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Abstract  34 

Background. The appropriate sample handling for human fecal microbiota studies is 35 

essential to prevent changes in bacterial composition and quantities that could lead to 36 

misinterpretation of the data.  37 

Methods. This study firstly identified the potential effect of aerobic and anaerobic fecal 38 

sample collection and transport materials on microbiota and quantitative microbiota in 39 

healthy and fat-metabolic disorder Thai adults aged 23-43 years. We employed 40 

metagenomics followed by 16S rRNA gene sequencing and 16S rRNA gene qPCR, to 41 

analyze taxonomic composition, alpha diversity, beta diversity, bacterial quantification, 42 

Pearson’s correlation with clinical factors for fat-metabolic disorder, and the microbial 43 

community and species potential metabolic functions.  44 
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Results. Our study successfully obtained microbiota results in percent and quantitative 48 

compositions. Each sample exhibited quality sequences with a > 99% Good’s coverage index, 49 

and a relatively plateau rarefaction curve. Alpha diversity indices showed no statistical 50 

difference in percent and quantitative microbiota OTU richness and evenness, between 51 

aerobic and anaerobic sample transport materials. Obligate and facultative anaerobic species 52 

were analyzed, and no statistical difference was observed. The beta diversity analysis by non-53 

metric multidimensional scale (NMDS) constructed using various beta diversity coefficients 54 

showed resembling microbiota community structures between aerobic and anaerobic sample 55 

transport groups (P = 0.86). On the other hand, the beta diversity could distinguish 56 

microbiota community structures between healthy and fat-metabolic disorder groups (P = 57 

0.02), along with Pearson’s correlated clinical parameters (i.e., age, liver stiffness, GGT, 58 

BMI, and TC), the significantly associated bacterial species and their microbial metabolic 59 

functions. For example, genera such as Ruminococcus and Bifidobacterium in healthy human 60 

gut provide functions in metabolisms of cofactors and vitamins, biosynthesis of secondary 61 

metabolites against gut pathogens, energy metabolisms, digestive system, and carbohydrate 62 

metabolism. These microbial functional characteristics were also predicted as healthy 63 

individual biomarkers by LEfSe scores. In conclusion, this study demonstrated that aerobic 64 

sample collection and transport (< 48 hours) did not statistically affect the microbiota and 65 

quantitative microbiota analyses in alpha and beta diversity measurements. The study also 66 

showed that the short-term, aerobic sample collection and transport still allowed fecal 67 

microbiota differentiation between healthy and fat-metabolic disorder subjects, similar to 68 

anaerobic sample collection and transport. The core microbiota were analyzed, and the 69 

findings were consistent. Moreover, the microbiota-related metabolic potentials and bacterial 70 
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species biomarkers in healthy and fat-metabolic disorders were suggested with statistical 86 

bioinformatics (i.e., Bacteroides plebeians).  87 
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 93 

Introduction 94 

The human intestine (gut) encompasses the complex and dynamic microbial diversity 95 

of an estimated trillion bacterial cells that are culturable and non-culturable, aerobic and 96 

anaerobic bacteria (HMP Consortium, 2012a; HMP Consortium, 2012b). These bacterial 97 

communities were reported to be diverse among ethnicities, ages, diets, and health statuses. 98 

To date, the culture-independent microbiota study technique via 16S rRNA gene next-99 

generation sequencing has been considered a reliable identification method (Reynoso-García 100 

et al., 2022; HMP Consortium, 2012b).  101 

 102 

Microbiota in the human gut plays a vital role in maintaining health through proper fat 103 

metabolism, prevention of gut leakage immune responses, and providing essential nutrients 104 

such as vitamins B and K, antimicrobials, and metabolites.(Reynoso-García et al., 2022; 105 

Valdes et al., 2018). There are several diseases that can affect fat metabolism, cause 106 
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inflammation in the bowel or autoimmune responses, trigger lupus erythematosus, or lead to 120 

cancer. (Hrncir, 2022). Lipid metabolism disorders occur when the body improperly 121 

processes energy from food, leading to harmful lipid deposits in organs and tissues, such as 122 

the liver, brain, and peripheral blood.(Handzlik et al., 2023; Yan et al., 2023). Studies of 123 

human gut microbiota are now widely performed using fecal samples and metagenomic 16S 124 

rRNA gene high-throughput sequencing, providing culture-independent identification of 125 

bacterial diversity.(Caporaso et al., 2011; Dailey et al., 2019; Kousgaard et al., 2020; 126 

Human Microbiome Project Consortium, 2012a). Our study compared the influence of 127 

aerobic and anaerobic sample transport materials on human gut microbiota utilizing this 16S 128 

rRNA gene profiling technique, and also analyzed if the microbiota differences might affect 129 

interpretation in healthy and gut disease, in which the fat-metabolic disease is presented as an 130 

example.  131 

 132 

 Numerous studies have been conducted to explore the effects of different sample 133 

collection preservatives and the duration of sample storage time on fecal samples for gut 134 

microbiome analysis. For example, a temperature of -80°C is generally considered as the 135 

standard option for long-term storage (≥ 6 months), and commonly used chemicals such as 136 

