the tree, we need a taxon ordering. Different orderings cover168

different parts of tree space, so finding a suitable ordering affects the suitability of the representation. This169

is a research question that we leave open here, but note that in the implementation using a random order170

compatible with the tree turned out to be sufficiently good to accurately infer parameters of interest such171

as tree height and tree length.172

In order to estimate the covariance matrix Σ, we will generate a representative sample using MCMC.173

Instead of using the standard tree operators in BEAST 2, we replace the topology changing operators with174

a pair of operators that ensure the proposed tree can be represented by the cube restricted by the taxon175
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ordering from Step 2 of Algorithm 3. The first operators is a variant of the narrow exchange operator (a176

nearest neighbour interchange operator that also proposes a new height of the node that is moved) that177

ensure it remains within the cube. The second operators is a subtree-slide operator (moves internal node178

up or down, potentially causing topology changes) and ensures that the target location is compatible with179

the cube ordering.180

Based on the short MCMC run, we can transform the MCMC samples and directly estimate µ and Σ181

from the set of transformed values. There are many tools for visualising and otherwise post-processing182

a posterior based on an MCMC sample, such as Tracer (Rambaut et al., 2018), DensiTree (Bouckaert,183

2010), etcetera. Once we obtain µ and Σ, Algorithm 2 can be used to create such a sample.184

3 RESULTS185

In this section, we validate the matrix and cube representation of tree distributions and show that the186

method for learning a cube based variational Bayesian distribution passes well calibrated simulation187

studies and we will get an impression of the algorithm’s performance. Finally, we consider using a method188

for inferring summary trees.189

3.1 Matrices and cubes can accurately represent tree distributions190

To validate whether we can accurately represent a tree posterior obtained from a full MCMC run, we191

construct the distance matrix for each tree by taking the logarithm of the pairwise taxon path distance, then192

estimate the mean and covariance matrix for all relevant entries. Next, we sample a new tree distribution193

using Algorithm 2 repeatedly to obtain a new tree sample. We compare clade support and clade height194

distribution with the original tree posterior using the CladeSetComparator from the Babel package1
195

in BEAST 2.196

3.1.1 Apes197

Fig.3 shows a small illustrative example of a tree distribution over six apes. There is uncertainty at the root198

with 83% support for siamang being outgroup (blue trees in panels b & d), 13% orangutan being outgroup199

(red trees) and 4% siamang and orangutan being ougroup (green trees). A cube can only represent two200

out of these three cases. By representing the first two, it covers 96% of the posterior distribution, which201

for many practical cases may be sufficient.202

Representing the third case where both siamang and orangutan are ougroup is possible with a matrix203

representation, as shown Fig.3d.204

What is striking in both panels a and c in Fig.3 is that the the mean of the clade heights and 95% HPD205

intervals are very close. However, clade support is slightly distorted: for the cube, the trees with both206

siamang and orangutan as outgroup is completely missing. Since this only covers 4% of the posterior, this207

may not be such a big issue in general. The matrix has this clade represented, but instead of the original208

83%, 13%, 4% distribution has 59%, 21%, 20% distribution, heavily over representing the siamang and209

orangutan as outgroup. This is visible in Fig.3c by the red dots being far from the diagonal. It appears the210

correlation matrix does not accurately capture possible non-linear correlations between the entries in the211

matrix.212

One source of such non-linearities is the tree topology interfering with distance distributions between213

pairs of taxa: in a topology ((A,B),C), the distance between A and B and the distance between A and C214

can be linearly correlated. And likewise in topology ((A,C),B). But if both topologies are in the tree set215

there is no reason the combined correlation to always behave linearly or even approximately linearly. Use216

of the minimum function for clade distances in the single link clustering algorithm is another source of217

non-linearity. A potential remedy is to use normalising flows (Rezende and Mohamed, 2015) to capture218

such non-linearities and provide a more sophisticated transformation between a multi-variate normal219

distribution and the associated tree topology.220

3.1.2 AARS221

A tree distribution with more uncertainty is from aminoacyl-tRNA synthetase (AARS) data for 204 Class222

I protozyme sequences (Carter Jr et al., 2022). A convenient way to characterise the uncertainty of a tree223

distribution is its entropy Lewis et al. (2016), which can be calculated efficiently based on the conditional224

clade distribution (Larget, 2013) of the tree set. The AARS data has an entropy of 124.1, so more than225

1Available from https://github.com/rbouckaert/Babel.

