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ABSTRACT

Chronic kidney disease (CKD) represents a significant global health concern, with renal
fibrosis emerging as a prevalent and ultimate manifestation of this condition. The ab-
sence of targeted therapies presents an ongoing and substantial challenge. Accumulating
evidence suggests that the integrity and functionality of mitochondria within renal
tubular epithelial cells (RTECs) often become compromised during CKD development,
playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form
of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold
mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted
mitochondrial dynamics but also contributes to the advancement of renal fibrosis
in CKD. While numerous studies have examined mitochondrial metabolism, ROS
(reactive oxygen species) production, inflammation, and apoptosis in kidney diseases,
the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The
exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as
well as its influence on CKD progression and prognosis, have not undergone systematic
investigation. The role of mitophagy in AKI has been relatively clear, but the role of
mitophagy in CKD is still rare. This article presents a comprehensive review of the
current state of research on regulating mitophagy as a potential treatment for CKD.
The objective is to provide fresh perspectives, viable strategies, and practical insights
into CKD therapy, thereby contributing to the enhancement of human living conditions
and patient well-being.

Subjects Cell Biology, Nephrology, Pathology
Keywords Chronic kidney disease, Mitophagy, Renal fibrosis, Mitochondria

INTRODUCTION

Kidney disease constitutes a significant global health challenge, incurring substantial
economic burdens worldwide in the form of medical care expenses, emergency room visits,
treatments, and more. Moreover, kidney-related diseases often give rise to profound mental
health issues among patients and their families, owing to the intricate and severe nature of
these conditions. Most kidney-related diseases fall into two main categories: acute kidney
injury (AKI) and chronic kidney disease (CKD). AKI includes a range of pathological
manifestations characterized by rapid loss of kidney function over a short period of time
(Thomas et al., 2015), often caused by the use of chemotherapy agents such as cisplatin,
episodes of renal ischemia/reperfusion, and exposure to contaminants (Wang et al., 2016).
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AKT is closely linked to elevated rates of morbidity and mortality, and its poor prognosis
can lead to renal fibrosis, resulting in the development of CKD. Around the world nearly
9.1% of adults suffer from CKD (Bikbov et al., 2020), and the number of global deaths due
to CKD increased by 98% in 1990, with the number of cases in Asia increasing from 202.4
million to 441.2 million from 1990 to 2019 (Aashima et al., 2022). The incidence of CKD
is on the rise globally, with a current prevalence of 13.4%. More than 120 million people
in China have CKD, and this number is expected to increase (Liu et al., 2023a; Wang et
al., 2023a). It is calculated that by 2030, nearly 5.4 million patients will require kidney
replacement therapy, and by 2040 CKD will be the fifth leading cause of death worldwide
(Liyanage et al., 2015; Foreman et al., 2018).

Renal tubular interstitial fibrosis, is characterized by excessive extracellular matrix
deposition, is the end of the most common CKD, in addition also contains RTECs excessive
apoptosis, mitochondrial dysfunction and cellular REDOX steady-state characteristics and
mechanism of destruction involved (Guarnieri ¢» Barazzoni, 20115 Qi & Yang, 2018; Ho
& Shirakawa, 2022). The degree of renal fibrosis is associated with a decline in renal
function and determines the prognosis of renal disease. So far, renal fibrosis remains a
great challenge. The process of renal fibrosis involves a variety of cellular events, such
as RTECs damage, inflammatory cell infiltration, and fibroblast activation (Liu, 2011).
However, the pathogenesis of renal fibrosis has not been fully elucidated, and the existing
intervention methods using renin-angiotensin system inhibitors are not effective in
preventing or treating renal fibrosis, resulting in high mortality in patients with advanced
CKD. Therefore, the in-depth understanding and further research of CKD to develop an
effective treatment, in order to reverse the pathological fibrosis of the kidney has become
an urgent need. More and more evidence has shown that mitophagy plays a key role in
maintaining the homeostasis of renal cells due to the high content of mitochondria in
kidney tissue (Bhatia & Choi, 2019). Although the pathway and mechanism of mitophagy
have been studied, the role in the pathogenesis of CKD and the regulation of mitophagy in
the treatment of CKD need to be studied urgently. Preventing or reversing mitochondrial
dysfunction and disordered autophagy in CKD is an unmet clinical need and an urgent
research focus. This article reviews the research progress and current status of regulating
mitophagy in the treatment of CKD, improving mitochondrial metabolism and CKD
disease prognosis, in order to provide effective ideas for clinical treatment.

Survey methodology

Data were searched from the PubMed (https:/pubmed.ncbi.nlm.nih.gov/), CNKI
(https:/www.cnki.net) databases. The keywords used were as follows: chronic kidney
disease, mitophagy, renal fibrosis, mitochondria, PINK1, Parkin, FUNDC1, BNIP3/Nix,
cardiolipin, obesity-induced CKD, hyperuricemia-induced CKD, diabetes mellitus-
induced CKD, UUO, hyperuricemic nephropathy, diabetes-induced CKD, membranous
glomerulonephritis-induced CKD, cisplatin-induced CKD. Search criteria included a
time span of the last 10 years, CAS 1 journals, and any type of literature. A total of 265
documents were retrieved and screened for relevance of subject terms, credibility of research
methodology and validity of research content, and 103 documents were screened to exclude
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Figure 1 Kidney injury and the transformation of AKI to CKD. Image copyright: FreePik, https:/www.
freepik.com/free-vectorhuman-kidney-stones-cartoon-style-infographic_11067983.htm, Premium li-
cense.

Full-size Gl DOL: 10.7717/peerj.17260/fig-1

those with poor quality and duplicate content. We carefully analyzed and summarized the
extracted key information, followed by a systematic introduction and in-depth discussion.

