

Marine introgressions and Andean uplift have driven diversification in neotropical Monkey tree frogs (Anura, Phyllomedusinae)

Diego Almeida-Silva 1, 2, Leonardo Matheus Servino Corresp., 1, 3, Matheus Pontes-Nogueira 1, Ricardo J Sawaya 1

Corresponding Author: Leonardo Matheus Servino Email address: leonardo.servino@ib.usp.br

The species richness in the Neotropics has been linked to environmental heterogeneity and a complex geological history. We evaluated which biogeographic processes were more associated with the diversification of Monkey tree frogs, an endemic clade from the Neotropics. We tested two competing hypotheses: the diversification of Phyllomedusinae occurred either in a "south-north" or a "north-south" direction in the Neotropics. We also hypothesized that marine introgressions and Andean uplift had a crucial role in promoting their diversification. We used 13 molecular markers in a Bayesian analysis to infer phylogenetic relationships among 57 species of Phyllomedusinae and to estimate their divergence times. We estimated ancestral ranges based on 12 biogeographic units considering the landscape modifications of the Neotropical region. We found that the Phyllomedusinae hypothetical ancestor range was probably widespread throughout South America, from Western Amazon to Southern Atlantic Forest, at 29.5 Mya. The Phyllomedusines' ancestor must have initially diverged through vicariance, generally followed by jump-dispersals and sympatric speciation. Dispersal among areas occurred mostly from Western Amazonia towards Northern Andes and the South American diagonal of dry landscapes, a divergent pattern from both "south-north" and "north-south" diversification hypotheses. Our results revealed a complex diversification process of Monkey tree frogs, occurring simultaneously with the orogeny of Northern Andes and the South American marine introgressions in the last 30 million years.

¹ Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil

² Miguel Lillo, Unidad Ejecutora Lillo, San Miguel de Tucumán, Tucumán, Argentina

³ Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil

1 Marine introgressions and Andean uplift have driven

2 diversification in neotropical Monkey tree frogs

3 (Anura, Phyllomedusinae)

4

- 5 Diego Almeida-Silva^{1,2}, Leonardo Matheus Servino^{2,3}, Matheus Pontes-Nogueira², Ricardo J.
- 6 Sawaya²

7

- 8 ¹Miguel Lillo, Unidad Ejecutora Lillo, San Miguel de Tucumán, Tucumán, Argentina
- ²Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do
- 10 Campo, São Paulo, Brazil
- ³Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- 12 Corresponding Author:
- 13 Leonardo Matheus Servino
- 14 Universidade de São Paulo (USP), Rua do Matão, Travessa 14, n° 101 Cidade Universitária, São
- 15 Paulo, CEP: 05508-090, São Paulo, Brasil.
- 16 Email address: leonardo.servino@ib.usp.br

17

18 ABSTRACT

- 19 The species richness in the Neotropics has been linked to environmental heterogeneity and a
- 20 complex geological history. We evaluated which biogeographic processes were more associated
- 21 with the diversification of Monkey tree frogs, an endemic clade from the Neotropics. We tested
- 22 two competing hypotheses: the diversification of Phyllomedusinae occurred either in a "south-
- 23 north" or a "north-south" direction in the Neotropics. We also hypothesized that marine
- 24 introgressions and Andean uplift had a crucial role in promoting their diversification. We used
- 25 13 molecular markers in a Bayesian analysis to infer phylogenetic relationships among 57
- species of Phyllomedusinae and to estimate their divergence times. We estimated ancestral
- 27 ranges based on 12 biogeographic units considering the landscape modifications of the
- Neotropical region. We found that the Phyllomedusinae hypothetical ancestor range was

29	probably widespread throughout South America, from Western Amazon to Southern Atlantic
30	Forest, at 29.5 Mya. The Phyllomedusines' ancestor must have initially diverged through
31	vicariance, generally followed by jump-dispersals and sympatric speciation. Dispersal among
32	areas occurred mostly from Western Amazonia towards Northern Andes and the South American
33	diagonal of dry landscapes, a divergent pattern from both "south-north" and "north-south"
34	diversification hypotheses. Our results revealed a complex diversification process of Monkey
35	tree frogs, occurring simultaneously with the orogeny of Northern Andes and the South
36	American marine introgressions in the last 30 million years.
37	Keywords. Amphibia - Northern Andes - Biogeography - Neotropics - Paranaense sea - Pebas
38	system

INTRODUCTION

Extending from the central portion of Mexico through the entire Central and South America (Morrone, 2014), the Neotropical region hosts the greatest biodiversity on Earth (Myers et al., 2000; Antonelli & Sanmartín, 2011). The environmental heterogeneity in the Neotropics associated with its complex geological history from the early Cenozoic has driven patterns of species diversification, contributing to high levels of species richness and endemism for several clades (Antonelli, 2016). Regarding the northern portion of South America, well-documented marine introgressions occurred from mid to the late Cenozoic (~25–5 million years ago – Mya), the so-called Pebas and Acre systems (Hoorn et al., 2010; Salas-Gismondi et al., 2015). Probably related to global sea-level fluctuations (Hoorn, 1993), both flooding processes turned the

Western Amazonia into a lacustrine environment during the Miocene (23–7 mya; Hoorn et al., 51 2010; Salas-Gismondi et al., 2015), affecting the Magdalena River delta, paleo-Orinoco, and 52 proto-Amazonas River basins. Henceforth, Western Amazonia underwent drastic changes until 53 the emergence of current fluvial systems, including flow changes of its main rivers (Díaz de 54 Gamero, 1996; Albert, Val & Hoorn, 2018). Moreover, some orogenic processes also promoted 55 56 important changes in the Neotropics. The accelerated uplift of the Eastern Cordillera of the Andes during the Miocene ~10–4 mya; Hoorn, 1993; Gregory-Wodzicki, 2000) led to changes in 57 the climatic and sedimentary sources for Western Amazonia (Insel, Poulsen & Ehlers, 2010; 58 Poulsen, Ehlers & Insel, 2010; Hoorn et al., 2017). The Andes uplift has also played a similar 59 role in the southwestern part of the Neotropics (Giambiagi, Alvarez & Spagnotto, 2016; 60 Rodríguez Tribaldos et al., 2017; Sundell et al., 2019). 61 62 During the Oligocene (~25 mya) and late Neogene (~5–3 mya), the Andean orogeny, in 63 addition to climatic factors throughout the entire Neogene and Quaternary (Garzione et al., 2006; 64 Hoorn et al., 2020), has been responsible for the rapid emergence of the South American diagonal of open/dry landscapes (DODL; Zanella, 2011; Azevedo et al., 2020), a dry corridor 65 composed mostly by a savanna-like vegetation. As DODL expanded, a single large forest block 66 67 has been separated into the Amazonian and Atlantic forests (Costa, 2003; Sobral-Souza, Lima-68 Ribeiro & Solferini, 2015; Peres, Silva & Solferini, 2017), the latter being southern confined by 69 marine introgressions (Hernández et al., 2005; Abello, Posadas & Ortiz Jaureguizar, 2010). 70 Consequently, ancestor lineages were confined to either the Amazon or Atlantic forests, resulting 71 in several endemic clades to each region (e.g., Capurucho et al., 2018; Machado et al., 2018; de Sá et al., 2019). 72

73 Most studies examining the processes leading to biota diversification in the Neotropics in a local-scale approach, focusing on ecologically or geographically restricted groups (e.g., Smith 74 et al., 2014; Werneck et al., 2015; Guarnizo et al., 2016). Studies focused on widespread clades, 75 on the other hand, could elucidate the role of multiple processes over space and deep time, 76 contributing to a wider understanding of the macroevolutionary framework (e.g., Vicente et al., 77 78 2017; Hamdan et al., 2019; Prieto-Torres et al., 2019; Pontes-Nogueira et al., 2021; Serrano et al., 2024), given the complex dynamics of biogeographic processes in the Neotropical region. 79 Among anurans, this scenario fits well for Monkey tree frogs (Anura: Phyllomedusinae), a 80 highly diverse subfamily that represents a clear case of autochthonous endemism, with its 81 diversification occurring entirely within the Neotropics (Faivovich et al., 2010; Brennan et al., 82 2023). Comprising 67 species (Frost, 2024), Phyllomedusinae occurs from Argentina to Mexico 83 (38° S to 27° N), encompassing various biomes such as tropical forests, grasslands, savannas, and 84 deserts (Duellman, Marion & Hedges, 2016; Frost, 2024). 85 86 Systematics of the subfamily seems to be well defined regarding closely related frog groups. Except for phylogenetic analyses exclusively based on morphology (Haas, 2003; Wiens 87 et al., 2005), phyllomedusines are consistently recovered as monophyletic and as a sister taxon to 88 89 Pelodryadinae, a subfamily endemic from the Australo-Papuan region, both constituting subfamilies of Hylidae tree frogs (Wiens et al., 2005; Frost et al., 2006; Faivovich et al., 2010; 90 Pyron & Wiens, 2011; Duellman, Marion & Hedges, 2016; Jetz & Pyron, 2018; Dubois, Ohler & 91 Pyron, 2021). Phylogenetic relationships for some clades of Phyllomedusinae are also consistent 92 in the most comprehensive phylogenetic approaches (Faivovich et al., 2010; Pyron & Wiens, 93 94 2011). Some discussion occurs regarding the early branching events in the group, since molecular approaches to phyllomedusine phylogeny show a low sampling for *Phrynomedusa* 95

Miranda-Ribeiro, 1923, a rare genus known only from a few localities of the Serra do Mar and
Serra da Mantiqueira ranges in the Atlantic Forest (Baêta et al., 2016).