70% ethanol and a sample storage time of around 1 week have been reported as sufficient for 137 

sample preservation. Some researchers have also employed FTA cards and the OMNIgene 138 

Gut kit for the same purpose.(Hsu et al., 2019; Ma et al., 2020; Song et al., 2016; Watson et 139 

al., 2019). As the fecal metagenomics could be degraded, the general protocols recommended 140 

cold sample transport (≤ 4°C) within 24-48 h after sample collection (Gorzelak et al., 2015; 141 

Liang et al., 2020; Moossavi et al., 2019; Song et al., 2016). Our study processed 142 
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metagenomic extraction immediately after each sample collection and cold transport (within 166 

24 h) to prevent this bias. Moreover, the samples were all transported by the same container 167 

material and method (closed-cap containers and by vehicle) to prevent possible microbiota 168 

diversity changes due to a bottle effect and vehicle agitation (Ionescu et al., 2015; Tihanyi-169 

Kovács et al., 2023). The anaerobic condition was controlled using the AnaeroPack-Anaero 170 

pack (Mitsubishi Gas Chemical, Tokyo, Japan). The effect of aerobic vs. anaerobic sample 171 

transport materials poses an interesting factor for local clinical sample collection settings. In 172 

local clinical settings and/or resource-constrained settings, an anaerobic sample transport 173 

material with the AnaeroPack-Anaero pack or alike is often unattainable, and the samples are 174 

collected aerobically in typical sterile closed-cap polypropylene containers without DNA 175 

preservatives (Dore et al., 2015; Wesolowska-Andersen et al., 2014). This partial aerobic 176 

condition may cause oxygen toxicity to extremely oxygen-sensitive bacteria and thus affect 177 

fecal microbiota and quantitative microbiota analyses (Ndongo et al., 2020; Taur et al., 178 

2018). Some bacteria, i.e. Faecalibacterium spp., were reported to be unable to retain cell 179 

viability for > 2 min of oxygen exposure (Duncan et al., 2002). Limited studies have 180 

investigated the impact of aerobic and anaerobic sample transport materials without DNA 181 

preservatives on quantitative microbiota and whether this affects the ability to differentiate 182 

between healthy and metabolic-disease gut microbial diversity (Fofanov et al., 2018; Jenkins 183 

et al., 2018; Martínez et al., 2019). Our analyses included taxonomic composition, alpha 184 

diversity, beta diversity, bacterial quantification, between aerobic vs. anaerobic and between 185 

healthy vs. fat-metabolic disorder, and included correlation with clinical factors for fat-186 

metabolic disorder and the microbial community and species potential metabolic functions. 187 

 188 
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Materials and Methods 202 

Participant’s recruitment, fecal sample collections and metagenomic extraction 203 

 Nine healthy and eleven fat-metabolic disorder Thai participants, males and females 204 

of the age range 24-43 years, were recruited, and all methods used in this study were in 205 

accordance with the guidelines by the ethical approval. The Institutional Review Board, 206 

Faculty of Medicine, Chulalongkorn University (no. 735/61) granted the ethical approval for 207 

the study. Written informed consent was obtained from all participants in this study. Fecal 208 

samples of these twenty total subjects were collected in fecal containers with one aerobic and 209 

one anaerobic transport material; therefore, there were 20 aerobic transport samples and 20 210 

anaerobic transport samples (Fig. 1.). All forty samples were individually metagenomic 211 

extracted, 16S rRNA gene sequenced and qPCR for microbiota and quantitative microbiota 212 

analyses. In aspect of sample size (N), the statistically required sample size: N = (p (1-p) 213 

z2)/e2 was computed, given p at an estimated incidence between aerobic vs. anaerobic 214 

microbiota difference of 50%, z score of ± 1.44 for 85% confidence interval, and e of 11.5% 215 

for margin of error. This yielded an N of 40 (20 aerobic and 20 anaerobic transport samples).  216 

 217 

For aerobic transport material, the fecal container was capped, sealed, and placed in a 218 

plastic bag. For anaerobic transport material, the fecal container was capped, sealed, and 219 

placed in a plastic bag with the AnaeroPack-Anaero (Mitsubishi Gas Chemical) (< 0.1% O2 220 

and > 15% CO2) (van Horn et al., 1997; Wen et al., 2021). The samples were transported on 221 

the same day of fecal collection at a cold temperature (≤ 4°C) and processed immediately 222 

within 24 h for metagenomic extraction using DNeasy PowerSoil Pro Kit (Qiagen, Hilden, 223 
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Germany) following the manufacturer’s instruction (Wongsaroj et al., 2021; Ondee et al., 233 

2022). The metagenomic DNA was qualified and quantified by agarose gel electrophoresis 234 

and nanodrop spectrophotometry (A260 and A260/A280).  235 

 236 

16S rRNA gene V3-V5 library preparation and MiSeq sequencing 237 

PCR amplification of the 16S rRNA gene at the V3-V5 region was performed using 238 

the universal prokaryotic primers 342F (5′-GGRGGCAGCAGTNGGGAA-3′) and 895R (5′-239 

