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In this paper, we study the distance matrix as a representation of a phylogeny by way of
hierarchical clustering. By defining a multivariate normal distribution on (a subset of) the
entries in a matrix, this allows us to represent a distribution over rooted time trees. Here,
we demonstrate tree distributions can be represented accurately this way for a number of
published tree distributions. Though such a representation does not map to unique trees,
restriction to a subspace, in particular one we call a "cube", makes the representation
bijective at the cost of not being able to represent all possible trees. We introduce an
algorithm "cubeVB" specifically for cubes and show through well calibrated simulation
study that it is possible to recover parameters of interest like tree height and length.
Although a cube cannot represent all of tree space, it is a great improvement over a single
summary tree, and it opens up exciting new opportunities for scaling up Bayesian
phylogenetic inference. We also demonstrate how to use a matrix representation of a tree
distribution to get better summary trees than commonly used maximum clade credibility
trees. An open source implementation of the cubeVB algorithm is available as the cubevb
package for BEAST 2.
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ABSTRACT

In this paper, we study the distance matrix as a representation of a phylogeny by way of hierarchical
clustering. By defining a multivariate normal distribution on (a subset of) the entries in a matrix, this
allows us to represent a distribution over rooted time trees. Here, we demonstrate tree distributions
can be represented accurately this way for a number of published tree distributions. Though such a
representation does not map to unique trees, restriction to a subspace, in particular one we call a “cube”,
makes the representation bijective at the cost of not being able to represent all possible trees. We
introduce an algorithm “cubeVB” specifically for cubes and show through well calibrated simulation study
that it is possible to recover parameters of interest like tree height and length. Although a cube cannot
represent all of tree space, it is a great improvement over a single summary tree, and it opens up exciting
new opportunities for scaling up Bayesian phylogenetic inference. We also demonstrate how to use a
matrix representation of a tree distribution to get better summary trees than commonly used maximum
clade credibility trees. An open source implementation of the cubeVB algorithm is available as the
cubevb package for BEAST 2.

A preprint of this paper appeared as Bouckaert (2023).

1 INTRODUCTION

The workhorse of Bayesian phylogenetics is the Markov chain Monte Carlo (MCMC) algorithm, which is
widely used to reconstruct the evolutionary relationships among a set of biological sequences (Huelsenbeck
and Ronquist, 2001; Hohna et al., 2016; Suchard et al., 2018; Bouckaert et al., 2019). In practice, MCMC
is limited to handling phylogenies of at most a few thousand taxa. With the advent of ever cheaper
sequencing techniques, these algorithms are overwhelmed by the amount of available data. Consequently,
maximum likelihood methods are employed, which can handle these amounts of data because they are
based on optimisation algorithms.

Variational Bayesian (VB) methods (Jordan et al., 1999) are also based on optimisation, so offer the
prospect of being more scalable than MCMC. VB methods usually represent a posterior distribution as a
transformation of a multivariate normal distribution on Euclidean space. The form of the transformation is
crucial in how accurate the posterior distribution can be represented. Usually, stochastic gradient ascent is
used as the optimisation algorithm, which relies on the transformation being a bijection between trees and
their transformed representation. This provides a major hurdle for phylogentic inference, since existing
tree spaces are either not bijective (like spanning trees between points in hyperbolic space (Matsumoto
et al., 2021; Jiang et al., 2022)) or do not allow representation as a Euclidean space (like ultrametric space
(Gavryushkin and Drummond, 2016)).

Prior phylogenetic VB implementations got around these restrictions by being limited to fixed tree
topologies (Fourment and Darling, 2019; Zhang, 2020). Others do not handle timed trees (Zhang and
Matsen IV, 2018) which are important to many practical and scientific questions. The ones that handle
time trees (Zhang and Matsen IV, 2022), have not demonstrated to scale to scale to 1000 taxa.

Here, we explore matrix representations of tree space. The basic idea is to use a symmetric matrix
with dimension equal to the number of taxa and apply a hierarchical clustering algorithm like the single
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link clustering algorithm (Florek et al., 1951) to obtain a tree with internal node heights specified by the
values of the matrix. The entries in the matrix form a Euclidean space, however there are many ways to
represent the same tree, so the transformation is not bijective. A “cube” is a matrix where we restrict
ourselves to the 1-off-diagonal entries of the matrix (and leave the rest at infinity) and the transformation
becomes a bijection, but cannot represent all possible trees any more. In this paper, we demonstrate it is
possible to capture the most interesting part of posterior tree space using this approach. We implement
an algorithm for basic phylogenetic models, infer the parameters of the multivariate normal distribution
and show through a well calibrated simulation study that it captures important parameters of interest. We
demonstrate that it scales well.

Representations similar to the cube representation has been used before in phylogenetic inference.
For example, in training neural nets to uncover the epidemiological dynamics of outbreaks (Voznica et al.,
2022), where the “compact bijective ladderised vector” orders taxa so that branch support for taxa on
the left is maximised. Instead of using the distance between taxa, the distance from internal nodes to
the root is used. In MCMC, tree proposals like the “node reheight” operator in *\BEAST (Heled and
Drummond, 2009), order taxa through a tree traversal. At binary splits, the first or second branch is
randomly traversed first, resulting in a random ordering. Then, an internal node is randomly selected,
and its height is randomly moved (constrained by gene tree heights). Finally, a tree is reconstructed to
maintain consistency with the ordering and node heights of internal nodes between taxa. Mau et al. (1999)
refers to this as the “canonical representation” and proposes its use an MCMC proposal as well. This is
equivalent of selecting a cube with random order consistent with the tree, then perturbing a distance in the
matrix and reconstructing the tree.