98	Molecular estimates indicate that the split between phyllomedusines and pelodryadines
99	occurred during the late Paleocene (~55 Ma), a time when both the Neotropics and Australo-
100	Papuan regions were connected to Antarctica via a land bridge (Duellman, Marion & Hedges,
101	2016; Van Den Ende, White & van Welzen, 2017). Such estimates also suggest that the Most
102	Recent Common Ancestor (MRCA) of Phyllomedusinae emerged during the late Eocene,
103	following the appearance of the MRCA of Pelodryadinae. Diversification within
104	Phyllomedusinae started in the Oligocene (Duellman, Marion & Hedges, 2016; Jetz & Pyron,
105	2018) as South America began to separate from Antarctica. However, the earlier diversification
106	in phyllomedusines is still under debate. Some evidence suggests that the first lineage to
107	diversify was <i>Phrynomedusa</i> Miranda-Ribeiro, 1923, a genus occurring throughout the southern
108	Neotropics (Atlantic Forest domain; Faivovich et al., 2010; Pyron & Wiens, 2011). So, it
109	possible that the MRCA of all phyllomedusines would diversify in a south-north direction. This
110	pattern was already identified in some lineages that diversified in South America after their
111	ancestral lineages arrived via Antarctica (e.g., ungulate mammals, Reguero et al., 2014; orchids,
112	Givnish et al., 2016; sea spiders, Dietz et al., 2019). Alternatively, some findings support
113	Cruziohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005, a Central
114	American/Amazonian genus, as the first divergence in phyllomedusines (Faivovich et al., 2010;
115	Rivera-Correa et al., 2013; Portik et al., 2023). Therefore, it is possible that the MRCA of all
116	phyllomedusines was occupying northern regions of the Neotropics, diversifying in a north-south
117	direction. Furthermore, certain speciation processes within phyllomedusines have tentatively
118	been associated with the uplift of the Eastern Cordillera of the Andes (Ron, Almendariz &

Cannatella, 2013; Duellman, Marion & Hedges, 2016). However, the historical biogeography of this clade has not yet been explored in a statistical framework.

Herein, we combined sequences of multiple molecular markers from 53 species of Phyllomedusinae to produce a time-calibrated phylogeny. We then reconstructed the subfamily's diversification throughout the Neotropical region. Firstly, we evaluated how the hypothetical ancestors of Phyllomedusinae must have been distributed throughout the Neotropics. We tested two competing hypotheses: (1) the MRCA of all phyllomedusines occupied southern regions of the Neotropics, with extant lineages diversifying in a south-north direction; and (2) the MRCA of all phyllomedusines occupied northern regions of the Neotropics, with extant lineages diversifying in a north-south direction. We evaluated which biogeographic processes must have driven the current subfamily distribution. We also tested the hypothesis that diversification in Phyllomedusinae was associated to marine introgressions and the Andean orogeny.

MATERIALS AND METHODS

- Portions of this text were previously published as part of a preprint
- 134 (https://www.researchsquare.com/article/rs-2206377/v1)

Sequence data and phylogenetic analyses

We performed a phylogenetic inference using sequences from GenBank. We employed a single terminal for each species, aiming to minimize the utilization of more than one individual per species. Accordingly, we performed sequence selection based on identifying the voucher associated with the highest number of molecular markers for each species. Exceptions were made for species with limited molecular data, leading to the association of two or three vouchers

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

with the same terminal. Within Phyllomedusinae, only 14 species were represented by two vouchers, while additional two required three vouchers (see Supplementary data S1 for details). Given the numerous taxonomic revisions and species descriptions within the group in recent years (e.g., Faivovich et al., 2010; Baêta et al., 2016; Castroviejo-Fisher et al., 2017; Pereira et al., 2018; Andrade et al., 2020), we also prioritized sequences that included associated locality information (see Supplementary data S1). These localities were cross-referenced with available literature to ensure their congruence. Finally, sequences that do not align with our dataset in a given gene were checked using BLAST utility (Zhang et al., 2000), and we excluded the ones showing absence of query coverage. Our analysis included 57 species of Phyllomedusinae in the ingroup, in addition to 20 Pelodryadinae and 18 Hylinae, both subfamilies comprising the outgroup. Also, our outgroup was composed by other 25 species from various frog families (i.e., Bufonidae, Leptodactylidae, Odontophrynidae, Hemiphractidae, Ceratophryidae; Supplementary data S1), to consider recently recovered systematic relationships (Feng et al., 2017; Jetz & Pyron, 2018; Hime et al., 2021; Portik et al., 2023). Our molecular sampling covered 85% of all known species of Phyllomedusinae, including all genera of the subfamily (Frost, 2024). We-comprised all the species of Callimedusa Duellman, Marion, and Hedges, 2016 (6 spp.), Cruziohyla Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005 (3 spp.), Hylomantis (2 spp.), and

sampled from 14 spp. described), *Phasmahyla* Cruz, 1991 (7 species sampled from 8 spp.

described), Phyllomedusa Wagler, 1830 (15 species sampled from 16 spp. described), and

Pithecopus Cope, 1866 (12 spp.), as well as a representative selection of Agalychnis (9 species

Phrynomedusa (3 species sampled from 6 spp. described). We searched for 13 molecular

markers, both nuclear (CXCR4, POMC, RAG1, RHOD, SIAH, and Tyr) and mitochondrial genes (12S, tRNA-Val, 16S, tRNA-Leu, ND1, tRNA-Ile, and CytB) genes.

The amount of missing information (\bar{x} = 33%, ranging from 6% to 92%; not accounting for gaps) should not seem alarming, considering that the two best-represented genes in our analyses (12S and 16S) provided a strong backbone for placing most species, as shown by Pyron & Wiens (2011). In fact, 81% of the species had complete data for the 12S gene partition (\bar{x} = 12% missing data), while the 16S partition was fully represented for 79% of the species (\bar{x} = 9% missing data), and all species were represented in at least one of them. Previous studies in the literature have supported this sample design for conducting model-based phylogenetic analyses, both theoretically and empirically (e.g., Wiens, 2003; Driskell et al., 2004; Thomson & Shaffer, 2010; Wiens & Morrill, 2011), yielding taxonomically highly congruent and well-supported results (for a detailed discussion, see Pyron & Wiens, 2011). We used *MAFFT* by EMBL-EBI web toolkit (Li et al., 2015) for aligning our sequences. For coding markers, we employed the automatic strategy for alignment. For non-coding mitochondrial fragments, we used the Q-INS-i algorithm, to consider their secondary structure (Katoh & Toh, 2008).

Our complete dataset (8,660 bp, 120 terminals; Supplementary data S2) was divided into a set of 29 partitions. We set codon positions as separate partitions for the protein-coding genes (ND1, CytB, CXCR4, POMC, RAG1, RHOD, SIAH, Tyr), while 12S, 16S, and the transfer RNA molecular markers (tRNAVal, 16S, tRNALeu, and tRNAIle) were each set as a single partition. We performed model selection using bModelTest (transitionTransversionSplit model set; Bouckaert & Drummond, 2017), a Bayesian approach conducted concurrently with phylogenetic inference and node dating in the software *BEAST* v2.7.6 (Bouckaert et al., 2019). We conducted two independent Markov chain Monte Carlo (MCMC) simulations with a chain

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

length of 150,000,000 generations and a pre-burn-in of 25% at the *CIPRES Science Gateway* (Miller, Pfeiffer & Schwartz, 2010). We linked the partitions into one phylogenetic species tree and kept the clock and site models unlinked.

To date our phylogeny using a fossil-calibrated phylogenomic tree, we followed Hime et al. (2021). Specifically, we set a prior for the split between Phyllomedusinae and Pelodryadinae to the late Paleocene to early Eocene period (47.5 Mya; 95% CI: 42.0–53.4 Mya), a prior for the early diversification of Hylidae 58.9 Mya (95% CI: 54.4–64.2 Mya), and another two priors for both the early diversification of Hylinae (49.5 Mya; 95% CI: 44.9–54.4 Mya) and Hemiphractidae (43.9 Mya; 95% CI: 35.5-51.9 Mya) in the outgroup. We estimated the mean clock rates for all the other partitions under weak priors (1/x distribution). We inferred the species tree using a Yule model prior under a strict clock, while keeping all other priors at their default values. We assessed the convergence of the MCMC chains by examining the estimated sample size (ESS > 200) and checking for model parameter stationarity using TRACER 1.7 (Rambaut et al., 2018). We discarded the initial 25% of each chain as burn-in and summarized the output as a maximum clade credibility (MCC) tree (Supplementary data S3) using mean node heights in TreeAnnotator v.2.6.2 (Bouckaert et al., 2014). We pruned the MCC tree using the ape R package (Paradis, Claude & Strimmer, 2004), retaining only the species of Phyllomedusinae and Pelodryadinae for subsequent ancestral geographical range estimation.

204

205

206

207

Geographic distribution data

Our geographic dataset consists of georeferenced points obtained from the *Global Biodiversity Information Facility* (GBIF, 2024; https://www.gbif.org/), which is the largest

online source of distributional records (Zizka et al., 2020). We obtained the geographic points using the package *rgbif* (Chamberlain & Boettiger, 2017) in R software (R Core Team, 2024), resulting in 16,705 unique points for all species. We carefully reviewed geographic distributions in QGIS software (QGIS.org, 2024), comparing them with species distribution descriptions presented in Frost (2024) and with specialized literature depicting geographic distributions (see Supplementary data S1 for details of all the literature used to filter our dataset and for our final geographic file).