TGCGDCCGTACTCCCCA-3′) with appended barcode and adaptor sequences (HMP, 240 

2012a; Castelino et al., 2017; Wongsaroj et al., 2021; Dityen et al., 2022). The 342F was 241 

used elsewhere and the 895R position was shared with the 909R. The in-silico analysis 242 

revealed that the V3-V5 primers could identify bacteria on phylum/class/order/family levels 243 

with > 77% efficiency, genus 56.6% and species 21.1% (Wang & Qian, 2009; HMP, 2012a; 244 

Castelino et al., 2017; Johnson et al., 2019; Darwish et al., 2021; Suwarsa et al., 2021; 245 

Wongsaroj et al., 2021; Dityen et al., 2022). Each PCR reaction comprised 1× 246 

EmeraldAmp GT PCR Master Mix (TaKaRa, Shiga, Japan), 0.2 μM of each primer, and 50-247 

100 ng of the genomic DNA in a total volume of 75 µL. The PCR conditions were 94°C 3 248 

min, and 25 cycles of 94°C 45 s, 50°C 1 min and 72°C 1 min 30 s, followed by 72°C 10 min. 249 

A minimum of two independent PCR reactions were performed and pooled to prevent PCR 250 

stochastic bias. Then, the ~640-base pair (bp) amplicon was excised from agarose gel 251 

resolution and purified using PureDireX PCR Clean-Up & Gel Extraction Kit (Bio-Helix, 252 

Keelung, Taiwan), and quantified using a Qubit 3.0 Fluorometer and Qubit dsDNA HS Assay 253 

kit (Invitrogen, Waltham, USA). Finally, 180 ng of each barcoded amplicon product was 254 
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pooled for sequencing using the Miseq600 platform (Illumina, San Diego, CA, USA), along 256 

with the sequencing primers and index sequence (Caporaso et al., 2012; Wongsaroj et al., 257 

2021; Dityen et al., 2022; Ondee et al., 2022), at the Omics Sciences and Bioinformatics 258 

Center, Chulalongkorn University (Bangkok, Thailand). 259 

 260 

Quantification of total bacteria copy number  261 

The 16S rRNA gene qPCR was performed to quantify total bacteria in copy unit, 262 

using universal primers 1392F (5'-CGGTGAATACGTTCYCGG-3) and 1492R (5′-263 

GGTTACCTTGTTAC GACTT-3′), and Quantinova SYBR green PCR Master Mix (Qiagen, 264 

Hilden, Germany) in a 20 µL total volume and 1 ng metagenomic DNA (or reference DNA), 265 

as previously established (Suzuki et al., 2000; Oldham & Duncan 2012; Wongsaroj et al., 266 

2021). The qPCR thermocycling parameters were 95°C 5 min, followed by 40 cycles of 95°C 267 

5 s and 60°C 10 s. They ended with a 50-99°C melting curve analysis to validate a single 268 

proper amplicon peak (i.e., neither primer-dimer nor non-specific amplification). The 269 

reference for copy number computation was Escherichia coli, in which the ~120-bp 1392F-270 

1492R amplicon fragments were cloned into pGEM-T-Easy Vector (Promega, Wisconsin, 271 

USA) and the recombinant plasmids were transformed into competent E. coli DH5α for 272 

expression (Hanahan et al., 1991). The inserted fragments were verified by colony PCR 273 

using the primers M13F (on vector) and 1492R (inserted fragment). Ten-fold serial dilutions 274 

of the extracted plasmids (105-1010 copies/µL) were used as the reference standard curves in 275 

the bacterial copy number computation as following equation (Smith et al., 2006).  276 

Copy number per μL = 
concentration (ng/μL)	× 6.023×1023(copies/mol)

length (bp) × 6.6×1011(ng/mol)
 277 
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The qPCR experiments were performed using Rotor-GeneQ (Qiagen, Hilden, 279 

Germany). Three replicates were conducted per reaction. The bacteria copy number of each 280 

sample was quantified against the reference standard curve by Rotor-Gene Q Series Software 281 

(Qiagen). 282 

 283 

Bioinformatic and statistical analyses for bacterial microbiota diversity and potential 284 

metabolisms  285 

Raw sequences (reads) were processed following Mothur 1.39.5’s standard operation 286 

procedures for MiSeq (Schloss et al., 2009) (https://github.com/mothur/mothur/releases/), 287 

including removal of (a) reads shorter than 100 nucleotides (nt) excluding primer and barcode 288 

sequences, (b) ambiguous bases ≥ 4, (c) chimera sequences, and (d) homopolymer of > 7 289 

homopolymers. The sequences were aligned with the 16S rRNA gene references and 290 

taxonomic database SILVA 13.2 (McDonald et al., 2012), and Greengenes 13.8 (Quast et al., 291 

2013) to remove lineages of mitochondria, chloroplasts, eukaryotes, and chimera sequences. 292 