Correlation between CKD and mitochondria

The kidney is a hypermetabolic organ with persistently high energy expenditure. It involves
in a variety of important functions to maintain body homeostasis (Duann & Lin, 2017).
The kidney has the second highest mitochondrial content in the human body, after the
heart (Ralto, Rhee & Parikh, 2020). Mitochondria is an organelle that produce adenosine
triphosphate during various physiological processes (Nunnari ¢ Suomalainen, 2012).
Under physiological conditions, a balance between mitochondrial fission and fusion and
mitophagy together maintain mitochondrial dynamic changes, and the homeostasis of
mitochondria is essential for normal cellular function in organs which required large
amounts of energy, such as the kidney and heart (Li et al., 2022). In addition, mitochondria
also ensure their normal morphological structure and function by regulating cell death,
inflammation and other cellular processes, and are closely related to kidney injury and
repair (Weinberg, 2011; Putti et al., 2015; Jin et al., 2022). Clinical studies have shown that
mitochondrial function decline is associated with the degree of kidney fibrosis in CKD (Bai
et al., 2023; Jotwani et al., 2024). In another observational study, a higher mitochondrial
DNA copy number was associated with a lower risk of CKD progression, adverse clinical
outcomes, and all-cause mortality in patients with CKD (Liu et al., 2023b). These evidences
all suggest that dysregulation of mitochondrial quality control mechanisms, such as
mitochondrial fission, fusion, and autophagy, plays a key role in the progression of renal
fibrosis (Tang et al., 2020a). Mitochondrial fusion and fission help ensure the maintenance
of mitochondrial number and morphology, whereas mitophagy is a form of selective
autophagy that degrades and removes damaged or excess mitochondria, controlling

the production of mtROS (Wang et al., 2022). These three processes interact and act as
important components of the mitochondrial quality control mechanisms to regulate
the quality and quantity of mitochondria in kidney cells (Angajala et al., 2018; Levine ¢
Kroemer, 2019; Dmitrii et al., 2021). Thus, regulating mitochondrial quality control has
emerged as a promising therapeutic strategy to counteract fibrosis progression and prevent
the transition from AKI to CKD (Fig. 1).
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Figure 2 Mechanistic diagram of mitophagy. PINK1/Parkin-dependent mitophagy. Under normal cel-
lular conditions, PINK1 is synthesized and localized to the inner mitochondrial membrane, and enters the
inner mitochondrial membrane through the outer membrane translocase and inner membrane translo-
case (TOM and TIM) complexes. PINK1 is cleaved by MPP and PARL in turn and rapidly degraded in the
endosome. When mitochondria are damaged, such as decreased membrane potential or oxidative stress,
PHB2 binds to PARL to protect PGAMS5. The protected PGAMS5 binds to PINK1, and the PINK1 import
process is blocked, leading to PINK1 accumulation on the outer mitochondrial membrane and activation
of Parkin protein. Activated Parkin selectively ubiquitinated damaged mitochondrial outer membrane
proteins such as MEN1/2. P62, TAX1BP1, NDP52, NBR1, and OPTN act as autophagy receptors that bind
to ubiquitin chains and interact with LC3. This binding links the ubiquitinated mitochondrial outer mem-
brane to the LC3-I bound phagosome membrane, forming a double-membrane-wrapped phagosome
structure, which finally fuses with the lysosome. PINK1/Parkin independent mitophagy. When mitochon-
dria become dysfunctional or damaged, CL, as well as FUNDC1, BNIP3, and Nix undergo specific confor-
mational changes that allow them to expose specific domains that bind to LC3. This binding connects mi-
tochondria to the LC3 bound phagosome membrane and initiates the process of mitophagy.

Full-size &l DOI: 10.7717/peerj.17260/fig-2

Mitophagy

Mitophagy is an indispensable part of the mitochondrial quality control mechanisms,
which can remove excess or damaged mitochondria. Under stress conditions, mitophagy
is activated as an adaptive or defensive mechanism that can maintain mitochondrial
stability. Mitophagy is usually activated by two distinct pathways, one is classical ubiquitin-
dependent, such as PINK1/Parkin pathway; another is the receptor-dependent pathway,
such as the BNIP3/Nix, FUNDCI, and cardiolipin (CL) pathways (Fig. 2) (Youle ¢
Narendra, 2011; Ashrafi & Schwarz, 2013; Chu et al., 2013; Scheibye-Knudsen et al., 2015;
Tang et al., 2020b).

PINK1/Parkin pathway of mitophagy

PINKI1 is a protein kinase that localizes to the inner mitochondrial membrane (IMM)
and is essential for the maintenance of mitochondrial function in cells (Nguyen, Padman
& Lazarou, 2016). As a key regulator, PINKI is involved in regulating the health status of
mitochondria and maintaining cellular energy supply. It interacts with Parkin (Parkinson
protein 2 E3 ubiquitin-protein ligase), an important member of the ubiquitin ligase E3

Yang et al. (2024), PeerdJ, DOI 10.7717/peerj.17260 4/26


https://peerj.com
https://doi.org/10.7717/peerj.17260/fig-2
http://dx.doi.org/10.7717/peerj.17260