6/17PeerJ reviewing PDF | (2023:10:92090:1:1:NEW 30 Jan 2024)

Manuscript to be reviewed

https://github.com/rbouckaert/Babel
jprocter
Inserted Text
t

jprocter
Cross-Out



a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ape.trees

a
p
e
.c
u
b
e
.t
re
e
s

b)

bonobo

chimp

human

gorilla

orangutan

siamang

c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ape.trees

a
p
e
.m
a
tr
ix
.t
re
e
s

d)

bonobo

chimp

human

gorilla

orangutan

siamang

Figure 3. Comparing the ape dataset with a cube representation (a & b) and matrix representation (c &

d). Plates a & c show clade support in red and clade height in blue. Red dots indicate clade support,

running from zero probability (bottom left corner) to 1 (top right corner). Blue dots are placed at the

mean of the height of a clade. Both x and y axes are scaled so that the largest tree height (from among

both data sets) is at the top right corner. Blue crosses indicate 95% highest probability density (HPD)

intervals of clade height. For both red and blue dots, bigger dots mean more clade support. The x-axis

represent clade values from one set, the y-axis that of another. If both sets are the same, all dots will be on

the x=y line (black diagonal line). The two blue lines indicate there is 20% difference: points within these

lines have less than 20% difference, points outside have more, and can be considered as evidence there is

substantial difference between the two posteriors.

Plates b & d show the original tree set on the left. The trees with most prevalent topology are blue, the

next prevalent red and least prevalent green. Plate (b) on the left shows the cube representation and plate

(d) the matrix representation. A cube accurately represents most clades, but does not cover all clades,

where a matrix can represent all clades but is less accurate in clade support (see text for details).
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Figure 4. Comparing the AARS dataset with a cube representation. a) clade support as in Fig.3 and b)

DensiTree of original and cube tree distribution. Clade support and heights show good correspondence as

does the DensiTree.

half of the internal nodes are uncertain. The corresponding cube has an entropy of just 96.3, which shows226

that a cube representation can have a large entropy, thus representing a highly uncertain tree distribution.227

Fig.4a shows the clade set comparison for the AARS data, which shows that most of the clades that228

are supported in the cube have reasonably similar support as in the original tree set. Although there is229

a clade with 38.9% difference in clade support, and there are 5 other clades with more than 25% clade230

support difference, the average clade support difference is just 4.9% for clades with over 1% support.231

Note the set of red dots at the x-axis, which represent the set of clades that are not represented by the232

cube. Furthermore, clade heights also show very close correspondences: the mean height estimate differs233

just 2.2%. In summary, the clades match remarkably well given the high entropy of the tree set.234

Fig.4b shows a DensiTree of the original tree distribution on the left hand side and the cube represen-235

tation on the right hand side. Visually, the images correspond quite well, confirming the information we236

have from the clade comparison panel. Note that the cube represents a large number of clades judging237

from the diversity of trees in the DensiTree as well as the large number of points in the clade comparison238

plot. Even though a considerable number of clades are missing, the majority of well supported clades are239

represented by the cube.240

3.1.3 Pama-Nynguan languages241

Fig.5 shows another tree distribution, here for 306 Pama-Nynguan languages (Bouckaert et al., 2018)242

with a large entropy of 91.7 for the original tree distribution and 78.6 for the cube. Fig.5 shows the clade243

comparison, showing just 3 clades having more than 25% clade support, and two of them are 2 taxon244

clades. Again, we see good correspondence between original distribution obtained through MCMC and245

its cube representation.246

3.1.4 Cichlids247

A more troublesome example is a tree distribution over 121 Cichlid sequences sourced from (Matschiner248

et al., 2017). The entropy of the original dataset is 38.4 but that of the cube representation is higher at249

49.8. Different orderings were tried based on the ordering heuristics in DensiTree, but all of them resulted250

in a cube representation with significant number of clades having substantially different support.251

Since the cube representation contains fewer trees, there are fewer terms to contribute to the entropy,252

and since all terms must add to 1, these terms can be expected to be larger than for the original distribution.253

Therefore, one would expect entropy of a cube representation to decrease from that of the original tree254
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Figure 5. Comparing the Pama-Nyungan dataset with a cube representation. a) clade support as in Fig.3

and b) DensiTree of original and cube tree distribution.

