Systematics, distribution patterns and historical biogeography of the Central America wandering spider genus *Kiekie* Polotow & Brescovit, 2018 (Araneae: Ctenidae)

Nicolas A. Hazzi^{1,2}, Gustavo Hormiga²

7 8 ¹ S

5

6

- ¹ Smithsonian National Museum of Natural History, 1000 Constitution Avenue NW,
- 9 Washington, DC 20560, USA.
- 10 ² Department of Biological Sciences, The George Washington University, 2029 G St. NW,
- 11 Washington, DC, 20052, USA

12

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

- 13 Corresponding Author:
- 14 Nicolas A. Hazzi¹
- 15 1000 Constitution Avenue NW, Washington, DC 20560, USA.
- 16 Email address: nicolashazzi@gwmail.gwu.edu

Abstract

Kiekie Polotow & Brescovit, 2018 is a Neotropical genus of Ctenidae, with most of its species occurring in Central America. In this study, we review the systematics of *Kiekie* and describe five new species and the unknown females of K. barrocolorado Polotow & Brescovit, 2018 and K. garifuna Polotow & Brescovit, 2018, and the unknown male of K. verbena Polotow & Brescovit, 2018. In addition, we described the female of K. montanensis which was wrongly assigned as K. griswoldi Polotow & Brescovit, 2018 (both species are sympatric) and extend the southern distribution of K. panamensis Polotow & Brescovit, 2018 to Colombia and Ecuador. We inferred a molecular phylogeny using four nuclear (histone H3, 28S rRNA, 18S rRNA and ITS-2) and three mitochondrial genes (cytochrome c oxidase subunit I or COI, 12S rRNA and 16S rRNA) to test the monophyly of the genus and the evolutionary relationships of its species. Lastly, we reconstructed the historical biogeography and mapped diversity and endemism distributional patterns of the different species. This study increased the number of known species of *Kiekie* from 11 to 16, and we describe a new genus, Eldivo which is sister lineage of Kiekie. Most of the diversity and endemism of the genus Kiekie is located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin). Kiekie originated in the North America Tropical region, this genus-and-started diversifying in the Late Miocene dispersed and spread to Lower Central and South America and started diversifying in the Late Miocene. In that regionthe lower Central America, Kiekie colonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras.

Comentado [aa1]: Is it correct? So far, the species is only known from Panama (WSC 2023)

Comentado [aa2]:

Con formato: Fuente: Cursiva

39 40

41

42

43 44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Introduction

inhabit the forest floor and low vegetation, although a few species are arboreal (Gasnier et al., 2009). To date, more than 500-600 species in 49-48 genera have been recorded in this family, most of them distributed in the tropics (World Spider Catalog 20222023). Their large size and predominant abundance in most Neotropical rainforests suggest that ctenids play an important role in tropical ecosystems as top generalist predators of invertebrates and small vertebrates (Folt & Lapinski, 2017). Recently, Polotow & Brescovit (2018) described the genus Kiekie to accommodate two species of the polyphyletic Ctenus and other nine new species. As most species of Ctenus and Spinoctenus (Polotow & Brescovit, 2014; Hazzi et al., 2018), males of Kiekie present a slightly to strongly curved metatarsus IV with various small macrosetae (Fig. 5B). In *Kiekie*, this modified male metatarsus is used during courtship (Eberhard, Barrantes & Conejo personal communication). Moreover, in several species of Kiekie (e.g., K. panamensis Polotow & Brescovit, 2018, K. laselva sp.nov, K. sinautipes-sinuatipes (F.O. Pickard-Cambridge, 1897), and K. valeroi sp. nov.), males and females have strikingly different coloration patterns. While females are mostly black with few gold or orange lines on the abdomen, males are pale brown with dark brown alternating reticular bands (Fig. 5A, C, E and F). Kiekie reaches its higher species diversity in Central America with 15 species distributed in Central America (mainly in Costa Rica), and one species in South America, and one species distributed in both regions (Polotow & Brescovit, 2018). Some species of Kiekie are restricted to primary forests and their abundances decrease in less preserved pristing habitats (Hazzi et al., 2020). In addition, Kiekie species are restricted to different biomes, encompassing high montane to lowland areas, and dry to rain forests biomes.

The family Ctenidae includes medium to large (5–50 mm) wandering spiders that typically

Comentado [aa3]: Update the statistics

64 Lower Central America is a highly diverse region that provides a geologically complex and 65 dynamic model for studying the assembly and spatial evolution of a Neotropical biota (Bagley & 66 Johnson, 2017; Mendoza et al., 2019). Three important tectonic events have been suggested to 67 summarize the main changes in the structural styles along the forearc of this region: (1) subduction of an ancient ridge during the Neogene (Brandes & Winsemann, 2018); (2) 68 69 reorganization of tectonic plates during the middle to late Miocene (Mescua et al., 2017; Porras 70 et al., 2021); and arrival of the Cocos Ridge at the Middle America trench in the Pliocene 71 (Abratis & Wo, 2001; Morell, 2016). The high diversity of Kiekie in this region, and the 72 restricted distribution of most of its species to specific ecosystems and elevation gradients, 73 makes this genus a good model to study how geological events have contributed to the 74 diversification of the Lower Central American fauna. 75 While carrying extensive fieldwork in Central America and having examined collections in 76 several natural history museums from Central America, we have discovered several new species 77 of Kiekie and new geographic range extensions for the majority of previously described species. 78 In addition, we were able to get fresh samples of most of the *Kiekie* species suitable for genetic 79 sequencing and phylogenetic analysis. Therefore, in this study we review the systematics of 80 Kiekie and described six new species and the unknown females of K. barrocolorado Polotow & 81 Brescovit, 2018 and K. garifuna Polotow & Brescovit, 2018, and the unknown male of K. 82 verbena. In addition, we described the female of K. montanensis Polotow & Brescovit, 2018 83 (Polotow & Brescovit (2018) incorrectly assigned a female of K. griswoldi Polotow & Brescovit, 84 2018 as the female of K. montanensis- these two species are sympatric). We inferred a molecular 85 phylogeny using four nuclear (histone H3, 28S, 18S and ITS-2) and three mitochondrial genes

(12S, 16S and COI) to test the monophyly of Kieke and the evolutionary relationships of its

86

Con formato: Fuente: Cursiva

species. With this framework in place, we address the following questions relating to the historical biogeography of the genus: 1) Does the higher diversity of *Kiekie* in Central America correspond with the ancestral area of the genus? or did *Kieke* originate in South America and dispersed to Central America? and 2) Did *Kiekie* originate in lowland or in montane ecosystems? What is the evolutionary history of transitions between lowland and montane habitats? Shortly after the completion of our study two new species of *Kiekie* from Panama were described by Omelko (2023) and these are now included in the taxonomic section with a revised generic diagnosis. Although we have not examined the holotypes of these two latter species, the descriptions and diagnoses are sufficient for accurate identifications. In the present—work we have increased the number of described species of *Kiekie* from 11 to 18 and discovered a new genus, *Eldivo* gen. n., which is sister lineage of *Kiekie*.

Materials & Methods

Museum abbreviations

The material examined and/or collected belongs to the following museums: MUSENUV, Museo Entomológico de la Universidad del Valle, Cali, Colombia (J. Cabra); MZUCR, Museo de Zoología, Escuela de Biología, Universidad de Costa Rica (G. Barrantes); MNCR Museo Nacional de Costa Rica (M. Sánchez-Ocampo, includes former Instituto Nacional de Biodiversidad de Costa Rica (INBio) collection); MCZ, Museum of Comparative Zoology, Harvard University, Cambridge, USA (G. Giribet); CNAN-AR, National Arachnid Collection at Universidad Nacional Autónoma de México, Mexico (O. Francke and E. González).

Morphological examination and description of species

Specimens were preserved in 95% ethanol. Descriptions and terminology follow Höfer et al. (1994) and Simó & Brescovit (2001). All measurements were given in millimeters and were taken using Leica Application Software (3.4.2) in a Leica M205A stereomireroscopestereomicroscope and a Leica DFC425 camera. Epigyna were digested with pancreatin solution (Álvarez-Padilla & Hormiga, 2007) to enable the study of internal structures. Digital images were made with a Leica M205A stereomicroscope adapted to a Leica DFC425 camera digital camera. Extended focal range images were composed using the software package Helicon Focus (version 6.7.1; www.heliconsoft.com) from Helicon Soft Ltd. Digital SEM photographs were taken using a LEO 1430VP scanning electron microscope from the scanning laboratory, Department of Biology of The George Washington University. For SEM preparation, structures were cleaned ultrasonically, transferred to 95% (if they were in 75-80% ethanol originally) and then to 100% ethanol for 10 min in each immersion before being air-dried. The specimens were then coated with Au-Pd. The following abbreviations are used: C, conductor; CD, copulatory ducts; CO, copulatory opening; E, embolus; FD, fertilization ducts; LP, lateral projection; MA, median apophysis; MF, median field of epigynum; RTA, retrolateral tibial apophysis; S, spermathecae. The distribution maps were elaborated with ArcGIS (ESRI) v 10, with the spatial analyst extension. **DNA Sequencing Methods** Sampling design. We sequenced a total of 30 Kiekie specimens representing 14 of the 16 known species. When possible, each species was represented by a male and a female, in order to ensure the correct sex was matched for each species. Based on the phylogenetic relationships among genera within Cteninae (Hazzi & Hormiga 2022), we included taxa representing the "American

clade" as an outgroup, and rooted the tree with Anahita sp. The final matrix includes 57

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Con formato: Fuente: Cursiva

terminals, of which 30 belong to *Kiekie* (Table S1). Tissue from the coxae and femora was used for DNA extraction using the Qiagen DNEasy kit and the rest of the specimen was preserved as a voucher. Seven markers were amplified for analyses: mitochondrial ribosomal markers 12S rRNA (~400 bp) and 16S rRNA (~550 bp), cytoplasmic ribosomal markers 18S rRNA (~800 bp), 28S rRNA (~2200 bp) and ITS-2 (~350 bp), nuclear protein-coding gene histone H3 (~320 bp) and mitochondrial protein-coding gene cytochrome c oxidase subunit I or COI (~800 bp). PCR was achieved with the Promega GoTaq kit, using the same primers listed in Hazzi & and Hormiga (2022). Sequence contigs were formed using GENEIOUS 6.0.6 (http://www.geneious.com; Kearse et al., 2012) and protein coding gene sequences were checked for stop codons, then queried against the NCBI BLAST nucleotide database to check for contamination.

Phylogenetic analysis

Phylogenetic analyses were performed using equal weight parsimony (MP) and maximum likelihood (ML). For the model-based analysis, the best partitioning scheme and substitution models were explored using ModelFinder implemented in IQTREE (Nguyen *et al.*, 2015; Kalyaanamoorthy *et al.*, 2017), selecting partition merging and the corrected Akaike information criterion (AICc). We partitioned protein coding genes (H3 and COI) into codon position, and each ribosomal gene was treated as a whole (ITS-2, 28S, 12S, 16S and 18S), for a total of eleven partitions. The maximum likelihood analyses were performed with the package IQ-TREE 1.4.2 (Nguyen *et al.*, 2015) and ultrafast bootstrap (Minh, Nguyen, & Von Haeseler, 2013) were used as a support measure. The parsimony analyses were carried out in TNT v. 1.5 (Goloboff & Catalano, 2016) using 500 random addition sequences followed by TBR branch swapping

algorithm and retaining 10 trees per replicate until the length was hit five times. Branch support was assessed using 1000 replicates of jackknife resampling (Farris *et al.*, 1996).

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176177

178

156

157

A Bayesian inference analysis was carried out to estimate a dated phylogeny using BEAST version 2.5.2. (Bouckaert et al., 2014). The analysis was run with linked trees, an uncorrelated lognormal clock, and a birth-death model for the tree prior. All markers were unlinked for site and clock models apart from the mitochondrial rRNA genes 16S and 12S because ModelFinder indicated that these two markers can be treated as a single partition. All the remaining markers were unlinked for site and clock models. Due to reduced computation time and problems of chains convergence in the dating analysis, the likelihood tree topology was constrained by converting it into an ultrametric tree using a penalized likelihood method with the chronos function in R (ape v5.3; Paradis et al., 2019). Three independent runs of 200 million generations each from four Markov Chain Monte Carlo chains were performed and post-burn-in results were combined using Logcombiner 2.5.1. Trees and parameters were sampled every 10,000 generations, 25% of the generations were discarded as burn-in and the remainder were used to calculate posterior parameters. We used Tracer v. 1.7 (Rambaut et al., 2018) to examine chains to convergence (ESS > 200). Trees were summarized with TreeAnnotator, which is distributed as part of the BEAST package. Due to the lack of fossils in Ctenidae, we used gene substitution rates reported for lycosoid spiders (Piacentini & Ramírez, 2019). We prefer to use these rates rather than the rates reported in Hazzi & Hormiga (2022) because of the lower rates reported in mitochondrial genes due to genome saturation. In addition, we incorporated one calibration point within Ctenidae based on a biogeographic event related to biome formation in the Tropical Andes (Jaramillo, 2019). We set

a maximum crown age of 10 Ma with a uniform distribution for *Spinoctenus* Hazzi *et al.*, 2018. The genus *Spinoctenus* is composed of 12 species distributed in the tropical Andes and Chocó biogeographical regions (Hazzi *et al.*, 2018). Most *Spinoctenus* diversity is found in the Andes (eight species) and using event-based biogeographic analyses on a morphological phylogeny, Hazzi *et al.* (2018) inferred an Andean origin for this genus. Both the most recent molecular phylogeny of Ctenidae (Hazzi & Hormiga 2022) and the morphological phylogeny of Hazzi et al. (2018) indicate that the Andean species *Spinoctenus eberhardi* Hazzi et al., 2018 and *S. stephaniae* Hazzi et al., 2018 diverged early within the genus. These two species are endemic to cloud forest ecosystems above 2000 m, a biome that was completely absent from the north of South America before 10 Ma (Jaramillo, 2019).

Species model distributions and Distribution patterns of diversity and endemism.