Study area and regionalization

Multiple regionalization schemes for the Neotropical region have been proposed in the literature (e.g., Olson et al., 2001; Morrone, 2006, 2014; Dinerstein et al., 2017; Escalante, 2017). Studies focusing on Neotropical species often involve a considerable number of biogeographic units due to its landscape heterogeneity (see Carneiro et al., 2018; Réjaud et al., 2020; Pontes-Nogueira et al., 2021). We defined 12 biogeographic units (Fig. 1A). We defined 11 units based on relevant landscape modifications that could have influenced Phyllomedusinae diversification (Fig. 1B), such as the uplift of mountain ranges (e.g., Cordilleira of Andes), riverine barriers (e.g., Amazonas and Madeira rivers), and phytophysiognomic differences (e.g., DODL). All these landmarks follow previous regionalization schemes based on terrestrial ecoregions of the world (Olson et al., 2001; Dinerstein et al., 2017), so we decided that these 11 units were sufficient to capture the major landscape modifications that could have affected species diversification. Given that the Neotropics were once connected to Oceania through an Antarctic land bridge, we included the Australo-Papuan Pelodryadinae subfamily (the sister clade to the Phyllomedusinae subfamily) sampled in our phylogeny for estimating the ancestral

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

geographical range. We also included Oceania in our regionalization scheme to refine the biogeographic results regarding the MRCA of Phyllomedusinae + Pelodryadinae, totaling 12 biogeographic units.

Therefore, our regionalization scheme encompasses the following regions (Fig. 1A): Central America (A, being southern limited by Chocó Department and the Pacific Coast of Colombia; its connectivity southwards has been enhanced over time due to the formation of the Isthmus of Panama), Northern Andes (B, encompassing Western, Central, and Eastern Cordilleras of the Northern Andes; it became a geographical barrier during Miocene due to the acceleration on the uplift of the Eastern Cordillera), Western (C), Eastern (D), and Southern Amazonia (E; limited by the Amazonas and Madeira rivers; these three areas were differently affected by marine introgressions occurred during Miocene), Caatinga (F; reducing connectivity between forested areas as the DODL expanded), Cerrado (G; reducing connectivity between forested areas as the DODL expanded), Northern (H), Central (I), and Southern Atlantic Forest (J; divided by the Serra do Mar and Mantiqueira Mountain Ranges; these three areas were differently affected by the late uplift of both mountain ranges), Chaco/Pampas (K, encompassing Chaco, Pantanal, and the Uruguayan sayanna, northern limited by Araucaria moist forests; reducing connectivity between forested areas as the DODL expanded), and Oceania (L, comprising the whole New Guinea island, the Wallacea region, and Australia; a continent with a complex history of connectivity with South America through Antarctica over the geological time).

251

252

Ancestral geographic range estimation

Ancestral range estimation is performed based on the current distribution of sampled
species and their phylogenetic relationships (Sanmartín, 2016). Several models for ancestral
range estimation have been proposed in the literature, with the Dispersal-Vicariance Analysis
(DIVA; Ronquist, 1997), the Dispersal-Extinction-Cladogenesis (DEC; Ree et al., 2005; Ree &
Smith, 2008), and the BayArea model (Landis et al., 2013) being the most widely employed.
These models have been implemented in <i>BioGeoBEARS</i> R package (Matzke, 2013, 2014), which
provides a unified Maximum Likelihood (ML) environment for biogeographic analyses. This
allows for the use of parameters controlling biogeographic processes and model testing,
eliminating the need for arbitrary model selection. We implemented 18 models in
BioGeoBEARS, all of them being variations of DEC, DIVALIKE (the ML version of the original
DIVA included in BioGeoBEARS), and BAYAREALIKE (the ML version of the original
BayArea included in <i>BioGeoBEARS</i> ; Matzke, 2013). Some models considered time-stratified
dispersal matrices (TS), which are multipliers based on the landscape evolution of the study
region (see Fig. 1B, and Supplementary data S4 and Table S4.1 for details). The values in the TS
matrices restrict the probabilities of dispersal between geographic units, ranging from 0 (when a
geographical barrier completely prevents dispersal) to 1 (when there are no dispersal limitations
between units). All TS models also included an areas-allowed matrix, informing which areas are
allowed to be estimated according to their existence in certain timeframes. We suppressed the
estimation of the Central American unit (A) prior to 23 mya because the Isthmus of Panama was
not formed by this timeframe (see Discussion). To weigh the relative significance of the TS
matrices, we also included the free parameter w , which acts as an exponent on the matrices (see
Dupin et al., 2017). Additionally, to account for the colonization of novel biogeographic areas at
the time of cladogenesis (Matzke, 2014, 2022; Klaus & Matzke, 2020), we included the

parameter *j*. We set the maximum range size to 5, which corresponds to the number of areas occupied by the most widespread species in our clade. We compared all the models using AIC (Akaike Information Criterion) and calculated Akaike weights (Akaike, 1974; Burnham & Anderson, 2004; Wagenmakers & Farrell, 2004).

RESULTS

Phylogeny and divergence time estimation

Bayesian inference recovered all the genera in our sample with high posterior probabilities (PP = 1.00 for all genera; Fig. 2; Supplementary data S5), both in Phyllomedusinae and Pelodryadinae. We recovered *Cruziohyla* as the sister clade to the other Phyllomedusinae genera (PP = 1.00), with the MRCA of the genus dating from 10.3 Mya (HPD 95%: 7.5–13.2 Mya). *Phrynomedusa*, the next diverging lineage (PP = 0.50), exhibited an MRCA that diversified from 13.7 Mya (HPD 95%: 10.8–16.5 Mya). We found *Agalychnis* Cope, 1864 as the sister to *Hylomantis* Peters, 1873 (PP = 0.99), a clade age estimated to be 21.7 Mya (HPD 95%: 20.1–23.6 Mya). Regarding the core of Phyllomedusinae (i.e., MRCA of *Callimedusa*, *Phasmahyla*, *Phyllomedusa*, and *Pithecopus*; PP = 1.00), a clade mainly diversified in forested areas, our estimation suggests an age of 25.7 Mya (HPD 95%: 23.8–27.5 Mya). We recovered *Phasmahyla* as the sister group to the other three genera, with the MRCA of the clade *Phyllomedusa* (*Callimedusa* + *Pithecopus*) (PP = 1.00) estimated to be 21.5 Mya (HPD 95%: 19.9–23.0 Mya).

Ancestral geographical range estimation

The best-fitted model in our analysis was DECTS+j (Table 1; AIC = 419.4; AICw ~ 298 0.99), incorporating landscape evolution in the Neotropics and jump dispersal processes (Fig. 3; 299 see Supplementary data S6 for details). We found the divergence of Phyllomedusinae + 300 Pelodryadinae (45.5 Mya; HPD 95%: 42.7–48.4 Mya) occurring through vicariance, with the 301 MRCA of Pelodryadinae subsequently dispersing throughout Oceania (unit L; Figs. 3, 4A; 302 303 Supplementary data S5). Meanwhile, the MRCA of Phyllomedusinae was initially occupying Western Amazonia (unit C), expanding its range to Northern Atlantic Forest (units CH; Figs. 3, 304 305 4A). The earliest diversification event within Phyllomedusinae occurred when a vicariant 306 process occurred at its MRCA, isolating the *Cruziohyla* ancestor in Western Amazon (unit C, 307 29.5 Mya; HPD 95%: 27.3–31.6 Mya; Fig. 4B). Subsequently, a jump-dispersal process would 308 be responsible for the populations in the Central Atlantic Forest at 28.8 Mya (HPD 95%: 26.9– 309 310 30.9 Mya), leading to the origin of the *Phrynomedusa* genus (unit I; Figs. 3; Supplementary data 311 S6). Ancestral populations underwent speciation processes in sympatry at 21.7 Mya (HPD 95%: 20.1–23.6 Mya; Fig. 4C), resulting in the emergence of *Hylomantis* in the Northern Atlantic 312 Forest (unit H). By the same time, the MRCA of *Agalychnis* reached Northern Andes (unit B; 313 314 Fig. 4C) and, later, Central America (A), through jump-dispersal processes (Fig. 4D). The MRCA of (Phasmahyla, (Phyllomedusa, (Callimedusa, Pithecopus))) remained in 315 316 Northen Atlantic Forest (unit H; 25.7 Mya; HPD 95%: 23.8–27.5 Mya; Fig. 4B). From this ancestor, a process in sympatry was responsible for the emergence of the *Phasmahyla* genus, 317 318 while a jump dispersal to Western Amazonia (unit C; Fig. 4B) led to the MRCA of 319 (Phyllomedusa, (Callimedusa, Pithecopus)). We identified at least three major diversification patterns within the *Phyllomedusa* genus (Fig. 3). Firstly, the clade (*Ph. vaillanti*, *Ph. bicolor*) 320

originated at 10.7 Mya (HPD 95%: 9.5–11.9 Mya) through sympatric speciation within Western 321 Amazonia, followed by subsequent dispersal throughout Amazonia and the Northern Andes. 322 Jump dispersal events are predominant in the diversification of the other species of the genus. 323 sharing an ancestor that initiated the colonization of the Cerrado at 13.6 Ma (HPD 95%: 12.4– 324 14.9 Ma). From this ancestor, the second diversification pattern occurred in the *Ph. burmeisteri* 325 326 Boulenger, 1882 group underwent jump dispersal events, colonizing Cerrado (unit G; Fig. 4E), followed by subsequent dispersal to the Atlantic Forest units (H, I, and J units), Chaco (unit K), 327 and Southern Amazon Forest (unit E) from 13.6 Mya (HPD 95%: 12.4–14.9 Mya) to the present. 328 More recently, the *Ph. tarsius* Cope, 1868 group underwent a third diversification wave of 329 *Phyllomedusa*, where jump dispersal events later moved north to Amazonia, Northern Andes, 330 and Central America from 5.4 Ma (HPD 95%: 4.5-6.4 Ma) onwards. 331 The MRCA of (Pithecopus, Callimedusa) remained in Western Amazonia (unit C) at 17.7 332 Mya (HPD 95%: 16.3–19.2 Mya), as well as the ancestors for both genera. *Pithecopus* displayed 333 334 a colonization pattern in the Cerrado region (unit G) through two separate jump dispersal events. The first jump dispersal to the Cerrado occurred at 12.1 Mya (HPD 95%: 11.1–13.1 Mya; Fig. 335 4F), leading to a clade that diversified through sympatric speciation in Cerrado and additional 336 337 jump dispersals to the Atlantic Forest (units I and J). The second jump dispersal to the Cerrado took place around 9.0 Mya (HPD 95%: 8.1–10.0 Mya; Fig. 4F), resulting in a clade primarily 338 diversifying through sympatric speciation in Cerrado and range expansions (i.e., anagenetic 339 dispersals) to the Atlantic Forest (units H and J) and Chaco (unit K). Additionally, the clade (Pi. 340 hypochondrialis, Pi. araguaius) reached the Northern/Eastern Amazonia. The MRCA of (Pi. 341 gonzagai, Pi. nordestinus) originated from a jump dispersal event from the Cerrado to Caatinga 342 at 4.9 Mya (HPD 95%: 3.8–6.1 Mya). On the other hand, the *Callimedusa* genus had an early 343