Sequence length: 100 250 500

Mean and 95% HPD 10.6 (5.9-14.6) 6.4 (3.2-10.4) 3.8 (1.3-6.3)

Entropy

Tree height 95 94 93

Tree treeLength 94 95 96

BirthRate 92 94 94

Kappa 94 90 93

Table 1. Coverage (in %) of 100 runs over 50 taxa with Yule, HKY strict clock for three different

sequence lengths. Longer sequences result in lower entropy, but coverage of the parameters of interest

(last four lines in table) are all in acceptable range.

distribution The fact the entropy for the cichlids data increased in the cube representation compared to the255

original dataset can be interpreted as a hint that the ordering is less than optimal. Optimising orderings is256

a topic for further research, but this example shows it is crucial for a good tree set representation.257

Fig.6 shows the clade comparison and DensiTree. There are 23 clades that have more than 25%258

difference in support and the maximum difference in clade support is 80% for a clade in the original set259

that is missing from the cube representation. The mean height of clades differ only 0.57%, so correspond260

quite well. In this case, a cube representation appears to be less satisfactory than in the other examples.261

3.1.5 Indo-European languages262

To demonstrate the cube representation works well for internal nodes, even though tip dates are sampled,263

we considered a recently published tree distribution over 161 languages (Heggarty et al., 2023). The tree264

set has an entropy of 42.3,the cube has 36.6.265

Fig.7 shows the comparison. Maximum difference in clade support is 28.5% but only 2 clades have266

difference of 25% and on average the clade support difference is 4.1% for clades with more than 1%267

support. Mean height difference of clades (not counting tip heights) is less than 0.79% on average. So,268

even though the original distribution has dated tips, and the cube does not, clade support and clade heights269

remain quite closely represented when compared to the original.270
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Figure 6. Comparing the cichlids dataset with a cube representation. a) clade support as in Fig.3 and b)

DensiTree of original and cube tree distribution. Significant number of clades have large difference in

support in the cube representation, though heights of those clades that are captured show good

correspondence.
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Figure 7. Comparing the Indo-European dataset with a cube representation. a) clade support as in Fig.3

and b) DensiTree of original and cube tree distribution. Even with dated tips the cube representation

remains accurate.
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Sequence length: 100 250 500

Mean and 95% HPD 13.1 (5.9-15.7) 5.7 (3.0-9.1) 4.7 (1.5-6.5)

Entropy

Tree.height 91 90 97

Tree.treeLength 90 91 97

rateAC 92 95 98

rateAG 100 98 95

rateAT 92 95 94

rateCG 93 96 94

rateGT 92 99 95

freqParameter.1 94 92 96

freqParameter.2 96 92 96

freqParameter.3 95 95 97

freqParameter.4 95 96 98

gammaShape 93 100 97

popSize 90 90 90

Table 2. As Table 1 but for coalescent with constant population, GTR with estimated frequencies using

gamma rate heterogeneity and strict clock for three different sequence lengths. Coverage of the

parameters of interest (last thirteen lines in table) are all in acceptable range.

3.2 Cube-VB algorithm passes well calibrated simulation study271

To verify that the cube based variational distribution algorithm works, we performed a well calibrated272

simulation study (Mendes et al., 2023; Talts et al., 2018) using a tree with 50 taxa sampled from the Yule273

tree prior with birth rate narrowly distributed as normal (mean=6, sigma=0.1). This results in tree heights274

with mean 0.58 and 95% HPD of 0.34 to 0.79. Sequence data is generated under a HKY model with kappa275

lognormally distributed (mean=1,sigma=1.25), and a strict clock with rate fixed at 1 is used to complete276

the model. So, the parameter space being sampled consists of the kappa and birth rate parameters and277

a tree. We use sequence lengths of 100, 250 and 500 resulting in observed entropy in the inferred tree278

posteriors of 10.6, 6.4 and 3.8 respectively (Table 1). We run 100 instances for each sequence length, and279

expect the 95%HPD of parameters of interest to contain the true value from 91 to 99 of the cases for the280

test to pass. Table 1 shows the results and the simulation study indeed passes.281