We estimated the distribution of *Kiekie* species using the Maxent algorithm (Phillips, Anderson, & Schapire, 2006; Elith *et al.*, 2011). We used occurrence records from the literature, fieldwork and museum specimens. To mitigate the impact of uneven sampling in our occurrence data, we applied a distance correction by taking only one point within a radius of 10 km. We obtained 19 bioclimatic predictor layers summarizing annual trends, seasonality and extremes in precipitation and temperature at a spatial resolution of 30 arc-seconds (i.e. 1 km2) from the WorldClim database (Fick & Hijmans, 2017). To reduce collinearity of the predictor variables, we selected the following variables (Pearson <0.7): annual mean temperature (Bio1), mean diurnal range (Bio2), temperature seasonality (Bio4), annual precipitation (Bio12), precipitation seasonality (Bio15) and precipitation of warmest quarter (Bio18). The area selected for modelling was the trans-Andean region until through the Neotropical Caribbean area of Mexico.

Con formato: Fuente: Cursiva

Con formato: Fuente: Cursiva

Comentado [aa4]: Standardize and change to italics throughout the text

Con formato: Fuente: Cursiva

We ran the models selecting a logistic output and random seed, and the maximum number of background points maintained at 10,000. To assess model performance, we applied k-fold cross validation procedure splitting the occurrences into training and testing records (70% and 30%, respectively), and replicating this process 15 times. Models were evaluated using the Area Under the Curve Metric (AUC) that compares model results with null expectations using a thresholdindependent measure. We averaged the AUC values obtained in the replicates and created confidence intervals values to assess model significance from random model expectations (AUC> 0.5). To make the binary distribution maps, habitat suitability values were converted in presence and absence using the 5th percentile as the threshold value (Liu et al., 2005; Liu, White, & Newell, 2013). In addition, areas with high probability of presence, but disjunct from areas where specimens have been recorded, were excluded from the prediction (Helgen et al., 2013). For species of Kiekie species with less than five records, we generated minimum convex polygon corrected by elevation range. For species with less than three records, we generated buffers of 10km² for each record. Species richness and endemism maps were generated in Biodiverse package (Laffan, Lubarsky, & Rosauer, 2010) based on the distribution ranges estimated for each *Kiekie* species described above and using 0.05° of spatial resolution. Endemism maps were computed using weighted endemism. In this metric, species richness is weighted by the inverse of the distribution range size of each species, so that pools of species that occur over smaller ranges are given higher scores. In addition, weighted endemism corrects for unweighted species richness, to distinguish per-species endemism from richness-based endemism (Crisp et al., 2001).

Historical Biogeography Analysis

203

204

205

206

207208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

Based on the geographical distribution patterns of the species of *Kiekie*, we conducted the analysis using the following biogeographical units: Trans-Andean, Lower Central America, Talamanca Cordillera and Tropical North America. These regions are divided by well-known topographical and climatic barriers that divided for other taxa in Central America (Bagley & Johnson, 2017; Mendoza et al., 2019), and additionally supported by the distribution patterns of Kiekie species. We carried out biogeographic analyses using the RASP package (Yu et al., 2015) which compares models of range evolution in a phylogenetic framework. We tested six biogeographic models using the Akaike information criterion (AICc): DIVA (Ronquist, 1997), DEC (Ree & Smith, 2008) and BayAREA (Landis et al., 2013). Each model was run with and without the founder-speciation event (j) (Matzke, 2014). The statistical comparisons of biogeographic models with and without the inclusion of the J parameter has been previously criticized upon the argument that the J parameter artificially inflates the contribution of cladogenetic events to the likelihood, and leads to underestimates of anagenetic, time-dependent ranges evolution (Ree & Sanmartín, 2018). However, models without the J parameters are usually inadequate in the common situations when most species have narrowed geographical ranges (single areas) (Matzke, 2022). Additionally, statistical comparison between models with and without the J parameter are identical to comparison of two ClaSSE submodels (Matzke, 2022). Therefore, we considered valid the used and statistical comparison between biogeographic models with and without the inclusion of the J parameter.

Nomenclatural acts

246 247

248

249

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

According to the International Commission on Zoological Nomenclature (ICZN), the electronic version of this article in portable document format (PDF) will represent a published work. The new species names contained in the electronic version are effectively published under that Code

from the electronic edition alone. This article and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org;pub:A693D4C7-C4DD-4F69-9D2A-DDD62527B4CF.

256 Results

Phylogenetics

The likelihood analysis indicated that *Kiekie* is monophyletic with high support (Fig. 1) and placed within a clade of North and Central American ctenids of the genera *Leptoctenus* and *Ctenus*. The parsimony analysis also showed *Kiekie* as monophyletic but with low support (Fig. S1). The sister group of *Kiekie* is an undescribed species from Mexico which lacks *Kiekie*'s morphological synapomorphies and diagnostic characters, and therefore is proposed here as a new genus (*Eldivo* n. gen.). This sister group relationship is highly supported in both the likelihood and parsimony analyses. Both analyses also show several well-supported intrageneric groups in *Kiekie*. *Kiekie garifuna* is placed sister to the remaining species in the genus and two well-supported clades are identified. The first clade includes the species *Kiekie barrocolorado*, *K. verbena*, *K. montanensis* and *K. curvipes* (Keyserling, 1881). Within this clade the sister relationship between *K. curvipes* and *K. montanensis* is highly supported. The second clade includes the species *K. sarapiqui* Polotow & Brescovit, 2018, *K. valeroi*, *K. laselva* sp.nov, *K. panamensis*, and *K.griswoldi*.

Biogeography

The species richness map indicated that *Kiekie* reaches its highest diversity in montane ecosystems of Costa Rica, followed by the lowlands of the Pacific area of Costa Rica (Fig. 2A). In addition, most of the endemism of this genus is concentrated in the montane ecosystems of Costa Rica (Fig. 2B). Model testing provided stronger support for models with the jump dispersal parameter over models without it. Models with the j parameter gave similar results in the ancestral area reconstruction for *Kiekie*, and they could not be statistically distinguished from each other (AIC weights: DEC+J= 0.38, DIVA+J=0.35, BAYESAREA+j=0.28). These analyses support an origin of Kiekie during the Late Miocene in the Tropical North America region and subsequently dispersed to Central America, where its highest diversity arises (Fig. 3A and B, event 1). The following description of the historical biogeography of Kiekie is based on the results of DEC+J model. One event of dispersal (event 2) from Talamanca Cordillera to Lower Central America originated two species: Kiekie tirimbina and K. barrocolorado. Then, there was an event of dispersal (event 3) from Lower Central America back to the cordillera Talamanca originating the species K. verbena and K. montanensis. The widespread species K. curvipes originated from the latter lineage of montane species, dispersing into the lowlands of Central and Tropical North America (event 4). The clade comprising the montane species K. sinautipes sinuatipes and K. barrentesi likely originated in-from the lowlands of Central America (event 5) but there is a high uncertainty in the area reconstruction of the node preceding this lineage. Finally, there were two dispersal events (event 6 and 7) from the lowlands of Central America to Talamanca Cordillera and the Trans-Andean region, originating the montane clade K. lascruces and K. griswoldi, and the South Central America species K. panamensis, respectively.

Comentado [aa5]: Further down in the text, you record this species also in Colombia (only known for Panama, WSC Dec 2023), so you must change this accordingly.

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

296 Family Ctenidae Keyserling, 1877 297 Subfamily Cteninae Keyserling, 1877 298 Genus Kiekie Polotow & Brescovit, 2018 299 Type **species**: *Kiekie sinautipes sinuatipes* F.O. Pickard-Cambridge, 1897. Composition: 16 species: Kiekie sinuatipes (F.O. Pickard-Cambridge, 1897), K. curvipes 300 301 (Keyserling, 1881), K. garifuna Polotow & Brescovit, 2018, K. verbena Polotow & Brescovit, 302 2018, K. sarapiqui Polotow & Brescovit, 2018, K. griswoldi Polotow & Brescovit, 2018, K. 303 barrocolorado Polotow & Brescovit, 2018, K. panamensis Polotow & Brescovit, 2018, K. 304 montanensis Polotow & Brescovit, 2018, and K. antioquia Polotow & Brescovit, 2018, K. 305 laselva sp. nov., K. valeroi sp. nov., K. barrentesi sp. nov., K. lamuerte sp. nov., K. bernali sp. 306 nov., K. tirimbina sp. nov. 307 **Diagnosis.** Males of *Kiekie* can be distinguished from the remaining Ctenidae by three 308 synapomorphies: an elongated embolus with a laminar process (Figs. 23A-F, 24A-F), conductor 309 resembling an open fan (Figs. 23A-F, 25A-F), and locking lobes located at posterior and 310 sometimes in retro-posterior side (Figs. 25B, 26C), instead of posterior prolateral as most 311 ctenines. Some females of Kiekie (K. sinautipessinuatipes, K. barrentesi, K. sarapiqui, K. 312 laselva, K. valeroi, K. panamensis, K. griswoldi and K. lascruces) differ from the remaining 313 Ctenidae by elongate curved copulatory ducts that projects in the anterior area of the epigynum 314 (Figs. 6B, 16B and 20B) as opposed to short and straight, and large copulatory openings instead 315 of small. However, females of the remaining species cannot be accurately distinguished from 316 Eldivo or other Mesoamerican ctenids. 317 Natural History. Kiekie species live in a variety of ecosystems and across a wide elevational

range, from sea level to 2500m. As other ctenines, Kiekie species are nocturnal forest dwellers,

living on ground covered with leaf litter and on some occasions cases on vegetation in the understory. During the day, these spiders can be found hiding under leaf litter or decaying fallen logs. Kiekie sarapiqui, K. valeroi, K. curvipes, K. garifuna, K. tirimbina, K. laselva and K. panamensis are found in lowland tropical rain forests ecosystems with low elevation (>700m). However, K. curvipes and K. panamensis are widespread species that can be found in less humid ecosystems and higher elevations (~1500m). In Costa Rica, there are high levels of species sympatry in Kiekie. The most striking case occurs in the Tirimbina Biological TtationStation, where five species can be found in sympatry: K. valeoroi, K. curvipes, K. sarapiqui, K. laselva and K. tirimbina, the latter being rarely observed. Kiekie valeroi and K. sarapiqui are more abundant in the preserved forest and K. curvipes is abundant in both preserved and disturbed environments. These species live also in sympatry with other ctenids, such as *Phoneutria* depilata (Strand, 1909) and the arboreal species Phymatoctenus cf. sassii Reimoser, 1939. In montane ecosystems of the Talamanca cordillera, there are four species restricted to montane ecosystems: K. bernali, K. griswoldi, K. las cruces, K. lamuerte, K. sinautipessinuatipes, K. barrentesi, K. verbena, and K. montanensis. In the north of Costa Rica, it is possible to find in some localities K. griswoldi, K. sinautipes, K. verbena and K. barrentesi in sympatry. In the campus of Universidad of Costa Rica, K. barrentesi and K. verbena are easily found in very disturbed environments. In the southern part of the cordillera, K. lascruces inhabits in sympatry with K. montanensis. Hazzi et al. (2020) studied the effects of forest succession and microenvironmental variables on the abundance of ctenid spiders in Las Cruces Biological Station, a tropical montane rainforest. This study found four ctenids living in sympatry: Spinoctenus escalerete Hazzi et al., 2018, K. griswoldi, and three species with much lower abundances. The larger species, K. griswoldi was significantly more abundant in primary than in

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

Comentado [aa6]: First time, species name should be complete, i.e., author and year

Comentado [aa7]: Change to K. sinuatipes throughout

secondary forest. Conversely, S. escalerete was more abundant in the secondary forest. In addition, this study found that while abundance of K. lascruces was positively related with leaf litter depth, the abundance of S. escalerete was negatively related to litter depth. This study also reported an event of intraguild predation where an adult female of K. griswoldi was eating an adult male of S. escalerete in the primary forest. In Cali, Colombia, females of K. panamensis were observed with egg sacs in both captivity and in the field. The egg sacs were white with a flat face attached to the substrate (i.e. litter leaf or the wall of the terrarium) and a convex face. In captivity, we observed that females protected the egg sacs by standing over them. Spiderlings emerged between 29-31 days (n=2). After hatching, spiderlings emerged and built an irregular web where they remained until their second molt. These small observations about the reproductive behavior of K. panamensis are consistent with those reported in Phoneutria depilata (Hazzi 2014). Kiekie antioquia Polotow and Brescovit, 2018 Holotype: Female holotype deposited in MCZ30617, not examined. Diagnosis. Females of Kiekie antioquia (fig. 14A-B, Polotow & Brescovit 2018) resemble those of K. sinuatipes (fig. 5A–B, Polotow & Brescovit 2018) by the large median field of the epigynum, but it can be distinguished by the narrow median field and elongated and narrow lateral projections. Internally, it can be distinguished by smaller spermathecae and sinuous copulatory ducts (Polotow & Brescovit 2018). Kiekie almae Omelko, 2023

Kiekie almae Omelko, 2023: 276, f. 1-5, 11-14, 19-22, 27-30, 36-37 (male holotype and three

female paratypes from Panama, deposited in ZMMU, Moscow, not examined).