sympatric speciation that gave rise to *C. tomopterna* Cope, 1868 at 12.3 Mya (HPD 95%: 10.9–13.6 Mya). This species expanded its range throughout the entire Amazonian region (units C, D, and E) and Northern Andes (unit B). Subsequently, another sympatric speciation occurred within Western Amazonia around 9.8 Mya (HPD 95%: 8.3–11.3 Mya; Fig. 4F). This cladogenesis resulted in the origin of *C. atelopoides* Duellman, Cadle, and Cannatella, 1988 and the MRCA of the other *Callimedusa* species, which reached the Northern Andes by jump dispersal (Fig. 4F), afterward diversifying in sympatry since then.

DISCUSSION

In the present study, we provided a detailed analysis of the diversification and colonization history of Monkey tree frogs across the Neotropics. By sampling 85% of the formally described phyllomedusine species, using mitochondrial and nuclear markers, our results represent a robust framework to discuss the processes concerning the biogeographic history of the group. Regarding the phylogenetic relationships among phyllomedusine genera, our topology is mostly congruent with previous studies in the literature based on molecular data (Faivovich et al., 2005, 2010; Pyron & Wiens, 2011; Rivera-Correa et al., 2013; Duellman, Marion & Hedges, 2016; Jetz & Pyron, 2018). Also, our results on node dating are very similar to those found by previous works (Feng et al., 2017; Hime et al., 2021; Portik et al., 2023). Combined with our results on ancestral geographical range estimation, node dating indicates that the diversification of phyllomedusines was markedly influenced by environmental changes resulting from the Miocene marine introgressions and Andean orogeny. Specifically, most lineages in Phyllomedusinae diversified in a dynamic scenario in Western Amazonia, which was limited by

369

370

371

372

373

374

the Pebas System and the Paranaense sea (north/westward and southward, respectively) during the Miocene.

The most evident divergence recovered in phylogenetic inference was the relative position of the *Cruziohyla* and *Phrynomedusa* genera. Previous studies usually place *Phrynomedusa* as the first branching lineage in Phyllomedusinae (Faivovich et al., 2005; Pyron & Wiens, 2011) or composing a clade (*Cruziohyla*, *Phrynomedusa*) (Duellman, Marion & Hedges, 2016; Jetz & Pyron, 2018). Since the split between the lineage given rise to *Cruziohyla* and the other phylomedusines occurred at 29.5 Mya (HPD 95%: 27.3–31.7 Mya), our results imply a first colonization of the northern Neotropics during the Oligocene.

At the genus level, the topology we found for *Phasmahyla* differs from previous studies, 375 376 but they also mostly disagree (Faivovich et al., 2010; Pyron & Wiens, 2011; Duellman, Marion & Hedges, 2016; Jetz & Pyron, 2018; Pereira et al., 2018; Portik et al., 2023). *Phasmahyla* 377 jandaia Bokermann and Sazima, 1978 has frequently been identified as closely related to other 378 species within the genus (Faivovich et al., 2010; Pyron & Wiens, 2011; Rivera-Correa et al., 379 2013; Duellman, Marion & Hedges, 2016; Portik et al., 2023), potentially composing a clade 380 with P. lisbella Pereira, Rocha, Folly, Silva, and Santana, 2018 (Portik et al., 2023). We 381 recovered the clade (*P. jandaia*, *P. lisbella*), but placed it within the *Phasmahyla* core. Similarly, 382 the identified clade (*P. guttata*, *P. cruzi*) is widely documented in the literature. However, even 383 these relationships are not in line with the findings of the study boasting the highest 384 representativeness in terms of the number of specimens and species for *Phasmahyla* (Pereira et 385 al., 2018). It is important to note, however, that this paper used only one molecular marker (16s; 386 387 see Pereira et al., 2018 for further information). Also, some inconsistencies regarding Phasmahyla argue for a careful taxonomic review. Phasmahyla cruzi Carvalho-e-Silva, Silva, 388

and Carvalho-e-Silva, 2009, for instance, is assumed to be known only from its type locality (Rio das Pedras Reserve, Municipality of Mangaritiba, state of Rio de Janeiro, Brazil; Frost, 2024). However, there are no molecular data on GenBank from this population, and the species was represented by a specimen assigned to another locality (Picinguaba, municipality of Ubatuba, state of São Paulo, Brazil; Faivovich et al., 2005, 2010; Pyron & Wiens, 2011; Duellman, Marion & Hedges, 2016; Pereira et al., 2018; present study, Supplementary data S1). Hence, we contend that the phylogenetic relationships within *Phasmahyla* remain subject to debate. We found other occasional divergences regarding the relative position of some species in *Pithecopus* and *Phyllomedusa*, compared to other studies (Faivovich et al., 2010; Pyron & Wiens, 2011; Duellman, Marion & Hedges, 2016; Jetz & Pyron, 2018; Pereira et al., 2018).

The split we found for the MRCA of Phyllomedusinae + Pelodryadinae occurred by vicariance (Figures 3 and 4A; Supplementary data S6) in the early Eocene. Our results suggest that the MRCA of Phyllomedusinae + Pelodryadinae was widely distributed throughout South America, Oceania, and supposedly, Antarctica (Fig. 4A). The diversification between the two subfamilies during the passage from the late Eocene to the early Oligocene occurred concurrently with the convoluted process of separation between the three continents, as proposed by Duellman et al. (2016). Hence, the vicariance associated was probably caused by landmass movements, promoting the initial divergence of pelodryadines and phyllomedusines. Moreover, our results emphasize that much of the early diversification of the Phyllomedusinae was influenced by this widespread South American ancestor, especially for the *Cruziohyla* and *Agalychnis* genera. Hence, although some phyllomedusine lineages had a "north-southern" diversification trend (see below), our results reject both the "south-north" and "north-south" diversification hypotheses for the Phyllomedusinae subfamily in general, as the diversification

within the group occurred from Western Amazonia and Northern Atlantic Forest towards 412 Northern Andes and the diagonal of dry landscapes. Our findings show a different scenario from 413 Duellman et al. (2016), where the authors argued that the split between the two subfamilies took 414 place within the Neotropics, with "protopelodryadines" dispersing to Australia afterward. Since 415 our sampling focused on Phyllomedusinae, it is difficult to extend the discussion to the context 416 417 of the whole Hylidae family. We encourage future biogeographic studies to examine the question in more detail. 418 419 Our results from the DECTS+j model suggest that Western Amazonia (unit C) acted as a species pump (Rangel et al., 2018) for the *Phyllomedusa*, *Pithecopus* and *Callimedusa* genera. 420 421 This area is frequently identified as one of the ancestral ranges in several animal groups (e.g., lizards, Prates et al., 2017; snakes, Dal Vechio et al., 2018; Pontes-Nogueira et al., 2021). 422 Western Amazonia was recovered as the ancestral area for the clade (*Phyllomedusa*, 423 (Callimedusa, Pithecopus)) after a jump dispersal in the split between Phasmahyla and that 424 425 clade. This scenario took place from the late Oligocene to the middle Miocene, concomitantly with the occurrence of lacustrine conditions due to the Pebas system (Hoorn et al., 2010; 426 Jaramillo et al., 2010; Figs. 4E-F), which profoundly affected the entire Western Amazonia. 427 428 Previous studies also emphasize the influence of the Pebas system over the biogeography of neotropical anuran fauna, shaping their evolutionary history in different ways (Carvalho, 1954; 429 Zimmermann, 1988; Fouquet et al., 2012, 2021a, 2022; Réjaud et al., 2020). 430 The absence of an overall pattern in Anura seems to be related to the diversity of natural history 431 traits. Hence, the Pebas system turned Western Amazonia an unsuitable environment for ground-432 dwelling frogs, negatively affecting the diversification of terrestrial (Phyzelaphryninae and 433 Allobates; Zimmermann & Zimmermann, 1988; Fouquet et al., 2012; Réjaud et al., 2020) and 434

burrowing (Synapturanus; Carvalho, 1954; Fouquet et al., 2021a) clades. On the other hand, the marine incursion was crucial for the origin and diversification of aquatic clades (*Pipa* Linnaeus, 1758; Fouquet et al., 2022). Here, we found evidence of Pebas system promoting the diversification of arboreal anurans, given that the most speciose clade in Phyllomedusinae has originated and started to diversify in this area. This is an important finding, since other studies regarding arboreal frogs have shown diversification occurring after the regression of the Pebas system (e.g., *Boana albopunctata* Spix, 1824 species group; Fouquet et al., 2021b). As far as we know, our present study provides the most comprehensive framework on this issue.