Then, the quality sequences were clustered into operational taxonomic units (OTU) with 97% 293 

nt similarity (78% for phylum, 88% order, 91% class, 93% family, 95% genus, and 97% 294 

species) based on naïve Bayesian taxonomic method with default parameters (Wang et al., 295 

2007; Schloss et al., 2009). Samples were normalized for an equal sequencing depth (7,137 296 

quality sequences per sample). The count of total bacteria copy numbers from the 16S rRNA 297 

gene qPCR data was analyzed along with the percent microbiota composition to yield the 298 

quantitative microbiota (the bacterial copy number for each individual OTU) (Vandeputte et 299 

al., 2017a; Vandeputte et al., 2017b;  Jian et al., 2018;Wongsaroj et al., 2021). Alpha 300 

diversity including Good’s coverage index (percent sequence coverage to true estimate), 301 
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rarefaction curve, Chao1 richness, inverse Simpson and Shannon diversity; and beta diversity 304 

including Smith theta (Thetan), Sorenson (Sorabund), Morisita–Horn, Yue and Clayton theta 305 

(Thetayc), Bray-Curtis (BC), Jaccard (jclass), and Lennon (Lennon) coefficients, and two-306 

dimension non-metric multidimensional scaling (NMDS), were computed using Mothur 307 

1.39.5 (Schloss et al., 2009; Schloss, 2020). Estimates of the microbial metabolic profiles 308 

were determined by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction 309 

of Unobserved States) based on the reference genome annotations in KEGG (Kyoto 310 

Encyclopedia of genes and genomes pathways) and statistically compared by STAMP 311 

(Statistical Analysis of Metagenomic Profiles) (Parks et al., 2014). The differences in 312 

microbial metabolic profiles were further analyzed by linear discriminant analysis effect size 313 

(LEfSe) method with pairwise Kruskal–Wallis and Wilcoxon tests to identify the microbial 314 

metabolic biomarkers representing healthy and disease groups. For general statistics, non-315 

parametric multiple t-tests were used, and a P-value < 0.05 was considered significant. 316 

 317 

Availability of supporting data 318 

The nucleic acid sequences in this study were deposited in the NCBI open-access 319 

Sequence Read Archive database, accession number PRJNA1020208. 320 

 321 

Results 322 

16S rRNA gene sequencing results and percent microbiota compositions 323 

The 16S rRNA gene sequencing yielded 2,365,959 total raw sequences (Table S1: 324 

aerobic sample transport 1,517,643 sequences, and anaerobic sample transport 848,316 325 
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sequences), and 1,623,517 total quality sequences (aerobic sample transport 1,062,335 335 

sequences, and anaerobic sample transport 561,182 sequences). The average quality 336 

sequences per sample were 40,587 ± 24,139 (avg. ± SD), and the numbers of OTUs ranged 5-337 

10 at phylum (Table 1: average 6.80 ± 1.22 OTUs), 55-93 genus, and 77-133 species levels, 338 

respectively (Table S1 and Table 1). The number of OTUs at phylum, genus and species 339 

levels were found approximately equal between aerobic and anaerobic sample transports 340 

(Table 1: phylum OTUs 6.55 ± 1.19 aerobic, 7.05 ± 1.23 anaerobic; genus OTUs 71.40 ± 341 

10.45 aerobic, 72.70 ± 11.29 anaerobic; and species OTUs 101.15 ± 16.83 aerobic, 101.60 ± 342 

15.67 anaerobic). Following the successfully high number of quality sequences, the Good’s 343 

coverage (estimated percent sequence coverage to true diversity) of all samples were above 344 

99.5% at phylum, genus, and species level OTUs: avg. 100% phylum, 99.82% genus and 345 

99.72% species (Tables 1 and S1). Once data normalization was performed of all samples, 346 

each to the same sequencing depth, the Good’s coverages remained average. > 99% and the 347 

rarefaction curves were relative plateau (Fig. S1). The data disclosed that the further 348 

microbiota bioinformatic analyses had no bias from various quality sequencing numbers per 349 

sample.  350 

 351 

  The percent bacterial compositions at phylum, genus, and species levels across all 352 

participants were compared between aerobic vs. anaerobic sample transport materials, and no 353 

statistical difference in the phylum/genus/species was found (AMOVA, P > 0.05) (Fig. 2). 354 

Five major phyla, ranging from Firmicutes as the top abundant (averagely, 52.03 ± 17.30%), 355 

Bacteroidetes (24.32 ± 14.11%), Proteobacteria, Actinobacteria, to Fusobacteria, were 356 
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presented. The latter three phyla accounted for an average < 24%. Twenty-two bacterial 363 

genera (equating 24 bacterial species OTUs), excluded < 1% genus, or species, were 364 

revealed, and the individual percent genus (or species) was compared between aerobic vs. 365 

anaerobic sample transport materials: no statistical difference were found (t-test, P > 0.05) 366 

(Table S2). The OTU compositions indicated no statistical difference in microbiota percents 367 

and compositions at phylum, genus and species levels, between aerobic and anaerobic sample 368 

transport groups.  369 

 370 

Quantitative microbiota composition analyses between aerobic and anaerobic sample 371 

transport groups 372 

Following the quantification of bacteria by the universal 16S rRNA gene qPCR, the 373 

number of bacterial counts and the quantitative microbiota compositions could be analyzed. 374 