Matrix and specifically cube representations offer a few other benefits. Many post-hoc analyses such
as ancestral reconstruction, trait inference or phylogeography are performed on a single summary tree,
so these analyses do not take phylogenetic uncertainty in account. Though a cube does not represent
all of tree space, in many situations it captures most of the uncertainty of a posterior distribution, and
allows taking uncertainty in account in post-hoc analyses. Furthermore, our novel way to represent tree
space opens up new avenues to implement online algorithms (Bouckaert et al., 2022), allowing rapid
responses to newly available data. There is also potential for improving summary trees through matrix
representation of a given tree set, as we will demonstrate.

2 METHODS

2.1 Representing trees through a matrix

The main idea is to represent a posterior tree distribution as a distribution over entries of a matrix, and
apply the single links clustering algorithm (Algorithm 1) to obtain a tree. The matrix can be interpreted as
a distance matrix: it must be symmetric, have positive values and the entries on the diagonal are ignored.
So, for a tree with n taxa there are n(n — 1)/2 entries that are relevant: the entries above the diagonal. We
say a matrix entry is specified if it is finite, and unspecified if it is positive infinite. We say a matrix is
valid if the tree associated with it through single link clustering only has finite branch lengths.

Algorithm 1 Single link clustering

Input: n x n matrix M with entries m;;
Let xy,...,x, be ntaxa
V1<i<n initialise subtree as single taxon {x;} at height 0
while There is more than 1 subtree do
Let m;; be minimum of M, where x; and x; in different subtrees
Create node x with height m;;
Add branch between x and root of subtree containing x;
Add branch between x and root of subtree containing x;

Return tree with root at last added node

Some properties of this representation with a short justification:

1. Note that at least n — 1 entries must be specified for a matrix to be valid. This follows from the fact
that there are n — 1 internal nodes in a tree, so the single link clustering algorithm requires at least
n — 1 finite heights to specify a tree.
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Figure 1. Various matrices where x means the entry is specified, and e the entry is unspecified for
n = 6, the associated adjacency graphs for n = 6 and the number of tree topologies they can represent (in
decreasing order).

2. An adjacency graph G over n nodes vy,...,v, can be associated with a matrix M having edges
e;j between v; and v; where ever m;; is specified. A matrix is valid if and only if the associated
adjacency graph is connected. This follows from the fact the single link clustering algorithm uses
entries in the matrix associated with edges in the graph that form a path connecting all nodes. So, it
is possible for a matrix to have n — 1 entries specified, but still not being valid (Fig.1).

3. To represent a distribution over all possible trees, all entries in the matrix must be specified. This
follows from the observation that in the set of all trees, for every pair i, j, i # j of taxa x; and x;
there exists a tree somewhere in the set of all trees such that the pair is connected with the lowest
internal node (that is parent to both taxa). Since such a cherry can only be formed by the distance
in the matrix m;; being the smallest, this implies m;; cannot be infinite, so m;; must be specified.

4. A matrix with n or more entries specified does not form a bijection to trees. Since the single
link algorithm only uses n — 1 entries in the matrix to form the tree, if there are n or more values
specified in the matrix it is possible to change these values and return the same tree. Therefore,
there are multiple ways to represent the same tree with different matrices using hence it cannot be a
bijection.

5. A matrix with n — 1 entries specified forms a bijection to trees when the associated adjacency graph
is connected. This includes the cube representation that we will have a closer look at later.

6. Transforming a tree to a matrix consists of populating the specified entries m;; with height of the
most common recent ancestor of x; and x; in the tree. The single link clustering algorithm then
retrieves the original tree when applied to the matrix.

If all entries in the matrix on the first row are specified (i.e. entries m;; for 1 < j < n) and the
remainder are not specified (Fig.1), all possible caterpillar trees with cherry containing x; can be formed.
Note that there are (n— 1)! topologies that can be formed that way.

If all entries in the matrix that are 1-off-diagonal are specified, the adjacency graph forms a linked chain
and ﬁ (Zn") (the Catalan number) number of topologies can be represented. We call this configuration a
cube. Even though the same number of entries are specified, this is less than for the caterpillar trees, but
will turn out to be more useful in practice. Note that by reordering the taxa it is possible to get the same
kind of adjacency graph containing all nodes in a chain.
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Figure 2. Cube over 5 taxa consisting of a taxon ordering A, B,C, D, E and heights &, for the height
between A and B, height h; for the heights between B and C, h3 for C and D and height iy for D and E.
Dashed lines show how the heights are associated with consecutive pairs of taxa in the taxon ordering.

We will use a multivariate normal distribution N(,X) with mean vector y and covariance matrix X
of dimension k. Here n — 1 < k < n(n—1)/2, where each of the k dimensions is associated with an entry
in the matrix. To estimate y and X for a tree set, simply construct the branch length matrix for each tree
in the set and take the average for each entry (that is specified) and covariance for each pairs of specified
entries.