342

343

344

345

346347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

365 **Diagnosis.** Males of K. almae resemble those of K. lamuerte sp. nov, in the general conformation 366 of the palp (Fig. 22; Omelko 2023: fig. 12) but differ by the medial position of the RTA (Omelko 367 2023, fig: 12), in contrast with the more apical RTA in K. lamuerte (Fig. 13). Females of K. 368 almae resemble those of K. garifuna in the wide anterior area of the epigynal median sector (Fig. 369 13D; Omelko: figs. 27 and 28), but differ by being more square and flatsquarer and flatter, in 370 contrast with the ovoid and elevated anterior area in K. garifuna. 371 Distribution. Known only from the type locality in the Chiriquí Province of Panama. 372 373 Kiekie barrantesi sp. nov. 374 Figs. 6, 24B, 26B. 375 Type Material. 376 Holotype. COSTA RICA: Male from San Jose province, San Pedro, campus of Universidad of 377 Costa Rica (9.9376N, -84.0507, 1200m), 10.VI-2018, N. Hazzi (MCZ IZ 167568). Paratypes. 3 378 Three males and 3-three females, same data as holotype; 2-two females from William Eberhard 379 and Mary Jane Eberhards house, San Antonio de Escazu, San Jose province (9.8975N, 84.1377, 380 1330m), 20.VII.2018, N. Hazzi (MCZ IZ 167569). 381 Other material examined. COSTA RICA: San Jose province: One male and one female, San 382 Jose, Sabanas Sur (9.9308N, -84.0933W), 12.V.1981, G. Biamonte (UCR); one female and one 383 male, San Rafel de Moravia (9.9688N, -84.0489W), 00.V.1963, C. Valerio (UCR); Tibas, 384 Parques del Norte (9.9666N, -84.0736W), C. Herrera (MNCR); Alajuela province: One Male, Palmares (10.0607N, -84.4377), 20.IV.2013, S. Zamora; Cartago province: One female, Jimenez, 385 386 Pejibaye, Copal Biological Station (9.7834N, -83.7519W), 00.IV.2005 (MNCR); Heredia 387 province: One female, Calle los Gemelos (9.9834N, -84.1136W), 27.IV.1990, J. Carvajal

388 (MNCR); San Joaquin, Flores (10.0062N, -84.1537W), 14.IV.1997 (MNCR); two males, Santo 389 Domingo, Santa Rosa (9.9736N, -84.0944), 15.II.1995, C. Viquez (MNCR). PANAMA: Chiriquí 390 province: One male and one female, Fortuna Reserve (8.711N, -82.171, 1800m), 4.XII.2018, N. 391 Hazzi (MCZ IZ 167570). Etymology. This species is dedicated to Gilbert Barrantes, professor from Universidad of Costa 392 393 Rica, who has made important contributions to the study of spider behavior and natural history. 394 Diagnosis. Males resemble to those of K. panamensis and K. valeroi, but can be distinguished 395 from them by the orientation of the sclerotized process at the base of the embolus (Fig. 6B and 396 24B), circular shaped-bulb (Fig. 6B and 26B) (the other two species have oval bulbs being 397 longer than wide) and a small RTA (Fig. 6B–C and 24B). Females resemble those of K. 398 sinautipes by the conformation of the copulatory ducts (Figs. 6E and 18E) but can be 399 distinguished from them by an internal projection of the spermatheca (Fig. 6E), and anterior area 400 of the median sector narrow (Fig. 6D) instead of wide. 401 Male (MCZ IZ 167568 from Campus of Universidad of Costa Rica, San Pedro, San José 402 province, Costa Rica). Total length 27.00. Carapace 16.62 long and 12.08 wide. AME 0.60 ALE 403 0.52, PME 0.71, PLE 0.76. Sternum 6.73 long and 5.88 wide, labium 1.92 long and 1.70 wide, 404 endites 2.93 long and 1.88 wide. Leg measurements: I: femur 18.81, patella 6.85, tibia 22.4, 405 metatarsus 17.40, tarsus 6.12, total; II: 19.44, 6.27, 20.21, 16.55, 6.50, total; III: 15.83, 6.03, 406 15.95, 16.17, 5.50, total; IV: 20.40, 6.10, 20.50, 22.90, tarsus (missing), total. Leg spination: leg 407 I-II tibia v2-2-2-2, d0-0-1-0, p1-1-0, r1-1-0, metatarsus v2-2-2; leg III-tibia v2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-2, d0-1-0, p1-1-2, r1-1-2; leg IV-tibia v-2-2-2, d1-1-1, p1-01, r1-0-408 409 1, metatarsus modified. Palp: RTA spiniform in ventral view and with wide apex (Fig. 6C),

embolus elongated and flagelliform, presence of sclerotized process at the base of the embolus

(Figs. 6B and 24B), median apophysis with cup-shaped aperture visible ventrally (Fig. 24B and 412 26B); conductor with a narrow base and large apex, covering the tip of the embolus (Fig. 6B, 413 24B and 26B). 414 Female (MCZ IZ 167569-1, from Campus of Universidad of Costa Rica, San Pedro, San José province, Costa Rica). Total length 35.18. Carapace 16.22 long and 12.64 wide. AME 0.70, ALE 415 416 0.50, PME 0.80, PLE 0.80. Sternum 6.73 long and 6.06, labium 2.27 long and 2.13 wide, endites 417 4.61 long and 2.50 wide. Leg measurements: I: femur 15.16, patella 7.10. tibia 16.71, metatarsus 418 12.83, tarsus 5.40, total 57.20; II: 15.13, 6.63, 15.39, 12.33, 5.02, total 54.50; III: 13.56, 5.50, 419 12.60, 12.44, 4.50, total 48.60; IV: 17.08, 6.35, 16.68, 19.14, 5.50, total 64.75. Leg spination: 420 tibia I-II v2-2-2-2, metatarsus I-II v2-2-2-2, tibia III v-2-2-2, d1-1-1, p1-0-1, r1-0-1, 421 metatarsus v-2-2-2, p1-1-2, r1-1-1; tibia IV v2-2-2 d1-1-1, r1-0-1, p1-0-1, metatarsus v-2-2-2, 422 d0-1-0, p1-1-2, r1-1-2. Epigynum (Fig. 6AD: median sector with anterior area narrow and 423 posterior area wide, with margins sclerotized; lateral fields with a large hyaline projection, lateral 424 projections elongated, originated medially. Vulva (Fig. 6E). Copulatory ducts elongated, curved, 425 with a 360° turn (as in K. sinautipes); spermathecae elongated with an internal projection; 426 fertilization ducts small and located posteriorly. 427 Variation. Males (n=4): Total length 27.00–34.09, carapace 14.98–19.11, femur I 18.81–20.30. 428 Females (n=6): Total length 26.89–36.50, carapace 13.76–16.22, femur I 13.90–15.16. 429 **Distribution.** Montane ecosystems of Costa Rica (Fig. 27). 430 431 Kiekie barrocolorado Polotow & Brescovit, 2018

411

432

Fig. 7.

- 433 Holotype: Male holotype from Panama, Canal Zone, Barro Colorado Island (9.15, -79.85), VI–
- 434 VII.1936,
- 435 A.M. Chickering coll., (deposited in MCZ 79093, not examined).
- 436 Material examined. PANAMA: 2-Two males and 1-one female from Chiriquí province, Puerto
- 437 Amuelles, banana plantations (8.3408N, 82.8069W, 10m), 29.VII.2019, N. Hazzi, T. Rios and J.
- 438 Bernal (MCZ IZ 167571). COSTA RICA: Puntarenas province, Tres Colinas Station (9.3374N,
- 439 83.9108W), 17.IX. 2002, R. Gonzalez (MNCR).
- 440 **Diagnosis.** Males of *Kiekie barrocolorado* resemble those of *K. garifuna* by the embolus shape
- 441 and conductor, but differ by the RTA position, which is distant from the apical border of the tibia
- 442 (Figs. 7C) as opposed to be positioned at the apex, and by the median apophysis shape, with a
- 443 narrow and longer base (Figs. 7B) instead of wide and long as most species (Polotow &
- 444 Brescovit 2018). Females differ from all other species in the genus by the uniquely shaped
- pigynal median sector (Figs. 17D), with a pointed projection in the posterior area and anterior
- 446 area broad, with two lobes, and by having small and inconspicuous copulatory openings (Figs.
- 447 7E).
- 448 Female (MCZ IZ 167571, Puerto Amuelles, Chiriquí province, Panama). Total length 20.30.
- 449 Carapace 10.77 long and 8.72 wide. AME 0.50, ALE 0.38, PME 0.63, PLE 0.60. Sternum 4.60
- 450 long and 4.40 wide, labium 1.56 long and 1.38 wide, endites 2.89 long and 1.89 wide. Leg
- 451 measurements: I: femur 8.73, 4.32, 8.06, 6.87, 2.60, total 30.58; II: 8.02, 3.72, 7.52, 6.70, 2.54,
- 452 total 28.50; III: 6.57, 3.12, 6.08, 6.49, 2.30, total 24.56; IV: 8.96, 3.71, 8.72, 10.07, 3.07, total
- 453 34.53. Leg spination: tibia I-II v2-2-2-2, metatarsus I-II v2-2-2-2, tibia III v-2-2-2, d1-1-1,
- $454 \qquad p1-0-1, \, r1-0-1, \, metatarsus \, \, v2-2-2, \, d0-1-0, \, p1-1-2, \, r1-1-2; \, IV-tibia \, \, v2-2-2, \, d1-1-1, \, 1-0-1, \, p1-0-1, \, r1-0-1, \, r$
- 455 metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-1-2. Epigynum (Fig. 7D): median sector with a pointed or

oval projection in the posterior area, anterior area broad with two lobes, lateral fields without 457 large hyaline projection and copulatory openings small and inconspicuous, lateral process elongated and originated medially. Vulva (Fig. 7E). Copulatory ducts curved, with a broad less 458 459 sclerotized area at the beginning of the copulatory openings; spermathecae bean-shaped; fertilization ducts small and located posteriorly. 460 461 Male. Described by Polotow & Brescovit (2018). 462 Distribution. Lowland ecosystems of Costa Rica and Panama (Fig. 27). 463 464 Kiekie bernali sp. nov. 465 Figs. 4D, 8, 23B and 25B. 466 Type material. 467 Holotype. PANAMA: Male from Chiriquí province, Fortuna Reserve (8.711N, -82.171, 1800m), 468 4.XII.2018, N. Hazzi (MCZ IZ 167572). Paratypes: 6-Six males and 5-five females, same data as 469 holotype (MCZ IZ 167573). 470 **Diagnosis.** This is the smallest species of *Kieke* and it differs from the other congeneric species 471 by the following unique combination of characters: males with prominent subtegulum in the 472 exterior face of the embolus (Figs. 8B, 23B and 25B, in the remaining species the subtegulum is 473 visible in the exterior face), retrolateral tibial apophysis apically truncated (Fig. 8C), leaf-shaped median apophysis (Figs. 8B, 23B and 25B) and metatarsus IV unmodified. The epigynum 474 475 resembles that of *K. lamuerte* by the short copulatory ducts and small copulatory openings (Figs. 476 8D-E and 13D-E)), but it differs by the less sclerotized margins of the median sector and the bean-shaped spermathecae instead of kidney-shaped (Fig. 8D). 477

- **Etymology:** This species is dedicated to the memory of the late Juan Bernal, entomologist from
- 479 Universidad of Chiriquí who contributed with numerous studies to the diversity and distribution
- 480 of aquatic insects in Panama.
- 481 **Description.** *Male* (MCZ IZ 167572, from Fortuna Reserve, Chiriquí province, Panama). Total
- 482 length 10.60. Carapace 5.90 long and 4.99 wide, eye diameters: AME 0.34, ALE 0.21, PME
- 483 0.40, PLE 0.38. Clypeal height 0.17, sternum long, wide; labium 1.65 long, 1.30 wide. Sternum
- 484 2.58 long and 2.50 wide, labium 0.54 long and 0.86 wide, endites 1.40 long and 0.88 wide. Leg
- measurements: I: femur 6.52, patella 1.9, tibia 7.42, metatarsus 5.49, tarsus 2.72, total 24.05; II:
- 486 6.69, 2.22, 6.49, 5.64, 2.21, total 23.25; III, 5.98, 2.00, 5.01, 5.38, 2.01, total 20.38; IV 7.58,
- 487 2.03, 7.10, 8.80, 3.18, total 28.69. Leg spination: leg I tibia v2-2-2-2, p0-1-0, r1-0-0,
- 488 metatarsus v2-2-2, p1-1-0 r0-1-0 leg II tibia v-2-2-2-2, d0-0-1-0, p0-1-0, r1-1-0, metatarsus
- 489 v2-2-2, p1-1-0, r1-1-0, leg III v2-1-2-2, p1-0-1-0, r1-1-1, metatarsus v2-2-2-2, d0-1-0, r1-1-1,
- 490 leg IV tibia v2-2-2, d1-1-1, p-0-1-1-0, r0-1-1-0, metatarsus v2-2-2, d0-1-1, p0-1-2, r0-1-2. Palp:
- 491 RTA small and truncated at the apex (Fig. 8C); embolus flagelliform and laminar with a
- 492 sclerotized dark area at the base (Fig. 8B, 23B and 25B); median apophysis with a long base and
- 493 horizontally oriented (Fig. 8B, 23B and 25B); conductor with a narrow base and large apex,
- covering the tip of the embolus (Fig. 8B, 23B and 25B).
- 495 Female (MCZ IZ 167573-1, from Fortuna Reserve, Chiriquí province, Panama). Total length
- 496 12.22. Carapace 6.34 long and 4.94 wide, eye diameter: AME 0.34, ALE 0.25, PME 0.37, PLE
- 497 0.38. Clypeal height 0.15, sternum long 2.59 and 2.54 wide, endites 1.79 long and 1.04 wide,
- 498 labium 0.72 long and 0.91 wide. Leg measurements: I: femur 4.87, patella 1.95, tibia 4.91,
- 499 metatarsus 3.65, tarsus 1.65, total 17.03; II, 4.66, 2.14, 4.33, 3.55, 1.60, total 16.28; III 4.17,
- 500 2.03, 3.55, 3.67, 1.71, total 15.13; IV 5.52, 1.80, 4.74, 6.15, 2.46, total 20.67. Leg spination: tibia

- 501 I-II v2-2-2-2, metatarsus I-II v2-2-2-2; III tibia v2-2-2, d0-1-1-0, r1-0-1, p1-0-1; metatarsus
- 502 v2-2-2, p1-1-1, r1-1-1; IV tibia v2-2-2, d0-1-0-0, p0-1-1-0, r0-1-1-0; metatarsus v2-2-2-2, p1-1-1
- 503 r1-1-1. Epigynum (Fig. 8A): median sector sub quadrangular with margins sclerotized, posterior
- area wide and anterior area narrow, lateral process small, originated medially. Vulva (Fig. 18B).
- 505 Copulatory ducts short and curved, spermathecae small and bean-shaped, fertilization ducts
- small and posteriorly located.
- 507 **Variation.** Males (n=6): Total length 9.70–10.60, carapace 4.86–5.90, femur I 5.90–6.72.
- 508 Females (n=5): Total length 12.22–15.22, carapace 6.33–6.97, femur I 5.20–5.86.
- 509 **Distribution.** Montane ecosystems of Chiriquí Province, Panama (Fig. 27).
- 511 Kiekie curvipes Polotow & Brescovit, 2018
- 512 Figs. 5E-F, 10, 11, 26E.