Peer

family, whose function is to link ubiquitin proteins, thus it can target proteins to mark
them for degradation. It plays a regulatory role in protein degradation in the cytoplasm.
PINK1 and Parkin cooperate closely and play an important role in mitophagy (Kondapalli
et al., 2012; Shiba-Fukushima et al., 2012). In addition, P62 (sequestosome-1) and LC3
(microtubule-associated protein 1A/1B-light chain 3) also play key roles in mitophagy.
Through its specific domains, such as the UBA domain and the LC3-binding region, P62
is able to recognize and bind to targeted proteins which were ubiquitinated. However,
LC3 exists in two forms, one of which, LC3-I is found in cytoplasm. When mitophagy is
initiated and autophagosomes begin to form, the specific enzyme ATG4 processes LC3-I to
LC3-II. LC3-1I binds to the autophagosome membrane and becomes a key protein during
mitophagy (Stolz, Ernst & Dikic, 2014). P62 interacts with LC3, especially the LC3-II
form, and P62 binds to the autophagosome membrane through its LC3-binding region,
facilitating the association of mitochondria with autophagosomes. PHB2 (prohibitin 2) is a
highly conserved membrane scaffold protein that participates in mitophagy by interacting
with the inner mitochondrial membrane protease PARL. PHB2 regulates PINK1 stability
by disrupting the structure of PARL and inhibiting PARL activity (Yan et al., 2020).
PGAMS, a serine/threonine protein phosphatase that localizes to mitochondria through
its N-terminal TM domain, protects the structure of PINK1 and regulates PINK1/Parkin-
mediated mitophagy (Lo ¢ Hannink, 2008). In the mitochondrial PINK1/Parkin pathway,
PHB2 can bind to PARL to protect PGAMS5 from cleavage. When the membrane potential
is impaired (reduced) and PINK1 is unable to enter the IMM in response to mitochondrial
damage, intact PINKI1, protected by PGAMS5, accumulates in the outer mitochondrial
membrane (OMM) and recruits Parkin to mitochondria (Williams ¢ Ding, 2018). Then,
PINK1 phosphorylates Parkin to activate its E3 ligase activity (Ding ¢ Yin, 2012; Bingol ¢
Sheng, 2016). Activated Parkin links ubiquitin proteins to their targets on mitochondria,
including a variety of mitochondrial proteins such as ubiquitinated MFN1/2. Subsequently,
Parkin marks mitochondria in a damaged state. P62 binds to ubiquitinated mitochondrial
proteins via its UBA domain, recognizing mitochondria as an mitophagy substrate. At
the same time, the LC3-binding domain of P62 binds to LC3-II to promote the binding
of mitochondria to autophagosomes (Ding et al., 2010; Geisler et al., 2010). LC3-1II further
promotes the fusion of autophagosomes with lysosomes to form autophagolysosomes,
and removes damaged mitochondria through internal degradation mechanisms to achieve
cell purification and health recovery. In addition to P62, TAX1BP1, NDP52 (also known
as CALCOCO2), NBR1, and OPTN also act as autophagy receptors in mitophagy. These
proteins interact with LC3 family proteins by containing specific sequences or domains,
such as the LIR sequence, and bind specific regions on the mitochondrial membrane to
LC3 family proteins, thereby promoting selective autophagy of mitochondria (Wang et al.,
2023b).

FUNDC1 mediated mitophagy

FUNDCI protein is a protein present in the outer membrane of mitochondria, combining
the typical LC3 motif Y (18) XXL (21) interact with LC3, guide the mitophagy (Liu et al.,
2012).In addition, FUNDCI dephosphorylation is essential for the initiation of mitophagy.
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Src kinase and CK2 can phosphorylate the tyrosine 18(Y18)13 and serine 13(S13)

(Liu et al., 2012; Chen et al., 2014) sites of FUNDCI1 blocking the interaction between
FUNDCI and LC3, thereby inhibiting the occurrence of mitophagy. Meanwhile, PGAM5
dephosphorylates FUNDCI at S13 (Chen et al., 2014). In addition, the mitochondrial outer
membrane protein Bcl2-like 1 (Bcl2L1) normally interacts with PGAMS5 to inhibit its
dephosphorylation of FUNDC1, and depletion of PGAMS5 enhances the OPA1-FUNDC1
interaction and decreases the DNM1L-FUNDCI interaction (Chen et al., 2016) thereby
inhibiting the activation of mitophagy (Wu et al., 2014). However, Bcl2L1 is degraded
under hypoxia or mitochondrial uncoupling, leading to the activation of PGAMS5, which
further dephosphorylates FUNDCI at S13 and facilitates the interaction between FUNDC1
and LC3 (Liu et al., 2012; Wu et al., 2014), there by activating mitophagy. FUNDC1
mediated mitophagy also depends on the interactions between the endoplasmic reticulum
and mitochondria. Under hypoxia or other stress conditions, FUNDCI1 undergoes
dephosphorylation, which promotes its binding to calnexin (endoplasmic reticulum)
and leads to the accumulation of lipid-rich microdomains on the mitochondrial surface
of FUNDCI, which then mediates mitochondprial fission and recruits ULK1 (Wu et al.,
2016Db), thereby activating mitophagy.

BNIP3/Nix mediated mitophagy

BNIP3L, again say Nix, is a kind of contains only BH3 domain and promote apoptosis of
protein structure (Chen et al., 1999), mainly locates in the mitochondrial outer membrane,
and play a key role in mitochondrial quality control (Chourasia et al., 2015; Lee et al.,
2017; Tang et al., 2019; Fu et al., 2020). It recruits autophagosomes to mitochondria by
directly binding to ATG8-family proteins (Novak et al., 2010). The promoter region of
Nix gene contains a binding site for hypoxia-inducible factor 1 (HIF-1), which can be
upregulated under hypoxic conditions, thereby promoting mitophagy (Sowter et al., 2001;
Kubasiak, Bishopric & Webster, 2002). Another mitochondrial BH3 domain-containing
protein is BNIP3 (cl2/adenovirus E1B19-kDa interacting protein 3), which shares 56%
amino acid sequence identity with Nix (Matsushima et al., 1998). BNIP3 mitophagy activity
is regulated by the polymerization of the homologous 2, its protein contains a in C the
common domain (coiled coil domain), the domain can make two BNIP3 molecules interact
and form stable dimers, enhances the BNIP3 with LC3 interaction ability. This process
is related to the presence of a C-terminal transmembrane domain and a WXXL motif
(LIR) on the cytoplasmic side of its N-terminus, which binds to LC3 or GABARAP (LC3
homologous protein) in mitochondria to further promote the binding of mitochondria
to autophagosomes (Hanna et al., 20125 Zhu et al., 2013), thereby promoting the selective
autophagy process of mitochondria. Maintenance of intracellular mitochondrial mass
balance. In addition, BNIP3 also inhibits mTOR activation by sequestrating RHEB (Li
et al., 2007) and activates mitophagy by binding to BCL-2 to block the interaction of the
Bcl-2-Beclinl complex (Bellot et al., 2009). In cells to adapt to the low oxygen environment
and regulation of cell survival and upstream of BNIP3 molecular HIF-1 alpha plays an
important role. Recent study has shown that HIF-1 «-BNIP3 mediated mitophagy protects
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HK-2 cells from fibrosis by suppressing NLRP3-induced inflammatory responses by
reducing the produced mtROS (Li et al., 2023).