To get a sample of trees, draw a random sample from this distribution, exponentiate each of the values
and populate the matrix with its values. Then run single link clustering to obtain the tree. Algorithm 2
shows this in more detail.

Algorithm 2 Sample from posterior

Input: Multivariate normal distribution N(i,X) of dimension k

where u the vector of mean values and X the covariance matrix.
Input: list of k matrix entries
Let AAT = ¥ be the Cholesky decomposition of £
Draw k independent standard normal values z = {z;,...,z}
Letx=u+Az
Fill the matrix M with the & entries of exp(x) and leave the rest unspecified
Return tree by applying single link clustering on M

2.2 Cube space

An alternative way to represent a cube configuration in a matrix is to consider an order of the taxa and a
vector that represents the height of the internal nodes between two consecutive taxa in the ordering. Fig.2
illustrates this: the height /2; corresponds to a matrix entry for A and B, the height 4, for B and C etc., this
way forming the cube configuration from the previous subsection. But we can consider this an ordering
A,B,C,D,E and gaps h; to hqy between consecutive nodes in the ordering.

One nice property of cube space is that it only contains n — 1 heights, and forms a bijection under
the single link clustering transformation. However, it is obviously limited in that it cannot represent
all of tree space, our expectation is that it can represent a large part of posterior space. Consider three
taxa, A, B,C ordered alphabetically, then there are three possible topologies: ((A,B),C), (A, (B,C)) and
((A,C),B). The first two are represented in the cube, but the last one is missing, so at least two thirds of
the posterior can be represented. In practice, posteriors will be skewed towards a dominant topology, so
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the first topology may have 60% support, the second 30% and leaving only 10% for the topology that is
missed out. In this three taxon example, this means that 90% of the posterior can be captured. This is
30% better than using a summary tree that would only cover the first topology.

The method for learning a multivariate normal distributions over cube heights is the same as for
matrices.

2.3 Variational Bayesian approach

The application of cube space we are most interested in is Bayesian inference through a variational
Bayesian distribution. To this end, we have to infer the mean vector i and covariance matrix X from an
alignment and phylogenetic model. For each of the parameters of the model, we need a transformation so
that the transformed parameter is normally distributed. We employ the following transformations:

* for scale parameters (like k of the HKY model, birth rate of the Yule model) we use a log-transform.
* for location parameters we use no transform.

* for multi dimensional parameters that are constrained to sum to 1, e.g. frequencies of substitution
models, we use a stick breaking transform (Betancourt, 2012).

* for the tree we use the matrix transform. Note that internal node heights are log-transformed.

Given a phylogenetic model that specifies a tree prior, site model and branch rate model, the parameters
of the model (including the tree) and associated transformations, Algorithm 3 outlines how we can infer
u and X. The strategy is to get a reasonably good value for u first, and infer ¥ afterwards. To this end the
first step is finding a state with high probability, ideally the maximum a posteriori probability (MAP) state,
since it corresponds to the mode of the multivariate normal distribution, and thus should get us reasonably
close to where u should be.

Algorithm 3 Cube-VB

Input: posterior distribution over a set of parameters

Input: set of parameters (including tree) and their transforms

0. Initialise tree by UPGMA

1. Find high posterior state of tree and other parameters

2. Randomly initialise ordering of taxa that is compatible with tree from step 1
3. Sample trees restricted to cube space, using MCMC

4. Estimate g and X based on transformed MCMC samples

The tree is initialised using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) RR
(1958), a hierarchical clustering algorithm that produces a rooted time tree. The topology of the tree and
timing of the tree can potentially be adjusted in the next step.

In our implementation, the tree and all other parameters are then optimised using simulated annealing
(Van Laarhoven et al., 1987). This is a general purpose optimisation algorithm that, like MCMC, randomly
explores the state space, but it differs from MCMC in the acceptance criterion of a proposed state. Higher
posterior proposals are always accepted, and lower posterior proposals are accepted with a probability
proportional to the change in posterior weighted by a temperature that decreases over time. We found that
using a temperature schedule that decreases fairly fast to the end temperature, but repeatedly resets to
the start temperature instead of a long monotonically decreasing temperature allowed escape from local
minima more efficiently. For the proposals used in simulated annealing we can use standard MCMC
operators implemented in BEAST 2.

To complete the cube-transform for the tree, we need a taxon ordering. Different orderings cover
different parts of tree space, so finding a suitable ordering affects the suitability of the representation. This
is a research question that we leave open here, but note that in the implementation using a random order
compatible with the tree turned out to be sufficiently good to accurately infer parameters of interest such
as tree height and tree length.

In order to estimate the covariance matrix X, we will generate a representative sample using MCMC.
Instead of using the standard tree operators in BEAST 2, we replace the topology changing operators with
a pair of operators that ensure the proposed tree can be represented by the cube restricted by the taxon
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ordering from Step 2 of Algorithm 3. The first operators is a variant of the narrow exchange operator (a
nearest neighbour interchange operator that also proposes a new height of the node that is moved) that
ensure it remains within the cube. The second operators is a subtree-slide operator (moves internal node
up or down, potentially causing topology changes) and ensures that the target location is compatible with
the cube ordering.

