1 Non-significant influence between aerobic and anaerobic sample transport

2 materials on gut (fecal) microbiota in healthy and fat-metabolic disorder

3 Thai adults

4

- 5 Running Title: Aerobic & anaerobic transport microbiota
- 6
- 7 Naruemon Tunsakul¹, Lampet Wongsaroj², Kantima Janchot³, Krit Pongpirul³, and Naraporn
- 8 Somboonna^{2,4,5,6}*
- 9
- 10 ¹ Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330,
- 11 Thailand
- 12 ² Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok
- 13 10330, Thailand
- 14 ³ Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- 15 ⁴ Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn
- 16 University, Bangkok 10330, Thailand
- 17⁵ Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University,
- 18 Bangkok 10330, Thailand
- 19⁶ Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit,
- 20 Chulalongkorn University, Bangkok 10330, Thailand

21

2	2
2	2

22		
23	* Correspondence, Dr. Naraporn Somboonna, Department of Microbiology, Faculty of	
24	Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand;	
25	email: Naraporn.S@chula.ac.th	
26		
27	Email addresses:	
28	NT: bn.tunsakul@gmail.com	
29	LW: lwongsaroj@gmail.com	
30	KJ: Kantima.janchot@gmail.com	
31	KP: doctorkrit@gmail.com	
32	NS: Naraporn.S@chula.ac.th	
33		
34	Abstract	
35	Background. The appropriate sample handling for human fecal microbiota studies is	
36	essential to prevent changes in bacterial composition and quantities that could lead to	
37	misinterpretation of the data.	
38	Methods. This study firstly identified the potential effect of aerobic and anaerobic fecal	
39	sample collection and transport materials on microbiota and quantitative microbiota in	
40	healthy and fat-metabolic disorder Thai adults aged 23-43 years. We employed	Deleted: , utilizing
41	metagenomics followed by 16S rRNA gene sequencing and 16S rRNA gene qPCR. to	Deleted: . We
42	analyze, taxonomic composition, alpha diversity, beta diversity, bacterial quantification,	Deleted: d
43	Pearson's correlation with clinical factors for fat-metabolic disorder, and the microbial	
44	community and species potential metabolic functions.	

Deleted: . We Deleted: d

	48	Results. Our study successfully obtained microbiota results in percent and quantitative	
ĺ	49	compositions. Each sample exhibited quality sequences with a > 99% Good's coverage index,	Deleted: The quality sequences in e
	50	and <u>a</u> relatively plateau rarefaction curve. Alpha diversity indices showed no statistical	Deleted: ha
ļ	51	difference in percent and quantitative microbiota OTU richness and evenness, between	
	52	aerobic and anaerobic sample transport materials. Obligate and facultative anaerobic species	
	53	were analyzed, and no statistical difference was observed. The beta diversity analysis by non-	Deleted: and also showed not statistically diff
	54	metric multidimensional scale (NMDS) constructed using various beta diversity coefficients	Deleted: Supportively, t
	55	showed resembling microbiota community structures between aerobic and anaerobic sample	
	56	transport groups ($P = 0.86$). On the other hand, the beta diversity could distinguish	
	57	microbiota community structures between healthy and fat-metabolic disorder groups ($P =$	
	58	0.02), along with Pearson's correlated clinical parameters (i.e., age, liver stiffness, GGT,	Deleted: the
ļ	59	BMI, and TC), the significantly associated bacterial species and their microbial metabolic	
ĺ	60	functions. For example, genera such as Ruminococcus and Bifidobacterium in healthy human	Deleted: s, genera such as <i>Ruminococcus</i> and <i>Bifidobacterium</i> in healthy human gut provided
	61	gut provide functions in metabolisms of cofactors and vitamins, biosynthesis of secondary	
ļ	62	metabolites against gut pathogens, energy metabolisms, digestive system, and carbohydrate	
	63	metabolism. These microbial functional characteristics were also predicted as healthy	
	64	individual biomarkers by LEfSe scores. In conclusion, this study demonstrated that aerobic	
	65	sample collection and transport (< 48 hours) did not statistically affect the microbiota and	
	66	quantitative microbiota analyses in alpha and beta diversity measurements. The study also	
ĺ	67	showed that the short-term, aerobic sample collection and transport still allowed fecal	Deleted: aerobic sample collection and transp allowed fecal microbiota differentiations
	68	microbiota differentiation between healthy and fat-metabolic disorder subjects, similar to	Deleted: with
	69	anaerobic sample collection and transport. The core microbiota were analyzed, and the	Deleted: and the findings remained
	70	findings were consistent. Moreover, the microbiota _r related metabolic potentials and bacterial	Deleted: related metabolic potentials and bact biomarkers in healthy and fat-metabolic disordd suggested with statistical bioinformatics (i.e., <i>B</i> <i>plebeiu</i> -related metabolic potentials and bacteri

ferent

port still

Deleted: related metabolic potentials and bacterial species biomarkers in healthy and fat-metabolic disorder were suggested with statistical bioinformatics (i.e., *Bacteroides plebeiu*-related metabolic potentials and bacterial species

86	species biomarkers in healthy and fat-metabolic disorders were suggested with statistical	
87	bioinformatics (i.e., <u>Bacteroides plebeians</u>).	 Formatted: Font: Italic
88		
89	Keywords	
90	Human gut microbiome, Microbiota, 16S rRNA gene sequencing, Bacteria diversity, Aerobic	
91	and anaerobic sample transport, Fecal, Fat-metabolic disease	
92		
02		
93		
94	Introduction	
95	The human intestine (gut) encompasses the complex and dynamic microbial diversity	 Deleted: Human intestine (gut) encompasses the complex
96	of an estimated trillion bacterial cells that are culturable and non-culturable, aerobic and	and dynamic microbial diversity of
07		
97	anaerobic bacteria (<i>HMP Consortium, 2012a; HMP Consortium, 2012b</i>). These bacterial	
98	communities were reported to be diverse among ethnicities, ages, diets, and health statuses.	 Deleted: diverse among ethnics, ages, diets, and health statu
99	To date, the culture-independent microbiota study technique via 16S rRNA gene next-	
100	generation sequencing has been considered a reliable identification method (Reynoso-García	 Deleted: was
101	et al., 2022; HMP Consortium, 2012b).	
102		
103	Microbiota in the human gut plays a vital role in maintaining health through proper fat	 Deleted: Human gut bacterial diversity (microbiota) plays a
104	metabolism, prevention of gut leakage immune responses, and providing essential nutrients	crucial role in a health (symbiosis status), for instances, supporting proper fat metabolisms, gut leakage immune responses, antimicrobials, metabolites, and nutrients such as withouting P and K
105	such as vitamins B and K, antimicrobials, and metabolites.(Reynoso-García et al., 2022;	
106	Valdes et al., 2018). There are several diseases that can affect fat metabolism, cause	 Deleted: Perturbation of the gut microbiota (dysbiosis status) can cause risks to multiple diseases, e.g., fat metabolic disorders, inflammatory bowel disease, autoimmune diseases, lupus erythrematosouserythematosus, and cancer

- 120 inflammation in the bowel or autoimmune responses, trigger lupus erythematosus, or lead to
- 121 <u>cancer.</u> (*Hrncir, 2022*). Lipid metabolism disorders occur when the body improperly
- 122 processes energy from food, leading to harmful lipid deposits in organs and tissues, such as
- 123 the liver, brain, and peripheral blood.(Handzlik et al., 2023; Yan et al., 2023). Studies of
- 124 <u>human gut microbiota are now widely performed using fecal samples and metagenomic 16S</u>
- 125 rRNA gene high-throughput sequencing, providing culture-independent identification of
- 126 <u>bacterial diversity.</u>(Caporaso et al., 2011; Dailey et al., 2019; Kousgaard et al., 2020;
- 127 Human Microbiome Project Consortium, 2012a). Our study compared the influence of
- 128 aerobic and anaerobic sample transport materials on human gut microbiota utilizing this 16S
- 129 rRNA gene profiling technique, and also analyzed if the microbiota differences might affect
- 130 interpretation in healthy and gut disease, in which the fat-metabolic disease is presented as an
- 131 example.
- 132
- 133 Numerous studies have been conducted to explore the effects of different sample Deleted: Many studies have investigated effects of sample collection preservatives and length of sample storage time to guideline fecal sample handling and storage for gut collection preservatives and the duration of sample storage time on fecal samples for gut 134 microbiome analyses. For instances, -80°C was respected a standard choice for long-term (≥ 6 months) sample storage temperature, and a common chemical such as 70% ethanol 135 microbiome analysis. For example, a temperature of -80°C is generally considered as the and ~ 1 week sample storage was reported sufficient for sample preservative while other researches utlizedutilized 136 standard option for long-term storage (≥ 6 months), and commonly used chemicals such as FTA cards and the OMNIgene Gut kit ... 137 70% ethanol and a sample storage time of around 1 week have been reported as sufficient for 138 sample preservation. Some researchers have also employed FTA cards and the OMNIgene 139 Gut kit for the same purpose. (Hsu et al., 2019; Ma et al., 2020; Song et al., 2016; Watson et Formatted: Spanish 140 al., 2019), As the fecal metagenomics could be degraded, the general protocols recommended Deleted: simply Formatted: Spanish 141 cold sample transport (\leq 4°C) within 24-48 h after sample collection (*Gorzelak et al., 2015*; 142 Liang et al., 2020; Moossavi et al., 2019; Song et al., 2016). Our study processed Deleted: thereby

Deleted: Fat (or lipid) metabolism disorders are defined as an improper process of deriving energy from food that causes harmful lipids deposited in the body. These deposited lipids can damage important tissues and organs, e.g. peripheral blood. liver, and brain ...