CL mediated mitophagy

CL is a protein structure located mainly in the IMM and consists of a central pre-chiral
carbon, two phosphates and four acyl chains (Miranda-Diaz, Cardona-Munoz & Pacheco-
Moises, 2019). As one of the important components of IMM structure, CL participates in
the process of mitophagy and apoptosis (Chu et al., 2013; Fritsch et al., 2020). CL plays an
important role in the quality control and morphological regulation of mitochondria, and
its function is closely related to its location. When CL is located in the inner membrane,
it interacts with OPAL1 protein, and this interaction can promote inner membrane fusion
to maintain normal mitochondrial structure and function (Ban et al., 2017). On the other
hand, when CL is located in the outer membrane, it can act as a receptor for LC3 and interact
with LC3 protein, thereby participating in the regulation of mitophagy (Sagar et al., 2023).
CL also can pass in mitochondria PLSCR3 (phospholipid scramblase 3) protein, catalytic
CL transfer to the outer membrane, and then combine with LC3. This process could
lead to autophagosome to join, and remove the damaged mitochondria, thus promotes
mitophagy repair (Dudek, 2017). At the same time, CL can also interact with Beclinl, the
central receptor of autophagy regulation, to participate in the regulation of mitophagy
(Huang et al., 2012). In addition, CL plays a key role in regulating the process of apoptosis.
It can bind to cytochrome c tightly and unfold part of the protein to form cytochrome ¢/CL
complex, while acting as CL-specific peroxidase to catalyze CL oxidation. Oxidized CL can
promote the release of apoptotic factors from mitochondria to the cytoplasm, leading to
cell apoptosis. In turn, it can indirectly induce mitophagy by affecting the function and
integrity of mitochondria (Tyurin et al., 2008).

Role of mitophagy in CKD

Recent studies have found that mitophagy played an important role in the development
of CKD. Through both classical and non-classical pathways, mitophagy can eliminate
damaged mitochondria, promote the regulation of energy metabolism, and regulate
inflammatory response and apoptosis, thereby reducing oxidative stress and inflammatory
response to renal cells and delaying or ameliorating the progression of CKD to reduce
kidney injury. Therefore, in-depth understanding and intervention of the mechanism of
mitophagy has important clinical guidance and enlightenment for exploring the treatment
strategy of CKD (Table 1).

The role of PINK1/Parkin pathway of mitophagy in CKD

Hyperuricemia nephropathy is a disease caused by the deposition of uric acid in the kidney,
which in turn causes inflammation and damage in the renal tubules and interstitium,
leading to glomerular damage, and ultimately promoting the development of CKD. The
use of fructose-fed CKD model can be used to study the pathological processes such as
renal inflammation, oxidative stress and fibrosis caused by high uric acid, so as evaluate
the degree of kidney damage. A large number of studies have confirmed that the activation
of NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasome is closely
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Table 1 Mechanisms of mitophagy in CKD.

Activation mech- Types of CKD Mechanism Role Animal/Cell model Literature
anisms of mi-

tophagy

PINK1/Parkin Obesity-induced 1. Remove damaged Activation of mitophagy HFD-induced C57BL/6 Ding et al. (2022)
pathway CKD mitochondria protects the kidney mice, PA-induced HK-2

FUNDCI pathway

2. Reduce mtROS

3. Inhibition of
mitochondrial depolarization
4. Protect mitochondrial
function

cell

Hyperuric acid- 1. Protect mito- Activation of mitophagy Female C57BL/6 mice with Zhang et al. (2022)
induced CKD chondrial function protects the kidney fructose-induced uric acid
2. Elimination of mtROS nephropathy and uric acid
alleviated Sting-NLRP3 axis- (UA)—induced hyper-
mediated inflammation uricemic HK-2 cell
1. Protect mitochondrial func- Activation of mitophagy Male BALB/c mice were Yoon et al. (2021)
tion protects the kidney fed with adenine (0.25%
adenine) diet and TH1
cells
Unilateral ureteral 1. Protect mito- Inhibition of mitophagy UUO rats Jia et al. (2021)
obstruction— chondrial function protects the kidney
induced CKD 2. Reduce mtROS
1. Protect mito- Activation of mitophagy UUO mice, hypoxia- Lietal. (2020)

chondrial function
2. Reduce mtROS

protects the kidney

induced HK-2 cell

1. Maintenance of macrophage-
mitochondrial homeostasis
2. Reduce mtROS

Activation of mitophagy
protects the kidney

Myeloid-specific MFN2-
deficient mice, UUO mice,
primary human renal

Bhatia et al. (2019)

macrophages
Unilateral ureteral 1. Impaired mito- Excessive activation of ab- UUO mice, IRI mice, Sang et al. (2020)
obstruction chondrial function normal mitophagy dam- TECS (renal tubular ep-
and ischemia- 2. Increased mtROS ages the kidney ithelial cells)
reperfusion 3. Promote cell apoptosis
injury-induced
CKD
Membranous 1. Protect mito- Activation of mitophagy Membranous glomeru- Wu et al. (2016a)
glomerulonephritis- chondrial function protects the kidney lonephritis (MGN) in rats and Wu et al. (2016b)
induced CKD 2. Reduce the and human podocytes

overproduction of mtROS
3. Suppress NLRP3 inflammation

(HPC)