The quantity of bacterial counts was not significantly different between aerobic and anaerobic 375 

sample transport groups, although slightly lower for the aerobic sample transport group (Fig. 376 

3A: P = 0.057). Noted that the relatively low in the aerobic sample transport group was due 377 

to ID3a and the relatively high in the anaerobic sample transport group was due to ID1an; if 378 

except these two, the average bacterial counts of both groups will even become closer to each 379 

other and P value increases (Fig. S2). 380 

 381 

Next, individual bacterial species corresponding to obligate (or strictly) anaerobes that 382 

consisted of five bacterial species and facultative anaerobes that consisted of three species 383 

were quantitatively compared. No statistically significant difference in quantity was pointed 384 
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in these bacterial species between aerobic and anaerobic sample transport groups (Fig. 3B). 396 

In detail, the obligate anaerobic Bacteroides spp. were found most dominated than other 397 

obligate anaerobic bacterial genera in both groups and presented in approximately 398 

comparable counts, followed by Prevotella, Faecalibacterium, Oscillospira, Bifidobacterium, 399 

and the facultative anaerobic Haemophilus, Streptococcus and Enterococcus, respectively. 400 

Nonetheless, the slight but non-statistically significant higher counts of obligate anaerobic 401 

bacteria were shown. Still, this trend was minute and found inconsistent for facultative 402 

anaerobic bacteria genera (Fig. 3B), highlighting the differences in obligate vs. facultative 403 

oxygen requirement effect yet at the non-significant statistic. Overall, the percent microbiota 404 

composition and the quantitative microbiota did not demonstrate significant differences 405 

between aerobic and anaerobic sample transport materials. Subsequently, the alpha diversity 406 

by OTU species richness (OTUs and Chao1) and OTU species diversity (inverse Simpson 407 

and Shannon) showed very high P values between 0.3827 and 0.9497 (Fig. 4), and the beta 408 

diversity among individual samples belonging to aerobic and anaerobic sample transport 409 

groups showed no separate clustering pattern (Fig. 5A). Noted that the detail analyses of 410 

alpha diversity at OTU phylum and genus levels were also analyzed. No statistic differences 411 

were found (P > 0.05) (Fig. S3). Additionally, other beta diversity coefficients, such as 412 

Sorabund, Morisita-Horn, Thetayc and Bray-Curtis, were computed and all dissimilarity 413 

coefficient indices did not separate the microbiota community differences between aerobic 414 

and anaerobic sample transport groups (Table S3: P > 0.05). Meanwhile, we further classified 415 

the samples into healthy and unhealthy categories, and the alpha diversities showed relatively 416 

no difference between aerobic and anaerobic sample transports (Fig. S3E).  417 

 418 

Deleted: s419 

Deleted: ed420 
Deleted: , but421 

Deleted:  and n422 

Deleted:  and the alpha diversities remain423 



Quantitative microbiota analyses between healthy and fat-metabolic disorder groups 424 

 When we analyzed the quantitative microbiota structure differences by different beta 425 

diversity coefficients, we found the statistical difference between healthy vs. fat-metabolic 426 

disorder (from now on referred as “unhealthy”) groups (Fig. 5B: P = 0.02). The differences 427 

were found when considering only aerobic healthy vs. unhealthy, anaerobic healthy vs. 428 

unhealthy, and combined aerobic+anaerobic healthy vs. unhealthy. Supportively, the clinical 429 

parameters corresponding to fat-metabolic disorders demonstrated statistically (P < 0.05: age, 430 

liver stiffness, GGT, BMI, TC, AST, ALT, TG, LDL, and CAP) and non-statistically (P > 431 

0.05, HDL) associated the same direction with the unhealthy microbiota community structure 432 

(Fig. 5C). Fig. 5D exhibited bacterial species that significantly associated with unhealthy 433 

community structure patterns such as Prevotella, Haemophilus and Bacteroides plebeius; and 434 

healthy community structure such as Bifidobacterium, Ruminococcus and Clostridium. 435 

 436 

 Furthermore, the low-abundance OTUs of < 1% and non-shared inter-individual 437 

microbiota were tested and filtered out (remaining as “core microbiota”) for the NMDS 438 

analysis. The result remained consistent, demonstrating no statistical difference in 439 

quantitative core microbiota between aerobic and anaerobic sample transport groups (Fig. 5E: 440 

P = 0.87), yet the statistical difference between healthy and unhealthy groups (Fig. 5F: P = 441 

0.019). This finding might infer the importance in the core microbiota pattern that aligned the 442 

unhealthy microbiota association with the fat-metabolic disorder. 443 

 444 
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Metabolic function prediction levels via quantitative profiles of prevalent health-450 

associated bacteria, and microbial metabolic function species biomarkers for healthy 451 

and fat-metabolic disorder groups 452 

 The metabolic potentials of the potentially important bacteria were analyzed. These 453 

included Bacteroides, Prevotella, Megamonas, Bifidobacterium, Hemophilus, Clostridium, 454 