- 513 Microctenus curvipes Keyserling, 1881: 579, pl. 16, fig. 24 (male holotype from Panama,
- deposited in C.L. Koch personal collection, not examined, probably lost).
- 515 Ctenus curvipes: Simon 1897:107, fig. 100; F.O. Pickard-Cambridge 1897: 86, pl. 3, figs 6a, 7e;
- 516 Polotow & Brescovit 2014: 355, fig. 12C.
- 517 Ctenus incolans F.O. Pickard-Cambridge, 1900: 111, pl. 7, figs 35–36 (female holotype from
- 518 Guatemala, deposited in BMNH 1901.3.3.142–143).
- 519 Material examined. COSTA RICA. Alajuela province: one female from Upala, Finca la
- 520 "Selva" (10.8977N, 85.0166W, 50m) (UCR); one male from San Ramón, Concepción
- 521 (10.1213N, 84.4402W, 1100m), 00.V.2015, N. Conejo (UCR); San Pedro de Poas (10.0722N,
- 522 84.2461W, 1100m), 15.VIII.2017, T. Roman (UCR); one female from Los Chiles, Finca de la
- 523 Compañía Comercial San Luis (10.9616N. 84.6517W), 08.II. 2009 (MNCR); Guanacaste

524	province: one female from Pitilla Biological Station (10.9926N, 85.4295W, 700m), J. Huff
525	(MNCR); one female from Monte Alto de Pilangosta, Hojancha Fila Maravilla (10.0085N,
526	85.4124W, 800m), W. Porras (MNCR); Heredia province: one female from Sarapiquí, La Selva
527	Biological Station (10.4306N, 84.0069W), C. Valerio (UCR); five females and five males from
528	Sarapiquí, Tirimbina Rainforest Center (10.4150N, 84.1210W, 160m), 15.VI.2019, N. Hazzi
529	(MCZ IZ 167574); Limon Province: one female from Liverpool, Veragua (9.9248N, 83.1912W,
530	400m), L.S egura (UCR); one female from Santa Rosa (10.3525N, 83.8044W, 100m),
531	00.04.2009, R. Madrigal (UCR); one female from Reserva Hitoy Cerere (9.6717N, 83.0277W),
532	28.III.2003 (MNCR); one male from Guacimo, Pocora (10.2458N, 83.5766W) 00.V.2000, C.
533	Víquez (MNCR); four females and four males PNN Tortugueros (10.4498N, -83.4730W, 10m),
534	10.VI.2019, N. Hazzi. Puntarenas province: one female from Playa Nicoya-Curu, Bosques
535	Marianas (9.791N, 84.9281W), 3.XII.1988 (UCR); one female, San Vito, Coto Brus (8.9541N,
536	83.0704), C. Valerio (UCR); one female from PNN Corcovado, San Pedrillo (8.6230N,
537	83.7366W), 27.IX.1998, M. Lobo (MNCR); one female from Peninsula la Osa, Puerto Jiménez
538	(8.5387N, 83.3061W), 10.I.1998, M. Lobo (MNCR); one female, Rincon Station (8.6049N,
539	83.5295W), 9.IX.1996; S. Avila (MNCR); Puesto en la Isla del Cano y Sendero sitio
540	arqueológico (8.7097N, 83.8736W), 23.II.1998, A. Azofeifa; two males and two females from
541	Cirenas (9.720N, 85.211W), 08.VI.2018, N. Hazzi (MCZ IZ 167575). San Jose province: one
542	female from Puriscal, Maztatal (9.6737N, 84.3691W, 400m), 27.III.2009, M. Ramírez (UCR);
543	one female from Pérez de Zeledon, Escuela Naranjo (9.2035N, 83.6366W, 800m); one female
544	from Puriscal, PN La Cangrejera (9.7003N, 84.3978W), B. Gamboa (MNCR). PANAMA.
545	Chiriquí province: two females and two males from Chiriqui University (8.4318N, 82.4515W,
546	30m), 28.VII.2018, N. Hazzi (MCZ IZ 167576). MEXICO: Chiapas province: one female and

547 one male from Marqués de Comillas, Playón de la Gloria (16.1513N, 90.8966W), 05.VII.2013 548 (CAN-AR 3462); one female and one male from Ocosingo, El Taller, Sierra de la Cojolita 549 (16.804N, 90.901W), 09.VIII.2005, R. Paredes (CNAN-AR 6695), one female from Ocosing, 550 Arroyo Nayte, Sierra de la Cojolita (16.792N, 91.042W), R. Paredes (CNAN-AR: 6692); Marquez de Comillas, Playon de la Gloria (16.1504N, 90.8965W), 7.VIII.2013 (CNAN-AR 551 552 4979); Veracruz Province: four females and four males, Los Tuxlas Biological Station 553 (18.5822N, 9.0755W), F. Alvarez Padilla (2016-2017) (CNAN-AR-Ar011669). 554 Diagnosis. Males of Kiekie curvipes differ from all congeneric species by the S-shaped and 555 cylindrical RTA, medially located at the palpal tibia (Figs. 9B-C and 10B-C). Females resemble 556 those of K. montanensis by the absence of a hyaline area in the lateral field, close to the 557 copulatory opening (Figs 9D, 10D and 15D); but can be distinguished by the shorter copulatory 558 ducts (Fig. 9E and 10E). 559 Taxonomic remarks: Polotow & Brescovit (2018) mentioned the round projection at the 560 embolus base and the bimarginated median apophysis (Fig. 46C) as diagnostic characters of K. 561 curvipes. However, during examination of specimens from Mexico, we found specimens with 562 neither the round projection at the embolus base nor the bimarginated median apophysis (Fig. 563 15B). In addition, we found specimens from Mexico with the round projection at the embolus 564 base, but without the bimarginated median apophysis. Therefore, males of Kiekie curvipes 565 should be diagnosed based on the S-shaped and cylindrical RTA. The fFemales from these 566 localities have larger spermathecae with conspicuous posterior granules (Fig. 16B) than those of the southern populations of Costa Rica and Panama. Future studies should examine in more 567 568 detail whether this variation could indicate the existence of more than one species.

569 Distribution. Lowland ecosystems of Costa Rica, Panama, Mexico, Honduras and Nicaragua 570 (Fig. 27). 571 572 Kiekie dietrichi Omelko, 2023 573 Kiekie dietrichi Omelko, 2023: 280, f. 6-10, 15-18, 23-26, 31-35, 38-39 (male holotype and four 574 female paratypes from Panama (deposited in ZMMU(Moscow)), not examined). 575 **Diagnosis.** Males of K. dietriche dietrichi resemble those of K. montanensis in the shape of the 576 median apohysis (Fig 15; Omelko, 2023: figs 15-17), but can be distinguished by the larger and 577 curved RTA with a sharp tip (vs. a tiny, straight, bifurcated tip as in K. montanensis, Fig15C; 578 Omelko, 2023: fig. 17). Females of K. dietrichi resemble those of K. curvipes in the shape of the 579 median sector of the epigynum (Figs. 9D and 10D; Omelko, 2023: figs. 31 an 32) and the 580 orientation of the copulatory ducts (Figs 9E and 10E; Omelko 2023, fig. 34), but differ by the small lateral processes of the epigynum pointing towards each other and by the reniform 581 582 spermathecae (Omelko, 2023: figs. 31 and 32), in contrast with the large downward-pointing 583 lateral projections and the piriform spermathecae of *K. curvipes* (Figs. 9D and 10D). 584 **Distribution.** Known only from the type locality in the Chiriquí Province of Panama. 585 Kiekie garifuna Polotow & Brescovit, 2018 586 587 Figs. 11, 24C and 26E. 588 Holotype: Male holotype from Guatemala, deposited (deposited in BMNH 1901.3.3.142–143, not examined). 589 590 Material examined. MEXICO: Veracruz province: two females and two males, Los Tuxlas 591 Biological Station (18.5822N, 9.0755W), F. Alvarez-Padilla (2016-2017) (CNAN-AR-

592 Ar011670). Chiapas province: four females from Ocosingo, Arroyo Nayte, Sierra de la Cojolita 593 (16.792N, 91.042W), A. Valdez, O. Francke, C. Santibáñez y J. Cruz (CNAN-AR:9528, 6668, 6695, 6696). 594 595 **Diagnosis.** Males of *Kiekie garifuna* can be distinguished from congeneric species by the shape 596 of the RTA, with a wide and flat tip, and a large base (Fig. 11B and 24C). Females of Kiekie 597 garifuna differ from all other the species in the genus by an ovoid projection in the anterior area 598 of the median sector of the epigynum (Fig. 11D) and by their large and thick curved copulatory 599 ducts (Fig. 11E). 600 Female (CNAN-AR-Ar011670, from Los Tuxlas Biological Station, Veracruz province, 601 Mexico). Total length 18.40. Carapace 9.00 long and 7.00 wide. AME 0.38, ALE 0.30, PME 602 0.45, PLE 0.48. Sternum 3.78 long and 3.38 wide, labium 1.18 long and 1.30 wide, endites 2.24 603 long and 1.32 wide. Leg measurements: I: femur 8.47, patella 3.66, tibia 7.85, metatarsus 6.53, 604 tarsus 2.70, total 29.21; II: 7.81, 3.40, 7.81, 6.38, 2.45, total 27.84; III: 7.0, 2.85, 6.31, 6.15, 2.41, 605 total 24.71; IV: 8.96, 3.71, 8.72, 10.07, 3.07, total 34.53. Leg spination: tibia I-II v2-2-2-2-2, 606 metatarsus I-II v2-2-2-2, tibia III v-2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-2, d0-1-0, 607 p1-1-2, r1-1-2; IV-tibia v2-2-2, d1-1-1, 1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-1-2. 608 Epigynum (Fig. 11D): median sector with an oval projection in the anterior area, lateral fields 609 without large hyaline projection and copulatory openings small and inconspicuous, lateral 610 process elongated and originated medially. Vulva (Fig. 11E). Copulatory ducts curved, with a 611 broad less sclerotized area at the beginning of the copulatory openings; spermathecae nearly 612 rounded; fertilization ducts small and located posteriorly.

613

Male. Described by Polotow & Brescovit (2018).

614 Variation. Males (n=3): Total length 14.20–15.10, carapace 8.40–10.10, femur I 9.25–10.10. Females (n=3): Total length 18.22–19.00, carapace 9.10–9.55, femur I 8.34–8.90. 615 616 **Distribution.** Lowland ecosystems from Mexico to Nicaragua. 617 618 Kiekie griswoldi Polotow & Brescovit, 2018 619 Figs. 5C-D, 12, and S2. 620 Holotype: Male from Costa Rica, Puntarenas Province, Santa Elena, near Monteverde 621 (deposited in MCZ 30607, not examined). Kiekie sanjose Polotow & Brescovit, 2018: 10, Fig. (Female holotype from Costa Rica, 622 623 deposited in MCZ 79098, and female paratype deposited in AMNH, not examined). New 624 synonymy. 625 Material examined. COSTA RICA: Alajuela Province: One female, Arenal, San Ramón 626 Reserve (10.2276N, 84.6008W), C. Víquez (MNCR); one female, Upala, around San Ramón de 627 dos Rios (10.8832N, 85.4135W), 22.VI.1994 (MNCR), one male, San Ramón, Villa Blanca 628 Cloud Forest Hotel (10.2025N, 84.4844W), 21.VII.2018, N. Hazzi and N. Conejo (MCZ IZ 167577); Cartago Province: One male, National Park Tapantí, Quebrada Segundo area (9.7625N, 629 630 83.7883W), R. Delgado (MNCR); Guanacaste province: One female, Faldas Volcán Tenorio 631 (10.658N, 84.9961W), 08.II.1986, C. Bernal (UCR); One female, Biological Station Pitilla, 9km 632 from Santa Cecilia (10.9926N, 85.4295W), 01.V.1989, P. Rios (MNCR); Puntarenas Province: 633 One female, Arenal, Monteverde, La Casona Station (10.2984N, 84.7925W), 23.V.1995, K. 634 Martínez (MNCR); One female, Arenal, Monteverde, Tropical Scientific Center (10.3014N, 635 84.7954W), 17.VIII.2009, D. Gutierrez (MNCR); three males and three females, Coto Brus, Las

Cruces Biological Station (8.7840N, 82.9590W), 25.VI.20018, N. Hazzi and N. Conejo (MCZ IZ

637 167578). PANAMA: Chiriquí province: One male, Lagunas de Volcan (8.7638N, -82.6772W, 638 1368m), 31.VII.2018, N. Hazzi (MCZ IZ 167579). 639 **Diagnosis.** Males of *Kiekie griswoldi* are easily distinguished from all other species of the 640 genus by the large and curved RTA, emerging from the retrodorsal area of the tibia to ventral direction (Fig. 12B-C and S2B-C), and by a large median apophysis at the apex with C-shaped in 641 642 ventral view (Fig. 12B and S2B). Females of Kiekie griswoldi differ from all species by the 643 lateral and straight elongation of the spermathecae (fig. 12E). 644 Taxonomic Remarks: Polotow & Brescovit (2018: fig. 10C) diagnosed females of Kiekie 645 griswoldi by the short and anterior position of the lateral process of the epigynum. However, 646 during examination of museum specimens, we discovered that females instead have lateral 647 processes positioned medially, as usual in most species, but some specimens lack them, probably 648 because they lost them during mating. Therefore, the lateral process that Polotow & Brescovit pointed in their fig. 10C, is not the lateral process, but just is just part of the conformation of the 649 650 lateral field of the epigynum. Polotow & Brescovit (2018) differentiate Kiekie sanjose from K. 651 griswoldi by the longer median field of the epigynum. However, examination of specimens from 652 areas close to the type localities and other regions in Costa Rica, indicate that there is a 653 continuum of variation between shapes in the middle field with high overlap. In addition, the 654 males associated with females with longer median epigynal field have the diagnostic characters 655 of K. griswoldi. Therefore, we synonymize K. sanjose with K. griswoldi. This species presents a 656 large morphological variation across its geographic distribution range. Populations from the southern area of Cordillera Talamanca are considerably larger in size than the populations from 657 658 the mountain ranges of Central Cordillera, Guanacaste and Tilaran. In addition, populations of 659 the southern part of Talamanca have larger and robust median tegular projection compared to the

populations of the northern area (Fig. 12 and S2). Due to the limited sampling and continuous morphological variation, we prefer to consider this variability as intraspecific. However, we acknowledge that more studies are needed to determine if K. griswoldi could be more than one species. **Distribution.** Montane ecosystems of Costa Rica and Panama (Fig. 38A). Kiekie lamuerte sp. nov. Figs. 13, 23A and 25A. Type material Holotype. COSTA RICA: Male from San Jose Province, Cerro de la Muerte (9.55N, -83.72W), 21.III. 1993, G. Hormiga (MCZ IZ 167580). Paratypes. +One male and one female, same data as holotype (MCZ IZ 167581). **Etymology.** The species name is a toponym in apposition in reference to the type locality. **Diagnsosis.** Males of K. lamuerte resemble those of K. bernali in the general palp conformation, but differ by the hook-shaped median apophysis (Figs. 13B, 23A and 25A), presence of a sclerotized process (Fig 13B, 23A), apically bifid RTA (Fig. 13C) and the presence of modified metatarsus IV. The epigyna resemble those of K. bernali by the short copulatory ducts and small copulatory openings, but differ by the stronger sclerotized margins of the median sector (Fig. 13D) and the spermathecal shape, with a well-defined base (Fig. 13E). Male (MCZ IZ 167580, from Cerro de la Muerte, San Jose Province, Costa Rica). Total length 18.57. Carapace 10.18 long and 8.27 wide. Eye diameters: AME 0.43, ALE 0.33, PME 0.35, PLE 0.52. Clypeal height 0.24, sternum 4.55 long and 4.31 wide, endites 2.82 long and 1.50 wide, labium 1.26 long and 1.47. Leg measurements: I: femur 10.27, patella 3.87, tibia 10.15,