1. Promote macrophage
polarization and

reduce inflammation

2. Protect mito-
chondrial function

3. Remove damaged
mitochondria

4. Reduce mtROS

Activation of mitophagy
protects the kidney

Cationic bovine serum al-
bumin (C-BSA) induced
membranous glomeru-
lonephritis (MGN) in
rats, human podocytes
(HPC), and lipopolysac-
charide (LPS) induced
mouse macrophage line
RAW264.7

Cao et al. (2023)

Cisplatin-induced
CKD

Glomerulonephritis-
induced CKD

1. Suppress inflammation 2.
Protect mitochondrial function
3. Reduce mtROS

4. Restore impaired mitophagy
5. Improve mitochondrial
dynamics

1. Damage mito-
chondrial function
2. Increased apoptosis

Activation of mitophagy
protects the kidney

Excessive activation of ab-
normal mitophagy dam-
ages the kidney

C57BL/6 wild-type and
Nrf2 knockout mice

Adenine induced CKD rat
model

Ma et al. (2021)

Wei et al. (2023)

(continued on next page)
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Table 1 (continued)

Activation mech- Types of CKD Mechanism Role Animal/Cell model Literature
anisms of mi-
tophagy
BNIP3\BNIP3L/Nix Unilateral ureteral 1. Reduces NLRP3 inflammation Activation of mitophagy HK-2 cells, UUO mice Lietal. (2023)
pathway obstruction- 2. The body reaction, protects the kidney

induced CKD reduce inflammation

3. Reduce mtROS
4. Protect mitochondrial
function

Hyperuricemia-

1. Promote macrophage

Activation of mitophagy

Cationic bovine serum al-

Cao et al. (2023)

induced CKD polarization and protects the kidney bumin (C-BSA) induced

reduce inflammation membranous glomeru-

2. Protect mito- lonephritis (MGN) in

chondrial function rats, human podocytes

3. Remove damaged (HPC), and lipopolysac-

mitochondria charide (LPS) induced

4. Reduce mtROS mouse macrophage line

RAW264.7

Cardiolipin path- Ischemia- 1. Protect mito- Activation of mitophagy IRI induced SD rats Szeto et al. (2017)
way reperfusion chondrial function protects the kidney

injury-induced
CKD

2. Remove damaged
mitochondria
3. Relieve inflammation

Obesity-induced
CKD

1. Protect mito-
chondrial function
2. Remove damaged
mitochondria

3. Reduce mtROS

Activation of mitophagy HFD-induced C57BL/6
protects the kidney mice

Yeung et al. (2021)

related to inflammatory cell aggregation (Komada ¢» Muruve, 2019), pro-fibrotic factor
release, and extracellular matrix accumulation in CKD. Excessive mtROS can activate the
NLRP3 inflammasome and promote the release of pro-inflammatory factors (Yuk, Silwal
& Jo, 2020), thereby enhancing the inflammatory response. As a key regulator, STING plays
an important role in innate immunity and inflammatory response, and it is also a key factor
leading to kidney inflammation, injury and fibrosis (Chung et al., 2019). Recent studies
have shown that STING can affect the activation of NLRP3 inflammasome by regulating
mitochondrial function and ROS level. Zhang et al. (2022) showed that the expression
levels of mitophagy-related proteins PINK1 and Parkin were significantly increased by
UroA treatment in a mouse model of fructose-induced hyperuricemic nephropathy
(Ryu et al., 20165 Andreux et al., 2019; Zhang et al., 2022). This effect is very beneficial for
reducing renal inflammation and inhibiting the activation of STING-NLRP3 pathway.
Notably, the inhibitory effect of UroA on the STING-NLRP3 pathway was attenuated
when Parkin was silenced. This finding suggested that upregulation of PINK1/Parkin
mediated mitophagy can eliminate the STING-NLRP3 pathway-mediated inflammatory
response, thereby helping to delay the progression of CKD. MiRNAs play a key role

in the repair of renal tissue damage and renal fibrosis. By regulating a variety of target
genes, miRNAs have important effects on the response and function of renal epithelial
cells and interstitial cells (Chung & Lan, 2015). In particular, SIAH3 (Siah E3 Ubiquitin
Protein Ligase 3) (Hasson et al., 2013), as an E3 ubiquitin protein ligase, can reduce the
accumulation of PINKI1 in damaged mitochondria, thereby inhibiting the process of
mitophagy. However, up-regulated of the upstream miRNA regulator miR-4516 in the
renal cortex of hyperuric-induced CKD mice can inhibit the effect of SIAH3, enhance
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PINK1/Parkin-mediated mitophagy, reduce dysfunctional mitochondria, and affect the
process of cellular fibrosis, thereby improving CKD. This study provides evidence for
the importance of miR-4516 in regulating impaired mitophagy in CKD renal fibrosis.
Activation of miR-4516/SIAH3/PINKI1 pathway by mitophagy can alleviate or reverse
mitophagy-deficient CKD, providing a prospective strategy for the treatment of CKD
(Yoon et al., 2021). Taken together, PINK1-Parkin-mediated mitophagy ameliorated renal
fibrosis and alleviated the development of hyperuricemia -induced CKD by reducing
mtROS and NLRP3 mediated inflammation.

Obesity-related nephropathy is a kidney disease caused by obesity. Excessive
accumulation of fat in glomeruli and renal tubules leads to lipotoxicity of the kidney,
which in turn leadings to glomerular damage, abnormal renal structure and function,
then develop CKD. The CKD model established by high fat diet (HFD) can be used
to study the pathological process of kidney inflammation, oxidative stress and renal
tubular injury caused by obesity. Nuclear factor erythroid 2-related factor 2 (Nrf2) is
an important REDOX transcription factor. Its activation can enhance the resistance of
cells to oxidative stress and reduce mitochondrial damage and functional degradation.