From Western Amazonia, we found that phyllomedusines conquered the central and southern regions of the Neotropics in the last 16 million years (Figs. 3, 4E-F), encompassing the genera *Pithecopus* and *Phyllomedusa*. *Pithecopus* lineages jump-dispersed from Western Amazonia twice during the middle Miocene, occupying areas that would later become the diagonal of open/dry landscapes (DODL). These results are concomitant with previous biogeographic studies involving this genus (Magalhães et al., 2024). We observed a similar pattern in the *Ph. burmeisteri* group (*sensu* Faivovich et al., 2010), the most speciose clade in *Phyllomedusa*. Both cases exemplify a "north-southern" biogeographic colonization of the Neotropics, mentioned in the literature for several groups (snakes, Wüster et al., 2002; Hamdan et al., 2019; termites, Carrijo et al., 2020), including frogs (e.g., Fouquet et al., 2012, 2014). However, we could not extend this geographically oriented pattern of diversification to all phyllomedusines, as it seemed to occur only at lower taxonomic levels in Phyllomedusinae.

By occurring from the middle to late Miocene, the biogeographic patterns we found are concurrent with the transition from the Pebas to the Acre system, taking place in an Amazonian wetland. Firstly, all these lineages left Western Amazonia coincidentally with a period of

recurring marine incursions of the Paranaense Sea (Hernández et al., 2005), which may have limited the Amazonia region southward (Figs. 4E-F). These findings suggest a progressive isolation of the core Phyllomedusinae in northern South America, agreeing with previous studies regarding the influence of the Paranaense Sea on the biogeographic history of South American herpetofauna (e.g., Seger et al., 2021; Abreu-Jardim et al., 2023). The subsequent regression of the Paranaense Sea could have facilitated the colonization of southern areas, helping to explain the diversification pattern we found. Secondly, the subsequent colonization of South American Atlantic Forest by some of these Miocene lineages of Phyllomedusinae is congruent with the very early opening of the DODL, and the late orogeny of the Serra do Mar Mountain Range. This pattern represents a jump dispersal response to the retraction of forested areas in due to the environmental changes driven by the opening of DODL, commonly found in other anuran groups (Pirani et al., 2020; Carvalho et al., 2021). The whole biogeographic process also sheds light on our findings about the diversification of the *Phasmahyla* genus, which remained isolated in the South American Atlantic Forest in the last 10 million years.

Also, we found that several phyllomedusine lineages diversified along the Miocene from Western Amazonia northward (Figs. 3 and 4F), through the Andes and Central America. The biogeographic history of these species suggests a colonization of Northern Andes, occupying the forested lowlands from the Miocene to the Pleistocene. During a period of drastic changes in local drainage patterns due to the transition from the Pebas to the Acre system (Hoorn et al., 2010), we found that the *Phyllomedusa* genus has been particularly successful in colonizing the entire Amazonian region. Together, these results seem to reinforce the idea that phyllomedusine frogs were able to survive in the lacustrine environment resulting from changes in the Amazonian drainage pattern compared to other frog groups. Previous studies have already

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

suggested that the isolation and geographic expansion in other arboreal frogs may have been affected by the Miocene marine introgressions, depending on their capacity to exploit wetland environments for reproduction (e.g., Ortiz et al., 2023).

Following this northward diversification (Fig. 4F), we found some aspects of the historical biogeography of phyllomedusines closely related to the uplift of the Northern Andes. Populations of the MRCA of Callimedusa in Western Amazonia experienced an early divergence within this region, giving rise to Callimedusa tomopterna Cope, 1868 (Fig. 3). Subsequently, populations from the MRCA of other *Callimedusa* species jump-dispersed to the Northern Andes, where mountain uplifts potentially facilitated sympatric speciation during the mid-Miocene (Fig. 4F). The diversification of *Pithecopus* in the Cerrado can also be directly attributed to the Andes uplift. Although the MRCA of *Pithecopus* primarily was in Western Amazonia, ancestral populations reached the Cerrado by two separate jump dispersal events (Fig. 3). Divergences coincided with the final opening of the DODL, where the late Andean uplift contributed to the uplift and dryness of the Brazilian Plateau and the subsidence of the Chaco region (Zanella, 2011; see also Silva, 1995; Pontes-Nogueira et al., 2021). Once ancestral lineages of *Pithecopus* colonized the Cerrado, they diversified in sympatry alongside the changing landscape of this region (Fig. 3). Thus, the uplift of the Andes probably played a main role in cladogenetic processes in phyllomedusine lineages during mountain uplift events, as well as in areas that underwent landscape changes influenced by the elevation of the mountain range.

The diversification of the *Agalychnis* (Figs. 3, 4D) and *Cruziohyla* (Fig. 3) genera during their conquest of Central America is intriguing. In *Agalychnis*, the colonization of Central America by the ancestors of the Phyllomedusinae frogs during the Miocene precedes the formation of the Isthmus of Panama, proposed to have occurred in the Plio-Pleistocene (~3 mya;

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

Fig. 3; Haug & Tiedemann, 1998; O'Dea et al., 2016). Bacon et al. (2015) demonstrated two significant waves of dispersal between South and North America at around 20 and 5 Mya, also preceding the recent formation hypothesis. At first glance, our results are in accordance with the first wave of dispersal, as the MRCA of *Cruziohyla* is synchronous with the very early formation of the Isthmus of Panama and early uplift of the Eastern Cordillera of Northern Andes (Gregory-Wodzicki, 2000), and the jump dispersal present in the MRCA of *Agalychnis* is suggested to have occurred at the same time as this wave of dispersal according to our results. Recent biological (Bacon et al., 2013, 2015; Bloch et al., 2016) and geological (Farris et al., 2011; Montes et al., 2012, 2015; Jaramillo et al., 2017) findings suggest an older formation for the Isthmus of Panama (early to middle Miocene), despite divergent findings (e.g., O'Dea et al., 2016). However, it is thought that range expansion (i.e., anagenetic dispersal) is more plausible to occur by land (for land animals) and that jump dispersals are predominantly associated with geographical barriers (see Matzke, 2014 for more information), and the presence of these jumpdispersals could support the idea of a later formation of the Isthmus rather than with the earlier emergence hypothesis. Therefore, further studies considering the whole Hylidae family may address this issue more properly. The biogeography of the Neotropics is surely intriguing and intricate, and the history of the monkey tree frogs described here adds another level of certainty to this statement.

522

523

524

525

526

CONCLUSIONS

We found that the biogeographic history of Phyllomedusinae started with a vicariance splitting the Neotropical region, Oceania, and Antarctica. Indeed, vicariance was a common biogeographic process during the early diversification of phyllomedusines, while jump dispersals

are likely to have been responsible for the majority of colonizations in the group since the Miocene. Western Amazonia may have served as a species pump for most of the monkey tree frogs, with species colonizing the area and diversifying sympatrically even during the highly unstable environment of the Miocene. Also, the orogeny of the Northern Andes should have played an important role in species diversification, promoting sympatric speciation both through the uplift of mountains and in areas with drastic landscape changes provoked by the elevation of the Andean Mountain range. Our results also reject both the "south-north" and "north-south" diversification hypotheses for Phyllomedusinae, although we observed some geographically oriented diversification at lower taxonomic levels. In brief, we have provided a comprehensive overview of the historical biogeography of this speciose group, enabling a highly detailed description of the diversification of this charismatic frog subfamily.

ACKNOWLEDGMENTS

We are grateful to Pedro Paulo Goulart Taucce, Tiago Fernandes Carrijo, and Marcelo José Sturaro for their outstanding contributions on the systematics and node dating issues. MPN also thanks Felipe Grazziotin for his help with the R software. We also thank Caio Vinícius de Mira-Mendes, Daniel Branch, Félix Salazar, Henry Miller Alexandre, Mauro Teixeira Jr, Miguel Trefaut Urbano Rodrigues, Ross Alford, Russel Barrett, and Sébastien Sant for providing photos of anurans presented on Figure 2. Photos of *C. tomopterna* (© S. Sant/ Parc Amazonien de Guyane), *C. sylviae* (© Félix Salazar) and *P. guttata* (© Henry Miller Alexandre) were uploaded under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Photo of *P. rohdei* (© Caio Vinícius de Mira-Mendes) was uploaded under Attribution 4.0 International (CC BY 4.0) license. LMS dedicates this study in honor of Marco Antonio Servino. No ethics or permit

approvals were required for this research.

	_	4
_	_	
J	J	

552

- Abello MA, Posadas PE, Ortiz Jaureguizar E. 2010. Biogeografía histórica de los Caenolestidae
- (Marsupialia, Paucituberculata) del Cenozoico de América del Sur. In: *X Congreso*
- Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de
- 556 Paleontología (La Plata, 2010).
- Abreu-Jardim TPF, de Lima NE, Jardim L, Maciel NM, de Magalhães RF, Colli GR, Haddad
- 558 CFB, Collevatti RG. 2023. Neogene–Quaternary tectonic, eustatic and climatic events
- shaped the evolution of a South American treefrog. *Journal of Biogeography* 50:987–999.
- DOI: https://doi.org/10.1111/jbi.14578.
- Akaike H. 1974. A New Look at the Statistical Model Identification. *IEEE Transactions on*
- *Automatic Control* 19:716–723. DOI: 10.1109/TAC.1974.1100705.
- Albert JS, Val P, Hoorn C. 2018. The changing course of the amazon river in the neogene:
- Center stage for neotropical diversification. *Neotropical Ichthyology* 16:1–24. DOI:
- 565 10.1590/1982-0224-20180033.
- Andrade FS, Haga IA, Ferreira JS, Recco-Pimentel SM, Toledo LF, Bruschi DP. 2020. A new
- cryptic species of Pithecopus (Anura, Phyllomedusidae) in north-eastern Brazil. European
- 568 *Journal of Taxonomy* 723:108–134.
- Antonelli A. 2016. Biogeografía Neotropical: Possíveis Metas e Desafíos para os Próximos Dez
- Anos. In: Carvalho CJB., Almeida EAB eds. *Biogeografia da América do Sul*. Rio de
- 571 Janeiro: ROCA, 279–287.