Based on the short MCMC run, we can transform the MCMC samples and directly estimate y and X
from the set of transformed values. There are many tools for visualising and otherwise post-processing
a posterior based on an MCMC sample, such as Tracer (Rambaut et al., 2018), DensiTree (Bouckaert,
2010), etcetera. Once we obtain i and X, Algorithm 2 can be used to create such a sample.

3 RESULTS

In this section, we validate the matrix and cube representation of tree distributions and show that the
method for learning a cube based variational Bayesian distribution passes well calibrated simulation
studies and we will get an impression of the algorithm’s performance. Finally, we consider using a method
for inferring summary trees.

3.1 Matrices and cubes can accurately represent tree distributions

To validate whether we can accurately represent a tree posterior obtained from a full MCMC run, we
construct the distance matrix for each tree by taking the logarithm of the pairwise taxon path distance, then
estimate the mean and covariance matrix for all relevant entries. Next, we sample a new tree distribution
using Algorithm 2 repeatedly to obtain a new tree sample. We compare clade support and clade height
distribution with the original tree posterior using the CladeSet Comparator from the Babel package!
in BEAST 2.

3.1.1 Apes

Fig.3 shows a small illustrative example of a tree distribution over six apes. There is uncertainty at the root
with 83% support for siamang being outgroup (blue trees in panels b & d), 13% orangutan being outgroup
(red trees) and 4% siamang and orangutan being ougroup (green trees). A cube can only represent two
out of these three cases. By representing the first two, it covers 96% of the posterior distribution, which
for many practical cases may be sufficient.

Representing the third case where both siamang and orangutan are ougroup is possible with a matrix
representation, as shown Fig.3d.

What is striking in both panels a and ¢ in Fig.3 is that the the mean of the clade heights and 95% HPD
intervals are very close. However, clade support is slightly distorted: for the cube, the trees with both
siamang and orangutan as outgroup is completely missing. Since this only covers 4% of the posterior, this
may not be such a big issue in general. The matrix has this clade represented, but instead of the original
83%, 13%, 4% distribution has 59%, 21%, 20% distribution, heavily over representing the siamang and
orangutan as outgroup. This is visible in Fig.3c by the red dots being far from the diagonal. It appears the
correlation matrix does not accurately capture possible non-linear correlations between the entries in the
matrix.

One source of such non-linearities is the tree topology interfering with distance distributions between
pairs of taxa: in a topology ((A,B),C), the distance between A and B and the distance between A and C
can be linearly correlated. And likewise in topology ((A,C),B). But if both topologies are in the tree set
there is no reason the combined correlation to always behave linearly or even approximately linearly. Use
of the minimum function for clade distances in the single link clustering algorithm is another source of
non-linearity. A potential remedy is to use normalising flows (Rezende and Mohamed, 2015) to capture
such non-linearities and provide a more sophisticated transformation between a multi-variate normal
distribution and the associated tree topology.

3.1.2 AARS

A tree distribution with more uncertainty is from aminoacyl-tRNA synthetase (AARS) data for 204 Class
I protozyme sequences (Carter Jr et al., 2022). A convenient way to characterise the uncertainty of a tree
distribution is its entropy Lewis et al. (2016), which can be calculated efficiently based on the conditional
clade distribution (Larget, 2013) of the tree set. The AARS data has an entropy of 124.1, so more than

! Available from https://github.com/rbouckaert /Babell
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Figure 3. Comparing the ape dataset with a cube representation (a & b) and matrix representation (¢ &
d). Plates a & c show clade support in red and clade height in blue. Red dots indicate clade support,
running from zero probability (bottom left corner) to 1 (top right corner). Blue dots are placed at the
mean of the height of a clade. Both x and y axes are scaled so that the largest tree height (from among
both data sets) is at the top right corner. Blue crosses indicate 95% highest probability density (HPD)
intervals of clade height. For both red and blue dots, bigger dots mean more clade support. The x-axis
represent clade values from one set, the y-axis that of another. If both sets are the same, all dots will be on
the x=y line (black diagonal line). The two blue lines indicate there is 20% difference: points within these
lines have less than 20% difference, points outside have more, and can be considered as evidence there is
substantial difference between the two posteriors.

Plates b & d show the original tree set on the left. The trees with most prevalent topology are blue, the
next prevalent red and least prevalent green. Plate (b) on the left shows the cube representation and plate
(d) the matrix representation. A cube accurately represents most clades, but does not cover all clades,
where a matrix can represent all clades but is less accurate in clade support (see text for details).
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Figure 4. Comparing the AARS dataset with a cube representation. a) clade support as in Fig.3 and b)
DensiTree of original and cube tree distribution. Clade support and heights show good correspondence as
does the DensiTree.