660

661

662

663

664665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

```
685
       tibia v2-2-2-2, p0-1-0, 0-1-0 metatarsus v2-2-2, II tibia v2-2-2-2, r2-2-0, p2-2-0, metatarsus
686
       v2-2-2, III v-2-2-2, d1-1-1, p 1-0-1, r1-0-1, metatarsus v2-2-2, 0-1-0, p1-1-2, r1-1-2; IV tibia v-
       2-2-2, d1-1-1, p1-0-1 r1-0-1, metatarsus modified. Palp: RTA small and apically bifid (Fig.
687
688
       13C), embolus flagelliform and laminar, with a sclerotized process at the base of the embolus
689
       (Fig 13B and 23A), median apophysis vertically oriented (Figs. 13B and 23A, 25A); conductor
690
       with a narrow base and large apex, covering the tip of the embolus (Figs. 13B and 23A, 25A).
691
       Female (MCZ IZ 167580-1, from Cerro de la Muerte, San Jose Province, Costa Rica). Total
692
       length 27.76. Carapace 12.35 long and 9.35 wide. AME 0.47, ALE 0.35, PME 0.55, PLE 0.50.
693
       Clypeal height 0.26, sternum 5.14 long and 4.62 wide, endites 2.45 long and 2.36 wide, labium
694
       1.15 long and 1.55 wide. Leg measurements: I, femur 9.31, patella 4.60, tibia 9.12, metatarsus
695
       7.01, tarsus 2.90, total; II: 8.04, 3.47, 6.75, 6.308, 3.00, total; III: 7.51, 3.50, 6.16, 6.10, 2.30,
```

metatarsus 9.17, tarsus 3.78, total 37.24; II: 9.31, 3.43, 10.19, 8.24, 3.78, total 34.95; III: 8.85,

2.99, 8.37, 8.29, 3.30, total 31.80; IV: 3.22, 10.68, 11.24, 11.59, 3.67, total 40.40. Leg spination:

698 2-2, d0-1-1-0, r0-1-1-0, p0-1-1-0, metatarsus v2-2-2, p1-1-1, r1-1-1, r1-1-1-2. Epigynum (Fig.

total; IV: 9.55, 3.84, 9.10, 9.54, 3.50, total. Leg spination tibia I-II v2-2-2-2, metatarsus I-II

v2-2-2-2; III tibia v2-2-2, p1-1-0, r1-1-0, metatarsus v2-2-2, d0-1-0, p1-1-1 r1-1-1; IV tibia v2-

- 699 13D): median sector sub quadrangular with margins sclerotized, posterior area wide and anterior
- 700 area narrow, lateral process small, originated medially. Vulva (Fig. 13E). Copulatory ducts short
- and curves, spermathecae bean-shaped, with a well-defined base; fertilization ducts small,
- 702 posteriorly located.
- 703 **Variation.** Males (n=2): Total length 18.57–19.32, carapace 10.75–10.90, femur I 10.27–10.75.
- 704 **Distribution.** Montane ecosystems of San Jose Province, Costa Rica (Fig. 27).

696

697

683

- 706 Kiekie laselva sp. nov.
- 707 Figs. 4E-F, 24A and 26A.
- 708 Type material.
- 709 Holotype. COSTA RICA: Female from Heredia Province, Sarapiquí, La Selva Biological Station
- 710 (10.4305N, 84.0073W), 18.VI.2018, N. Hazzi (MCZ IZ 167582). Paratypes: 3-Three males and
- 711 5-five females, Limón Province, PNN Tortugueros (10.4498N, -83.4730W, 10m), 10, VI.2019, N.
- 712 Hazzi (MCZ IZ 167583); <u>Hone</u> female, Heredia Province, Sarapiquí, Tirimbina Rainforest
- 713 Center (10.4150N, -84.1210, 160m), 25.VI.2018, N. Hazzi (MCZ IZ 167584).
- 714 Other material examined. Costa Rica: One female, Limón Province, River fri (10.4014N, -
- 715 83.6000W), 04.X.1997, C. Víquez (MNCR).
- 716 **Etymology.** The species name is a noun in apposition to "La Selva" Biological station, which
- 717 was established as a research station in 1968 by the organization of tropical studies (OTS).
- 718 **Diagnosis.** Males of *K. laselva* resemble those of *K. valeroi* and *K. panamensis* but can be
- 719 distinguished from them by a white conspicuous laminar process of the embolus (Fig. 14A and
- 720 24A) and by a longer whip-shaped embolus (Figs. 14A, 24A, 26A). Females of K. laselva also
- 721 resemble those of K. panamensis and K. valeroi in the general epigynal configuration but differ
- by the more complex rolled coiled conformation of the copulatory ducts (Fig. 14E).
- 723 Female (MCZ IZ 167582, from La Selva Biological Station, Sarapiquí, Heredia Province, Costa
- 724 Rica). Total length 37.12. Carapace 16.57 long and 13.22 wide. AME 0.62, ALE 0.56, PME
- 725 0.69, PLE 0.82. Clypeal height 0.26, sternum 6.70 long and 6.03 wide, endites 4.00 long and
- 726 2.66 wide. Leg measurements: I: femur 14.19, patella 6.00, tibia 13.88, metatarsus 9.80, tarsus
- 727 4.06, total; II: 13.10, 5.55, 11.82, 9.86, 3.60, total III: 11.49, 4.71, 9.98, 9.05, 2.90, total; IV:
- 728 14.05, 5.83, 12.78, 14.82, 4.00, total. Leg spination: tibia I-II v2-2-2-2, metatarsus I-II v2-2-2

Comentado [aa8]: Numbers lower than ten are written in letters, change throughout text accordingly

Comentado [aa9]: ??

- 729 2-2, tibia III v-2-2-2, d1-1-1, r1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-1-2; IV tibia
- 730 v2-2-2 d1-1-1, r1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-1-2. Epigynum (Fig. 14D):
- 731 median sector sub pentagonal and vertically elongated, lateral fields with a large hyaline
- 732 projection, posterior area wide and anterior area narrow, lateral process sharp, originated
- 733 medially. Vulva (Fig. 14E). Copulatory ducts elongated forming complex loops, spermathecae
- small and bean-shaped; fertilization ducts small and located posteriorly.
- 735 Male (MCZ IZ 167583-1, La Selva Biological Station, Sarapiquí, Heredia Province, Costa Rica).
- 736 Total length 36.84. Carapace 20.02 long and 15.80 wide. AME 0.65, ALE 0.50, PME 0.74, PLE
- 737 0.86. Clypeal height 0.20, sternum 8.81 long and 7.36 wide, labium 2.44 long and 2.24, endites
- 4.48 long and 2.60 wide. Leg measurements: I: femur 19.84, patella 7.18, tibia 19.55, metatarsus
- 739 17.74, tarsus 6.69, total; II: 18.40, 7.38, 17.52, 15.29, 5.30, total; III: 16.64, 6.3, 14.64, 13.45,
- 740 4.60; IV: 20.80, 8.05, 20.10, 20.33, 6.38, total. Leg spination: leg I tibia v2-2-2-2-2, p1-1-1-0, r1-
- 741 0-0, metatarsus v-2-2-2, Leg II, tibia v2-2-2-2, p-1-1, r1-1, metatarsus v-2-2-2; III: v2-2-2, d1-1-
- $742 \qquad 1, \, , \, p \,\, 1\text{-}0\text{-}1, \, r1\text{-}0\text{-}1, \, metatarsus \,\, v2\text{-}2\text{-}2, \,\, d0\text{-}1\text{-}0, \, p1\text{-}1\text{-}2, \, r1\text{-}1\text{-}2, \, IV \,\, tibia \,\, v2\text{-}2\text{-}2, \,\, d1\text{-}1\text{-}1, \, p1\text{-}01, \, r1\text{-}1, \, p1\text{-}01, \, p1\text{-}1, \, p1\text{-$
- 743 0-1, metatarsus modified. Palp: RTA spiniform in ventral view, with wide apex (Figs. 14B, C),
- 744 embolus elongated, flagelliform with a large white laminar process, presence of sclerotized
- 745 process at the base of the embolus (Figs. 14B, 24A), median apophysis with cup-shaped aperture
- visible ventrally (Figs. 24A, 26A); conductor with a narrow base and large apex, covering the tip
- of the embolus (Figs. 24A, 26A).
- **Variation.** Males (n=3): Total length 36.50–37.68, carapace 19.00–20.68, femur I 19.00–20.51.
- 749 Females (n=7): Total length 34.53–40.32, carapace 17.63–20.01, femur I 14.19–17.6.
- 750 **Distribution.** Lowland ecosystems of Costa Rica (Fig. 27).

- 752 Kiekie montanensis Polotow & Brescovit, 2018.
- 753 Fig. 5-B, 15.
- 754 Holotype: Male holotype from Costa Rica, Puntarenas Province, San Vito (deposited in CAS, not
- 755 examined).
- 756 Material examined. PANAMA: 10 females and 10 males from Panama, Chiriquí province,
- 757 Lagunas de Volcán (8.7638N, -82.6772W, 1368m), 31.VII.2018, N. Hazzi (MCZ IZ 167585);
- 758 COSTA RICA: 3 males and 3 females from Puntarenas province, Las Cruces Biological Station
- 759 (8.7840N, 82.9590W, 1200m), 25.VI.2018, N. Hazzi (MCZ IZ 167586); 3 males and 1 female,
- 760 Puntarenas Province, Las Alturas Biological Station (8.9450, -82.8330, 1300m), 29.VI.2018, N.
- 761 Hazzi (MCZ IZ 167587). COSTA RICA: Puntarenas Province: One female, Buenos Aires.
- 762 Durika Reserve (9.2617N, 83.2469W), 00.II.1990, one male, Coto Brus, Sabalito, Finca Marco
- 763 Morales (8.9064N, 82.8047W), 08.V.1995 (MNCR); one male, Coto Brus, 500m from Cerro
- 764 Pelon (8.9136N, 82.7965W) (MNCR).
- 765 **Diagnosis.** Males of *K. montanensis* resemble those of *K. curvipes and K. verbena* by having a
- prominent tegular process (Figs. 9B, 15B and 21B), but can be distinguished from them by a
- 767 median apophysis with a long and straight stem and a small RTA (Fig. 15B-C), not visible in
- 768 ventral view. Females differ from all other congeneric species by the unique configuration of the
- 769 copulatory ducts (Figs. 15E), which are rolled coiled and connecting posteriorly (below) with the
- 770 spermathecae, and by the presence of numerous granules below under of the copulatory ducts.
- 771 Female (MCZ IZ 167585-1, Lagunas de Volcán, Chiriquí province, Panama). Total length
- 772 24.00. Carapace 11.19 long and 9.18 wide. AME 0.52, ALE 0.38, PME 0.59, PLE 0.60. Sternum
- 773 4.73 long and 4.31 wide, labium 1.51 long and 1.48 wide, endites 3.07 long and 1.73 wide. Leg
- measurements: I: femur 8.96, patella 4.20, tibia 8.74, metatarsus 6.52, tarsus 2.80, total 31.22; II:

- 775 8.82, 3.99, 7.70, 6.52, 2.70, total 29.73; III: 7.80, 3.23, 6.54, 6.26, 2.87, total 26.70; IV: 9.58,
- 776 4.02, 9.28, 9.63, 3.00, total 35.51. Leg spination: tibia I-II v2-2-2-2-2, metatarsus I-II v2-2-2-2-2,
- 777 tibia III v-2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-2, d0-1-0, p1-1-2, r1-1-2; IV-tibia v2-2-
- 778 2, d1-1-1, 1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-1-2. Epigynum (Fig. 15D):
- 779 median sector sub pentagonal, anterior area narrow, lateral fields without large hyaline
- 780 projection, lateral process robust and originated medially. Vulva (Fig. 15E). Copulatory ducts
- 781 elongated, rolled coiled and connecting posteriorly (below) of the spermathecae; rounded
- 782 spermathecae; fertilization ducts small, posteriorly located, with multiple granules between the
- 783 copulatory and fertilization ducts.
- 784 Male. Described by Polotow & Brescovit (2018).
- **Variation.** Males (n=10): Total length 20.08–21.53, carapace 10.87–11.85, femur I 10.67–11.03.
- 786 Females (n=10): Total length 19.39–25.57, carapace 10.42–11.88, femur I 8.04–9.54.
- **Distribution.** Montane ecosystems of Costa Rica and Panama (Fig. 46).
- 789 Kiekie panamensis Polotow & Brescovit, 2018
- 790 Figs. 4A-C, 16, 23E 25E.