572	Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics? <i>Taxon</i>
573	60:403–414. DOI: 10.1002/tax.602010.
574	Azevedo JAR, Collevatti RG, Jaramillo CA, Strömberg CAE, Guedes TB, Matos-Maraví P,
575	Bacon CD, Carillo JD, Faurby S, Antonelli A. 2020. On the young savannas in the land of
576	ancient forests. In: Neotropical diversification: Patterns and processes. Springer, 271–298.
577	Bacon CD, Mora A, Wagner WL, Jaramillo CA. 2013. Testing geological models of evolution of
578	the Isthmus of Panama in a phylogenetic framework. Botanical Journal of the Linnean
579	Society 171:287–300. DOI: 10.1111/j.1095-8339.2012.01281.x.
580	Bacon CD, Silvestro D, Jaramillo CA, Smith BT, Chakrabarty P, Antonelli A. 2015. Biological
581	evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings
582	of the National Academy of Sciences 112:6110–6115. DOI: 10.1073/pnas.1423853112.
583	Baêta D, Giasson LOM, Pombal Jr JP, Haddad CFB. 2016. Review of the rare genus
584	Phrynomedusa Miranda-Ribeiro, 1923 (Anura: Phyllomedusidae) with description of a new
585	species. Herpetological Monographs 30:49–78.
586	Bloch JI, Woodruff ED, Wood AR, Rincon AF, Harrington AR, Morgan GS, Foster DA, Montes
587	C, Jaramillo CA, Jud NA, Jones DS, MacFadden BJ. 2016. First North American fossil
588	monkey and early Miocene tropical biotic interchange. Nature 533:243.
589	Bouckaert RR, Drummond AJ. 2017. bModelTest: Bayesian phylogenetic site model averaging
590	and model comparison. BMC Evolutionary Biology 17:42. DOI: 10.1186/s12862-017-0890-
591	6.
592	Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A,

593	Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis.
594	PLoS computational biology 10:e1003537.
595	Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J
596	Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du
597	Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D,
598	Zhang C, Stadler T, Drummond AJ. 2019. BEAST 2.5: An advanced software platform for
599	Bayesian evolutionary analysis. PLOS Computational Biology 15:e1006650.
600	Brennan IG, Lemmon AR, Lemmon EM, Hoskin CJ, Donnellan SC, Keogh JS. 2023. Populating
601	a Continent: Phylogenomics Reveal the Timing of Australian Frog Diversification.
602	Systematic Biology:syad048. DOI: 10.1093/sysbio/syad048.
603	Burnham KP, Anderson DR. 2004. Multimodel inference: Understanding AIC and BIC in model
604	selection. Sociological Methods and Research 33:261–304. DOI:
605	10.1177/0049124104268644.
606	Capurucho JMG, Ashley M V, Ribas CC, Bates JM. 2018. Connecting Amazonian, Cerrado, and
607	Atlantic forest histories: Paraphyly, old divergences, and modern population dynamics in
608	tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Molecular Phylogenetics and
609	Evolution 127:696–705. DOI: https://doi.org/10.1016/j.ympev.2018.06.015.
610	Carneiro L, Bravo GA, Aristizabal N, Cuervo AM, Aleixo A. 2018. Molecular systematics and
611	biogeography of lowland antpittas (Aves, Grallariidae): The role of vicariance and dispersal
612	in the diversification of a widespread Neotropical lineage. Molecular phylogenetics and
613	evolution 120:375–389.
614	Carrijo TF, Pontes-Nogueira M, Santos RG, Morales AC, Cancello EM, Scheffrahn RH. 2020.

615	New World Heterotermes (Isoptera, Rhinotermitidae): molecular phylogeny, biogeography
616	and description of a new species. Systematic Entomology 45:527–539. DOI:
617	10.1111/syen.12412.
618	Carvalho AL. 1954. A preliminary synopsis of the genera of American mycrohylid frogs.
619	Occasional papers of the Museum of Zoology, University of Michigan:1–19.
620	Carvalho TRD, Moraes LJCL, Lima AP, Fouquet A, Peloso PL V, Pavan D, Drummond LO,
621	Rodrigues MT, Giaretta AA, Gordo M, Neckel-Oliveira S, Haddad CFB. 2021. Systematics
622	and historical biogeography of Neotropical foam-nesting frogs of the Adenomera heyeri
623	clade (Leptodactylidae), with the description of six new Amazonian species. Zoological
624	Journal of the Linnean Society 191:395–433. DOI: 10.1093/zoolinnean/zlaa051.
625	Castroviejo-Fisher S, Koehler J, De La Riva I, Padial JM. 2017. A new morphologically cryptic
626	species of Phyllomedusa (Anura: Phyllomedusidae) from Amazonian forests of northern
627	Peru revealed by DNA sequences. Zootaxa 4269:245–264.
628	Chamberlain SA, Boettiger C. 2017. R Python, and Ruby clients for GBIF species occurrence
629	data. PeerJ Preprints.
630	Costa LP. 2003. The historical bridge between the Amazon and the forest of brazil a study of
631	molecular phylogeography with small mammals. <i>Journal of Biogeography</i> 30:71–86. DOI:
632	10.1046/j.1365-2699.2003.00792.x.
633	Dal Vechio F, Prates I, Grazziotin FG, Zaher H, Rodrigues MT. 2018. Phylogeography and
634	historical demography of the arboreal pit viper Bothrops bilineatus (Serpentes, Crotalinae)
635	reveal multiple connections between Amazonian and Atlantic rain forests. Journal of
636	Biogeography:1–12. DOI: 10.1111/jbi.13421.

637	Díaz de Gamero ML. 1996. The changing course of the Orinoco River during the Neogene: a
638	review. Palaeogeography, Palaeoclimatology, Palaeoecology 123:385-402. DOI:
639	https://doi.org/10.1016/0031-0182(96)00115-0.
640	Dietz L, Dömel JS, Leese F, Mahon AR, Mayer C. 2019. Phylogenomics of the longitarsal
641	Colossendeidae: The evolutionary history of an Antarctic sea spider radiation. Molecular
642	Phylogenetics and Evolution 136:206–214. DOI: 10.1016/j.ympev.2019.04.017.
643	Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E, Hahn N, Palminteri
644	S, Hedao P, Noss R, Hansen M, Locke H, Ellis EC, Jones B, Barber CV, Hayes R, Kormos
645	C, Martin V, Crist E, Sechrest W, Price L, Baillie JEM, Weeden D, Suckling K, Davis C,
646	Sizer N, Moore R, Thau D, Birch T, Potapov P, Turubanova S, Tyukavina A, De Souza N,
647	Pintea L, Brito JC, Llewellyn OA, Miller AG, Patzelt A, Ghazanfar SA, Timberlake J,
648	Klöser H, Shennan-Farpón Y, Kindt R, Lillesø JPB, Van Breugel P, Graudal L, Voge M,
649	Al-Shammari KF, Saleem M. 2017. An Ecoregion-Based Approach to Protecting Half the
650	Terrestrial Realm. <i>BioScience</i> 67:534–545. DOI: 10.1093/biosci/bix014.
651	Driskell AC, Ané C, Burleigh JG, McMahon MM, O'meara BC, Sanderson MJ. 2004. Prospects
652	for building the tree of life from large sequence databases. <i>Science</i> 306:1172–1174.
653	Dubois A, Ohler A, Pyron RA. 2021. New concepts and methods for phylogenetic taxonomy and
654	nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians
655	(Lissamphibia): corrigenda and addenda. DOI: 10.11646/megataxa.6.1.4.
656	Duellman WE, Marion AB, Hedges SB. 2016. Phylogenetics, classification, and biogeography
657	of the treefrogs (Amphibia: Anura: Arboranae). Magnolia Press. DOI:
658	10.11646/zootaxa.4104.1.1.

659	Dupin J, Matzke NJ, Särkinen T, Knapp S, Olmstead RG, Bohs L, Smith SD. 2017. Bayesian
660	estimation of the global biogeographical history of the Solanaceae. Journal of
661	Biogeography 44:887–899. DOI: 10.1111/jbi.12898.
662	Van Den Ende C, White LT, van Welzen PC. 2017. The existence and break-up of the Antarctic
663	land bridge as indicated by both amphi-Pacific distributions and tectonics. Gondwana
664	Research 44:219–227.
665	Escalante T. 2017. A natural regionalization of the world based on primary biogeographic
666	homology of terrestrial mammals. Biological Journal of the Linnean Society 120:349–362.
667	DOI: 10.1111/bij.12898.
668	Faivovich J, Haddad CFB, Baêta D, Jungfer K, Álvares GFR, Brandão RA, Sheil C, Barrientos
669	LS, Barrio-Amorós CL, Cruz CAG. 2010. The phylogenetic relationships of the charismatic
670	poster frogs, Phyllomedusinae (Anura, Hylidae). Cladistics 26:227–261.
671	Faivovich J, Haddad CFBB, Garcia PC a. A, Frost DR, Campbell J a., Wheeler WC. 2005.
672	Systematic review of the frog family Hylidae, with special reference to Hylinae:
673	phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of natural
674	History 2005:1–240. DOI: 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2.
675	Farris DW, Jaramillo CA, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A,
676	Speakman RJ, Glascock MD, Valencia V. 2011. Fracturing of the Panamanian Isthmus
677	during initial collision with: South America. Geology 39:1007–1010. DOI:
678	10.1130/G32237.1.
679	Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P. 2017.
680	Phylogenomics reveals rapid, simultaneous diversification of three major clades of