226 half of the internal nodes are uncertain. The corresponding cube has an entropy of just 96.3, which shows
227 that a cube representation can have a large entropy, thus representing a highly uncertain tree distribution.
228 Fig.4a shows the clade set comparison for the AARS data, which shows that most of the clades that
229 are supported in the cube have reasonably similar support as in the original tree set. Although there is
230 aclade with 38.9% difference in clade support, and there are 5 other clades with more than 25% clade
231 support difference, the average clade support difference is just 4.9% for clades with over 1% support.
232 Note the set of red dots at the x-axis, which represent the set of clades that are not represented by the
233 cube. Furthermore, clade heights also show very close correspondences: the mean height estimate differs
23 just 2.2%. In summary, the clades match remarkably well given the high entropy of the tree set.

235 Fig.4b shows a DensiTree of the original tree distribution on the left hand side and the cube represen-
236 tation on the right hand side. Visually, the images correspond quite well, confirming the information we
237 have from the clade comparison panel. Note that the cube represents a large number of clades judging
238 from the diversity of trees in the DensiTree as well as the large number of points in the clade comparison
233 plot. Even though a considerable number of clades are missing, the majority of well supported clades are
200 represented by the cube.

21 3.1.3 Pama-Nynguan languages

22 Fig.5 shows another tree distribution, here for 306 Pama-Nynguan languages (Bouckaert et al., 2018)
23 with a large entropy of 91.7 for the original tree distribution and 78.6 for the cube. Fig.5 shows the clade
244 comparison, showing just 3 clades having more than 25% clade support, and two of them are 2 taxon
25 clades. Again, we see good correspondence between original distribution obtained through MCMC and
246 its cube representation.

27 3.1.4 Cichlids

28 A more troublesome example is a tree distribution over 121 Cichlid sequences sourced from (Matschiner
29 etal., 2017). The entropy of the original dataset is 38.4 but that of the cube representation is higher at
20 49.8. Different orderings were tried based on the ordering heuristics in DensiTree, but all of them resulted
251 in a cube representation with significant number of clades having substantially different support.

252 Since the cube representation contains fewer trees, there are fewer terms to contribute to the entropy,
253 and since all terms must add to 1, these terms can be expected to be larger than for the original distribution.
254 Therefore, one would expect entropy of a cube representation to decrease from that of the original tree
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Figure 5. Comparing the Pama-Nyungan dataset with a cube representation. a) clade support as in Fig.3
and b) DensiTree of original and cube tree distribution.

Sequence length: 100 250 500

Mean and 95% HPD  10.6 (5.9-14.6) 6.4 (3.2-104) 3.8 (1.3-6.3)
Entropy

Tree height 95 94 93

Tree treeLength 94 95 96
BirthRate 92 94 94

Kappa 94 90 93

Table 1. Coverage (in %) of 100 runs over 50 taxa with Yule, HKY strict clock for three different
sequence lengths. Longer sequences result in lower entropy, but coverage of the parameters of interest
(last four lines in table) are all in acceptable range.

255 distribution The fact the entropy for the cichlids data increased in the cube representation compared to the
256 original dataset can be interpreted as a hint that the ordering is less than optimal. Optimising orderings is
257 a topic for further research, but this example shows it is crucial for a good tree set representation.

258 Fig.6 shows the clade comparison and DensiTree. There are 23 clades that have more than 25%
259 difference in support and the maximum difference in clade support is 80% for a clade in the original set
260  that is missing from the cube representation. The mean height of clades differ only 0.57%, so correspond
261 quite well. In this case, a cube representation appears to be less satisfactory than in the other examples.

2 3.1.5 Indo-European languages

263 'To demonstrate the cube representation works well for internal nodes, even though tip dates are sampled,
264« we considered a recently published tree distribution over 161 languages (Heggarty et al., 2023). The tree
265 set has an entropy of 42.3,the cube has 36.6.

266 Fig.7 shows the comparison. Maximum difference in clade support is 28.5% but only 2 clades have
27 difference of 25% and on average the clade support difference is 4.1% for clades with more than 1%
26 support. Mean height difference of clades (not counting tip heights) is less than 0.79% on average. So,
269 even though the original distribution has dated tips, and the cube does not, clade support and clade heights
270 remain quite closely represented when compared to the original.
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Figure 6. Comparing the cichlids dataset with a cube representation. a) clade support as in Fig.3 and b)
DensiTree of original and cube tree distribution. Significant number of clades have large difference in
support in the cube representation, though heights of those clades that are captured show good
correspondence.
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Figure 7. Comparing the Indo-European dataset with a cube representation. a) clade support as in Fig.3
and b) DensiTree of original and cube tree distribution. Even with dated tips the cube representation
remains accurate.
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Sequence length: 100 250 500
Mean and 95% HPD  13.1(5.9-15.7) 5.7 (3.0-9.1) 4.7 (1.5-6.5)
Entropy

Tree.height 91 90 97
Tree.treeLength 90 91 97
rateAC 92 95 98
rateAG 100 98 95
rate AT 92 95 94
rateCG 93 96 94
rateGT 92 99 95
freqParameter.1 94 92 96
freqParameter.2 96 92 96
freqParameter.3 95 95 97
freqParameter.4 95 96 98
gammaShape 93 100 97
popSize 90 90 90

Table 2. As Table 1 but for coalescent with constant population, GTR with estimated frequencies using
gamma rate heterogeneity and strict clock for three different sequence lengths. Coverage of the
parameters of interest (last thirteen lines in table) are all in acceptable range.