Deleted: Subsequently, the studies of human gut microbiota using fecal samples and metagenomic 16S rRNA gene highthroughput sequencing have become widely performed, providing the culture-independent bacterial diversity identification ...

Deleted: s

Deleted: when

166	metagenomic extraction immediately after each sample collection and cold transport (within	
167	24 h) to prevent this bias. Moreover, the samples were all transported by the same container	 Deleted: the same container material and method (closed- cap containers and by vehicle) to prevent a possible
168	material and method (closed-cap containers and by vehicle) to prevent possible microbiota	microbiota diversity changes due to a bottle effect and a
169	diversity changes due to a bottle effect and vehicle agitation (Ionescu et al., 2015; Tihanyi-	
170	Kovács et al., 2023). The anaerobic condition was controlled using the AnaeroPack-Anaero	
171	pack (Mitsubishi Gas Chemical, Tokyo, Japan). The effect of aerobic vs. anaerobic sample	
172	transport materials poses an interesting factor for local clinical sample collection settings. In	 Deleted:
173	local clinical settings and/or resource-constrained settings, an anaerobic sample transport	
174	material with the AnaeroPack-Anaero pack or alike is often unattainable, and the samples are	 Deleted: and the samples are collected-transpor
175	collected aerobically in typical sterile closed-cap polypropylene containers without DNA	
176	preservatives (Dore et al., 2015; Wesolowska-Andersen et al., 2014). This partial aerobic	
177	condition may cause oxygen toxicity to extremely oxygen-sensitive bacteria and thus affect	 Deleted: an oxygen toxicity to extremely oxygen-sensitive bacteria.oxygen toxicity to extremely oxygen-sensitive
178	fecal microbiota and quantitative microbiota analyses (Ndongo et al., 2020; Taur et al.,	
179	2018). Some bacteria, i.e. <i>Faecalibacterium</i> spp., were reported to be unable to retain cell	
180	viability for > 2 min of oxygen exposure (Duncan et al., 2002). Limited studies have	 Deleted: A1
181	investigated the impact of aerobic and anaerobic sample transport materials without DNA	 Deleted: an impact of aerobic and anaerobic sample transport materials without DNA preservative
182	preservatives on quantitative microbiota and whether this affects the ability to differentiate	 Deleted: an
183	between healthy and metabolic-disease gut microbial diversity (Fofanov et al., 2018; Jenkins	
184	et al., 2018; Martínez et al., 2019). Our analyses included taxonomic composition, alpha	
185	diversity, beta diversity, bacterial quantification, between aerobic vs. anaerobic and between	
186	healthy vs. fat-metabolic disorder, and included correlation with clinical factors for fat-	 Deleted: ; and included correlation with clinical factors for
187	metabolic disorder and the microbial community and species potential metabolic functions.	

202 Materials and Methods

203 Participant's recruitment, fecal sample collections and metagenomic extraction

204 Nine healthy and eleven fat-metabolic disorder Thai participants, males and females 205 of the age range 24-43 years, were recruited, and all methods used in this study were in 206 accordance with the guidelines by the ethical approval. The Institutional Review Board, 207 Faculty of Medicine, Chulalongkorn University (no. 735/61) granted the ethical approval for 208 the study. Written informed consent was obtained from all participants in this study. Fecal 209 samples of these twenty total subjects were collected in fecal containers with one aerobic and 210 one anaerobic transport material; therefore, there were 20 aerobic transport samples and 20 211 anaerobic transport samples (Fig. 1.). All forty samples were individually metagenomic 212 extracted, 16S rRNA gene sequenced and qPCR for microbiota and quantitative microbiota 213 analyses. In aspect of sample size (N), the statistically required sample size: N = (p (1-p))214 z^2)/e² was computed, given p at an estimated incidence between aerobic vs. anaerobic 215 microbiota difference of 50%, z score of ± 1.44 for 85% confidence interval, and e of 11.5% 216 for margin of error. This yielded an N of 40 (20 aerobic and 20 anaerobic transport samples). 217 218 For aerobic transport material, the fecal container was capped, sealed, and placed in a 219 plastic bag. For anaerobic transport material, the fecal container was capped, sealed, and 220 placed in a plastic bag with the AnaeroPack-Anaero (Mitsubishi Gas Chemical) (< 0.1% O₂ and > 15% CO₂) (van Horn et al., 1997; Wen et al., 2021). The samples were transported on 221 222 the same day of fecal collection at a cold temperature ($\leq 4^{\circ}$ C) and processed immediately 223 within 24 h for metagenomic extraction using DNeasy PowerSoil Pro Kit (Qiagen, Hilden,

Deleted: age range 24-43 years, were recruited

Deleted: ethical approval for the study was granted by the Institutional Review Board, Faculty of Medicine, Chulalongkorn University (no. 735/61)...

Deleted: samples

Deleted: in cold temperature ($\leq 4^{\circ}$ C) and processed immediately within 24 h for metagenomic extraction using DNeasy PowerSoil Pro Kit (Qiagen, Hilden, Germany) followingat a cold temperature ($\leq 4^{\circ}$ C) and processed

- 233 Germany) following the manufacturer's instruction (Wongsaroj et al., 2021; Ondee et al.,
- 234 2022). The metagenomic DNA was qualified and quantified by agarose gel electrophoresis
- and nanodrop spectrophotometry (A260 and A260/A280).

236

237 16S rRNA gene V3-V5 library preparation and MiSeq sequencing

- 238 PCR amplification of the 16S rRNA gene at the V3-V5 region was performed using
- 239 the universal prokaryotic primers 342F (5'-GGRGGCAGCAGTNGGGAA-3') and 895R (5'-
- 240 TGCGDCCGTACTCCCCA-3') with appended barcode and adaptor sequences (HMP,
- 241 2012a; Castelino et al., 2017; Wongsaroj et al., 2021; Dityen et al., 2022). The 342F was
- used elsewhere and the 895R position was shared with the 909R, The in-silico analysis
- 243 revealed that the V3-V5 primers could identify bacteria on phylum/class/order/family levels
- 244 with > 77% efficiency, genus 56.6% and species 21.1% (*Wang & Qian, 2009; HMP, 2012a;*
- 245 Castelino et al., 2017; Johnson et al., 2019; Darwish et al., 2021; Suwarsa et al., 2021;
- 246 Wongsaroj et al., 2021; Dityen et al., 2022). Each PCR reaction comprised 1×
- 247 EmeraldAmp GT PCR Master Mix (TaKaRa, Shiga, Japan), 0.2 μM of each primer, and 50-
- 248 100 ng of the genomic DNA in a total volume of 75 $\mu L.$ The PCR conditions were 94°C 3
- 249 min, and 25 cycles of 94°C 45 s, 50°C 1 min and 72°C 1 min 30 s, followed by 72°C 10 min.
- 250 A minimum of two independent PCR reactions were performed and pooled to prevent PCR
- 251 stochastic bias. Then, the ~640-base pair (bp) amplicon was excised from agarose gel
- 252 resolution and purified using PureDireX PCR Clean-Up & Gel Extraction Kit (Bio-Helix,
- 253 Keelung, Taiwan), and quantified using a Qubit 3.0 Fluorometer and Qubit dsDNA HS Assay
- 254 kit (Invitrogen, Waltham, USA). Finally, 180 ng of each barcoded amplicon product was

Deleted: , and t

260			
261	Quantification of total bacteria copy number		
262	The 16S rRNA gene qPCR was performed to quantify total bacteria in copy unit,		
263	using universal primers 1392F (5'-CGGTGAATACGTTCYCGG-3) and 1492R (5'-		
264	GGTTACCTTGTTAC GACTT-3'), and Quantinova SYBR green PCR Master Mix (Qiagen,		
265	Hilden, Germany) in a 20 μL total volume and 1 ng metagenomic DNA (or reference DNA),		
266	as previously established (Suzuki et al., 2000; Oldham & Duncan 2012; Wongsaroj et al.,		
267	2021). The qPCR thermocycling parameters were 95°C 5 min, followed by 40 cycles of 95°C		
268	5 s and 60°C 10 s. They ended with a 50-99°C melting curve analysis to validate a single	 Delete	:: ,
269	proper amplicon peak (i.e., neither primer-dimer nor non-specific amplification). The		
270	reference for copy number computation was Escherichia coli, in which the ~120-bp 1392F-		
271	1492R amplicon fragments were cloned into pGEM-T-Easy Vector (Promega, Wisconsin,		
272	USA) and the recombinant plasmids were transformed into competent E. coli DH5a for		

pooled for sequencing using the Miseq600 platform (Illumina, San Diego, CA, USA), along

with the sequencing primers and index sequence (Caporaso et al., 2012; Wongsaroj et al.,

2021; Dityen et al., 2022; Ondee et al., 2022), at the Omics Sciences and Bioinformatics

Center, Chulalongkorn University (Bangkok, Thailand).

273 expression (Hanahan et al., 1991). The inserted fragments were verified by colony PCR

256

257

258

259

- 274 using the primers M13F (on vector) and 1492R (inserted fragment). Ten-fold serial dilutions
- of the extracted plasmids $(10^5-10^{10} \text{ copies}/\mu\text{L})$ were used as the reference standard curves in 275
- 276 the bacterial copy number computation as following equation (Smith et al., 2006).