A slightly more challenging case is where we sample trees from a coalescent tree prior with constant282

population size sampled from a lognormal (mean=0.1, sigma=0.1). The tree heights have a mean of 2.3283

with 95% HPD interval of 0.6 to 5.0. We use a site model with gamma rate heterogeneity where the284

shape parameter is sampled from an exponential with mean 1, and use a GTR model with rate CT fixed285

to 1 and rate AG sampled from a log normal with mean 1 in real space and sigma=1. The other four286

transversions rates are sampled from a log normal with mean in real space of 0.5 and sigma=1. Stationary287

frequencies for the GTR model were sampled from a Dirichlet with α = 4 for all four dimensions. For288

this setup, getting accurate estimates of the uncertainty required running the MCMC a bit longer than for289

the case using HKY. Table 2 shows the coverage we get for all paramaters of interest and they are all in an290

acceptable range2, although population size coverages were on the low side.291

This demonstrates that the cube based variational distribution algorithm can work well estimating a292

tree, scale parameters as well as constrained sum parameters (i.e. frequencies) for a number of popular293

phylogenetic models. Many model implementations are available in BEAST 2 that only require these294

types of parameters, in particular nucleotide and amino acid substitution models.295

3.3 Cube based variational distribution algorithm performs well296

To see how well the cube based variational distribution algorithm scales with number of taxa, we ran a297

simulation study with 50, 100, 250, 500, 750 and 1000 taxa. For each taxon set size, we ran 25 instances298

2If the 95% HPD estimates are correct estimates, the simulation study is an experiment of flipping a coin with 95% probability

of turning heads repeated 100 times. Here, observing a head equates finding the true value of a parameter being inside the 95% HPD

interval. This results in a binomial distribution of observing heads on average 95 times and a 95% probability of being within a

range of 91 to 99. Observing almost all coverage values in this range with the occasional outlier at 90 or 100 is deemed acceptable.
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Number of taxa 50 100 250 500 750 1000

MAP finding 1.17 (0.03) 1.48 (0.03) 2.36 (0.08) 3.91 (0.08) 5.30 (0.19) 6.43 (0.40)

MCMC 1.15 (0.03) 2.77 (0.05) 12.08 (0.24) 41.84 (0.72) 94.74 (3.29) 172.25 (8.24)

Decomposition 0.45 (0.01) 0.60 (0.02) 0.93 (0.03) 1.69 (0.04) 2.88 (0.20) 4.47 (0.10)

Sampling output 0.23 (0.02) 0.36 (0.02) 0.68 (0.02) 1.40 (0.03) 2.18 (0.05) 3.27 (0.15)

Total runtime 3.00 (0.05) 5.20 (0.08) 16.05 (0.27) 48.83 (0.79) 105.10 (3.33) 186.42 (8.60)

Table 3. Run times in seconds averaged over 25 instances for various taxon set sizes (in columns).

Numbers in brackets are standard deviations.

of the Yule/HKY/strict clock model used for the well calibrated simulation study. For each instance,299

alignments of 250 sites were generated. We checked that coverage of 95% HPD intervals for tree height,300

tree length, kappa and birth rate parameters was between 22 and 25 to verify that the inferred posterior301

indeed matches the true distribution. Experiments were performed on a 2021 MacBook pro laptop in OS302