Ruminococcus and Pasteurellaceae (Wu, Bushmanc & Lewis, 2013; Schirmer et al., 2019; 455 

Sun et al., 2020; Sabo & Dumitrascu, 2021). The generally most active microbial-related 456 

functions were metabolism pathway (49.92%: primarily amino acid and carbohydrate 457 

metabolisms followed by energy, cofactors and vitamins, lipid and xenobiotics 458 

biodegradation metabolisms), 19.94% in genetic information processing, 16.22% in 459 

environmental information processing, 3.11% cellular process, 0.91% human diseases, 0.65% 460 

organismal systems, and 5.09% poorly characterized. The OTUs of Bacteroides and 461 

Prevotella copri represented the topmost varying functional metabolisms (Fig. 6A). 462 

Meanwhile, the functional redundancy among bacterial OTUs, the relative abundances of 463 

these health-associated bacteria showed the dynamic functions with some distinguished 464 

categories of metabolisms, cellular process, and genetic information processing between 465 

healthy and fat-metabolic disorder groups. For instance, the relatively more abundance of 466 

amino acids, carbohydrate and energy metabolism functions, cellular processes, genetic 467 

information processing, and human diseases were reported in the fat-metabolic disorder 468 

group. Prevotella copri, Prevotella stercorea, and Bacteroides plebeius were estimated to 469 

have more diverse and abundant functions in the fat-metabolic disorder group, while 470 

Bacteroides and Bifidobacterium longum were estimated to be more diverse and abundant in 471 

the healthy group (Fig. S4). These microbial metabolism differences between groups allowed 472 
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LEfSe to identify the specific microbial metabolic functions along the bacterial species as the 481 

biomarkers to differentiate between healthy vs. fat-metabolic disorder groups, with statistical 482 

P values. Prevotella copri and Bacteroides plebeius were the biomarkers for the fat-483 

metabolic disorder. Their microbial metabolic functions included many functions involved in 484 

diseases (immune system diseases, metabolic diseases, and neurodegenerative diseases). In 485 

contrast, the healthy group showed a greater variety of bacterial species and their associated 486 

metabolic functions when compared to the unhealthy group. This supports the existence of 487 

diverse microbial-related metabolic functions in the human gut. It was noted that the 488 

commonly reported functions were related to metabolism and organismal systems pathways, 489 

while the human disease pathway was rare in the healthy group. (Fig. 6B). 490 

 491 

Discussion 492 

As intestine occupies the most number and diversity of bacteria in human body, fecal 493 

(gut) microbiome represents the important field to study bacterial interactions with human 494 

heath (or diseases). The fat-metabolic disorder represent one common related disorder with 495 

fecal microbiota dysbiosis. Due to variation in sample transport materials, especially in local 496 

and limited research resource settings, the anaerobic sample transport materials might be 497 

utilized. Hence, this study analyzed influences of aerobic and anaerobic sample transport 498 

materials on percent composition and quantitative composition of gut microbiota, and also 499 

identified whether these influences could affect the interpretation in microbiomes of healthy 500 

compared with the fat-metabolic disorder. Further, we could describe the percent and 501 

quantitative microbiota differences (including the core microbiota analyses) in heathy and fat-502 

metabolic disorder subjects disrespect of aerobic or anaerobic sample transport materials.  503 
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 512 

Our study successfully obtained microbiota results in percent and quantitative 513 

compositions. The number of quality sequences in each sample allowed reliable Good’s 514 

coverage index score for OTU diversity and rarefaction curve. Comparing the entire 515 

microbiota diversity changes (and the core microbiota diversity changes) between the aerobic 516 

and the anaerobic sample transport materials, in both percentages and quantitative counts, 517 

showed no significant difference. Recently, rare species are increasingly recognized to 518 

sometimes present an over-proportional role (Lynch & Josh, 2015; Jousset et al., 2017; Zeng 519 

et al., 2022), our analyses of both the entire microbiota and the core microbiota in this study 520 

showed consistent reports with the statistic association was found mainly in the dominant 521 

species. No statistical difference in alpha diversity included numbers of OTUs, Chao1 522 

richness, inverse Simpson and Shannon diversity indices, under uncategorized and 523 

categorized healthy-unhealthy conditions.  524 

 525 

Analyses of obligate anaerobic and facultative anaerobic bacteria were compared and 526 

still no statistical difference in these bacterial species between the aerobic and anaerobic 527 

sample transport groups. Supportively, the beta diversity analysis by NMDS could not 528 

separate bacterial communities of aerobic from anaerobic sample transport groups (P = 0.86). 529 