Copy number per $\mu L = \frac{\text{concentration (ng/\mu L)} \times 6.023 \times 10^{23} \text{(copies/mol)}}{\text{length (bp)} \times 6.6 \times 10^{11} \text{(ng/mol)}}$ 277

and

279	The qPCR experiments were performed using Rotor-GeneQ (Qiagen, Hilden,	
280	Germany). Three replicates were conducted per reaction. The bacteria copy number of each	
281	sample was quantified against the reference standard curve by Rotor-Gene Q Series Software	
282	(Qiagen).	
283		
284	Bioinformatic and statistical analyses for bacterial microbiota diversity and potential	
285	metabolisms	
200		
286	Raw sequences (reads) were processed following Mothur 1.39.5's standard operation	
287	procedures for MiSeq (Schloss et al., 2009) (https://github.com/mothur/mothur/releases/),	
288	including removal of (a) reads shorter than 100 nucleotides (nt) excluding primer and barcode	
289	sequences, (b) ambiguous bases \geq 4, (c) chimera sequences, and (d) homopolymer of $>$ 7	
290	homopolymers. The sequences were aligned with the 16S rRNA gene references and	
291	taxonomic database SILVA 13.2 (McDonald et al., 2012), and Greengenes 13.8 (Quast et al.,	
292	2013) to remove lineages of mitochondria, chloroplasts, eukaryotes, and chimera sequences.	Deleted: and
293	Then, the quality sequences were clustered into operational taxonomic units (OTU) with 97%	
294	nt similarity (78% for phylum, 88% order, 91% class, 93% family, 95% genus, and 97%	
295	species) based on naïve Bayesian taxonomic method with default parameters (Wang et al.,	
296	2007; Schloss et al., 2009). Samples were normalized for an equal sequencing depth (7,137	
297	quality sequences per sample). The count of total bacteria copy numbers from the 16S rRNA	
298	gene qPCR data was analyzed along with the percent microbiota composition to yield the	Deleted: ere
299	quantitative microbiota (the bacterial copy number for each individual OTU) (Vandeputte et	
300	al., 2017a; Vandeputte et al., 2017b; Jian et al., 2018; Wongsaroj et al., 2021). Alpha	
301	diversity including Good's coverage index (percent sequence coverage to true estimate),	

304	rarefaction curve, Chao1 richness, inverse Simpson and Shannon diversity; and beta diversity	
305	including Smith theta (Thetan), Sorenson (Sorabund), Morisita-Horn, Yue and Clayton theta	
306	(Thetayc), Bray-Curtis (BC), Jaccard (jclass), and Lennon (Lennon) coefficients, and two-	
307	dimension non-metric multidimensional scaling (NMDS), were computed using Mothur	
308	1.39.5 (Schloss et al., 2009; Schloss, 2020). Estimates of the microbial metabolic profiles	 Deleted: of the microbial metabolic product of the microbial metabolic product of the product
309	were determined by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction	Communities by Reconstruction of Unob on the reference genome annotations in F
310	of Unobserved States) based on the reference genome annotations in KEGG (Kyoto	Encyclopedia of genes and genomes path <i>al.</i> , 2013),
311	Encyclopedia of genes and genomes pathways) and statistically compared by STAMP	
312	(Statistical Analysis of Metagenomic Profiles) (Parks et al., 2014). The differences in	
313	microbial metabolic profiles were further analyzed by linear discriminant analysis effect size	
314	(LEfSe) method with pairwise Kruskal-Wallis and Wilcoxon tests to identify the microbial	
315	metabolic biomarkers representing healthy and disease groups. For general statistics, non-	 Deleted: the
316	parametric multiple <i>t</i> -tests were used, and a <i>P</i> -value < 0.05 was considered significant.	
317		
318	Availability of supporting data	
319	The nucleic acid sequences in this study were deposited in the NCBI open-access	 Deleted: Nucleic acid sequences in this
320	Sequence Read Archive database, accession number PRJNA1020208.	deposited in an NCBI open The nucleic a
321		
	-	
322	Results	
323	16S rRNA gene sequencing results and percent microbiota compositions	
324	The 16S rRNA gene sequencing yielded 2,365,959 total raw sequences (Table S1:	

aerobic sample transport 1,517,643 sequences, and anaerobic sample transport 848,316 325

rofiles wereas Investigation of observed States) based KEGG (Kyoto thways) (Langille et

study were acid sequences in this

335	sequences), and 1,623,517 total quality sequences (aerobic sample transport 1,062,335	
336	sequences, and anaerobic sample transport 561,182 sequences). The average quality	
337	sequences per sample were $40,587 \pm 24,139$ (avg. \pm SD), and the numbers of OTUs ranged 5-	Deleted: as
338	10 at phylum (Table 1: average 6.80 ± 1.22 OTUs), 55-93 genus, and 77-133 species levels,	
339	respectively (Table S1 and Table 1). The number of OTUs at phylum, genus and species	
340	levels were found approximately equal between aerobic and anaerobic sample transports	
341	(Table 1: phylum OTUs 6.55 \pm 1.19 aerobic, 7.05 \pm 1.23 anaerobic; genus OTUs 71.40 \pm	
342	10.45 aerobic, 72.70 \pm 11.29 anaerobic; and species OTUs 101.15 \pm 16.83 aerobic, 101.60 \pm	
343	15.67 anaerobic). Following the successfully high number of quality sequences, the Good's	
344	coverage (estimated percent sequence coverage to true diversity) of all samples were above	
345	99.5% at phylum, genus, and species level OTUs: avg. 100% phylum, 99.82% genus and	
346	99.72% species (Tables 1 and S1). Once data normalization was performed of all samples,	Deleted: performed data normalization of all samples each to the same concerning doubt the Good's assumage.
347	each to the same sequencing depth, the Good's coverages remained average. > 99% and the	remained avgdata normalization was performed of all
348	rarefaction curves were relative plateau (Fig. S1). The data disclosed that the further	
349	microbiota bioinformatic analyses had no bias from various quality sequencing numbers per	
350	sample.	
351		
001		
352	The percent bacterial compositions at phylum, genus, and species levels across all	
353	participants were compared between aerobic vs. anaerobic sample transport materials, and no	
354	statistical difference in the phylum/genus/species was found (AMOVA, $P > 0.05$) (Fig. 2).	Deleted: crc
355	Five <u>major</u> phyla, ranging from Firmicutes as the top abundant (averagely, $52.03 \pm 17.30\%$),	Deleted: mojor
356	Bacteroidetes ($24.32 \pm 14.11\%$), Proteobacteria, Actinobacteria, to Fusobacteria, were	

Bacteroidetes ($24.32 \pm 14.11\%$), Proteobacteria, Actinobacteria, to Fusobacteria, were

363	presented. The latter three phyla accounted for an average < 24%. Twenty-two bacterial		Deleted: avg
364	genera (equating 24 bacterial species OTUs), excluded < 1% genus, or species, were		Deleted: .
365	revealed, and the individual percent genus (or species) was compared between aerobic vs.		
366	anaerobic sample transport materials: no statistical difference were found (t-test, $P > 0.05$)		
367	(Table S2). The OTU compositions indicated no statistical difference in microbiota percents		
368	and compositions at phylum, genus and species levels, between aerobic and anaerobic sample		
369	transport groups.		
370			
271	Overtitative minuchiete composition analyzes between complic and encouchie comple		
371	Quantitative microbiota composition analyses between aerobic and anaerobic sample		
372	transport groups		
373	Following the quantification of bacteria by the universal 16S rRNA gene qPCR, the		
374	number of bacterial counts and the quantitative microbiota compositions could be analyzed.		Deleted: quantity
375	The quantity of bacterial counts was not significantly different between aerobic and anaerobic		Deleted: ere
376	sample transport groups, although slightly lower for the aerobic sample transport group (Fig.		
377	3A: $P = 0.057$). Noted that the relatively low in the aerobic sample transport group was due		Deleted: aerobic sample transport group was due to ID3a and the relatively high in the aerobic sample
378	to ID3a and the relatively high in the anaerobic sample transport group was due to ID1an; if		
379	except these two, the average bacterial counts of both groups will even become closer to each		
380	other and P value increases (Fig. S2).		
381			
382	Next, individual bacterial species corresponding to obligate (or strictly) anaerobes that		Deleted: 5 bacterial species and facultative anaerobes that consisted of five bacterial species and facultative anaerobes
383	consisted of five bacterial species and facultative anaerobes that consisted of three species	\leq	Deleted:
1			Deleted: 3

384 were quantitatively compared. No statistically significant difference in quantity was pointed

Deleted: 3 Deleted: ere

396	in these bacterial species between aerobic and anaerobic sample transport groups (Fig. 3B).
397	In detail, the obligate anaerobic <i>Bacteroides</i> spp. were found most dominated than other Deleted: s
398	obligate anaerobic bacterial genera in both groups and presented in approximately
399	comparable counts, followed by Prevotella, Faecalibacterium, Oscillospira, Bifidobacterium,
400	and the facultative anaerobic Haemophilus, Streptococcus and Enterococcus, respectively.
401	Nonetheless, the slight but non-statistically significant higher counts of obligate anaerobic
402	bacteria were shown, Still, this trend was minute and found inconsistent for facultative Deleted: ed
403	anaerobic bacteria genera (Fig. 3B), highlighting the differences in obligate vs. facultative
404	oxygen requirement effect yet at the non-significant statistic. Overall, the percent microbiota
405	composition and the quantitative microbiota did not demonstrate significant differences
406	between aerobic and anaerobic sample transport materials. Subsequently, the alpha diversity
407	by OTU species richness (OTUs and Chao1) and OTU species diversity (inverse Simpson
408	and Shannon) showed very high P values between 0.3827 and 0.9497 (Fig. 4), and the beta
409	diversity among individual samples belonging to aerobic and anaerobic sample transport
410	groups showed no separate clustering pattern (Fig. 5A). Noted that the detail analyses of
411	alpha diversity at OTU phylum and genus levels were also analyzed, No statistic differences Deleted: and n
412	were found ($P > 0.05$) (Fig. S3). Additionally, other beta diversity coefficients, such as
413	Sorabund, Morisita-Horn, Thetayc and Bray-Curtis, were computed and all dissimilarity
414	coefficient indices did not separate the microbiota community differences between aerobic
415	and anaerobic sample transport groups (Table S3: $P > 0.05$). Meanwhile, we further classified
416	the samples into healthy and unhealthy categories, and the alpha diversities showed relatively Deleted : and the alpha diversities remain
417	no difference between aerobic and anaerobic sample transports (Fig. S3E).