X using BEAST v2.7.5 and BEAGLE v4.0.0 (Suchard and Rambaut, 2009).303

Table 3 shows run times in seconds, demonstrating it is feasible to perform large analyses in a short304

span of time. Sampling a representative posterior trace and tree log took the least time taking up no305

more than 2% of total runtime. MCMC for accurately estimating the covariance matrix took most of the306

time, from 40% for smaller taxon sets to over 90% for the larger tree sets. MAP finding and Cholesky307

decomposition in comparison took less time and are taking up relatively less time with growing taxon set308

sizes.309

Total calculation time fits a quadratic function (1.70E −4x2 +1.43E −2x) with R2 = 0.9997, so the310

algorithm seems to scale quadratically. The chain length used are a linear function of the number of taxa,311

and tree likelihood calculation time (which dominates posterior calculation time here) both scale linear312

in the number of taxa. Changing the former could change how the algorithm scales. The most striking313

feature of the table though is that all times can comfortably be expressed in seconds using just three digits314

before the decimal point.315

3.4 Summary tree316

Observe that by setting z = 0 in Algorithm 2 we can obtain a tree that is at the mode of the distribution.317

This tree should be representative of the complete distribution so can be used as a summary tree. Note318

that it can have a topology that differs from all trees in the tree set to be summarised, unlike popular319

methods like the maximum clade credibility (MCC) tree implemented in TreeAnnotator. Table 4 shows320

some the sum of posterior clade support in the summary tree for MMC and matrix representation based321

summary trees. This is proportional to the number of internal nodes minus the Robinson-Foulds distance322

averaged over the tree set. The table shows that matrix based summary tree never produced worse trees323

and sometimes does considerably better. The log product of clade probability is used in MCC trees to find324

the best fitting topology. Tab 4 shows even according to that criterion the matrix approach can do better,325

which is remarkable since MCC explicitly maximises that criterion. Further evaluation with less crude326

measures of summary tree quality are required to establish when matrix based summary trees outperform327

MCC trees.328

4 DISCUSSION329

Matrix and cube representations can accurately represent tree distributions: For tree distributions330

with low to medium entropy (Lewis et al., 2016) based on its conditional clade distribution (Larget, 2013),331

we demonstrated that a substantial part of the posterior can be represented using a single cube. For those332

cases it is possible to do fast inference of rooted time trees using a cube based variational distribution333

approach outlined in Algorithm 3. For tree distributions with high entropy, it may not be possible to334

capture a substantial portion of the posterior by a single cube. An example is a sample over 50 taxa form335

Yule prior (Figure S1), where a cube representation will suggest much older internal node heights with336

higher clade support than the original distribution. Using more than one cube might elevate this somewhat,337

but since there can be overlap between the trees represented by the various cubes, and this overlap is hard338

to characterise3, this may not be a fruitful avenue. A more productive way may be to use more entries339

3Lars Berling personal correspondence.
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Sum of clade Log product of clade

probability probability

Data set MCC Matrix MCC Matrix

Apes 4.8 = 4.8 -0.2 = -0.2

IE 136.9 < 138.9 -35.0 < -29.2

AARS 133.6 < 142.9 -128.4 < -90.8

Cichlids 91.7 < 93.7 -42.3 < -34.7*

NZ votes 26.7 < 34.1 -297.1 < -217.6*

Pama-Nyungan 255.6 < 262.4 -80.5 < -59.3

Species 27.5 = 27.5 -2.6 = -2.6

Table 4. Sum and log product of posterior clade support over all clades in the summary tree for MCC

tree and matrix representation based tree. Higher is better. The entries marked with asterisk ignore zero

support clades (1 clade for cichlids, 3 for NZ votes). The matrix approach is never worse and sometimes

considerably better.

in the distance matrix. This breaks the bijective property of the transformation, but facilitates a greater340

coverage of the full tree space. This will result increase the non-linearity of dependencies between the341

various matrix entries due to correlations changing when topologies change. Normalising flows (Rezende342

and Mohamed, 2015) allow for greater flexibility in representing such non-linear dependencies, and may343

provide a way to transform a multi-variate normal distribution into a tree distribution.344

One situation where node height distributions can deviate significantly from being log-normally345

distributed is when node calibrations are used in the tree that interact with each other. For example, clade346

A may be known to be at least X years old, so a uniform prior with lower bound of X seems appropriate.347