It plays a key role in mitochondrial biogenesis and quality control (Piantadosi et al.,
2008). Recent study has shown that Nrf2 activation can promote PINK1/Parkin mediated
mitophagy in obesity-related CKD, effectively reduce oxidative stress level and inhibit
mitochondrial depolarization in renal tubular cells, thereby protecting mitochondrial
function and reducing kidney damage induced by high fat diet (HFD) (Ding et al., 2022).
In addition, Ma et al. (2021) demonstrated that the use of Nrf2 activator Farrerol could
activate Nrf2/PINK1-mediated renal tubular mitophagy and regulate the related oxidative,
inflammatory and apoptotic signaling pathways to protect cells from mitochondrial
dysfunction and damage. These experimental data suggested that Nrf2 may serve as a novel
potential target for the treatment of CKD.

Membranous glomerulonephritis is a chronic progressive glomerular disease, can
take advantage of the cationic bovine serum albumin (BSA) C simulation of glomerular
filtration membrane damage, to reveal the process of development and relevant pathological
mechanism of CKD. Liu et al. (2022) used a rat tail vein injection of C-BSA to establish a
CKD model and treated it with the mitochondrial-targeted antioxidant MitoTEMPO (Wu
et al., 2016a). The protein levels of LC3 II/I, PINK1 and Parkin were increased, while the
protein level of P62 and mtROS level were decreased in the MitoTEMPO group. This result
suggested that MitoTEMPO induces mitophagy in CKD, thereby inhibiting the production
of excess mtROS. In addition, we further investigated the role of mitophagy in regulating
the NLPR3 inflammasome in podocytes. When Parkin was silenced, NLRP3 expression was
significantly up-regulated, suggesting that through PINK1/Parkin-mediated mitophagy, the
mitochondrial-targeted antioxidant MitoTEMPO could reduce the production of mtROS,
thereby inhibiting the formation of NLRP3 inflammasomes and reducing podocyte injury.
In addition, macrophages played an important role in capturing and presenting antigens,
secreting inflammatory mediators, regulating proinflammatory and anti-inflammatory
responses, and removing cell debris and bacteria. In the progression of CKD, polarization
of macrophages is one of its characteristics, which can be divided into pro-inflammatory
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(M1) and anti-inflammatory (M2) types. M1-type macrophages lead to decreased renal
function by releasing proinflammatory cytokines, which ultimately lead to fibrosis (Komada
et al., 2018). In contrast, M2 macrophages secrete anti-inflammatory cytokines to repair
renal function (Liang et al., 2021). Thus, the balance of macrophage polarization plays an
important role in the inflammatory state of CKD. Cao et al. used C-BSA to establish a mouse
model of CKD (Cao et al., 2023). The results showed that the levels of mitophagy-related
proteins P62, LC3B, PINKI, Parkin and BNIP3 were significantly decreased in CKD model
mice. After using the mitophagy inhibitor (MDIVI), the expression of pro-inflammatory
cytokines IL-6 and IL-1 B was increased, while the expression of anti-inflammatory factors
ARGI and FIZZ1 was decreased. The trend of macrophage polarization to M1 type was
aggravated. However, enhanced mitophagy could reverse the pro-inflammatory effect
of MDIVI-1 and significantly alleviate mitochondrial dysfunction. In addition, the role
of KLF4 (Kruppel-like factor4) in mitophagy and macrophage polarization was further
investigated. After siRNA transfection of RAW264.7 cells to remove KLF4, the expression
of mitophagy-related proteins was decreased and the inflammatory response was enhanced.
These results suggested that KLF4 overexpression could activate PINK1/Parkin and BNIP3
mediated mitophagy, remove damaged mitochondria, and promote the polarization of
macrophages from M1 to M2, thereby improving podocyte injury, immune complex
deposition and inflammatory response. It provided a strategy for the prevention and
treatment of CKD caused by membranous glomerulonephritis.