424	Quantitative microbiota analyses between healthy and fat-metabolic disorder groups	
425	When we analyzed the quantitative microbiota structure differences by different beta	
426	diversity coefficients, we found the statistical difference between healthy vs. fat-metabolic	
427	disorder (from now on referred as "unhealthy") groups (Fig. 5B: $P = 0.02$). The differences	
428	were found when considering only aerobic healthy vs. unhealthy, anaerobic healthy vs.	Deleted: cd
429	unhealthy, and combined aerobic+anaerobic healthy ys. unhealthy. Supportively, the clinical	Formatted: Font: Italic
430	parameters corresponding to fat-metabolic disorders demonstrated statistically ($P < 0.05$: age,	
431	liver stiffness, GGT, BMI, TC, AST, ALT, TG, LDL, and CAP) and non-statistically ($P >$	
432	0.05, HDL) associated the same direction with the unhealthy microbiota community structure	
433	(Fig. 5C). Fig. 5D exhibited bacterial species that significantly associated with unhealthy	
434	community structure patterns such as Prevotella, Haemophilus and Bacteroides plebeius; and	
435	healthy community structure such as Bifidobacterium, Ruminococcus and Clostridium.	
436		
437	Furthermore, the low-abundance OTUs of $< 1\%$ and non-shared inter-individual	
438	microbiota were tested and filtered out (remaining as "core microbiota") for the NMDS	
439	analysis. The result remained consistent, demonstrating no statistical difference in	Deleted: demonstrating no statistical difference in quantitative core microbiota between service and anarchic
440	quantitative core microbiota between aerobic and anaerobic sample transport groups (Fig. 5E:	sample transport groups (Fig. 5E: $P = 0.87$), yet the
441	<u>P = 0.87</u>), yet the statistical difference between healthy and unhealthy groups (Fig. 5F: $P =$	
442	0.019). This finding might infer the importance in the core microbiota pattern that aligned the	Deleted: lined the association in the unhealthy microbiota
443	unhealthy microbiota association with the fat-metabolic disorder.	
444		

450	Metabolic function prediction levels via quantitative profiles of prevalent health-	
451	associated bacteria, and microbial metabolic function species biomarkers for healthy	
452	and fat-metabolic disorder groups	
453	The metabolic potentials of the potentially important bacteria were analyzed. These	
454	included Bacteroides, Prevotella, Megamonas, Bifidobacterium, Hemophilus, Clostridium,	
455	Ruminococcus and Pasteurellaceae (Wu, Bushmanc & Lewis, 2013; Schirmer et al., 2019;	
456	Sun et al., 2020; Sabo & Dumitrascu, 2021). The generally most active microbial-related	 Deleted: microbial
457	functions were metabolism pathway (49.92%: primarily amino acid and carbohydrate	
458	metabolisms followed by energy, cofactors and vitamins, lipid and xenobiotics	
459	biodegradation metabolisms), 19.94% in genetic information processing, 16.22% in	
460	environmental information processing, 3.11% cellular process, 0.91% human diseases, 0.65%	
461	organismal systems, and 5.09% poorly characterized. The OTUs of Bacteroides and	
462	Prevotella copri represented the topmost varying functional metabolisms (Fig. 6A).	
463	Meanwhile, the functional redundancy among bacterial OTUs, the relative abundances of	
464	these health-associated bacteria showed the dynamic functions with some distinguished	
465	categories of metabolisms, cellular process, and genetic information processing between	
466	healthy and fat-metabolic disorder groups. For instance, the relatively more abundance of	 Deleted: s, the relatively more abundances of amino acid,
467	amino acids, carbohydrate and energy metabolism functions, cellular processes, genetic	process, genetic information processing, the relatively more
468	information processing, and human diseases were reported in the fat-metabolic disorder	
469	group. Prevotella copri, Prevotella stercorea, and Bacteroides plebeius, were estimated to	 Deleted: and Bacteroides plebeius were estimated to have more diverse and abundant functions in the fat-metabolic
470	have more diverse and abundant functions in the fat-metabolic disorder group, while	disorder group while Bacteroides and Bifidobacterium longum were estimated the more diverse and abundant in
471	Bacteroides and Bifidobacterium longum, were estimated to be more diverse and abundant in	Formatted: Font: Not Italic
1		Formatted: Font: Not Italic

Formatted: Font: Not Italic

the healthy group (Fig. S4). These microbial metabolism differences between groups allowed

481	LEfSe to identify the specific microbial metabolic functions along the bacterial species as the
482	biomarkers to differentiate between healthy ys. fat-metabolic disorder groups, with statistical
483	P values. Prevotella copri and Bacteroides plebeius were the biomarkers for the fat-
484	metabolic disorder, Their microbial metabolic functions included many functions involved in
485	diseases (immune system diseases, metabolic diseases, and neurodegenerative diseases). In
486	contrast, the healthy group showed a greater variety of bacterial species and their associated
487	metabolic functions when compared to the unhealthy group. This supports the existence of
488	diverse microbial-related metabolic functions in the human gut. It was noted that the
489	commonly reported functions were related to metabolism and organismal systems pathways,
490	while the human disease pathway was rare in the healthy group. (Fig. 6B).
491	
492	Discussion

493 As intestine occupies the most number and diversity of bacteria in human body, fecal 494 (gut) microbiome represents the important field to study bacterial interactions with human 495 heath (or diseases). The fat-metabolic disorder represent one common related disorder with 496 fecal microbiota dysbiosis. Due to variation in sample transport materials, especially in local 497 and limited research resource settings, the anaerobic sample transport materials might be 498 utilized. Hence, this study analyzed influences of aerobic and anaerobic sample transport 499 materials on percent composition and quantitative composition of gut microbiota, and also 500 identified whether these influences could affect the interpretation in microbiomes of healthy 501 compared with the fat-metabolic disorder. Further, we could describe the percent and 502 quantitative microbiota differences (including the core microbiota analyses) in heathy and fat-503 metabolic disorder subjects disrespect of aerobic or anaerobic sample transport materials.

Formatted: Font: Italic

Deleted: and t

Deleted: On the other hand, more numbers of bacterial species and their microbial metabolic functions were the biomarkers for the healthy group, supporting the diverse microbial related metabolic functions in healthy human guts; and noted that the commonly reported functions were in metabolism and organismal systems pathways meanwhile the human disease pathway was rare for the healthy group.

5	1	2
~		-

513	Our study successfully obtained microbiota results in percent and quantitative	
514	compositions. The number of quality sequences in each sample allowed reliable Good's	
515	coverage index score for OTU diversity and rarefaction curve. Comparing the entire	
516	microbiota diversity changes (and the core microbiota diversity changes) between the aerobic	
517	and the anaerobic sample transport materials, in both percentages and quantitative counts,	
518	showed no significant difference. Recently, rare species are increasingly recognized to	
519	sometimes present an over-proportional role (Lynch & Josh, 2015; Jousset et al., 2017; Zeng	
520	et al., 2022), our analyses of both the entire microbiota and the core microbiota, in this study	
521	showed consistent reports with the statistic association was found mainly in the dominant	
522	species. No statistical difference in alpha diversity included numbers of OTUs, Chao1	
523	richness, inverse Simpson and Shannon diversity indices, under uncategorized and	
524	categorized healthy-unhealthy conditions.	
525		
526	Analyses of obligate anaerobic and facultative anaerobic bacteria were compared and	
527	still no statistical difference in these bacterial species between the aerobic and anaerobic	
528	sample transport groups. Supportively, the beta diversity analysis by NMDS could not	
529	separate bacterial communities of aerobic from an erobic sample transport groups ($P = 0.86$).	
530	Overall, our study indicated no influence between aerobic and anaerobic sample transport	
531	materials during sample collection and sample transport (provided that the metagenomic	
532	extraction was performed within 2 days) on fecal microbiota and fecal quantitative	
533	microbiota. Our results were consistent with Taguer et al. (2021) that short period of oxygen	
534	exposure did not affect the nucleic acid content and changes of bacterial microbiota.	