Overall, our study indicated no influence between aerobic and anaerobic sample transport 530 

materials during sample collection and sample transport (provided that the metagenomic 531 

extraction was performed within 2 days) on fecal microbiota and fecal quantitative 532 

microbiota. Our results were consistent with Taguer et al. (2021) that short period of oxygen 533 

exposure did not affect the nucleic acid content and changes of bacterial microbiota. 534 
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Moreover, studies reported that the fecal samples for microbiome studies might be kept 536 

without any DNA stabilizer reagent at 4oC for up to 8 weeks and at -20oC for the longer 537 

period (Choo et al., 2015; Song et al., 2016). Some obligate anaerobes could partially reduce 538 

pressure of aerobic (oxygen) environment by consuming oxygen via their bacterial oxidase 539 

enzymes (Baughn & Malamy, 2004), for examples, a conserved cytochrome bd family 540 

enzymes in many bacterial species in phyla Firmicutes, Bacteroidetes, Actinomycetes and 541 

Proteobacteria. This allowed these obligate bacteria tolerate in the presence of oxygen for 542 

several hours (Borisov et al., 2021). Yet, when possible, the minimizing oxygen exposure 543 

remains the gold standard fecal collection and transport (Burz et al., 2019). 544 

 545 

Next, we analyzed if these microbiota communities remained associated and able to 546 

be distinguished by a fat-metabolic disorder, an example of well-known disease that could be 547 

affected by the gut microbiota dysbiosis (Rothschild et al., 2018; HMP Consortium, 2012b; 548 

Zheng et al., 2020). The beta diversity analyses by NMDS could distinguish the different 549 

microbiota community structures between healthy and this disease state, and many clinical 550 

factors representing the fat-metabolic disorders (Dominianni et al., 2015; Loo et al., 2017; 551 

Liu et al., 2019a; Xu et al., 2019; Zheng et al., 2020) were statistically correlated with the fat-552 

metabolic disorder microbiota subjects (from both aerobic and anaerobic sample transport 553 

groups) (e.g. age, liver stiffness, GGT, BMI, and TC). In addition, we could identify the 554 

bacterial OTUs that statistically associated with the healthy vs. fat-metabolic disorder, their 555 

microbial metabolic functions, and the potential biomarkers for bacterial species and 556 

correlated metabolisms in healthy vs. fat-metabolic disorder. For instances, genera such as 557 

Ruminococcus and Bifidobacterium were also reported previously in healthy human gut and 558 Deleted: o559 



provided functions in short chain fatty acid producers, metabolisms of cofactors and vitamins, 560 

biosynthesis of secondary metabolites against gut bacterial pathogens, energy metabolisms, 561 

digestive system, and carbohydrate metabolism (Ze et al., 2012; Christopherson et al., 2014; 562 

Matijašić et al., 2014;). Noted that the presence of H. parainfluenzae was reported no 563 

negative effect in gut health (Kosikowska et al., 2016; Tanner et al., 2016). In comparatively, 564 

the microbial functions involved human disease were rare found in the healthy than the fat-565 

metabolic disorder groups (Fig. 6B), provided that the microbial functional redundancy was 566 

reported in the human gut microbiota in coherence with our analysis that found many shared 567 

species-function relationship (Figs. 6A and S4) (Vieira-Silva et al., 2016; Tian et al., 2020).  568 

 569 

For fat-metabolic disorder group, Prevotella copri and Bacteroides plebeius had been 570 

reported as potential gut pathogens for cardiac valve calcification and cardiovascular disease 571 

(Liu et al., 2019b). However, the prevalence of genus Prevotella could be found in healthy 572 

gut, and this genus was reported linked with high-fiber diet consumption (Arumugam et al., 573 

2011). Hence, the reason that we observed this genus correlated with the fat-metabolic 574 

disorder could be biased by the subjects’ diets and lifestyles, which we did not have 575 

information in the study. Furthermore, limitation in this study included a small number of 576 

samples, which could hinder the correlation and bacterial species identification of the 577 

microbiota and quantitative microbiota with the fat-metabolic disorder. 578 

 579 

Together, the successful utilization in short-term anaerobic sample collection and 580 

transport as the genetic preservation method for the 16S rRNA gene profiling through next 581 

generation sequencing and qPCR techniques suggested its expanded use to other 582 



metagenomic techniques such as shotgun metagenome sequencing and bacterial genome 583 

sequencing. This genetic preservation method should also be valid for virome studies 584 

(Gosalbes et al., 2011, Bikel et al., 2020). Nevertheless, we acknowledged possible 585 

microbiota diversity changes due to sample transport. For future studies, in addition to the 586 

larger sample size for the more significant statistics, one control metagenomic DNA before 587 

sample transport (the original fecal sample microbiota) shall be included to confirm no 588 

statistical difference between the microbiota in our short-term aerobic transport samples, and 589 

the specific analyses of rare species biosphere (e.g. mbDenoise) (Lynch & Josh, 2015; 590 