When clade B (consisting of clade A plus 1 node so that the MRCA of B is the parent of the MRCA of A)348

is assigned a distribution with a mean not very far above X (with large variance), the age distribution of349

the MRCA of B will be lower bounded by X as well. In this case, a log-transform may not be appropriate350

for accurate capturing of this distribution, and a matrix representation may fail to accurately capture such351

distribution. Again, normalising flows could be employed to address this.352

Optimisation based variational Bayesian: Variational Bayesian algorithms are usually optimisation353

based, where the evidence lower bound (ELBO) is maximised. The ELBO is proportional to the posterior354

plus a term that measures the distance between the true and approximate distribution. The benefit of355

maximisation over MCMC is that there are no restrictions on optimisation proposals unlike with MCMC356

where one needs to be careful to use appropriate Hastings ratios in order to ensure there is no bias in357

sampling from the posterior. One way to optimise the ELBO is by the hugely popular stochastic gradient358

ascent algorithm, which randomly draws a new state, calculates the gradient of the ELBO with respect359

to a random subset of parameters and moves parameters in the state in the direction of the gradient.360

This process is iterated until convergence is reached. However, there are some issues with gradient361

ascent: a gradient is required, which can be computationally expensive. Furthermore, it has domain362

specific parameters, such as learning rate, learning rate scheme, and parameter subset size. Also, random363

subsets may need to be tuned for efficient exploitation of subsets. Finally, the convergence criterion364

has large impact on the number of iterations. Since points are drawn stochastically, the convergence365

criterion needs to deal with noise. Instead of dealing with all these issues, here we introduced an MCMC366

based algorithm to learn a variational distribution that benefits from all MCMC related optimisations367

implemented in BEAST 2 (such as adaptive operator tuning). It serves as a proof of concept demonstrating368

that cube spaces are suitable for variational inference. Of course, this still leave opportunities for ELBO369

maximisation implementations of cube based variational inference.370

Cube-VB algorithm parameters: Notwithstanding the issues of ELBO optimisation based VB, the371

MCMC based approach to learning a variational distribution we introduced in Algorithm 3 has a number372

of parameters that need to be specified, in particular the start and end temperatures and number of repeats373

for simulated annealing for finding a (close to) MAP state. We chose a start temperature of 0.1 and end374

temperature of 0.01, which worked quite well for our experiments, so this seems a reasonable option.375

Putting in more than 25 repeats barely led to improvement of the posterior of the MAP state, but halving376

it turned out to be detrimental (well calibrated simulation studies did not pass).377
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Another parameter to set is the length of MCMC chain for estimating the covariance matrix. The378

heuristic implemented in the cubevb package for BEAST 2 is to count the number of parameters and379

multiply with a user specified value. In our experiments with the HKY model, a multiplier of 1000380

was sufficient. The more samples, the more accurate the matrix estimate but the longer it takes for the381

algorithm to finish. In that sense, it nicely fits the class of online algorithms (Bouckaert et al., 2022)382

that at any time can provide an answer, but the answer becomes more accurate the longer the algorithm383

runs. Detecting when longer runs do not increase accuracy of the posterior any more is an open question384

where automated convergence techniques employed for standard MCMC (Berling et al., 2023) could be385

exploited. These are all based on running two analyses in parallel and measuring the difference in the386

distributions that are obtained.387

Why the Cube-VB algorithm works: Since plain MCMC is used in Algorithm 3 one may wonder388

why this is more efficient than just running full MCMC and not being restricted to a cube space. The reason389

for this stems from the assumption that the true distribution can be represented as a transformation of a390

multivariate normal distribution. Consider the κ parameter for the HKY model and a log-transformation.391

In practice, we see that κ is close to log-normally distributed, so representing the posterior as a normal392

with log-transform leads to little distortion. Now notice that we only have to estimate the mean and393

variance of the log-normal under this assumption, instead of estimating a full unparameterised distribution,394

which is what we would be doing with full MCMC. So, even though a small MCMC sample will not be395

sufficient to accurately represent the distribution of κ and statistics like 95% HPDs, there will be sufficient396

information to accurately estimate two parameters of a log-normal, from which statistics like 95% HPDs397

then can accurately be inferred.398

Variational Bayesian for matrix representation: The Cube-VB algorithm can be adapted to suitable399

matrix representations by replacing Step 2 by some method of identifying which entries in the matrix need400

to be specified and which entries can be left unspecified. Step 3 would need adjustment in the operators to401

ensure all possible tree topologies that can be represented by the matrix are available to be proposed. It is402

an open problem what the best strategy is for identifying which and how many entries should be specified.403