Deleted:

536	Moreover, studies reported that the fecal samples for microbiome studies might be kept	
537	without any DNA stabilizer reagent at 4°C for up to 8 weeks and at -20°C for the longer	
538	period (Choo et al., 2015; Song et al., 2016). Some obligate anaerobes could partially reduce	
539	pressure of aerobic (oxygen) environment by consuming oxygen via their bacterial oxidase	
540	enzymes (Baughn & Malamy, 2004), for examples, a conserved cytochrome bd family	
541	enzymes in many bacterial species in phyla Firmicutes, Bacteroidetes, Actinomycetes and	
542	Proteobacteria. This allowed these obligate bacteria tolerate in the presence of oxygen for	
543	several hours (Borisov et al., 2021). Yet, when possible, the minimizing oxygen exposure	
544	remains the gold standard fecal collection and transport (Burz et al., 2019).	
545		
546	Next, we analyzed if these microbiota communities remained associated and able to	
547	be distinguished by a fat-metabolic disorder, an example of well-known disease that could be	
548	affected by the gut microbiota dysbiosis (Rothschild et al., 2018; HMP Consortium, 2012b;	
549	Zheng et al., 2020). The beta diversity analyses by NMDS could distinguish the different	
550	microbiota community structures between healthy and this disease state, and many clinical	
551	factors representing the fat-metabolic disorders (Dominianni et al., 2015; Loo et al., 2017;	
552	Liu et al., 2019a; Xu et al., 2019; Zheng et al., 2020) were statistically correlated with the fat-	
553	metabolic disorder microbiota subjects (from both aerobic and anaerobic sample transport	
554	groups) (e.g. age, liver stiffness, GGT, BMI, and TC). In addition, we could identify the	
555	bacterial OTUs that statistically associated with the healthy vs. fat-metabolic disorder, their	
556	microbial metabolic functions, and the potential biomarkers for bacterial species and	
557	correlated metabolisms in healthy vs. fat-metabolic disorder. For instances, genera such as	
558	Ruminococcus and Bifidobacterium were also reported previously in healthy human gut and	
1		

Deleted: o

560	provided functions in short chain fatty acid producers, metabolisms of cofactors and vitamins,
561	biosynthesis of secondary metabolites against gut bacterial pathogens, energy metabolisms,
562	digestive system, and carbohydrate metabolism (Ze et al., 2012; Christopherson et al., 2014;
563	Matijašić et al., 2014;). Noted that the presence of H. parainfluenzae was reported no
564	negative effect in gut health (Kosikowska et al., 2016; Tanner et al., 2016). In comparatively,
565	the microbial functions involved human disease were rare found in the healthy than the fat-
566	metabolic disorder groups (Fig. 6B), provided that the microbial functional redundancy was
567	reported in the human gut microbiota in coherence with our analysis that found many shared
568	species-function relationship (Figs. 6A and S4) (Vieira-Silva et al., 2016; Tian et al., 2020).
569	
570	For fat-metabolic disorder group, Prevotella copri and Bacteroides plebeius had been
571	reported as potential gut pathogens for cardiac valve calcification and cardiovascular disease
572	(Liu et al., 2019b). However, the prevalence of genus Prevotella could be found in healthy
573	gut, and this genus was reported linked with high-fiber diet consumption (Arumugam et al.,
574	2011). Hence, the reason that we observed this genus correlated with the fat-metabolic
575	disorder could be biased by the subjects' diets and lifestyles, which we did not have
576	information in the study. Furthermore, limitation in this study included a small number of
577	samples, which could hinder the correlation and bacterial species identification of the
578	microbiota and quantitative microbiota with the fat-metabolic disorder.
579	
580	Together, the successful utilization in short-term anaerobic sample collection and
581	transport as the genetic preservation method for the 16S rRNA gene profiling through next

582 generation sequencing and qPCR techniques suggested its expanded use to other

583	metagenomic techniques such as shotgun metagenome sequencing and bacterial genome
584	sequencing. This genetic preservation method should also be valid for virome studies
585	(Gosalbes et al., 2011, Bikel et al., 2020). Nevertheless, we acknowledged possible
586	microbiota diversity changes due to sample transport. For future studies, in addition to the
587	larger sample size for the more significant statistics, one control metagenomic DNA before
588	sample transport (the original fecal sample microbiota) shall be included to confirm no
589	statistical difference between the microbiota in our short-term aerobic transport samples, and
590	the specific analyses of rare species biosphere (e.g. mbDenoise) (Lynch & Josh, 2015;
591	Jousset et al., 2017; Pan 2021; Zeng et al., 2022). A series of > 48 h period of sample
592	collection-transport time shall be included to investigate the possible longer term of sample
593	collection-transport period.

594

595 Conclusions

- 596 The study first analyzed fecal bacterial microbiota and quantitative microbiota, and
- 597 revealed no influence of anaerobic sample transport material on the microbiota and
- 598 quantitative microbiota. This indicated that short-term aerobic sample collection and
- transport does not statistically <u>affect</u> the microbiota analyses, with $\leq 4^{\circ}$ C sample storage and
- sample processing within 48 h are required. Our study aimed to showcase the differences in
- 601 gut microbiota between healthy individuals and those with fat-metabolic disorder. We
- 602 <u>collected samples using both aerobic and anaerobic transport methods and analyzed the</u>
- 603 microbiota's quantitative potential for microbial metabolism and bacterial species biomarkers
- 604 in Thai adult subjects. Although the gut microbiota dysbiosis factor that causes this disease

Deleted: affected

Deleted: Our study could also be able to demonstrate the gut microbiota differences between healthy and fat-metabolic disorder in both aerobic and anaerobic sample transport collections, and analyze quantitative microbiota related microbial metabolic potentials and bacterial species biomarkers in Thai adult subjects. This disease gut microbiota dysbiosis factor exhibited albeit inter-individual human differences like sex, diet patterns and lifestyles...

614	exhibited differences in individuals based on factors such as sex, diet patterns, and lifestyles,
615	we were able to identify commonalities across the subjects tested.
616	
617	Acknowledgments
618	The authors acknowledged Matanee Palasuk, Piraya Chathanathon, Paweena Ouying
619	and Chitrasak Kullapanich for their technical assistance or advice.
620	
621	Authors' Contributions
622	NT performed molecular biology experiments and data analysis, and drafted the
623	manuscript. LW helped molecular biology experiments and data analysis. KJ helped clinical
624	sample collections. KP provided samples. KP and NS advised and conceived the study. NS
625	designed the study, coordinated the experiments and data analysis, and wrote the manuscript.
626	All authors read and approved the final manuscript
627	
628	Conflict of Interest
629	The authors declare no conflict of interest.
630	
631	
632	References
633	Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap

634 J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L,

6.5.5 Hansen I. Hattori M. Havasni I. Kleerebezem M. Kurokawa K. Lecierc M. Lev	635	Hansen T	. Hattori M. Havashi 7	. Kleerebezem M	. Kurokawa K	Leclerc M. Levene
---	-----	----------	------------------------	-----------------	--------------	-------------------

- 636 F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T,
- 637 Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos
- 638 WM, Brunak S, Doré J, Antolín M, Artiguenave F, Blottiere HM, Almeida M,
- 639 Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R,
- 640 Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van
- 641 Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Kristiansen K, Lakhdari O,
- 642 Layec S, Le Roux K, Maguin E, Mérieux A, Melo Minardi R, M'Rini C, Muller J,
- 643 Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A,
- 644 Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J,
- 645 Ehrlich SD, Bork P, and Meta HITC. 2011. Enterotypes of the human gut
- 646 microbiome. *Nature* 473:174-180. doi: 10.1038/nature09944
- 647 Baughn AD, Malamy MH. 2004. The strict anaerobe Bacteroides fragilis grows in and
- 648 benefits from nanomolar concentrations of oxygen. *Nature* 427:441-444. doi:
- 649 10.1038/nature02285
- 650 Bikel S, López-Leal G, Cornejo-Granados F, Gallardo-Becerra L, Garcia-López R, Sánchez
- 651 F, Equihua-Medina E, Ochoa-Romo JP, López-Contreras BE, Canizales-Quinteros S,
- 652 Hernández-Reyna A, Mendoza-Vargas A, Ochoa-Leyva A. 2021. Gut dsDNA virome
- 653 shows diversity and richness alterations associated with childhood obesity and
- 654 metabolic syndrome. *iScience* 24:102900.
- 655 Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. 2021.
- 656 Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique

Formatted: Spanish Formatted: Spanish Field Code Changed Formatted: Spanish

657	Structure,	Function,	and	Utility	As Drug	Targets.	Antioxidants	& Redo:	x Signaling

- 658 34:1280-1318. doi: 10.1089/ars.2020.8039
- 659 Burz SD, Abraham A-L, Fonseca F, David O, Chapron A, Béguet-Crespel F, Cénard S, Le
- 660 Roux K, Patrascu O, Levenez F, Schwintner C, Blottière HM, Béra-Maillet C, Lepage
- 661 P, Doré J, Juste C. 2019. A Guide for Ex Vivo Handling and Storage of Stool Samples
- 662 Intended for Fecal Microbiota Transplantation. *Scientific Reports* 9:8897. doi:
- 663 10.1038/s41598-019-45173-4
- 664 Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D,
- Gajer P, Ravel J, Fierer N, Gordon JI, Knight R. 2011. Moving pictures of the human
 microbiome. *Genome Biology* 12:R50. doi: 10.1186/gb-2011-12-5-r50
- 667 Caporaso, JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM,
- 668 Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-
- 669 high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
- 670 platforms. ISME J 6:1621–1624. doi: 10.1038/ismej.2012.8
- 671 Castelino M, Eyre S, Moat J, Fox G, Martin P, Ho P, Upton M, Barton A. 2017. Optimisation
- 672 of methods for bacterial skin microbiome investigation: primer selection and
- 673 comparison of the 454 versus MiSeq platform. *BMC Microbiology* 17:23. doi:
- 674 10.1186/s12866-017-0927-4
- Choo JM, Leong LEX, Rogers GB. 2015. Sample storage conditions significantly influence
 faecal microbiome profiles. *Scientific Reports* 5:16350. doi: 10.1038/srep16350