3.2 Cube-VB algorithm passes well calibrated simulation study

To verify that the cube based variational distribution algorithm works, we performed a well calibrated
simulation study (Mendes et al., 2023; Talts et al., 2018) using a tree with 50 taxa sampled from the Yule
tree prior with birth rate narrowly distributed as normal (mean=6, sigma=0.1). This results in tree heights
with mean 0.58 and 95% HPD of 0.34 to 0.79. Sequence data is generated under a HKY model with kappa
lognormally distributed (mean=1,sigma=1.25), and a strict clock with rate fixed at 1 is used to complete
the model. So, the parameter space being sampled consists of the kappa and birth rate parameters and
a tree. We use sequence lengths of 100, 250 and 500 resulting in observed entropy in the inferred tree
posteriors of 10.6, 6.4 and 3.8 respectively (Table 1). We run 100 instances for each sequence length, and
expect the 95%HPD of parameters of interest to contain the true value from 91 to 99 of the cases for the
test to pass. Table 1 shows the results and the simulation study indeed passes.

A slightly more challenging case is where we sample trees from a coalescent tree prior with constant
population size sampled from a lognormal (mean=0.1, sigma=0.1). The tree heights have a mean of 2.3
with 95% HPD interval of 0.6 to 5.0. We use a site model with gamma rate heterogeneity where the
shape parameter is sampled from an exponential with mean 1, and use a GTR model with rate CT fixed
to 1 and rate AG sampled from a log normal with mean 1 in real space and sigma=1. The other four
transversions rates are sampled from a log normal with mean in real space of 0.5 and sigma=1. Stationary
frequencies for the GTR model were sampled from a Dirichlet with o¢ = 4 for all four dimensions. For
this setup, getting accurate estimates of the uncertainty required running the MCMC a bit longer than for
the case using HKY. Table 2 shows the coverage we get for all paramaters of interest and they are all in an
acceptable range?, although population size coverages were on the low side.

This demonstrates that the cube based variational distribution algorithm can work well estimating a
tree, scale parameters as well as constrained sum parameters (i.e. frequencies) for a number of popular
phylogenetic models. Many model implementations are available in BEAST 2 that only require these
types of parameters, in particular nucleotide and amino acid substitution models.

3.3 Cube based variational distribution algorithm performs well
To see how well the cube based variational distribution algorithm scales with number of taxa, we ran a
simulation study with 50, 100, 250, 500, 750 and 1000 taxa. For each taxon set size, we ran 25 instances

2If the 95% HPD estimates are correct estimates, the simulation study is an experiment of flipping a coin with 95% probability
of turning heads repeated 100 times. Here, observing a head equates finding the true value of a parameter being inside the 95% HPD
interval. This results in a binomial distribution of observing heads on average 95 times and a 95% probability of being within a
range of 91 to 99. Observing almost all coverage values in this range with the occasional outlier at 90 or 100 is deemed acceptable.
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Number of taxa 50 100 250 500 750 1000

MAP finding

MCMC

1.17 (0.03)  1.48 (0.03) 2.36 (0.08) 3.91 (0.08) 5.30 (0.19) 6.43 (0.40)
1.15(0.03) 2.77 (0.05) 12.08 (0.24) 41.84 (0.72) 94.74 (3.29) 172.25(8.24)

Decomposition 0.45(0.01)  0.60 (0.02) 0.93 (0.03) 1.69 (0.04) 2.88 (0.20) 4.47 (0.10)
Sampling output | 0.23 (0.02) 0.36 (0.02) 0.68 (0.02) 1.40 (0.03) 2.18 (0.05) 3.27 (0.15)

Total runtime

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

3.00 (0.05) 5.20(0.08) 16.05(0.27) 48.83(0.79) 105.10(3.33) 186.42 (8.60)

Table 3. Run times in seconds averaged over 25 instances for various taxon set sizes (in columns).
Numbers in brackets are standard deviations.

of the Yule/HKY/strict clock model used for the well calibrated simulation study. For each instance,
alignments of 250 sites were generated. We checked that coverage of 95% HPD intervals for tree height,
tree length, kappa and birth rate parameters was between 22 and 25 to verify that the inferred posterior
indeed matches the true distribution. Experiments were performed on a 2021 MacBook pro laptop in OS
X using BEAST v2.7.5 and BEAGLE v4.0.0 (Suchard and Rambaut, 2009).

Table 3 shows run times in seconds, demonstrating it is feasible to perform large analyses in a short
span of time. Sampling a representative posterior trace and tree log took the least time taking up no
more than 2% of total runtime. MCMC for accurately estimating the covariance matrix took most of the
time, from 40% for smaller taxon sets to over 90% for the larger tree sets. MAP finding and Cholesky
decomposition in comparison took less time and are taking up relatively less time with growing taxon set
sizes.

Total calculation time fits a quadratic function (1.70E — 4x” + 1.43E — 2x) with R> = 0.9997, so the
algorithm seems to scale quadratically. The chain length used are a linear function of the number of taxa,
and tree likelihood calculation time (which dominates posterior calculation time here) both scale linear
in the number of taxa. Changing the former could change how the algorithm scales. The most striking
feature of the table though is that all times can comfortably be expressed in seconds using just three digits
before the decimal point.