Unilateral ureteral obstruction refers to partial or complete obstruction of the ureter,
which leads to long-term hydronephrosis of the renal pelvis, which causes oxidative
damage and fibrosis of the renal tissue. UUO model is mainly used to study CKD-related
inflammatory response, oxidative stress process, tubular atrophy, glomerular sclerosis,
interstitial fibrosis and other pathological changes caused by unilateral ureteral obstruction.
As mentioned above, macrophages not only play an important role in the inflammatory
process, but also play an integral role in the subsequent progression of renal fibrosis.
Bhatia et al. (2019) used a mouse model of UUO and primary human renal macrophages
to demonstrate for the first time that macrophage mitophagy could attenuate renal fibrosis
through modulation of the PINK1/MEN2/Parkin pathway. As a mitophagy regulator,
MEFN2 can promote the entry of Parkin into depolarized mitochondria, thereby inducing
mitophagy. When MFN2 is specifically lacking in macrophages, macrophages recombine
to the profibrotic/M2 phenotype (Tanaka et al., 2010; Ding ¢ Yin, 2012), resulting in
decreased mitophagy and aggravating the extent of macrophage-derived fibrotic response
and renal fibrosis. In addition, in the original generation kidney macrophages knockout
PINK1 can lead to mitochondrial quality to drop, this is further evidence that the cause of
CKD in UUO, mitophagy to maintain steady, macrophages, and mitochondria to reduce
the importance of renal fibrosis. Therefore, enhancing macrophage mitophagy mediated
by PINK1/MFN2/Parkin pathway may provide a new idea for the treatment of CKD
caused by UUO. In addition, recent studies have found that mitochondrial dynamics
was closely related to mitophagy, and it is considered as a way to treat chronic kidney
CKD. Mitochondrial dynamics referred to the process of mitochondrial morphology and
position changes in cells, mainly including mitochondrial fusion and fission. Mitochondrial
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fusion involved fusion-related proteins such as MEN1/2 and optic atrophy 1 (OPAL).
MEN1/2 localizes to the OMM and forms a bridge between its GTPase domains rich in
transmembrane domains and mitochondrial fusion features to promote mitochondrial
fusion. OPALI is located in the mitochondrial inner membrane and regulates the fusion
process of the mitochondrial inner membrane by splicing and modifying proteins to
produce different forms. Mitochondrial fission involves fission-related proteins such as
DRP1 (Chung & Lan, 2015), Fisl, and MFF. DRP1 is a cyclic GTPase that localizes to
the mitochondrial membrane and mediates mitochondrial fission by contracting the
helix. Fisl1 and MFF are located in the mitochondrial outer membrane, interact with
DRP1, and assist DRP1 to localize to the mitochondrial surface to promote mitochondrial
division. Cleaved mitochondria are more likely to be labeled and degraded and eliminated
by mitophagy. RCAN1 (calcineurin 1 regulator) is an important regulatory protein
(Fuentes, Pritchard ¢ Estivill, 1997; Ermak et al., 2011), which plays a role in regulating cell
signaling by regulating the activity of calcineurin. In UUO and IRI induced CKD models
(Sang et al., 2020), up-regulated of RCAN1 leads to mitochondrial dynamic imbalance
(up-regulation of DRP1 and MFF and down-regulation of MEN1/2 and OPA1) and
impaired PINK1/Parkin-induced mitophagy in UUO model. This suggested that reducing
RCANI1 expression in CKD could improve mitochondrial quality control and reduce
PINK1/Parkin-mediated mitophagy dysfunction in renal tubules, thereby alleviating renal
interstitial fibrosis and programmed cell death of renal tubular cells. In addition, Li et
al. (2020) found that PINK1 and Parkin levels were increased in a mouse UUO model
and in HK-2 cells cultured under hypoxia. However, in the kidneys of PINK1-KO and
Parkin-KO mice, RTEC mitochondria were severely lost and damaged, and cytochrome
C release was increased. In addition, in HK-2 cells, mitophagy missing PINK1/Parkin
mediated that generates mtROS increase and mitochondrial damage occurs, promoted
the TGF-B1 to rise, make the downstream Smad2/3 phosphorylation and activation

of transforming growth factor TGF-f#1-Smad2/3 signal transduction, It promoted an
epithelial-mesenchymal transition (EMT)-like phenotype, which in turn accelerates the
development of renal fibrosis. Similarly, Jin et al. (2022) found that in UUO model and
TGEF-B1-treated HK-2 cells, the application of the mitophagy activator UMI-77 could
inhibit the TGF-1-Smad2/3 signaling, the activation of the NF-kappaB pathway and the
transcription of pro-inflammatory factors, thereby reducing the inflammatory response
and fibrosis process. These findings demonstrated that mitochondria play a key role in the
regulation of renal fibrosis.

However, another study found that over-activation of PINK1/Parkin mediated
mitophagy in UUQ rats resulted in impaired mitochondrial function and aggravated kidney
damage, thereby accelerating the progression of CKD (Jia et al., 2021). This suggested that
although activation of PINK1/Parkin-mediated mitophagy could improve mitochondrial
morphology and reduce renal inflammation and fibrosis in various CKD model animals,
and played a mainly protective role in CKD, excessive or unbalanced mitophagy may
negatively affect the disease. Excessive mitophagy leading to excessive loss of mitochondria
and release of damage molecules and mitochondrial DNA, leading to increased cellular
stress and inflammatory response. In a study on the liver, it was found that impaired
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mitophagy in aging macrophages may lead to mitochondrial damage and the subsequent
cytosolic release of mitochondrial DNA, leading to STING activation and induction of
proinflammatory responses (Zhong et al., 2022). This finding has not been studied in the
kidney. Therefore, an in-depth understanding of the function and mechanism of PINK1/
Parkin-mediated mitophagy is of great significance to ensure the proper regulation of
autophagy in CKD.

The role of FUNDC1 mediated mitophagy in CKD

In the study by Wei et al. (2023), it was found that over-activated mitophagy may lead to
mitochondrial dysfunction and is closely related to the pathogenesis of CKD. They used a
adenine (0.75% w/w) feed in 3 weeks to establish the rat model of CKD, and use the HKL
(C18H150,) for treatment. Western blot results showed that the protein levels of FUNDCI,
BNIP3 and Nix in the CKD group were significantly higher than those in the control
group, while the protein levels of BNIP3, Nix and FUNDCI1 were all decreased after HKL
treatment. In addition, HKL also ameliorated the decline of renal function in CKD rats,
reduced the expression of renal fibrosis markers Col-IV and «-SMA, and alleviated renal
tubular lesions and interstitial fibrosis. These results clearly indicated that FUNDCI and
BNIP3/Nix-mediated mitophagy were significantly activated in CKD, and HKL protects
the kidney by inhibiting excessive mitophagy in CKD rats. This further demonstrated the
double-edged sword effect of mitophagy. Therefore, mitophagy mediated by the FUNDC1
pathway may become a potential method for the treatment of CKD in the future, but how
it affects CKD still needs to be further studied.