- 677 Christopherson MR, Dawson JA, Stevenson DM, Cunningham AC, Bramhacharya S,
- 678 Weimer PJ, Kendziorski C, Suen G. 2014. Unique aspects of fiber degradation by the
- 679 ruminal ethanologen Ruminococcus albus 7 revealed by physiological and
- 680 transcriptomic analysis. *BMC Genomics* 15:1066. doi: 10.1186/1471-2164-15-1066
- 681 Dailey FE, Turse EP, Daglilar E, Tahan V. 2019. The dirty aspects of fecal microbiota
- 682 transplantation: a review of its adverse effects and complications. *Current Opinion in*
- 683 Pharmacology 49:29-33. doi: 10.1016/j.coph.2019.04.008
- 684 Darwish N, Shao J, Schreier LL, Proszkowiec-Weglarz M. 2021. Choice of 16S ribosomal
- RNA primers affects the microbiome analysis in chicken ceca. *Scientific Reports*11:11858. doi: 10.1038/s41598-021-91387-w
- 687 Dityen K, Soonthornchai W, Kueanjinda P, Kullapanich C, Tunsakul N, Somboonna N,
- 688 Wongpiyabovorn J. 2022. Analysis of cutaneous bacterial microbiota of Thai patients
- 689 with seborrheic dermatitis. *Experimental Dermatology* 31:1949-1955. doi:
- 690 10.1111/exd.14674
- 691 Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, Ahn J. 2015. Sex, body mass
- 692 index, and dietary fiber intake influence the human gut microbiome. *PLoS One*
- 693 10:e0124599. doi: 10.1371/journal.pone.0124599
- 694 Dore J, Ehrlich SD, Levenez F, Pelletier E, Alberti A, Bertrand L, Bork P, Costea PI,
- 695 Sunagawa S, Guarner F, Manichanh C, Santiago A, Zhao L, Shen J, Zhang C,
- 696 Versalovic J, Luna RA, Petrosino J, Yang H, Li S, Wang J, Allen-Vercoe E, Gloor G,
- 697 Singh B, International Human Microbiome Standards (IHMS) Consortium. 4
- 698 December 2015. IHMS SOP 02 V1: Standard operating procedure for fecal samples

699	self-collection, laboratory analysis handled within 4 hours (x \leq 4 hours). International
700	Human Microbiome Standards. pages 1-13.
701	Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. 2002. Growth requirements and
702	fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as
703	Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141-
704	2146. doi: 10.1099/00207713-52-6-2141
705	Fofanov VY, Furstenau TN, Sanchez D, Hepp CM, Cocking J, Sobek C, Pagel N, Walker F,
706	Chambers CL. 2018. Guano exposed: Impact of aerobic conditions on bat fecal
707	microbiota. Ecol Evol 8:5563-5574. doi: 10.1002/ece3.4084
708	Gorzelak MA, Gill SK, Tasnim N, Ahmadi-Vand Z, Jay M, Gibson DL. 2015. Methods for
709	Improving Human Gut Microbiome Data by Reducing Variability through Sample
710	Processing and Storage of Stool. PLoS One 10:e0134802. doi:
711	10.1371/journal.pone.0134802
712	Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE,
713	Latorre A, Moya A. (2011) Metatranscriptomic approach to analyze the functional
714	human gut microbiota. PLoS ONE 6: e17447. doi: 10.1371/journal.pone.0017447
715	Hanahan D, Jessee J, Bloom FR. 1991. Plasmid transformation of Escherichia coli and other
716	bacteria. Methods Enzymology 204:63-113. doi: 10.1016/0076-6879(91)04006-a
717	Handzlik MK, Gengatharan JM, Frizzi KE, McGregor GH, Martino C, Rahman G, Gonzalez
718	A, Moreno AM, Green CR, Guernsey LS, Lin T, Tseng P, Ideguchi Y, Fallon RJ,
719	Chaix A, Panda S, Mali P, Wallace M, Knight R, Gantner ML, Calcutt NA, Metallo

720	CM. 2023. I	Insulin-regulated	serine and lipi	id metabolism	drive peri	pheral neuro	pathy.
		8					

- 721 Nature 614:118-124. doi: 10.1038/s41586-022-05637-6
- 722 Hrncir T. 2022. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and
- 723 Therapeutic Options. *Microorganisms* 10. doi: 10.3390/microorganisms10030578
- 724 Hsu YL, Chen CC, Lin YT, Wu WK, Chang LC, Lai CH, Wu MS, Kuo CH. 2019.
- 725 Evaluation and Optimization of Sample Handling Methods for Quantification of
- 726 Short-Chain Fatty Acids in Human Fecal Samples by GC-MS. Journal of Proteome
- 727 Research 18:1948-1957. doi: 10.1021/acs.jproteome.8b00536
- Human Microbiome Project (HMP) Consortium. 2012a. A framework for human microbiome
 research. *Nature* 486:215-221. doi: 10.1038/nature11209
- Human Microbiome Project (HMP) Consortium. 2012b. Structure, function and diversity of
 the healthy human microbiome. *Nature* 486:207-214. doi: 10.1038/nature11234
- 732 Ionescu D, Bizic-Ionescu M, Khalili A, Malekmohammadi R, Morad MR, de Beer D,
- 733 Grossart H. 2015. A new tool for long-term studies of POM-bacteria interactions:
- 734 overcoming the century-old bottle effect. *Scientific Reports* **5**:14706. doi:
- 735 10.1038/srep14706
- 736 Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. 2020. Quantitative PCR
- 737 provides a simple and accessible method for quantitative microbiome profiling. *PLoS*
- 738 ONE 15:e0227285. doi: 10.1371/journal.pone.0227285

739	Jenkins SV, Vang K	B. Gies A	. Griffin RJ	. Jun S-R	. Nookaew I	. Dings RPM.	. 2018. Sample	е
, 0 /	verification of the second sec	-	,	,	,	, <i>D</i> mgo 10 101		-

- 740 storage conditions induce post-collection biases in microbiome profiles. *BMC*
- 741 Microbiology 18:227. doi: 10.1186/s12866-018-1359-5
- 742 Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Chen PDL, Leopold SR, Hanson BM,
- 743 Agresta HO, Gerstein M, Sodergren E, Weinstock GM. 2019. Evaluation of 16S
- rRNA gene sequencing for species and strain-level microbiome analysis. Nature
- 745 Communications 10:5029. doi: 10.1038/s41467-019-13036-1
- 746 Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rilling MC,
- 747 Rivett DW, Salles JF, van der Heijden MGA, Roussef NH, Zhang X, Wei Z, Hol
- 748 WHG. 2017. Where less may be more: how the rare biosphere pulls ecosystems
- 749 strings. *Multidisciplinary Journal of Microbial Ecology* 11:853–862. doi:
- 750 10.1038/ismej.2016.174
- Kosikowska U, Rybojad P, Stępień-Pyśniak D, Żbikowska A, Malm A. 2016. Changes in the
 prevalence and biofilm formation of *Haemophilus influenzae* and *Haemophilus*
- 753 *parainfluenzae* from the respiratory microbiota of patients with sarcoidosis. *BMC*
- 754 Infectious Diseases 16:449. doi: 10.1186/s12879-016-1793-7
- 755 Kousgaard SJ, Michaelsen TY, Nielsen HL, Kirk KF, Brandt J, Albertsen M, Thorlacius-
- 756 Ussing O. 2020. Clinical results and microbiota changes after faecal microbiota
- 757 transplantation for chronic pouchitis: a pilot study. Scandinavian Journal of
- 758 *Gastroenterology* 55:421-429. doi: 10.1080/00365521.2020.1748221
- 759 Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC,
- 760 Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013.

- 762 gene sequences. Nature Biotechnology 31:814-821. doi: 10.1038/nbt.2676
- 763 Liang Y, Dong T, Chen M, He L, Wang T, Liu X, Chang H, Mao J-H, Hang B, Snijders AM,
- 764 Xia Y. 2020. Systematic Analysis of Impact of Sampling Regions and Storage
- 765 Methods on Fecal Gut Microbiome and Metabolome Profiles. *mSphere*
- 766 5:10.1128/msphere.00763-00719. doi: 10.1128/msphere.00763-19
- 767 Liu Y, Ding W, Wang HL, Dai LL, Zong WH, Wang YZ, Bi J, Han W, Dong GJ. 2019a. Gut
- 768 microbiota and obesity-associated osteoarthritis. Osteoarthritis and Cartilage
- 769 27:1257-1265. doi: 10.1016/j.joca.2019.05.009
- T70 Liu Z, Li J, Liu H, Tang Y, Zhan Q, Lai W, Ao L, Meng X, Ren H, Xu D, Zeng Q. 2019b.
- 771 The intestinal microbiota associated with cardiac valve calcification differs from that
- 772 of coronary artery disease. *Atherosclerosis* 284:121-128. doi:
- 773 10.1016/j.atherosclerosis.2018.11.038
- 774 Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, Nakajima-Takagi Y,
- 775 Iwama A, Koga T, Sugimoto Y, Ozawa T, Nakamura M, Kumagai M, Watashi K,
- 776 Taketo MM, Aoki T, Narumiya S, Oshima M, Arita M, Hara E, Ohtani N. 2017. Gut
- 777 Microbiota Promotes Obesity-Associated Liver Cancer through PGE(2)-Mediated
- 778 Suppression of Antitumor Immunity. *Cancer Discovery* 7:522-538. doi:
- 779 10.1158/2159-8290.Cd-16-0932
- 780 Lynch MDJ, Neufeld JD. 2015. Ecology and exploration of the rare biosphere. Nature
- 781 Revuews Microbiology 13:217–229. doi: 10.1038/nrmicro3400