3.4 Summary tree

Observe that by setting z = 0 in Algorithm 2 we can obtain a tree that is at the mode of the distribution.
This tree should be representative of the complete distribution so can be used as a summary tree. Note
that it can have a topology that differs from all trees in the tree set to be summarised, unlike popular
methods like the maximum clade credibility (MCC) tree implemented in TreeAnnotator. Table 4 shows
some the sum of posterior clade support in the summary tree for MMC and matrix representation based
summary trees. This is proportional to the number of internal nodes minus the Robinson-Foulds distance
averaged over the tree set. The table shows that matrix based summary tree never produced worse trees
and sometimes does considerably better. The log product of clade probability is used in MCC trees to find
the best fitting topology. Tab 4 shows even according to that criterion the matrix approach can do better,
which is remarkable since MCC explicitly maximises that criterion. Further evaluation with less crude
measures of summary tree quality are required to establish when matrix based summary trees outperform
MCC trees.

4 DISCUSSION

Matrix and cube representations can accurately represent tree distributions: For tree distributions
with low to medium entropy (Lewis et al., 2016) based on its conditional clade distribution (Larget, 2013),
we demonstrated that a substantial part of the posterior can be represented using a single cube. For those
cases it is possible to do fast inference of rooted time trees using a cube based variational distribution
approach outlined in Algorithm 3. For tree distributions with high entropy, it may not be possible to
capture a substantial portion of the posterior by a single cube. An example is a sample over 50 taxa fexgm
Yule prior (Figure S1), where a cube representation will suggest much older internal node heights with
higher clade support than the original distribution. Using more than one cube might elevate this somewhat,
but since there can be overlap between the trees represented by the various cubes, and this overlap is hard
to characterise®, this may not be a fruitful avenue. A more productive way may be to use more entries

3Lars Berling personal correspondence.
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377

Sum of clade Log product of clade
probability probability

Data set MCC Matrix  MCC Matrix
Apes 48 = 4.8 02 = -0.2
IE 1369 < 13809 -350 < -29.2
AARS 1336 < 1429 -1284 < -90.8
Cichlids 91.7 < 93.7 423 < @ -34.7%
NZ votes 267 < 341 -297.1 < -217.6%
Pama-Nyungan 2556 < 2624 -805 < -59.3
Species 275 = 27.5 26 = -2.6

Table 4. Sum and log product of posterior clade support over all clades in the summary tree for MCC
tree and matrix representation based tree. Higher is better. The entries marked with asterisk ignore zero
support clades (1 clade for cichlids, 3 for NZ votes). The matrix approach is never worse and sometimes
considerably better.

in the distance matrix. This breaks the bijective property of the transformation, but facilitates a greater
coverage of the full tree space. This will result increase the non-linearity of dependencies between the
various matrix entries due to correlations changing when topologies change. Normalising flows (Rezende
and Mohamed, 2015) allow for greater flexibility in representing such non-linear dependencies, and may
provide a way to transform a multi-variate normal distribution into a tree distribution.

One situation where node height distributions can deviate significantly from being log-normally
distributed is when node calibrations are used in the tree that interact with each other. For example, clade
A may be known to be at least X years old, so a uniform prior with lower bound of X seems appropriate.
When clade B (consisting of clade A plus 1 node so that the MRCA of B is the parent of the MRCA of A)
is assigned a distribution with a mean not very far above X (with large variance), the age distribution of
the MRCA of B will be lower bounded by X as well. In this case, a log-transform may not be appropriate
for accurate capturing of this distribution, and a matrix representation may fail to accurately capture such
distribution. Again, normalising flows could be employed to address this.

Optimisation based variational Bayesian: Variational Bayesian algorithms are usually optimisation
based, where the evidence lower bound (ELBO) is maximised. The ELBO is proportional to the posterior
plus a term that measures the distance between the true and approximate distribution. The benefit of
maximisation over MCMC is that there are no restrictions on optimisation proposals unlike with MCMC
where one needs to be careful to use appropriate Hastings ratios in order to ensure there is no bias in
sampling from the posterior. One way to optimise the ELBO is by the hugely popular stochastic gradient
ascent algorithm, which randomly draws a new state, calculates the gradient of the ELBO with respect
to a random subset of parameters and moves parameters in the state in the direction of the gradient.
This process is iterated until convergence is reached. However, there are some issues with gradient
ascent: a gradient is required, which can be computationally expensive. Furthermore, it has domain
specific parameters, such as learning rate, learning rate scheme, and parameter subset size. Also, random
subsets may need to be tuned for efficient exploitation of subsets. Finally, the convergence criterion
has large impact on the number of iterations. Since points are drawn stochastically, the convergence
criterion needs to deal with noise. Instead of dealing with all these issues, here we introduced an MCMC
based algorithm to learn a variational distribution that benefits from all MCMC related optimisations
implemented in BEAST 2 (such as adaptive operator tuning). It serves as a proof of concept demonstrating
that cube spaces are suitable for variational inference. Of course, this still leave opportunities for ELBO
maximisation implementations of cube based variational inference.