681	Gondwanan frogs at the Cretaceous-Paleogene boundary. Proceedings of the National
682	Academy of Sciences of the United States of America 114:E5864–E5870. DOI:
683	10.1073/pnas.1704632114.
684	Fouquet A, Cornuault J, Rodrigues MT, Werneck FP, Hrbek T, Acosta-Galvis AR, Massemin D,
685	Kok PJR, Ernst R. 2022. Diversity, biogeography, and reproductive evolution in the genus
686	Pipa (Amphibia: Anura: Pipidae). Molecular Phylogenetics and Evolution 170:107442.
687	Fouquet A, Leblanc K, Framit M, Réjaud A, Rodrigues MT, Castroviejo-Fisher S, Peloso PL V,
688	Prates I, Manzi S, Suescun U. 2021a. Species diversity and biogeography of an ancient frog
689	clade from the Guiana Shield (Anura: Microhylidae: Adelastes, Otophryne, Synapturanus)
690	exhibiting spectacular phenotypic diversification. Biological Journal of the Linnean Society
691	132:233–256.
692	Fouquet A, Loebmann D, Castroviejo-Fisher S, Padial JM, Orrico VGD, Lyra ML, Roberto IJ,
692693	Fouquet A, Loebmann D, Castroviejo-Fisher S, Padial JM, Orrico VGD, Lyra ML, Roberto IJ, Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest:
693	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest:
693 694	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking
693694695	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges. <i>Molecular Phylogenetics and</i>
693694695696	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges. <i>Molecular Phylogenetics and Evolution</i> 65:547–561. DOI: 10.1016/j.ympev.2012.07.012.
693694695696697	 Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges. <i>Molecular Phylogenetics and Evolution</i> 65:547–561. DOI: 10.1016/j.ympev.2012.07.012. Fouquet A, Marinho P, Réjaud A, Carvalho TR, Caminer MA, Jansen M, Rainha RN, Rodrigues
693694695696697698	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges. <i>Molecular Phylogenetics and Evolution</i> 65:547–561. DOI: 10.1016/j.ympev.2012.07.012. Fouquet A, Marinho P, Réjaud A, Carvalho TR, Caminer MA, Jansen M, Rainha RN, Rodrigues MT, Werneck FP, Lima AP. 2021b. Systematics and biogeography of the Boana
693694695696697698699	Kok PJR, Haddad CFB, Rodrigues MT. 2012. From Amazonia to the Atlantic forest: Molecular phylogeny of Phyzelaphryninae frogs reveals unexpected diversity and a striking biogeographic pattern emphasizing conservation challenges. <i>Molecular Phylogenetics and Evolution</i> 65:547–561. DOI: 10.1016/j.ympev.2012.07.012. Fouquet A, Marinho P, Réjaud A, Carvalho TR, Caminer MA, Jansen M, Rainha RN, Rodrigues MT, Werneck FP, Lima AP. 2021b. Systematics and biogeography of the Boana albopunctata species group (Anura, Hylidae), with the description of two new species from

703	Neotropical frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography
704	41:855–870. DOI: 10.1111/jbi.12250.
705	Frost DR. 2024. Amphibian Species of the World: an Online Reference. Version 6.2. DOI:
706	doi.org/10.5531/db.vz.0001.
707	Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CF, De Sa RO, Channing A,
708	Wilkinson M, Donnellan SC. 2006. The amphibian tree of life. Bulletin of the American
709	Museum of natural History 2006:1–291.
710	Garzione CN, Molnar P, Libarkin JC, MacFadden BJ. 2006. Rapid late Miocene rise of the
711	Bolivian Altiplano: Evidence for removal of mantle lithosphere. Earth and Planetary
712	Science Letters 241:543–556. DOI: 10.1016/j.epsl.2005.11.026.
713	GBIF. 2024.Global Biodiversity Information Facility. Available at http://www.gbif.org (accessed
714	May 7, 2021).
715	Giambiagi L, Alvarez P, Spagnotto S. 2016. Temporal variation of the stress field during the
716	construction of the central Andes: Constrains from the volcanic arc region (22-26 S),
717	Western Cordillera, Chile, during the last 20 Ma. <i>Tectonics</i> 35:2014–2033.
718	Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Doucette A, Caro GG,
719	McDaniel J, Clements MA, Arroyo MTK, Endara L, Kriebel R, Williams NH, Cameron
720	KM. 2016. Orchid historical biogeography, diversification, Antarctica and the paradox of
721	orchid dispersal. <i>Journal of Biogeography</i> 43:1905–1916. DOI: 10.1111/jbi.12854.
722	Gregory-Wodzicki KM. 2000. Uplift history of the Central and Northern Andes: A review.
723	Geological Society of America Bulletin 112:1091–1105. DOI: 10.1130/0016-

7606(2000)112<1091:UHOTCA>2.3.CO;2. 724 725 Guarnizo CE, Werneck FP, Giugliano LG, Santos MG, Fenker J, Sousa L, D'Angiolella AB, 726 Dos Santos AR, Strüssmann C, Rodrigues MT. 2016. Cryptic lineages and diversification of an endemic anole lizard (Squamata, Dactyloidae) of the Cerrado hotspot. *Molecular* 727 Phylogenetics and Evolution 94:279–289. 728 Haas A. 2003. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: 729 730 Anura) \star . Cladistics 19:23–89. Hamdan B, Guedes TB, Carrasco PA, Melville J. 2019. A complex biogeographic history of 731 diversification in Neotropical lancehead pitvipers (Serpentes, Viperidae). Zoologica Scripta 732 733 00:1–14. DOI: doi:10.1111/zsc.12398. Haug GH, Tiedemann R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic 734 Ocean thermohaline circulation. *Nature* 393:673–676. DOI: 10.1038/31447. 735 Hernández RM, Jordan TE, Dalenz Farjat A, Echavarría L, Idleman BD, Reynolds JH, Farjat 736 AD, Echavarría L, Idleman BD, Reynolds JH. 2005. Age, distribution, tectonics, and 737 738 eustatic controls of the Paranense and Caribbean marine transgressions in southern Bolivia and Argentina. Journal of South American Earth Sciences 19:495–512. DOI: 739 10.1016/j.jsames.2005.06.007. 740 Hime PM, Lemmon AR, Lemmon ECM, Prendini E, Brown JM, Thomson RC, Kratovil JD, 741 Noonan BP, Pyron RA, Peloso PL V. 2021. Phylogenomics reveals ancient gene tree 742 discordance in the amphibian tree of life. Systematic biology 70:49–66. 743 Hoorn C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene 744

/45	depositional history of northwestern Amazoma, results of a parynostratigraphic study.
746	Palaeogeography, Palaeoclimatology, Palaeoecology 105:267–309. DOI:
747	https://doi.org/10.1016/0031-0182(93)90087-Y.
748	Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL, Dino R,
749	do Carmo DA, Chemale F. 2017. The Amazon at sea: Onset and stages of the Amazon
750	River from a marine record, with special reference to Neogene plant turnover in the
751	drainage basin. Global and Planetary Change 153:51-65. DOI:
752	10.1016/j.gloplacha.2017.02.005.
753	Hoorn C, Kirschner J, Beer M, Wei C, Kukla T, Jardine P. 2020. Grass development in the
754	Amazon drainage basin, evidence from the fossil and phytochemical record. In: EGU
755	General Assembly Conference Abstracts. 13822.
756	Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-
757	Meseguer A, Anderson CL, Figueiredo JP, Jaramillo CA, Riff D, Negri FR, Hooghiemstra
758	H, Lundberg JG, Stadler T, Sarkinen T, Antonelli A. 2010. Amazonia Through Time:
759	Andean Uplift, Climate Change, Landscape Evolution, and Biodiversity. Science 330:927-
760	931. DOI: 10.1126/science.1194585.
761	Insel N, Poulsen CJ, Ehlers TA. 2010. Influence of the Andes Mountains on South American
762	moisture transport, convection, and precipitation. Climate Dynamics 35:1477–1492. DOI:
763	10.1007/s00382-009-0637-1.
764	Jaramillo CA, Hoorn C, Silva SAF, Leite F, Herrera F, Quiroz L, Dino R, Antonioli L. 2010. The
765	Origin of the Modern Amazon Rainforest: Implications of the Palynological and
766	Palaeobotanical Record. Amazonia, Landscape and Species Evolution: A Look into the

Past:317–334. DOI: 10.1002/9781444306408.ch19. 767 Jaramillo CA, Montes C, Cardona A, Silvestro D, Antonelli A, Bacon CD. 2017. Comment (1) 768 769 on "Formation of the Isthmus of Panama" by O'Dea et al. Science Advances 3:1–8. Jetz W, Pyron RA. 2018. The interplay of past diversification and evolutionary isolation with 770 present imperilment across the amphibian tree of life. Nature Ecology and Evolution 2:850– 771 858. DOI: 10.1038/s41559-018-0515-5. 772 773 Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment 774 program. Briefings in Bioinformatics 9:286–298. DOI: 10.1093/bib/bbn013. Klaus K V., Matzke NJ. 2020. Statistical comparison of trait-dependent biogeographical models 775 776 indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69:61–75. DOI: 10.1093/sysbio/syz034. 777 Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography 778 779 when the number of areas is large. Systematic Biology 62:789–804. DOI: 10.1093/sysbio/syt040. 780 Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. 781 2015. The EMBL-EBI bioinformatics web and programmatic tools framework. *Nucleic* 782 Acids Research 43:W580–W584. DOI: 10.1093/nar/gkv279. 783 Machado AFP, Rønsted N, Bruun-Lund S, Pereira RAS, Paganucci de Queiroz L. 2018. Atlantic 784 forests to the all Americas: Biogeographical history and divergence times of Neotropical 785 786 Ficus (Moraceae). *Molecular Phylogenetics and Evolution* 122:46–58. DOI: https://doi.org/10.1016/j.ympev.2018.01.015. 787