782	Ma J, Sheng L, Hong Y, Xi C, Gu Y, Zheng N, Li M, Chen L, Wu G, Li Y, Yan J, Han R, Li	
783	B, Qiu H, Zhong J, Jia W, Li H. 2020. Variations of Gut Microbiome Profile Under	
784	Different Storage Conditions and Preservation Periods: A Multi-Dimensional	
785	Evaluation. Frontiers in Microbiology 11:972. doi: 10.3389/fmicb.2020.00972	
786	Martínez N, Hidalgo-Cantabrana C, Delgado S, Margolles A, Sánchez B. 2019. Filling the	
787	gap between collection, transport and storage of the human gut microbiota. Scientific	
788	Reports 9:8327. doi: 10.1038/s41598-019-44888-8	
789	Matijašić BB, Obermajer T, Lipoglavšek L, Grabnar I, Avguštin G, Rogelj I. 2014.	
790	Association of dietary type with fecal microbiota in vegetarians and omnivores in	
791	Slovenia. European Journal of Nutrition 53:1051-1064. doi: 10.1007/s00394-013-	
792	0607-6	
793	McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL,	
794	Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit	
795	ranks for ecological and evolutionary analyses of bacteria and archaea. Isme J 6:610-	
796	618. doi: 10.1038/ismej.2011.139	
797	Moossavi S, Engen PA, Ghanbari R, Green SJ, Naqib A, Bishehsari F, Merat S, Poustchi H,	
798	Keshavarzian A, Malekzadeh R. 2019. Assessment of the impact of different fecal	
799	storage protocols on the microbiota diversity and composition: a pilot study. BMC	
800	Microbiology 19:145. doi: 10.1186/s12866-019-1519-2	
801	Ndongo S, Khelaifia S, Lagier J-C, Raoult D. 2020. From anaerobes to aerointolerant	
802	prokaryotes. Human Microbiome Journal 15:100068. doi:	

10.1016/j.humic.2019.100068 803

804	Oldham AL, Duncan KE. 2012. Similar gene estimates from circular and linear standards in

- 805 quantitative PCR analyses using the prokaryotic 16S rRNA gene as a model. *PLoS*
- 806 ONE 7:e51931. doi: 10.1371/journal.pone.0051931
- 807 Ondee T, Pongpirul K, Jancot K, Kanacharoen S, Lertmongkolaksorn T, Wongsaroj L,
- 808 Somboonna N, Ngamwongsatit N, Leelahavanichkul A. 2022. Lactiplantibacillus
- 809 plantarum dfa1 outperforms Enterococcus faecium dfa1 on anti-obesity in high fat-
- 810 induced obesity mice possibly through the differences in gut dysbiosis attenuation,
- 811 despite the similar anti-inflammatory properties. *Nutrients* 14:80. doi:
- 812 10.3390/nu14010080
- Pan AY. 2021. Statistical analysis of microbiome data: the challenge of sparsity. *Current Opinion in Endocrine and Metabolic Research* 19:35-40. doi:
- 815 10.1016/j.coemr.2021.05.005.
- 816 Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of
- 817 taxonomic and functional profiles. *Bioinformatics* 30:3123-3124. doi:
- 818 10.1093/bioinformatics/btu494
- 819 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013.
- 820 The SILVA ribosomal RNA gene database project: improved data processing and
- 821 web-based tools. Nucleic Acids Research 41:D590-596. doi: 10.1093/nar/gks1219
- 822 Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K,
- 823 Sánchez-Rosado M, Díaz-Rivera J, Rosado-Quiñones AM, Acevedo-Márquez L,
- 824 Cruz-Roldán L, Tosado-Rodríguez EL, Figueroa-Gispert MDM, Godoy-Vitorino F.
- 825 2022. A complete guide to human microbiomes: body niches, transmission,

- 827 10.3389/fsysb.2022.951403
- 828 Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI,
- 829 Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner-Fischer
- 830 M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T, Lotan-Pompan M,
- 831 Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav E,
- 832 Segal E. 2018. Environment dominates over host genetics in shaping human gut
- 833 microbiota. *Nature* 555:210-215. doi: 10.1038/nature25973
- 834 Sabo CM, Dumitrascu DL. 2021. Microbiota and the irritable bowel syndrome. Minerva
- 835 *Gastroenterol* 67:377-384. doi: 10.23736/S2724-5985.21.02923-5
- 836 Schirmer M, Garner A, Vlamakis H, Xavier RJ. 2019. Microbial genes and pathways in
- 837 inflammatory bowek disease. *Nature Review Microbiology* 17:497-511. doi:
- 838 10.1038/s41579-019-0213-6
- 839 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
- 840 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV,
- 841 Weber CF. 2009. Introducing mothur: Open-Source, Platform-Independent,
- 842 Community-Supported Software for Describing and Comparing Microbial
- 843 Communities. Applied and Environmental Microbiology 75:7537-7541. doi:
- 844 10.1128/AEM.01541-09
- Schloss, PD. 2020. Reintroducing mothur: 10 years later. *Appl Environ Microbiol* 86:e0234319. doi: 10.1128/AEM.02343-19.

Formatted: Spanish

847	Smith CJ, Nedwell DB, Dong LF	Osborn AM. 2006. Evaluation	of quantitative polymerase
-----	-------------------------------	-----------------------------	----------------------------

- 848 chain reaction-based approaches for determining gene copy and gene transcript
- 849 numbers in environmental samples. *Environmental Microbiology* 8:804-815.
- 850 10.1111/j.1462-2920.2005.00963.x
- 851 Song SJ, Amir A, Metcalf JL, Amato KR, Xu ZZ, Humphrey G, Knight R. 2016.
- 852 Preservation methods differ in fecal microbiome stability, affecting suitability for
- 853 field studies. *mSystems* 1:e00021-16. doi: 10.1128/msystems.00021-16
- 854 Sun Q, Zhu L, Li Y, Cui Y, Jiang S, Tao N, Chen H, Zhao Z, Xu J, Dong C. 2020. A novel
- 855 inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on
- 856 human intestinal microbiota. *Carbohydrate Polymers* 247:116761. doi:
- 857 10.1016/j.carbpol.2020.116761
- 858 Suwarsa O, Hazari MN, Dharmadji HP, Dwiyana RF, Effendi RMRA, Hidayah RMN,
- 859 Avriyanti E, Gunawan H, Sutedja E. 2021. A pilot study: composition and diversity of
- 860 16S rRNA based skin bacterial microbiome in Indonesian atopic dermatitis
- 861 population. *Clinical, Cosmetic and Investigational Dermatology* 14:1737-1744.
- 862 Suzuki MT, Taylor LT, DeLong EF. 2000. Quantitative analysis of small-subunit rRNA
- 863 genes in mixed microbial populations via 5'-nuclease assays. Applied Environmental
- 864 *Microbiology* 66:4605–4614. doi: 10.1128/aem.66.11.4605-4614.2000
- Taguer M, Quillier O, Maurice CF. 2021. Effects of oxygen exposure on relative nucleic acid
 content and membrane integrity in the human gut microbiota. *PeerJ* 9:e10602. doi:
- 867 10.7717/peerj.10602

868	Tanner SA, Chassard C, Rigozzi E, Lacroix C, Stevens MJA. 2016. Bifidobacterium
869	thermophilum RBL67 impacts on growth and virulence gene expression of
870	Salmonella enterica subsp. enterica serovar Typhimurium. BMC Microbiology 16:46.
871	doi: 10.1186/s12866-016-0659-x
872	Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, Littmann ER, Ling L,
873	Miller L, Gyaltshen Y, Fontana E, Morjaria S, Gyurkocza B, Perales MA, Castro-
874	Malaspina H, Tamari R, Ponce D, Koehne G, Barker J, Jakubowski A, Papadopoulos
875	E, Dahi P, Sauter C, Shaffer B, Young JW, Peled J, Meagher RC, Jenq RR, van den
876	Brink MRM, Giralt SA, Pamer EG, Xavier JB. 2018. Reconstitution of the gut
877	microbiota of antibiotic-treated patients by autologous fecal microbiota transplant.
878	Science Translational Medicine 10:eaap9489. doi: 10.1126/scitranslmed.aap9489
879	Tian L, Wang XW, Wu AK, Fan Y, Friedman J, Dahlin A, Waldor MK, Weinstock GM,
000	
000	Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human
881	weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1
881 882	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of
880 881 882 883	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of simulated transport conditions on microbiological properties of bottled natural
881 882 883 884	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of simulated transport conditions on microbiological properties of bottled natural mineral water. <i>Water</i>. 15:1757. doi: 10.3390/w15091757
 880 881 882 883 884 885 	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of simulated transport conditions on microbiological properties of bottled natural mineral water. <i>Water</i>. 15:1757. doi: 10.3390/w15091757 Valdes AM, Walter J, Segal E, Spector TD. 2018. Role of the gut microbiota in nutrition and
 880 881 882 883 884 885 886 	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of simulated transport conditions on microbiological properties of bottled natural mineral water. <i>Water</i>. 15:1757. doi: 10.3390/w15091757 Valdes AM, Walter J, Segal E, Spector TD. 2018. Role of the gut microbiota in nutrition and health. <i>BMJ</i> 361:k2179. doi: 10.1136/bmj.k2179
 880 881 882 883 884 885 886 887 	 Weiss S1, Liu YY. 2020. Deciphering functional redundancy in the human microbiome. <i>Nature Communications</i> 11:6217. doi: 10.1038/s41467-020-19940-1 Tihanyi-Kovács R, Ásványi B, Lakatos E, Bánáti F, Varga L, Böröcz P. 2023. Effect of simulated transport conditions on microbiological properties of bottled natural mineral water. <i>Water</i>. 15:1757. doi: 10.3390/w15091757 Valdes AM, Walter J, Segal E, Spector TD. 2018. Role of the gut microbiota in nutrition and health. <i>BMJ</i> 361:k2179. doi: 10.1136/bmj.k2179 van Horn KG, Warren K, Baccaglini EJ. 1997. Evaluation of the AnaeroPack system for