Cube-VB algorithm parameters: Notwithstanding the issues of ELBO optimisation based VB, the
MCMC based approach to learning a variational distribution we introduced in Algorithm 3 has a number
of parameters that need to be specified, in particular the start and end temperatures and number of repeats
for simulated annealing for finding a (close to) MAP state. We chose a start temperature of 0.1 and end
temperature of 0.01, which worked quite well for our experiments, so this seems a reasonable option.
Putting in more than 25 repeats barely led to improvement of the posterior of the MAP state, but halving
it turned out to be detrimental (well calibrated simulation studies did not pass).
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Another parameter to set is the length of MCMC chain for estimating the covariance matrix. The
heuristic implemented in the cubevb package for BEAST 2 is to count the number of parameters and
multiply with a user specified value. In our experiments with the HKY model, a multiplier of 1000
was sufficient. The more samples, the more accurate the matrix estimate but the longer it takes for the
algorithm to finish. In that sense, it nicely fits the class of online algorithms (Bouckaert et al., 2022)
that at any time can provide an answer, but the answer becomes more accurate the longer the algorithm
runs. Detecting when longer runs do not increase accuracy of the posterior any more is an open question
where automated convergence techniques employed for standard MCMC (Berling et al., 2023) could be
exploited. These are all based on running two analyses in parallel and measuring the difference in the
distributions that are obtained.

Why the Cube-VB algorithm works: Since plain MCMC is used in Algorithm 3 one may wonder
why this is more efficient than just running full MCMC and not being restricted to a cube space. The reason
for this stems from the assumption that the true distribution can be represented as a transformation of a
multivariate normal distribution. Consider the k parameter for the HKY model and a log-transformation.
In practice, we see that x is close to log-normally distributed, so representing the posterior as a normal
with log-transform leads to little distortion. Now notice that we only have to estimate the mean and
variance of the log-normal under this assumption, instead of estimating a full unparameterised distribution,
which is what we would be doing with full MCMC. So, even though a small MCMC sample will not be
sufficient to accurately represent the distribution of x and statistics like 95% HPDs, there will be sufficient
information to accurately estimate two parameters of a log-normal, from which statistics like 95% HPDs
then can accurately be inferred.

Variational Bayesian for matrix representation: The Cube-VB algorithm can be adapted to suitable
matrix representations by replacing Step 2 by some method of identifying which entries in the matrix need
to be specified and which entries can be left unspecified. Step 3 would need adjustment in the operators to
ensure all possible tree topologies that can be represented by the matrix are available to be proposed. It is
an open problem what the best strategy is for identifying which and how many entries should be specified.
Since a cube can capture a substantial part of a posterior, identifying a cube could be a first step followed
by filling in entries where clades represented have

5 CONCLUSION

Matrix space is introduced as a representation of all or, in the case of cubes, a significant part of tree space.
We demonstrated for simple phylogenetic models it allows fast inference of the most relevant part of the
tree posterior using just a cube representation, thus capturing most of the uncertainty in the posterior
distribution.

There are many venues to extend and develop this work, in particular into the area of more sophisticated
phylogenetic models. Here we mention just a few of the more commonly used models and potential issues
implementing inference for them in matrix representation, in particular cubes:

* In general, finding an appropriate subset of pairwise distances, i.e. subset of entries in the matrix,
an obvious open problem. Finding the optimal ordering for a cube is an instance of this problem. It
is probably related to finding a good ordering for drawing trees in DensiTree (Bouckaert, 2010) for
which various heuristics have been developed. It is not clear how to transfer these heuristics to the
VB setting and new heuristics may need to be developed.

* Flexible nonparametric tree priors take epochs in accounts like the Bayesian skyline plot (Drum-
mond et al., 2005) and birth death skyline plot (Stadler et al., 2013) and are widely used but may
be challenging to parameterise in a variational Bayesian setting due to their discrete components.
Models that integrate out most parameters and have only a single continuous parameter, like BI-
CEPS and multi Yule (Bouckaert, 2022), can be good alternatives and should be straightforward to
implement in our cube VB algorithm.

» Relaxed clocks (Drummond et al., 2006; Douglas et al., 2021) need to be adapted for cube space.
Due to discontinuities between different topologies, simply associating a (log)normal branch rate
distribution with each taxon and each dimension of the cube may not be sufficient. Normalising
flows (Rezende and Mohamed, 2015) may be required to capture relaxed branch rate distributions.
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* Dated tips put restrictions on the height of internal nodes. When tip dates are uncertain and need te
be sampled from a distribution, this adds extra dimensions to the multivariate normal representation
of the posterior.

On the other hand, extensions into empirical models of amino acids, models that integrate out internal
states like ancestral reconstruction (Lemey et al., 2009) and phylogeography (Bouckaert, 2016) should be
straightforward to adapt.

In summary, there are many exciting new opportunities waiting to be explored in cube and matrix
space for fast phylogenetic inference.

SOFTWARE AND DATA AVAILABILITY

The software is open source and available as cubevb package to BEAST 2.7 from https://github.
com/rbouckaert/cubevbaswellashttps://doi.org/10.5281/zenodo.10594658 Tree
sets and data used in the well calibrated simulation study, and performance study is available from
https://github.com/rbouckaert/cubevb/releases/tag/v1.0.0|as well ashttps:
//doi.org/10.5281/zenodo.10594658.
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