The role of BNIP3/Nix mediated mitophagy in CKD

In the study by Li et al. (2023) they observed a significant increase in the expression
levels of BNIP3 and HIF-1 « in UUO mice and a hypoxia-induced HK-2 cell model, as
well as a significant up-regulation of TGF-f1 and a-SMA associated with renal fibrosis,
accompanied by the activation of the NLRP3 inflammasome. However, in UUO mice and
hypoxia-induced HK-2 cells, knockdown of BNIP3 aggravated mitochondrial structural
damage, decreased mitophagy and increased mtROS expression, which further enhanced
NLRP3-mediated inflammation and aggravated renal fibrosis after UUO. However, with
MitoTempo and the specific NLRP3 inhibitor MCC950, the expression of inflammatory
factors was significantly reduced, and the degree of fibrosis was also alleviated. Therefore, a
therapeutic strategy by targeting HIF-1 o and BNIP3-mediated mitophagy could alleviate
renal fibrosis and delay the progression of CKD. In addition, in 2023 Qin et al. (2023)
reported that COPT could reduce the expression of mtROS and fibrosis markers,
reduced the occurrence of apoptosis, significantly improved AKI, and reduced kidney
fibrosis in mice with CKD by inducing BNIP3 mediated mitophagy, while having good
biocompatibility. Therefore, COPT may be a promising therapeutic approach to treat AKI
and delay its progression to CKD. There are differences between the studies published
by Yao et al. (2022) and the view of Li ef al. (2023). According to their results, although
BNIP3 was activated, it didn’t appear to ameliorate mitochondrial damage directly through
mitophagy. But by inducing Peroxisome proliferator activated receptor-o(PPAR-«)-BNIP3
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pathway to maintain mitochondrial steady-state signal, restrain mtROS and inflammatory
reaction (Pawlak, Lefebvre ¢ Staels, 2015), reduce the expression of fibrosis markers, so
as to relieve the progress of CKD. Taken together, the BNIP3/Nix pathway provides a
novel idea to ameliorate mitochondrial damage and reduce fibrosis in renal tubular cells,
providing a potential target for the treatment and prevention of CKD. However, for
BNIP3/Nix way mechanisms in CKD, still need further research to understand.

The role of CL mediated mitophagy in CKD

Szeto et al. (2017) conducted a 9-month experimental study in which SD rats were subjected
to bilateral renal ischemia for 45 min each. The results showed that 9 months after acute
ischemic renal showed a continuous endothelial injury, inflammation, fibrosis, and
glomerular sclerosis. In addition, in the accumulation of a large number of damaged
mitochondria, sertoli cell and mitophagy function obstacle. To further explore the
effect of mitochondrial protection on kidney injury, the researchers started to apply
the mitochondrial protective agent SS-31 one month after ischemia. The results showed
that SS-31 effectively protected mitochondrial integrity in endothelial cells, podocytes
and proximal tubule cells by regulating the content of central phospholipids in the
mitochondrial inner membrane and inhibiting the peroxidation of CL, and reduced the
mitophagy of damaged mitochondria, thereby effectively inhibiting the increase of mtROS.
In addition, SS-31 down-regulated the expression levels of inflammatory markers IL-1

B and IL-18. Furthermore, this intervention strategy significantly attenuated glomerular
sclerosis and interstitial fibrosis, suggesting that SS-31 may attenuate the progression

of CKD by interacting with CL to improve mitochondrial quality control and inhibit
inflammatory and fibrotic processes. In addition, the study of Yeung et al. (2021) found
that glucagon-like peptide-1 receptor agonists can promote CL synthetase expression level,
increase content of CL, and induce mitophagy process, and then to remove damaged
mitochondria (Dudek, 2017). Further analysis showed that this strategy was effective in
reducing the degree of global lipid accumulation in renal damage induced by high-fat diet.
Therefore, CL has broad research prospects and can be used as a potential target for the
treatment of kidney diseases. The results provided a new therapeutic option for preventing
diabetic kidney disease from progressing to CKD.

CONCLUSION

Comprehensive studies have consistently highlighted the pivotal role of mitochondrial
function in both the onset and progression of CKD. Damaged mitochondria can instigate
an excessive production of ROS, which in turn triggers an oxidative stress response, causing
further harm to kidney tissues. Furthermore, dysfunctional mitochondria can release
signaling molecules that contribute to cellular damage and activate inflammatory responses.
Mitophagy, a crucial cellular degradation process, is responsible for eliminating aged,
damaged, or dysfunctional mitochondria, thereby ensuring cell health. Recent research
suggests that boosting mitophagy could emerge as a novel strategy for treating CKD.
Activation of the mitophagy pathway holds the potential to remove aberrant mitochondria,
mitigate oxidative stress, and reduce inflammation. Additionally, it may curb renal fibrosis
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Figure 3 Protective role of mitophagy in CKD. DRP1 migrates from the cytoplasm to mitochondria, ac-
cumulates around them and cleaves them. Mitochondrial fission separates damaged mitochondria, and
excess or damaged mitochondria are eliminated by mitophagy. Mitochondrial damage can cause an in-
crease in mtROS. MtROS increased activation of NLRP3 inflammatory and TGF-f1’s synthesis and secre-
tion, TGF-B1 through phosphorylation Smad dependence promotes EMT, accelerate the renal fibrosis,
and adjust the NF-kappa B pathway and NLRP3 inflammatory corpuscle promote the expression of proin-
flammatory factor causing kidney inflammation, thus accelerating the process of renal fibrosis. In addi-
tion, the activation of NLRP3 inflammasome can promote the expression of caspase-3, cause cell apopto-
sis, and jointly cause kidney fibrosis.

Full-size &l DOI: 10.7717/peerj.17260/fig-3

and safeguard renal tissue from further harm (Fig. 3). This alternative treatment avenue
offers patients and their families additional hope and choice during therapy, potentially
bolstering patients’ mental well-being and morale, thereby aiding overall recovery.
Nevertheless, current research regarding specific methods to promote mitophagy for
CKD treatment remains in its nascent stages and requires further in-depth investigation
to explore mitochondrial therapeutic strategies for CKD. Recently, a new mechanism of
mitochondrial fission during mitophagy has been discovered, driven by ATG44 instead of
traditional mitochondrial fission factors such as Dnm1/DNMI1L/Dprl. This mechanism
promotes mitochondrial fission and subsequently enhances mitophagy, providing a
new perspective for treating CKD (Fukuda et al., 2023). Therefore a comprehensive
understanding of the regulatory mechanisms governing mitophagy and its interactions with
other pathological processes is crucial for a more profound comprehension of its role in
CKD onset and progression. Although the specific interventions for enhancing mitophagy
in CKD treatment are not yet clear, this review lays the foundation for its potential clinical
application.
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