889 10.1128/jcm.35.8.2170-2173.1997

890	Vandeputte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J,
891	Tito RY, Falony G, Raes J. 2017b. Quantitative microbiome profiling links gut
892	community variation to microbial load. Nature 551:507-511. doi:
893	10.1038/nature24460
894	Vandeputte D, Tito RY, Vanleeuwen R, Falony G, Raes J. 2017. Practical considerations for
895	large-scale gut microbiome studies. FEMS Microbiology Review 41:S154-s167. doi:
896	10.1093/femsre/fux027
897	Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Yunta RG, Okuda S, Vandeputte D,
898	Valles-Colomer M, Hildebrand F, Chaffron S, Raes J. 2016. Species-function
899	relationships shape ecological properties of the human gut microbiome. Nature
900	Microbiology 1:16088. doi: 10.1038/nmicrobiol.2016.88
901	Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid
902	assignment of rRNA sequences into the new bacterial taxonomy. Applied
903	Environmental Microbiology 73:5261-5267. doi: 10.1128/aem.00062-07
904	Wang Y, Qian PY. 2009. Conservative fragments in bacterial 16S rRNA genes and primer
905	design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One
906	4:e7401. doi: 10.1371/journal.pone.0007401
907	Watson EJ, Giles J, Scherer BL, Blatchford P. 2019. Human faecal collection methods
908	demonstrate a bias in microbiome composition by cell wall structure. Scientific
909	Reports 9:16831. doi: 10.1038/s41598-019-53183-5

- 910 Wen J, Wang D, Cheng L, Wu D, Qiu L, Li M, Xie Y, Wu S, Jiang Y, Bai H, Xu B, Lv H.
- 911 2021. The optimization conditions of establishing an H9c2 cardiomyocyte
- 912 hypoxia/reoxygenation injury model based on an AnaeroPack System. Cell Biology
- 913 International 45:757-765. doi: 10.1002/cbin.11513
- 914 Wongsaroj L, Chanabun R, Tunsakul N, Prombutara P, Panha S, Somboonna N. 2021. First
- 915 reported quantitative microbiota in different livestock manures used as organic
- 916 fertilizers in the Northeast of Thailand. *Scientific Reports* 11:102. doi:
- 917 10.1038/s41598-020-80543-3
- 918 Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Pontén T, Gupta R,
- 919 Licht TR. 2014. Choice of bacterial DNA extraction method from fecal material
- 920 influences community structure as evaluated by metagenomic analysis. *Microbiome*
- 921 2:19. doi: 10.1186/2049-2618-2-19
- Wu GD, Bushmanc FD, Lewis JD. 2013. Diet, the human gut microbiota, and IBD. *Anaerobe*24:117-120. doi: 10.1016/j.anaerobe.2013.03.011
- 924 Xu C, Zhu H, and Qiu P. 2019. Aging progression of human gut microbiota. BMC

925 Microbiology 19:236. doi: 10.1186/s12866-019-1616-2

- 926 Yan B, Sun Y, Fu K, Zhang Y, Lei L, Men J, Guo Y, Wu S, Han J, Zhou B. 2023. Effects of
- 927 glyphosate exposure on gut-liver axis: metabolomic and mechanistic analysis in grass
- 928 carp (Ctenopharyngodon idellus). Science of the Total Environment 902:166062. doi:
- 929 10.1016/j.scitotenv.2023.166062

930	Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for	
931	the degradation of resistant starch in the human colon. ISME Journal 6:1535-1543.	
932	doi: 10.1038/ismej.2012.4	
933	Zeng Y, Li J, Wei C, Zhao H, Wang T. 2022. mbDenoise: microbiome data denoising using	
934	zero-inflated probabilistic principal components analysis. Genome Biology 23:94.	
935	https://doi.org/10.1186/s13059-022-02657-3	
936	Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health	
937	and disease. Cell Research 30:492-506. doi: 10.1038/s41422-020-0332-7	
938		
939		
940	Figure Legends	
941	Fig. 1. Schematic diagram of experimental design.	
941 942	Fig. 1. Schematic diagram of experimental design.	
941 942 943	Fig. 1. Schematic diagram of experimental design.Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport	
941 942 943 944	Fig. 1. Schematic diagram of experimental design.Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels.	
941 942 943 944 945	 Fig. 1. Schematic diagram of experimental design. Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels. Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red 	
941 942 943 944 945 946	 Fig. 1. Schematic diagram of experimental design. Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels. Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red (Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink 	
941 942 943 944 945 946 947	Fig. 1. Schematic diagram of experimental design. Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels. Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red (Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink (unclassified bacterial phyla). The OTUs where Mothur could not identify the genus (or	
941 942 943 944 945 946 947 948	Fig. 1. Schematic diagram of experimental design. Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels. Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red (Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink (unclassified bacterial phyla). The OTUs where Mothur could not identify the genus (or species) names were denoted by small letters (o_ abbreviates order; f_, family; g_, genus and	
941 942 943 944 945 946 947 948 949	Fig. 1. Schematic diagram of experimental design. Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels. Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red (Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink (unclassified bacterial phyla). The OTUs where Mothur could not identify the genus (or species) names were denoted by small letters (o_ abbreviates order; f_, family; g_, genus and s_, species) to the deepest taxonomic names that could be identified; k_ abbreviated kingdom	
941 942 943 944 945 946 947 948 949 950	Fig. 1. Schematic diagram of experimental design.Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport groups at phylum, genus and species levels.Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red (Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink (unclassified bacterial phyla). The OTUs where Mothur could not identify the genus (or species) names were denoted by small letters (o_ abbreviates order; f_, family; g_, genus and s_, species) to the deepest taxonomic names that could be identified; k_ abbreviated kingdom bacteria but unclassified phylum; and "Other" represented < 1% phylum (or genus, or	

952	same order as in the barchart OTUs (gray lines in barchart to separate OTU names in each
953	phylum).
954	
955	Fig. 3. Quantification of bacterial counts for (A) average total bacterial counts and (B)
956	average strictly anaerobic and facultative anaerobic bacterial genera, comparing between
957	aerobic and anaerobic sample transport groups.
958	Data were presented as average \pm SD. Statistical differences between groups were tested using
959	Student's <i>t</i> -test ($P < 0.05$), and no statistical difference was found.
960	
961	Fig. 4. Scatter plots showing individual and mean range alpha diversity data at species OTUs
962	of aerobic (filled circle) and anaerobic (empty square) sample transport groups, measured by
963	(A) number of OTUs, (B) Chao1 richness, (C) inverse Simpson diversity, and (D) Shannon
964	evenness.
965	Statistical differences between groups were tested using Student's <i>t</i> -test ($P < 0.05$), and no
966	statistical difference was found: $P > 0.05$.
967	
968	Fig. 5. Non-metric multidimensional scaling (NMDS) constructed from Thetan coefficients
969	displaying beta diversity among quantitative microbiota communities in aspects of (A and E)
970	aerobic and anaerobic sample transport groups and (B-D and F) health and fat-metabolic
971	disorder (denoted "unhealthy") groups.
972	In (A, B, E and F), AMOVA test was performed to determine statistical separation between
973	designated groups ($P < 0.05$). In (C) and (D) showed the Pearson's correlations with health
974	status parameters and the representing bacterial species OTUs, respectively. For species

975	where Mothur could not identify the names, the deepest taxonomic names were presented, A
976	vector direction and length represented the direction and strength of that parameter or OTU to
977	the communities. A red arrow indicated a statistically significant correlation parameter ($P <$
978	0.05), and a black arrow indicated non-statistically significant correlation parameter ($P >$
979	0.05). In (C), GGT abbreviates gamma-glutamyl transferase; BMI, body mass index;
980	stiffness, liver stiffness indicates the non-elasticity of the liver associated fat accumulation;
981	TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TG,
982	triglyceride; LDL, low-density lipoproteins; CAP, controlled attenuation parameter; and
983	HDL, high-density lipoproteins. In (E) and (F), the low-abundance OTUs of $<1\%$ or non-
984	relevant inter-individual microbiota were filtered out (remaining as "core microbiota") for the
985	NMDS analysis.
986	
986 987	Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent
986 987 988	Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect
986 987 988 989	Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for
986 987 988 989 990	Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups.
986 987 988 989 989 990	Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups. Microbial metabolic functions were estimated according to KEGG pathways. In (A), a
986 987 988 989 990 991 992	 Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups. Microbial metabolic functions were estimated according to KEGG pathways. In (A), a different color from nude to tangerine represents the level of quantitative microbial metabolic
986 987 988 989 990 991 992 993	 Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups. Microbial metabolic functions were estimated according to KEGG pathways. In (A), a different color from nude to tangerine represents the level of quantitative microbial metabolic function abundance from absence to the highest presence level (scale in vertical bar chart). In
986 987 988 989 990 991 991 992 993	 Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups. Microbial metabolic functions were estimated according to KEGG pathways. In (A), a different color from nude to tangerine represents the level of quantitative microbial metabolic function abundance from absence to the highest presence level (scale in vertical bar chart). In (B), a numeric in front of KEGG name represents the KEGG pathway category: 1,
986 987 988 989 990 991 991 992 993 994	 Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for healthy or fat-metabolic disorder (denoted "unhealthy") groups. Microbial metabolic functions were estimated according to KEGG pathways. In (A), a different color from nude to tangerine represents the level of quantitative microbial metabolic function abundance from absence to the highest presence level (scale in vertical bar chart). In (B), a numeric in front of KEGG name represents the KEGG pathway category: 1, metabolism; 2, organismal systems; 3, diseases; 4, environmental information processing; 5,

- n processing; an g
- microbial metabolic function markers (ANOVA Welch's test, P < 0.05). 997

Formatted: Font: Times New Roman, 12 pt Formatted: Font: Times New Roman, 12 pt