- 791 Holotype: Male holotype from Panama, Canal Zone, Barro Colorado Island (deposited in MCZ
- 792 79100, not examined).
- 793 Material examined. PANAMA: Coclé Province: One female, 50km west of Penonome Via el
- 794 Cope (8.6680N, 80.5925W), 08.VI.2008, G. Hormiga (MCZ IZ 167588); three females and three
- males, Colón Province, Gamboa (9.0980N, 79.0738W), 05.VIII.2018, N. Hazzi and S. Meneses
- 796 (MCZ IZ 167589). COLOMBIA: Antioquia Department: one female and one male, Valle del
- 797 Aburra (6.2375N, 75. 5804W), N. Hazzi and A. Arroyave (MUSENUV); Valle del Cauca

798	Department: One female, Tulua, Botanical Garden INCIVA (4.0396N, 76.1683W), 00.X.2013,
799	N. Hazzi (MUSENUV); one female and one male; Buga, Parque Natural Regional ''El
800	Vínculo'' (3.8373N, 76.3002W), 00.X.2013, N. Hazzi (MUSENUV); One one male, Cali,
801	Universidad del Valle Melendez, Biological Station (3.3712N, 76.5331), 00.X.2010, N. Hazzi
802	(MUSENUV); one female and one male, Buenaventura, Pericos River Forest Reserve (3.8443N,
803	76.7901W), 04.I.2014, N. Hazzi (MUSENUV); one female, Buenaventura, Bahía Chucheros
804	(3.9369N, 77.2967W), 00.XI.2011, N. Hazzi (MUSENUV). ECUADOR: Esmeraldas, Caimito
805	(3.9369N, 77.2967W), 05.X.2019, N. Hazzi (MCZ IZ 167589).
806	Diagnosis. Males of <i>K. panamensis</i> resemble those of <i>K. valeroi</i> but can be distinguished from
807	them by a shorter, sclerotized tegular process at the base of the median apophysis (Fig. 16B, 23E,
808	25E), and by median apophysis without a small peak (Fig. 25E). Females of K. panamensis can
809	be distinguished from K. valeroi by sharper lateral process of the epigynum (Fig. 16D), anterior
810	area of the median sector of the epigynum wide (Fig. 16D); and small spermathecas
811	spermathecae (16E).
812	Distribution. Lowland and premontane ecosystems of Panama, Colombia and Ecuador (Fig. 27).
813	
814	Kiekie sarapiqui Polotow & Brescovit, 2018
815	Figs. 17, 24D, 26D.
816	Holotype: Male from Sarapiquí Heredia province, Costa Rica (deposited in MCZ 79099, not
817	examined)
818	Material examined. COSTA RICA. Heredia province: two males and two females from
819	Sarapiquí, Tirimbina Rainforest Center (10.4150N, 84.1210W, 160m), 15.VI.2019, N. Hazzi
820	(UCR). Alajuela province: one male and one female from Reserva Alberto Manuel Brenes

821	(10.2301N, -84.6271W, 700m), 00.IV.2009, A. Rojas (UCR); Limon province: one female from
822	Tortugueros, Campus Escuela Agricola Regional del Trópico Húmedo (10.20N, 83.6167W,
823	50m), 18.IX.2000, C. Víquez (MNCR); one female from Pococi, Finca del INBIO (10.1867N, -
824	83.8569W, 300m) (MNRC); Puntarenas province: one female from R.B. Hitoy Cerere
825	(9.6650N, 83.0271W, 250m) (MNCR).
826	Diagnosis. Males of <i>Kiekie sarapiqui</i> resemble those of <i>K. sinuatipes</i> by the conformation of the
827	RTA and embolus but differ by the wider and shorter median apophysis with the aperture not
828	visible in ventral view (Figs. 17B, 24D, 26D). Females of <i>Kiekie sarapiqui</i> resemble those of <i>K</i> .
829	sinautipes but differ by a longer median epigynal field and shorter lateral process (Fig. 17D); and
830	by copulatory ducts folded over themselves before connecting to the spermathecae (Fig. 17E).
831	
831 832	Kiekie sinuatipes sinuatipes (F.O. Pickard-Cambridge, 1897)
	Kiekie sinautipes sinuatipes (F.O. Pickard-Cambridge, 1897) Figs. 18, 24F, 26F.
832	
832 833 834	Figs. 18, 24F, 26F.
832 833	Figs. 18, 24F, 26F. Holotype: Male from San José Province, Costa Rica (deposited in BMNH 1896.3.20.26–29, not
833 834 835 836	Figs. 18, 24F, 26F. Holotype: Male from San José Province, Costa Rica (deposited in BMNH 1896.3.20.26–29, not examined)
833 833 834 835 836	Figs. 18, 24F, 26F. Holotype: Male from San José Province, Costa Rica (deposited in BMNH 1896.3.20.26–29, not examined) Material examined. COSTA RICA: Alajuela province: one male from Zarcero (10.1834N,
833 834 835 836 837 838	Figs. 18, 24F, 26F. Holotype: Male from San José Province, Costa Rica (deposited in BMNH 1896.3.20.26–29, not examined) Material examined. COSTA RICA: Alajuela province: one male from Zarcero (10.1834N, 84.3927W, 1700m), 18.IV.2013, A. del Valle (UCR), one male from the same locality,
832 833 834 835	Figs. 18, 24F, 26F. Holotype: Male from San José Province, Costa Rica (deposited in BMNH 1896.3.20.26–29, not examined) Material examined. COSTA RICA: Alajuela province: one male from Zarcero (10.1834N, 84.3927W, 1700m), 18.IV.2013, A. del Valle (UCR), one male from the same locality, 27.10.1997 (MNCR). Cartago Province: One male from Dulce Nombre (9.8456N, 83.9095W),

84.1035W), 6.19.2019 (MNCR); one female from San Joaquín de Florez (10.0062N, 84.1537W),

01.05.1997, C. Víquez (1997). Puntareas province: one female fron Monteverde (10.2749N,

842

843

Comentado [aa10]: Change misspellings throughout

844	84.8255W), C. Valerio (UCR); one female from Coto Brus, Estación Pitter, "Cerro Pitter" trail
845	(9.0256N, 82.9627W, 1670m), E. Núñez (MNCR), two females from the same locality,
846	16.I.2000 (MNCR); one female from Buenos Aires, Pila Sector Altamira (9.0329N, 83.0109W,
847	1400m), 25.VIII.2005 (MNCR). San José province: one male from Curridabat, Granadilla
848	(9.9221, 84.0177W), C. Valerio (UCR); one male from Alajuelita, San Juan de Dios de
849	Desamparados (9.9013N, 84.0995W), 08.IV.1981 (UCR); one male and one female from Montes
850	de Oca (9.9407N, 84.0250W), 08.V.1981, A. del Valle (UCR), One female from San Antonio de
851	Alajuelita (9.8858N, 84.1144W), 10.VII.1986, M. Garcia (UCR); one female from San Rafael de
852	Moravia (9.9688N, 84.0489W), 00.V.1963, C. Valerio (UCR); one male from Guadalupe
853	(9.9471N, 84.0535W), 06.II.1972 (S. Salas); one male from San Jose, Barrio Cuba (9.9245N,
854	84.0901W), (UCR); one female from Tibas (9.9576N, 84.0816W, 1200m), 00.III.1998, L.
855	Bonatti (UCR); Estación Cuericí, 4.6km E de Villa Mills (9.5552N, 83.6703W), A. Mora
856	(MNCR); two males from Curridabat, Los Prados (9.9339N, 84.0284W), 10.II.1995 (MNCR);
857	San Antonio de Escazu, William Eberhard and Mary Jane Eberhard house (9.8975N, 84.1377W),
858	20.VII.2018, N. Hazzi (MCZ IZ 167590).
859	Diagnosis. Males of Kiekie sinuatipes resemble those of K. sarapiqui (Fig. 18A–B) by the shape
860	of the embolus and RTA but can be distinguished by the elongated hook-shaped median
861	apophysis (Figs. 18B, 24F, and 26F). Females resemble those of K. barrentesi by the
862	conformation of the copulatory ducts (Fig. 18E) but can be distinguished from them by the
863	narrower anterior area of the median sector narrow (Fig. 18D) and rounded spermathecae
864	without an internal projection (Fig. 18E).
865	Distribution. Montane ecosystems of Costa Rica (Fig. 27).

- 867 Kiekie tirimbina sp. nov.
- 868 Figs. 19, 23C, 25C
- 869 Type Material.
- 870 Holotype. COSTA RICA: Male from Heredia Province, Sarapiquí, Tirimbina Rainforest Center
- 871 (10.4150N, 84.1210, 160m), 15.VI.2019, N. Hazzi (MCZ IZ 167591).
- **Diagnosis.** Males of *K. tirimbina* differ from the remaining species of the genus by the
- 873 combination of the following unique characters: thin and straight median apophysis, rounded at
- the apex (Figs. 19B, 23C and 25C); conductor large and deeply folded (Figs. 19B, 23C and 25C),
- 875 tegulum with numerous and small grooves (Fig. 25C).
- 876 Etymology. The species epithet is a noun in apposition taken from the Tirimbina Biological
- 877 Reserve, a protected tropical rainforest in Sarapiquí.
- 878 Male (MCZ IZ 167591, from Tirimbina Rainforest Center, Sarapiquí, Heredia province). Total
- length 19.12. Carapace 9.88 long and 7.91. AME 0.57, ALE 0.31, PME 0.59, PLE 0.62, sternum
- 4.12 long and 3.75, labium 1.40 long and 1.25 wide, endites 2.82 long and 1.41. Leg
- measurements: I: femur 9.91, patella 4.45, tibia 12.05, metatarsus 9.72, tarsus 3.80, total 37.93;
- 882 II: 9.84, 4.24, 10.81, 9.77, 3.30, total 37.96; III: 9.54, 3.48, 8.39, 8.74, 2.81, total 32.96; IV:
- 883 11.51, 3.91, 11.13, 13.99, 4.18, total 44.72. leg I tibia v2-2-2-2, p1-1-0, r1-1-0, metatarsus v2-
- 884 2-2; p1-1-0, r1-1-0; II-tibia v2-2-2-2, d1-1-1, p1-1-0, r1-1-0, metatarsus v2-2-2, p1-1-0, r1-1-0;
- 885 III-tibia v2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-2, d0-1-0, p1-1-1, r1-1-1; IV-tibia v2-2-1, d1-1-1, p1-0-1, p1-
- 886 2, d1-1-1, p1-01, r1-0-1, metatarsus modified. Palp: RTA short and robust (Fig. 19C), embolus
- 887 elongated and flagelliform, with laminar process (Figs. 23C and 25C); presence of sclerotized
- process at the base of the embolus (Figs. 23C and 25C); median apophysis thin and straight,
- apically rounded, cup-shaped with aperture not visible ventrally (Figs. 19B, 23C and 25C);

891 25C). 892 Female. Unknown. 893 **Distribution.** Lowland ecosystems of Costa Rica (Fig. 27). 894 895 Kiekie valeroi sp. nov. 896 Figs. 20, 23F and 25F. 897 Type Material 898 Holotype. COSTA RICA: Male from Heredia Province, Sarapiquí, Tirimbina Rainforest Center 899 (10.4150N, -84.1210, 160m), N. Hazzi (MCZ IZ 167592). Paratypes. <u>5Five</u> males and <u>5-five</u> 900 females same data as holotype (MCZ IZ 167593). 901 Additional material examined. Costa Rica: San José Province: One male, Perez Zeledón, San 902 Isidro del General (9.3547N, -83.6348), 3.VI.1972, J. Bolenige (UCR); One female, Puriscal, PN la Cangreja (9.7003N, -84.3978W), B. Gamboa (MNCR); Two females, Alajueja Province, San 903 904 Ramón, Reserva Alberto Manuel Brenes (10.2301, -84.6271), 15.V.2013, M. Salazar; Upala. 905 Finca ''La Selva'' (10.8977N, -85.0166) (UCR); One female, Upala, El Pilón (10.8166N, -906 84.9500W), 16.X.2003 (MNCR), One female (10.7046, -84.9923), 23.VIII.2009, A. Azofeida 907 (MNCR); Cartago Province, Turrialba (9.9067N, -83.6801), 03.VII.1986, C. Valerio (UCR); 908 Jimènez, Pejibaye, Copal Biological Station (9.1963N, -83.5975W), R. González (MNCR); 909 Guanacaste Province: One male Arenal, Tilaran (10.4563N, -84.9713), C. Valerio; Liberia, 910 Colorado river (10.6842N, -85.4430) (UCR); one female and one male, La eruzCruz, Pitilla 911 Biological Estation (10.9926N, -85.4295W), 31.VII. 1991, C. Moraga (MNCR); Heredia 912 Province, Sarapiquí, Tirimbina Biological Station (10.4190N,-84.1210W), (MNCR); 2 females,

conductor with a narrow base and large apex, covering the tip of the embolus (Figs. 23C and

890

Con formato: Fuente: Sin Cursiva

913 Limon Province, Hitoy Cerere Biological Reserve (9.6717N, -83.0277W), 14.V.1998 (MNCR); 914 Cocori (10.5942N, -83.7165W), 00.XI.1997, E. Rojas (MNCR); Limón, Espavel trail (9.6680N, 915 -83.0236W), 25.IX.2003 (MNCR); Pococi, Finca INBIO (10.1867N, -83.8569) (MNCR); 916 Puntarenas Province: San Pedrillo Station, Osa Peninsula (8.6230N, -83.7366W) (MNCR); 917 Parrita (9.5230N, -84.5387W) (MNCR). 918 **Diagnosis.** Males of K. valeroi resemble those of K. panamensis in the general palp 919 conformation, but can be distinguished from them by a wider tegular process at the base of the 920 median apophysis (Fig. 20B), which is not sclerotized (Fig. 23F); and a robust base of the 921 median apophysis with a small peak (Fig. 25F). Females of K. valeroi can be distinguished from 922 K. panamensis by less sharp lateral process of the epigynum (Fig. 20D), more narrow anterior 923 area of the median sector of the epigynum (Fig. 20D); and larger spermathecas spermathecae 924 projecting internally and contacting with the copulatory ducts (Fig. 20E), while in K. panamensis 925 the spermathecas spermathecae do not contact the copulatory ducts. 926 Etymology. This species is dedicated to Carlos E. Valerio, who made important contributions to 927 the knowledge of spider diversity in Costa Rica. 928 Male (MCZ IZ 167592, from Tirimbina Rainforest Center, Sarapiquí, Heredia province). Total 929 length 31.55. Carapace 17.50 long and 14.95 wide. AME 0.77, ALE 0.51, PME 0.81, PLE 0.87. 930 Sternum 7.87 long and 7.01 wide, labium 2.40 long and 2.23 wide, endites 4.99 long and 2.41 931 wide. Leg measurements: I: femur 19.10, patella 6.86, tibia 17.99, metatarsus 15.03, tarsus 5.92, 932 total 64.90; II: 17.37, 6.43, 18.10, 15.16, 5.06, total 62.12; III: 16.32, 6.82, 14.63, 14.44, 4.62, total 56.83; IV: 19.86, 7.63, 19.33, 20.61, 6.62, total 74.05. Leg spination: leg I tibia v2-2-2-2-2, 933 934 d1-0-1, p1-1-0, r1-1-0, metatarsus v2-2-2; p1-1-0, r1-1-0; II-tibia v2-2-2-2, d1-1-1, p1-1-0, r1-