Jousset et al., 2017; Pan 2021; Zeng et al., 2022). A series of > 48 h period of sample 591 

collection-transport time shall be included to investigate the possible longer term of sample 592 

collection-transport period. 593 

    594 

Conclusions 595 

The study first analyzed fecal bacterial microbiota and quantitative microbiota, and 596 

revealed no influence of anaerobic sample transport material on the microbiota and 597 

quantitative microbiota. This indicated that short-term aerobic sample collection and 598 

transport does not statistically affect the microbiota analyses, with ≤ 4°C sample storage and 599 

sample processing within 48 h are required. Our study aimed to showcase the differences in 600 

gut microbiota between healthy individuals and those with fat-metabolic disorder. We 601 

collected samples using both aerobic and anaerobic transport methods and analyzed the 602 

microbiota's quantitative potential for microbial metabolism and bacterial species biomarkers 603 

in Thai adult subjects. Although the gut microbiota dysbiosis factor that causes this disease 604 
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exhibited differences in individuals based on factors such as sex, diet patterns, and lifestyles, 614 

we were able to identify commonalities across the subjects tested..  615 
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 938 

 939 

Figure Legends 940 

Fig. 1. Schematic diagram of experimental design. 941 

 942 

Fig. 2. Relative percent gut microbiota compositions of aerobic and anaerobic transport 943 

groups at phylum, genus and species levels. 944 

Color shades represent bacterial phyla: yellow (Firmicutes), blue (Bacteroidetes), red 945 

(Proteobacteria), grey (Fusobacteria), purple (Actinobacteria), white (Other), and pink 946 

(unclassified bacterial phyla). The OTUs where Mothur could not identify the genus (or 947 

species) names were denoted by small letters (o_ abbreviates order; f_, family; g_, genus and 948 

s_, species) to the deepest taxonomic names that could be identified; k_ abbreviated kingdom 949 

bacteria but unclassified phylum; and “Other” represented < 1% phylum (or genus, or 950 

species) OTUs. In right-hand legend the names of OTUs were listed from top-to-bottom the 951 



same order as in the barchart OTUs (gray lines in barchart to separate OTU names in each 952 

phylum).  953 

 954 

Fig. 3. Quantification of bacterial counts for (A) average total bacterial counts and (B) 955 

average strictly anaerobic and facultative anaerobic bacterial genera, comparing between 956 

aerobic and anaerobic sample transport groups. 957 

Data were presented as average ± SD. Statistical differences between groups were tested using 958 

Student’s t-test (P < 0.05), and no statistical difference was found. 959 

 960 

Fig. 4. Scatter plots showing individual and mean range alpha diversity data at species OTUs 961 

of aerobic (filled circle) and anaerobic (empty square) sample transport groups, measured by 962 

(A) number of OTUs, (B) Chao1 richness, (C) inverse Simpson diversity, and (D) Shannon 963 

evenness.  964 

Statistical differences between groups were tested using Student’s t-test (P < 0.05), and no 965 

statistical difference was found: P > 0.05. 966 

 967 

Fig. 5. Non-metric multidimensional scaling (NMDS) constructed from Thetan coefficients 968 

displaying beta diversity among quantitative microbiota communities in aspects of (A and E) 969 

aerobic and anaerobic sample transport groups and (B-D and F) health and fat-metabolic 970 

disorder (denoted “unhealthy”) groups.  971 

In (A, B, E and F), AMOVA test was performed to determine statistical separation between 972 

designated groups (P < 0.05). In (C) and (D) showed the Pearson’s correlations with health 973 

status parameters and the representing bacterial species OTUs, respectively. For species 974 Formatted: Font: Times New Roman, 12 pt



where Mothur could not identify the names, the deepest taxonomic names were presented. A 975 

vector direction and length represented the direction and strength of that parameter or OTU to 976 

the communities. A red arrow indicated a statistically significant correlation parameter (P < 977 

0.05), and a black arrow indicated non-statistically significant correlation parameter (P > 978 

0.05). In (C), GGT abbreviates gamma-glutamyl transferase; BMI, body mass index; 979 

stiffness, liver stiffness indicates the non-elasticity of the liver associated fat accumulation; 980 

TC, total cholesterol; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TG, 981 

triglyceride; LDL, low-density lipoproteins; CAP, controlled attenuation parameter; and 982 

HDL, high-density lipoproteins. In (E) and (F), the low-abundance OTUs of < 1% or non-983 

relevant inter-individual microbiota were filtered out (remaining as “core microbiota”) for the 984 

NMDS analysis. 985 

 986 

Fig. 6. Metabolic functional prediction associated to quantitative profiles of (A) prevalent 987 

health-associated bacteria OTUs and (B) linear discriminant analysis (LDA) combined effect 988 

size (LEfSe) as bacterial species and associated microbial metabolic function biomarkers for 989 

healthy or fat-metabolic disorder (denoted “unhealthy”) groups.  990 

Microbial metabolic functions were estimated according to KEGG pathways. In (A), a 991 

different color from nude to tangerine represents the level of quantitative microbial metabolic 992 

function abundance from absence to the highest presence level (scale in vertical bar chart). In 993 

(B), a numeric in front of KEGG name represents the KEGG pathway category: 1, 994 

metabolism; 2, organismal systems; 3, diseases; 4, environmental information processing; 5, 995 

genetic information processing; and 6, cellular processes. The LDA score > 3.0 was referred 996 

microbial metabolic function markers (ANOVA Welch’s test, P < 0.05). 997 
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