Since a cube can capture a substantial part of a posterior, identifying a cube could be a first step followed404

by filling in entries where clades represented have405

5 CONCLUSION406

Matrix space is introduced as a representation of all or, in the case of cubes, a significant part of tree space.407

We demonstrated for simple phylogenetic models it allows fast inference of the most relevant part of the408

tree posterior using just a cube representation, thus capturing most of the uncertainty in the posterior409

distribution.410

There are many venues to extend and develop this work, in particular into the area of more sophisticated411

phylogenetic models. Here we mention just a few of the more commonly used models and potential issues412

implementing inference for them in matrix representation, in particular cubes:413

• In general, finding an appropriate subset of pairwise distances, i.e. subset of entries in the matrix,414

an obvious open problem. Finding the optimal ordering for a cube is an instance of this problem. It415

is probably related to finding a good ordering for drawing trees in DensiTree (Bouckaert, 2010) for416

which various heuristics have been developed. It is not clear how to transfer these heuristics to the417

VB setting and new heuristics may need to be developed.418

• Flexible nonparametric tree priors take epochs in accounts like the Bayesian skyline plot (Drum-419

mond et al., 2005) and birth death skyline plot (Stadler et al., 2013) and are widely used but may420

be challenging to parameterise in a variational Bayesian setting due to their discrete components.421

Models that integrate out most parameters and have only a single continuous parameter, like BI-422

CEPS and multi Yule (Bouckaert, 2022), can be good alternatives and should be straightforward to423

implement in our cube VB algorithm.424

• Relaxed clocks (Drummond et al., 2006; Douglas et al., 2021) need to be adapted for cube space.425

Due to discontinuities between different topologies, simply associating a (log)normal branch rate426

distribution with each taxon and each dimension of the cube may not be sufficient. Normalising427

flows (Rezende and Mohamed, 2015) may be required to capture relaxed branch rate distributions.428
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• Dated tips put restrictions on the height of internal nodes. When tip dates are uncertain and need te429

be sampled from a distribution, this adds extra dimensions to the multivariate normal representation430

of the posterior.431

On the other hand, extensions into empirical models of amino acids, models that integrate out internal432

states like ancestral reconstruction (Lemey et al., 2009) and phylogeography (Bouckaert, 2016) should be433

straightforward to adapt.434

In summary, there are many exciting new opportunities waiting to be explored in cube and matrix435

space for fast phylogenetic inference.436

SOFTWARE AND DATA AVAILABILITY437

The software is open source and available as cubevb package to BEAST 2.7 from https://github.438

com/rbouckaert/cubevb as well as https://doi.org/10.5281/zenodo.10594658. Tree439

sets and data used in the well calibrated simulation study, and performance study is available from440

https://github.com/rbouckaert/cubevb/releases/tag/v1.0.0 as well as https:441

//doi.org/10.5281/zenodo.10594658.442
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Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., Huelsenbeck, J. P.,493

and Ronquist, F. (2016). RevBayes: Bayesian phylogenetic inference using graphical models and an494

interactive model-specification language. Systematic biology, 65(4):726–736.495

Huelsenbeck, J. P. and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinfor-496

matics, 17(8):754–755.497

Jiang, Y., Tabaghi, P., and Mirarab, S. (2022). Learning hyperbolic embedding for phylogenetic tree498

placement and updates. Biology, 11(9):1256.499

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational500

methods for graphical models. Machine learning, 37(2):183–233.501

Larget, B. (2013). The estimation of tree posterior probabilities using conditional clade probability502

distributions. Systematic biology, 62(4):501–511.503

Lemey, P., Rambaut, A., Drummond, A. J., and Suchard, M. A. (2009). Bayesian phylogeography finds504

its roots. PLoS computational biology, 5(9):e1000520.505

Lewis, P. O., Chen, M.-H., Kuo, L., Lewis, L. A., Fučı́ková, K., Neupane, S., Wang, Y.-B., and Shi, D.506
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