1-0, metatarsus v2-2-2, p1-1-0, r1-1-0; III-tibia v2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-

```
936
       2, d0-1-0, p1-1-1, r1-1-1; IV-tibia v2-2-2, d1-1-1, p1-01, r1-0-1, metatarsus modified. Palp: RTA
937
       spiniform (ventral view) and with wide apex (Fig. 20C), embolus elongated and flagelliform
938
       with laminar process (Figs. 23F, 25F), with a sclerotized process at the base of the embolus
939
       (Figs. 23F, 25F); median apophysis with cup-shaped aperture visible ventrally (Figs. 20B, 23F,
940
       25F); conductor with a narrow base and large apex, covering the tip of the embolus (Figs. 20B,
       23F, 25F).
941
942
       Figs. 20, 23F and 25F
943
       Female (MCZ IZ 167593-1, from Tirimbina Rainforest Center, Sarapiquí, Heredia province).
944
       Total length 34.76, Carapace 17.30 long and 15.23 wide. AME 0.74, ALE 0.56, PME 0.87, PLE
945
       0.90. Sternum 7.50 long and 6.76 wide; labium 2.36 long and 2.26 wide, endites 4.30 long and
946
       2.91 wide. Leg measurements: I: femur 16.45, patella 7.63, tibia 16.90, metatarsus 13.58, tarsus
947
       4.57, total 59.13; II: 15.94, 7.60, 15.35, 12.36, 4.57, total 55.82; III: 12.79, 6.35, 11.29, 11.37,
948
       4.27, total 46.07; IV: 17.29, 6.77, 15.85, 18.73, 5.38, total 64.02. Leg spination: tibia I-II v2-2-2-
949
       2-2, metatarsus I-II v2-2-2-2, tibia III v-2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-2, d0-1-
950
       0, p1-1-2, r1-1-2; IV-tibia v2-2-2, d1-1-1, 1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-1-2, r1-
951
       1-2. Epigynum (Fig. 20D): median sector sub pentagonal, vertically elongated and with anterior
952
       area narrowed, lateral fields with a large hyaline projection, lateral process originated medially.
953
       Copulatory ducts elongated, with one loop and folded; large spermathecae projecting internally
954
       and contacting copulatory ducts; fertilization ducts small and posteriorly located (Fig. 20E).
955
956
       Variation. Males (n=6): Total length 25.00–36.74, carapace 14.50–21.00, femur I 18.81–20.30.
```

Females (n=6): Total length 26.44–37.03, carapace 12.56–18.14, femur I 10.78–16.45.

Distribution. Lowland ecosystems of Costa Rica (Fig. 27).

957

959 960 Kiekie verbena Polotow & Brescovit, 2018 961 Figs. 21, 23D and 25D. 962 Holotype: Female from Costa Rica, San José Province, San José, La Verbena (deposited in MCZ 963 79102, not examined) Material examined. COSTA RICA: Two females and five males from San José province, San 964 965 Pedro, campus of Universidad of Costa Rica (9.9376N, -84.0507W, 1200m), 10.VI-2018, 966 N.Hazzi (MCZ IZ 167594); 3 males and 3 females, San Antonio de Escazu, San Jose province 967 (9.8975N, 84.1377W, 1330m), N. Hazzi, (MCZ IZ 167595); three females from Punta Arenas, 968 Monteverde, UGA, (10.2829, 84.799W, 1100m), 12.06.2018, N. Hazzi (MCZ IZ 167596). 969 Alajuela Province, San Ramón, Alberto Manuel Brenes Reserve (10.2283N, 84.6396W) (UCR); 970 Cartago Province: Tres Rios, Concepcion (9.8638N, 83.9161W) 1981, C. Valerio (UCR); one female, La Union, San Rafael, Sierras la Unión (9.9083N, 83.9764W), 16.VIII.2015, M. 971 Springer (UCR); Guanacaste Province: Tilaran (10.4563N, 84.9713W), 15.VII. 1967, C. Valerio 972 973 (UCR); Volcán Miravalles (10.7471N, 85.1512W), 19.III.1967 (UCR); Puntarenas Province: 974 Monteverde, San Luis (10.2852N, -84.8199W) 00.XI.1993 (MNCR). San José Province: One 975 female, San Pedro, Universidad of Costa Rica (9.9369N, -84.0510W), 20.V.2009, R. Quesada 976 (UCR); one female, Escazú, Agres River (9.9369N, 84.0510W), 14.III.2009, R. Arias (UCR); 977 one female, Curridabat, Granadilla (9.9221N, 84.0177W), C. Valeroi (UCR); one female, 978 Montes de Oca (9.9407N, 84.0250W), 21.IV.1967, C. Valerio (UCR); two males, Curridabat, Los Prados (9.9339N, 84.0284W), 10.II.1995 (MNCR). 979 980 **Diagnosis.** Males of K. verbena resemble those of K. curvipes and K. montanensis in having a prominent tegular process (Figs. 21B), but can be distinguished from them by a not strongly 981

```
983
        base, forming two divergent apophyses (Figs. 21B-C), a short embolus and a small conductor
 984
        (Figs. 21B, 23D and 25D) in contrast with all other congeneric species. Females are
 985
        distinguished from all other congeners species by the configuration of the epigynum with a short
 986
        and wide median sector, long lateral projection of the lateral field and short copulatory openings
 987
        (Fig. 21D) and short copulatory ducts (Fig. 21E).
 988
        Male (MCZ IZ 167594-1, from Campus of Universidad of Costa Rica, San Pedro, San José
 989
        province, Costa Rica). Total length 15.09. Carapace 8.48 long and 7.00 wide. AME 0.40, ALE
 990
        0.25, PME 0.40, PLE 0.41. Sternum 3.70 long and 3.38 wide, labium 0.95 long and 1.08, endites
 991
        1.92 long and 1.03 wide. Leg measurements: I: femur 8.05, patella 2.77, tibia 7.43, metatarsus
 992
        6.66, tarsus 2.88, total 27.78; II: 7.62, 2.90, 7.10, 6.26, 2.43, total 26.31; III: 6.93, 2.92, 5.65,
 993
        6.15, 2.59, total 24.24; IV: 8.36, 2.91, 8.28, 8.75, 3.28, total 31.58. Leg spination: leg I tibia v2-
 994
        2-2-2-2, p1-1-0, r1-1-0, metatarsus v2-2-2; d1-0-1, p1-1-0, r1-1-0; II-tibia v2-2-2-2, d0-1-0,
        p1-1-0, r1-1-0, metatarsus v2-2-2, p1-1-0, r1-1-0; III-tibia v2-2-2, d1-1-1, p1-0-1, r1-0-1,
 995
 996
        metatarsus v2-2-2, d0-1-0, p1-1-1, r1-1-1; IV-tibia v2-2-2, d1-1-1, p1-01, r1-0-1, metatarsus
 997
        modified. Palp: RTA at the base forming two divergent apophyses (Fig. 21B), embolus short
 998
        without laminar process (Fig. 23D); embolus base without a sclerotized process (Fig. 23D);
 999
        median apophysis large with cup-shaped aperture visible ventrally (Fig. 23D, 25D); conductor
1000
        reduced, covering the tip of the embolus (Fig. 23D, 25D).
1001
        Variation. Males (n=9): Total length 11.83–16.03, carapace 6.47–9.78, femur I 6.65–9.22.
1002
        Females (n=6): Total length 15.10–21.08, carapace 7.44–10.26, femur I 5.51–8.05.
1003
        Distribution. Montane ecosystems of Costa Rica (Fig. 27).
```

Female. Described by Polotow & Brescovit (2018).

sclerotized tegular process, whitish in coloration. In addition, males have a bifid RTA at the

982

1006 Eldivo gen. nov. 1007 Figs. 22 and 26G-H. 1008 **Type Material** Holotype. MEXICO: Male from Veracruz Province, Los Tuxlas Biological Station (18.5822N, 1009 1010 9.0755W), F. Álvarez Padilla (2016-2017) (CNAN-AR-T01865). Paratypes. 3Three females, 1011 same data as holotype (CNAN-AR-T01866). 1012 Other Material Examined. Mexico: Oaxaca province: One female, Huautla de Jiménez, San 1013 Agustín, Zaragosa (18.11N, 96.80W), 13.X.2014, O. Francke and J. Cruz (CNAN-AR). One 1014 male, San José, Nuevo Rio Manzo, cerro Chango (17.706N, 96.899W), 05.IX.2018 (CNAN-1015 AR). 1016 Etymology. This species is dedicated to the memory of Alberto Aguilera Valadez, known professionally as Juan Gabriel and colloquially as "El Divo". Juan Gabriel was a Mexican singer 1017 1018 and songwriter that was known for his histrionic style, which overcame barriers within the Latin 1019 music. 1020 **Diagnosis.** Males of *Eldivo* resemble those of *Kiekie* by the presence of a modified metatarsus 1021 IV, but can be distinguished from them by the shorter embolus with a laminar fold in the internal 1022 side (Figs. 22B, 26H), locking lobes located at posterior prolateral side (Fig. 26G); in contrast 1023 with the elongated embolus and locking lobes in the posterior retrolateral side in Kiekie. Females 1024 cannot be accurately distinguished morphologically from Kiekie or other Mesoamerican ctenids. **Description.** Large-sized ecribellate spiders, total length 24.00–27.00. Carapace piriform, dark 1025 1026 brown, black pigment around eyes; thoracic groove longitudinal, in the posterior third. Ctenid 1027 eye pattern 2-4-2, with anterior and posterior rows recurved in dorsal view. Eyes round, except

1005

Con formato: Inglés (Estados Unidos)

oval anterior lateral eyes, with white setae around PLE and PME and lateral of AME. Chilum divided. Clypeus with long erect black bristles. Chelicerae brown, retromargin with four similarsized teeth and two small proximal teeth; with intermarginal denticles between the promargin and the retromargin; prominent basal condyle. Endites brown with anterolateral serrula and anteromedian scopulae. Labium dark brown, slightly longer than wide. Sternum truncated anteriorly and posteriorly pointing, not extending between coxae IV. Ventral faces of coxae light brown with dark brown spots. Male legs longer and slender than female legs. Trochanter notched. Tarsus with claw tufts composed of tenent setae. Abdomen oval, brown, dorsum with a black anterior border, lighter centrally and with a folium-like pale brown longitudinal band, venter brown with four divergent series of white dots. Spinnerets: anterior laterals (ALS) long and wide in the apex; posterior medians (PMS) roughly conical, short and narrow in the apex; posterior laterals (PLS) long and conical. Palp: RTA short and truncated in the apex (Fig. 22C), embolus short without laminar process (Fig. 22B and 26I); lacking a sclerotized process at the base (Fig. 22B and 26I); median apophysis large with cup-shaped aperture ventrally visible (Fig. 22B, 26G-I); conductor reduced, covering the embolus tip (Figs. 39B, 47B). Epigynum (Fig. 22D): median sector with a pointed or oval projection in the posterior area, anterior area broad with two lobes, lateral fields without large hyaline projection and copulatory openings small and inconspicuous, lateral process elongated and originated medially. Copulatory ducts curved, with a broad, less sclerotized area at the beginning of the copulatory openings; spermathecae reniform-shaped; fertilization ducts small and posteriorly located (Fig. 22E). Composition: Only the type species, Eldivo tuxlas.

1049 Eldivo tuxlas sp. nov.

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

- 1050 **Etymology.** The species epithet is a noun in apposition after the type locality, Reserva de la
- 1051 Biosfera Los Tuxtlas, a protected tropical rainforest in Veracruz.
- 1052 **Diagnosis.** As in genus description.
- 1053 Male (CNAN-AR-T01865, from Los Tuxlas Biological Station, Veracruz province, Mexico).
- Total length 26.87. Carapace 14.11 long and 11.04 wide. AME 0.54, ALE 0.42, PME 0.53, PLE
- 1055 0.54. Sternum 6.16 long and 5.42 wide, labium 1.90 long and 1.70, endites 3.23 long and 1.89
- wide. Leg measurements: I: femur 16.87, patella 5.67, tibia 18.67, metatarsus 16.84, tarsus 6.84,
- total 64.89; II: 16.61, 6.45, 16.88, 15.85, 6.47, total 62.26; III: 14.68, 5.34, 13.85, 13.83, 5.20,
- total 52.90; IV: 17.82, 5.86, 18.30, 11.81, 6.2, total 31.58. Leg spination: leg I tibia v2-2-2-2-2,
- 1059 p1-1-0, r1-1-0, metatarsus v2-2-2; d1-0-1, p1-1-0, r1-1-0; II-tibia v2-2-2-2, d0-1-0, p1-1-0, r1-
- 1060 1-0, metatarsus v2-2-2, p1-1-0, r1-1-0; III-tibia v2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-
- 1061 2, d0-1-0, p1-1-1, r1-1-1; IV-tibia v2-2-2, d1-1-1, p1-01, r1-0-1, metatarsus modified. Palp: as in
- 1062 genus description.
- 1063 Female (CNAN-AR-T01866, from Los Tuxlas Biological Station, Veracruz province,
- 1064 Mexico). Total length 24.78. Carapace 11.28 long and 8.89 wide. AME 0.50, ALE 0.35, PME
- 1065 0.50, PLE 0.50. Sternum 4.52 long and 4.32 wide, labium 1.23 long and 2.54 wide, endites 2.24
- long and 1.70 wide. Leg measurements: I: femur 11.61, patella 4.85, tibia 12.32, metatarsus
- 1067 9.89, tarsus 4.06, total 42.73; II: 11.09, 4.76, 11.13, 9.02, 3.71, total 39.71; III: 12.40, 4.08, 8.70,
- 1068 8.35, 3.04, total 36.57; IV: 12.23, 4.32, 11.28, 12.28, 4.10, total 44.21. Leg spination: tibia I-II
- 1069 v2-2-2-2, metatarsus I-II v2-2-2-2, tibia III v-2-2-2, d1-1-1, p1-0-1, r1-0-1, metatarsus v2-2-
- 1070 2, d0-1-0, p1-1-2, r1-1-2; IV-tibia v2-2-2, d1-1-1, 1-0-1, p1-0-1, metatarsus v-2-2-2, d0-1-0, p1-
- 1071 1-2, r1-1-2. Epigynum: as in generic description. Epigynum: as in genus description.
- 1072 **Distribution.** Lowland and premontane ecosystem of Mexico (Fig. 27).

Discussion

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093 1b94

1095

This study presents a molecular phylogeny of Kiekie including 15 of the 16 currently described species. Our phylogenetic analyses support the monophyly of Kiekie and reveal a new genus from Mexico as its sister lineage. The monophyly of Kiekie is supported by three morphological synapomorphies: an elongated embolus with a laminar process (Figs. 42A-E, 43A-E), conductor resembling an open fan (Figs. 25A-F, 26A-F), and locking lobes located at posterior and sometimes in retro-posterior side (Figs. 25B, 26C), instead of posterior prolateral as most ctenines. The sister relationship of Eldivo and Kiekie is supported by the presence of a modified IV metatarsus in males (Fig.4C), although this character has evolved convergently several times in South American ctenines. The Eldivo monophyly Eldivo is supported by one male morphological synapomorphy: a laminar fold in the internal side of the embolus. Most of the intrageneric relationships of *Kieke* are well supported by molecular data, and some of them also by morphological characters. The first clade comprises the species K. curvipes, K. verbena and K. montanensis shared a prominent tegular process. The second clade contains the larger species of the genus: K. sinautipes, sinuatipes, K. barrentesi, K. sarapiqui, K. laselva, K. valeroi, K. panamensis, K. griswoldi and K. lascruces. Although the second clade is recovered with low support, it also presents several synapomorphies, providing more support to its monophyly: elongate and curved copulatory ducts that project in the anterior area of the epigynum, and large copulatory openings. In addition, males of the second lineage have longer flagelliform embolus compared to the remaining species. Within this clade, the sister relationship between K. sinautipes and K. barrentesi is supported by the copulatory ducts having a 360° turn that completely covers the anterior side of the spermathecal, while in the remaining species of this clade the copulatory ducts fold over itself before it enters the spermathecae.

Con formato: Español (Perú)

The highest species diversity in *Kiekie* occurs in the montane ecosystems of Costa Rica, followed by the lowland rainforest of the Pacific side (Limón Basin). This diversity arose after a dispersal event from the tropical region of North America to Lower Central America (Costa Rica) during the Late Miocene (10-7ma). The northern origin of Kiekie and subsequently colonization of Lower Central and South America is supported not only by the early divergent North American species K. garifuna and the sister genus Eldivo, but also by a more basal lineage of North American species of the genera Ctenus and Leptoctenus (Peck, 1981). Therefore, the northern origin of Kiekie and subsequent dispersal and diversification in Lower Central America is well supported. Interestingly, the species diversity of Kiekie starts to decrease toward the south and in the Trans-Andean region of South America is only represented by two species, being K. panamensis the most common species found in Colombia and Ecuador. The high diversity of Kiekie in Lower Central America which can reach up to five species in one locality of tropical rainforest is replaced in South America by another ecological equivalent ctenid, Spinoctenus (Hazzi et al., 2018). The geological evolution of the Costa Rica forearc has a complex history related to subduction along the Middle America Trench (Porras et al., 2021). Geochronological, geochemical, and petrological data from the Talamanca Cordillera tracks the key turning point (12-8 Ma) from the evolution of an oceanic arc depleted in incompatible elements to a juvenile continent (Gazel et al., 2019). The first event of dispersal from Tropical North America during the late Miocene temporally corresponds with these dates in which Costa Rica started becoming a young continental land. Although there is no information about the different elevation stages of the mountain ranges in Costa Rica at different time periods, there are contractional deformation periods in Cordillera

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

Central and Talamanca from 11 to 5mya (Mescua et al., 2017; Porras et al., 2021). In the case of Cordillera Central the period of deformation is from 10 to 5mya, which it could be enough time to allow the formation of mild elevation mountains (Porras et al., 2021). In Talamanca Cordillera, the deformation in the Fila Costeña was probably linked to deformation and uplift of this Cordillera in the middle to late Miocene (Mescua et al., 2017). These deformations are also related with a change of the chemistry of the volcanic rocks which could indicate mountain uplift (Porras et al., 2021). The four independently events of Colonization from lowland ecosystems to the montane ecosystems of Cordillera Central and Talamanca during the Late Miocene (9-4ma) temporally match the geological time assumed in which Central and Talamanca Cordilleras started uplifting. The divergence times of montane species of Kiekie also correspond with the time of diversification of montane palm-pitviper snakes (Bothriechis) in Costa Rica which occurred during the Late Miocene (Mason et al., 2019). These events of deformation and uplift also coincided with the deposition of the Limón basin (Pacific side of Costa Rica) which contributed to the final closure of the Isthmus, and possibly causing the speciation of the three lowland endemic species of this region: K. laselva, K. tirimbina and K. sarapiqui, around 7-4mya. The diversification of these lowland species also coincides to some extent with the origin times of Brachyrhaphis fishes (Poecilidae) in the Pacific Region of Central America (Ingley et al., 2015).

Conclusions

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137 1138

1139

1140

1141

1142

In conclusion, this study increased the number of known species of *Kiekie* from 11 to 16 and documented a new genus, *Eldivo* which is the sister lineage of *Kiekie*. Most of the diversity and endemism of *Kiekie* is located in the montane ecosystems of Costa Rica followed by the lowland rainforest of the Pacific side (Limon Basin). *Kiekie* originated in the North America Tropical region and dispersed to Lower Central America where it started diversifying during the Late

Con formato: Fuente: Cursiva

Miocene. In Lower Central America, *Kiekie* colonized independently several times the montane ecosystems corresponding to periods of uplifting of Talamanca and Central Cordilleras. Then, during the Pliocene *Kiekie* dispersed to South America as attested by originating the species *Kiekie panamensis*.

Comentado [aa11]: The species apparently originated in Panama, Central America, and then dispersed to South America

Acknowledgements

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

We are grateful to Gilbert Barrentes (MZUCR), Marcela Sanchez Ocampo (MNCR), Oscar Francke and Edmundo Gonzalez (CNAN) and Jimmy Cabra (MUSENUV) for making available some of the specimens for this study. We also want to thank to La Tirimbina Rainforest Center for their great hospitality and help during fieldwork. N. Hazzi is in-deeply in debt with Gilbert Barrantes, Natalia Conejo, Bernal Rodríguez Herrera, Ronald Cordero, Juan Bernal and Tomas A. Rios for fieldwork logistics and travel. N. Hazzi also want to thanks to William Eberhard and Mary West-Eberhard for their hospitality. Collecting in Costa Rica and exporting the specimens out the country was permitted by Sistema Nacional de Areas de Conservacion (SINAC) and Ministerio de Ambiente de Energia (SINAC-ACC-PI-R-045-2019 and PE-DCUSBSE-SE325-2019). Collecting in Panama and exporting the specimens out the country was permitted by Ministerio de Ambiente (SEX/A-79-18). We want to thank to the Department of Biological Sciences of The George Washington University, the Harlan Fellowship and the Explorers Club Washington DC group for fieldwork financial support. We also want to thank to the Ernst Mayr Travel Grants (MCZ) to support the examination of the ctenid specimens of the Museums in Costa Rica (MZUCR and MNCR). Additional support was provided by - US National Science Foundation grants (DEB 1754289, DEB 1754289) to GH.

1167	References
1168	Abratis M, Wöerner G. 2001. Ridge collision-, slab-window formation-, and the flux of Pacific
1169	asthenosphere into the Caribbean realm. Geology 29 (2):7613: 0 4127-130.
1170	Álvarez-Padilla F, Hormiga G. 2007. A Protocol For Digesting Internal Soft Tissues And Mounting
1171	Spiders For Scanning Electron Microscopy. <i>Journal of Arachnology</i> 35: 538–542.
1172	Bagley JC, Johnson JB. 2017. Phylogeography and biogeography of the lower Central American
1173	Neotropics: diversification between two continents and between two seas.
1174	Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ.
1175	2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. <i>PLoS Computational Biology</i>
1176	10.
1177	Brandes C, Winsemann J. 2018. From incipient island arc to doubly-vergent orogen: A review of
1178	geodynamic models and sedimentary basin-fills of southern Central America. : 1–31.
1179	Crisp, Laffan, Linder, Monro. 2001. Endemism in the Australian flora. <i>Journal of Biogeography</i> 28: 183–
1180	198.
1181	Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for
1182	ecologists: Statistical explanation of MaxEnt. Diversity and Distributions 17: 43-57.
1183	Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG. 1996. Parsimony jackknifing outperforms
1184	neighbor-joining. Cladistics.
1185	Fick SE, Hijmans RJ. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land
1186	areas. International Journal of Climatology.
1187	Folt B, Lapinski W. 2017. New observations of frog and lizard prédation by wandering and orb-weaver
1188	spiders in Costa Rica. Phyllomedusa 16: 269–277.
1189	Gasnier TR, Höfer H, Torres-sanchez MP, Azevedo CS. 2009. História natural de algumas espécies de
1190	aranhas das famílias Ctenidae e Lycosidae na Reserva Ducke: bases para um modelo integrado de
1191	coexistência. (Completar)****.

Gazel E, Hayes JL, Ulloa A, Alfaro A, Coleman DS, Carr MJ. 2019. The Record of the Transition From

1192

Comentado [aa12]: Some grammar typos, and at least one wrong, check again all references

Comentado [aa13]:

Comentado [aa14R13]: Check reference

Comentado [aa15]: ???

- an Oceanic Arc to a Young Continent in the Talamanca Cordillera. *Geochemistry, Geophysics*,
- 1194 Geosystems 20: 2733–2752.
- 1195 Goloboff PA, Catalano SA. 2016. TNT version 1.5, including a full implementation of phylogenetic
- 1196 morphometrics. Cladistics.
- 1197 Hazzi NA, Hormiga G. 2022. Molecular phylogeny of the tropical wandering spiders (Araneae, Ctenidae)
- and the evolution of eye conformation in the RTA clade. *Cladistics*: 1–25.
- 1199 Hazzi NA, Petrosky A, Karandikar H, Henderson D, Jiménez-Conejo N. 2020. Effect of forest succession
- 1200 and microenvironmental variables on the abundance of two wandering spider species (Araneae: Ctenidae)
- in a montane tropical forest. Journal of Arachnology 48.
- 1202 Hazzi NA, Polotow D, Brescovit AD, González-Obando R, Simó M. 2018. Systematics and biogeography
- 1203 of Spinoctenus, a new genus of wandering spider from Colombia (Ctenidae). Invertebrate Systematics 32.
- Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MTN, Quinn A, Wilson DE, Maldonado JE. 2013.
- 1205 Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito.
- 1206 ZooKeys 324: 1-83.
- 1207 Ingley SJ, Reina RG, Bermingham E, Johnson JB. 2015. Phylogenetic analyses provide insights into the
- 1208 historical biogeography and evolution of Evolutionary Ecology Laboratories, Department of Biology,
- 1209 Brigham Young University Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama
- 1210 Present. Molecular Phylogenetics and Evolution.
- 1211 Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: Fast model
- selection for accurate phylogenetic estimates. *Nature Methods*.
- 1213 Laffan SW, Lubarsky E, Rosauer DF. 2010. Biodiverse, a tool for the spatial analysis of biological and
- related diversity. *Ecography* 33: 643–647.
- 1215 Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the
- number of areas is large. Systematic Biology 62: 789–804.
- 1217 Liu C, Berry PM, Dawson TP, Pearson RG. 2005. Selecting thresholds of occurrence in the prediction of
- species distributions. *Ecography*.

- 1219 Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with
- 1220 presence-only data. Journal of Biogeography.
- 1221 Mason AJ, Grazziotin FG, Zaher H, Lemmon AR, Moriarty E, Christopher L, Carolina S. 2019.
- 1222 Reticulate evolution in nuclear Middle America causes discordance in the phylogeny of palm—pitvipers
- 1223 (-Viperidae-: Bothriechis)-: 1–12.
- 1224 Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event speciation is a
- 1225 crucial process in island clades. Systematic Biology 63: 951–970.
- 1226 Mendoza AM, Bolívar-garcía W, Vázquez-domínguez E, Ibáñez R, Olea GP. 2019. The role of Central
- 1227 American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium
- 1228 fleischmanni (Anura: Centrolenidae) -: 1–28.
- 1229 Mescua JF, Porras H, Durán P, Giambiagi L, de Moor M, Cascante M, Salazar E, Protti M, Poblete F.
- 1230 2017. Middle to Late Miocene Contractional Deformation in Costa Rica Triggered by Plate
- 1231 Geodynamics. *Tectonics* 36: 2936–2949.
- 1232 Minh BQ, Nguyen MAT, Von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap.
- 1233 Molecular Biology and Evolution 30: 1188–1195.
- 1234 Morell KD. 2016. Seamount, ridge, and transform subduction in southern Central America -: 357–385.
- 1235 Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic
- 1236 algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–
- 1237 274.
- 1238 Phillips SJ, Anderson RP, Schapire RE. 2006. MAXIMUM ENTROPY MODELING OF SPECIES
- 1239 GEOGRAPHIC DISTRIBUTIONS Steven J. Phillips, Robert P. Anderson, Robert E. Schapire.
- 1240 *Ecological Modelling* 190: 231–259.
- 1241 Piacentini LN, Ramírez MJ. 2019. Hunting the wolf: A molecular phylogeny of the wolf spiders
- 1242 (Araneae, Lycosidae). Molecular Phylogenetics and Evolution.
- 1243 Polotow D, Brescovit AD. 2014. Phylogenetic analysis of the tropical wolf spider subfamily Cteninae
- 1244 (Arachnida, Araneae, Ctenidae). Zoological Journal of the Linnean Society 170: 333–361.

1246	Zootaxa.
1247	Porras H, Mescua J, Durán P, Cascante M, Giambiagi L, Muller C. 2021. Changing tectonic regimes in
1248	the central Costa Rica forearc between the Paleogene and the present: Insights from structural analysis
1249	and focal mechanisms. Journal of Geodynamics 143.
1250	Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian
1251	phylogenetics using Tracer 1.7. Systematic Biology.
1252	Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal,
1253	local extinction, and cladogenesis. Systematic Biology 57: 4–14.
1254	Ronquist F. 1997. Dispersal-vicariance analysis: A new approach to the quantification of historical
1255	biogeography. Systematic Biology 46: 195–203.
1256	World Spider Catalog (2022). World Spider Catalog. Version 23.5. Natural History Museum Bern, online
1 1257	at http://wsc.nmbe.ch, accessed on {date of access}. doi: 10.24436/2
1258	Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): A tool for
1259	historical biogeography. Molecular Phylogenetics and Evolution 87: 46-49.
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271	
1273	

Polotow D, Brescovit AD. 2018. Kiekie, a new Neotropical spider genus of Ctenidae (Cteninae, Araneae).