Magalhães RF, K. S. Ramos E, Bandeira LN, Ferreira JS, Werneck FP, Anciães M, Bruschi DP. 788 2024. Integrative species delimitation uncovers hidden diversity within the Pithecopus 789 hypochondrialis species complex (Hylidae, Phyllomedusinae) and its phylogeography 790 reveals Plio-Pleistocene connectivity among Neotropical savannas. *Molecular* 791 Phylogenetics and Evolution 190:107959. DOI: 792 https://doi.org/10.1016/j.ympev.2023.107959. 793 Matzke NJ. 2013. Probabilistic historical biogeography:new models for founder-event 794 795 speciation, eimperfect detection, and fossils allow improved accurancy and model-testing. Frontiers of Biogeography 5:242–248. DOI: 10.5811/westjem.2011.5.6700. 796 Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event 797 798 speciation is a crucial process in island clades. Systematic Biology 63:951–970. DOI: 10.1093/sysbio/syu056. 799 Matzke NJ. 2022. Statistical comparison of DEC and DEC+J is identical to comparison of two 800 ClaSSE submodels, and is therefore valid. *Journal of Biogeography* 49:1805–1824. DOI: 801 https://doi.org/10.1111/jbi.14346. 802 Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference 803 of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop. New 804 Orleans, LA: IEEE, 1–8. 805 Montes C, Cardona A, Jaramillo CA, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, 806 Rodriguez-Parra LA, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central 807 808 American Seaway. Science 348:226–229. DOI: 10.1126/science.aaa2815. Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-moreno SA, Ramírez DA, 809

810	Hoyos N, Wilson J, Farris DW, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA
811	2012. Evidence for middle Eocene and younger land emergence in central Panama:
812	Implications for Isthmus closure. Bulletin of the Geological Society of America 124:780–
813	799. DOI: 10.1130/B30528.1.
814	Morrone JJ. 2006. Biogeographic Areas and Transition Zones of Latin America and the
815	Caribbean Islands Based on Panbiogeographic and Cladistic Analyses of the Entomofauna.
816	Annual Review of Entomology 51:467–494. DOI: 10.1146/annurev.ento.50.071803.130447
817	Morrone JJ. 2014. Biogeographical regionalisation of the neotropical region. DOI:
818	10.11646/zootaxa.3782.1.1.
819	Myers N, Mittermeler RA, Mittermeler CG, Da Fonseca GAB, Kent J. 2000. Biodiversity
820	hotspots for conservation priorities. <i>Nature</i> 403:853–858. DOI: 10.1038/35002501.
821	O'Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-moreno SA, Cione AL, Collins LS,
822	Queiroz A De, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry M
823	Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-caro H, Finnegan S, Gasparini
824	GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-pingel JS
825	Marko PB, Pyenson ND, Rachello-dolmen PG, Soibelzon E, Soibelzon L, Todd JA,
826	Vermeij GJ, Jackson JBC. 2016. Formation of the Isthmus of Panama. <i>Science</i> 2:1–12.
827	Olson D, Dinerstein E, Wikramanayake E, Burgess N, V. N. Powell G, C. Underwood E, A.
828	D'amico J, Itoua I, E. Strand H, Morrison J, J. Loucks C, F. Allnutt T, Ricketts T, Kura Y,
829	Lamoreux J, W. Wettengel W, Hedao P, Kassem K. 2001. Terrestrial Ecoregions of the
830	World: A New Map of Life on Earth. BioScience 51:933–938. DOI: 10.1641/0006-
831	3568(2001)051[0933:TEOTWA]2.0.CO;2.

832	Ortiz DA, Hoskin CJ, Werneck FP, Réjaud A, Manzi S, Ron SR, Fouquet A. 2023. Historical
833	biogeography highlights the role of Miocene landscape changes on the diversification of a
834	clade of Amazonian tree frogs. Organisms Diversity & Evolution 23:395-414. DOI:
835	10.1007/s13127-022-00588-2.
836	Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of phylogenetics and evolution in R
837	language. Bioinformatics 20:289–290. DOI: 10.1093/bioinformatics/btg412.
838	Pereira EA, Rocha LCL, Folly H, da Silva HR, Santana DJ. 2018. A new species of spotted leaf
839	frog, genus Phasmahyla (Amphibia, Phyllomedusidae) from Southeast Brazil. PeerJ
840	6:e4900.
841	Peres EA, Silva MJ, Solferini VN. 2017. Phylogeography of the spider Araneus venatrix
842	(Araneidae) suggests past connections between Amazon and Atlantic rainforests. Biological
843	Journal of the Linnean Society 121:771–785. DOI: 10.1093/biolinnean/blx036.
844	Pirani RM, Peloso PL V, Prado JR, Polo ÉM, Knowles LL, Ron SR, Rodrigues MT, Sturaro MJ,
845	Werneck FP. 2020. Diversification history of clown tree frogs in Neotropical rainforests
846	(Anura, Hylidae, Dendropsophus leucophyllatus group). Molecular Phylogenetics and
847	Evolution 150:106877. DOI: https://doi.org/10.1016/j.ympev.2020.106877.
848	Pontes-Nogueira M, Martins M, Alencar LR V., Sawaya RJ. 2021. The role of vicariance and
849	dispersal on the temporal range dynamics of forest vipers in the Neotropical region. PLOS
850	ONE 16:e0257519.
851	Portik DM, Streicher JW, Blackburn DC, Moen DS, Hutter CR, Wiens JJ. 2023. Redefining
852	Possible: Combining Phylogenomic and Supersparse Data in Frogs. Molecular Biology and
853	Evolution 40:msad109. DOI: 10.1093/molbev/msad109.

854	Poulsen CJ, Enlers 1A, Insel N. 2010. Onset of Convective Rainfall During Gradual Late
855	Miocene Rise of the Central Andes. <i>Science</i> 328:490–493. DOI: 10.1126/science.1185078.
856	Prates I, Melo-Sampaio PR, Drummond L de O, Teixeira M, Rodrigues MT, Carnaval AC. 2017.
857	Biogeographic links between southern Atlantic Forest and western South America:
858	Rediscovery, re-description, and phylogenetic relationships of two rare montane anole
859	lizards from Brazil. Molecular Phylogenetics and Evolution 113:49–58. DOI:
860	10.1016/j.ympev.2017.05.009.
861	Prieto-Torres DA, Rojas-Soto OR, Bonaccorso E, Santiago-Alarcon D, Navarro-Sigüenza AG.
862	2019. Distributional patterns of Neotropical seasonally dry forest birds: a biogeographical
863	regionalization. <i>Cladistics</i> 35:446–460.
864	Pyron RA, Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 2800 species,
865	and a revised classification of extant frogs, salamanders, and caecilians. Molecular
866	Phylogenetics and Evolution 61:543–583. DOI: 10.1016/j.ympev.2011.06.012.
867	QGIS.org. 2024.QGIS Geographic Information System. Available at http://www.qgis.org/
868	R Core Team. 2024.R: A language and environment for statistical computing. Available at
869	https://www.r-project.org/
870	Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in
871	Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–904. DOI:
872	10.1093/sysbio/syy032.
873	Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro
874	FAS, Rahbek C, Colwell RK. 2018. Modeling the ecology and evolution of biodiversity:

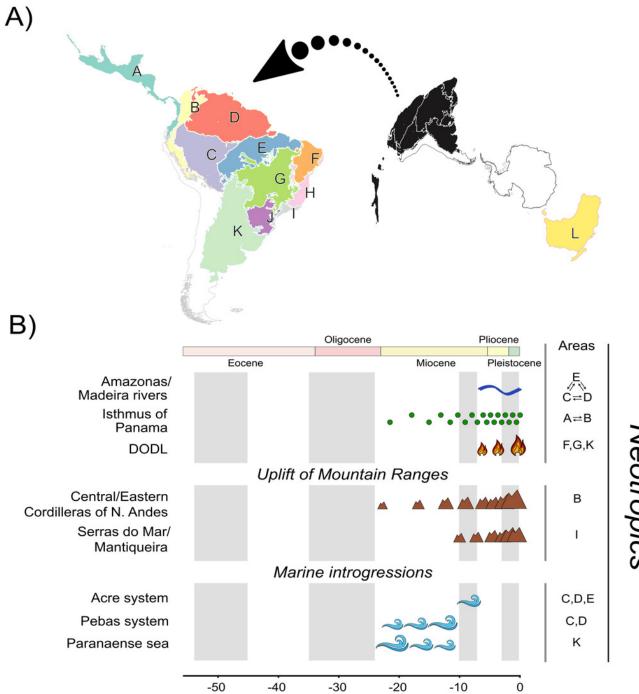
875	Biogeographical cradles, museums, and graves. Science 361:eaar5452. DOI:
876	10.1126/science.aar5452.
877	Ree RH, Moore BR, Webb CO, Donoghue MJ. 2005. A likelihood framework for inferring the
878	evolution of geographic range on phylogenetic trees. Evolution 59:2299–2311. DOI:
879	10.1111/j.0014-3820.2005.tb00940.x.
880	Ree RH, Smith SA. 2008. Maximum Likelihood Inference of Geographic Range Evolution by
881	Dispersal, Local Extinction, and Cladogenesis. Systematic Biology 57:4–14. DOI:
882	10.1080/10635150701883881.
883	Reguero MA, Gelfo JN, López GM, Bond M, Abello A, Santillana SN, Marenssi SA. 2014.
884	Final Gondwana breakup: The Paleogene South American native ungulates and the demise
885	of the South America-Antarctica land connection. Global and Planetary Change 123:400-
886	413. DOI: https://doi.org/10.1016/j.gloplacha.2014.07.016.
887	Réjaud A, Rodrigues MT, Crawford AJ, Castroviejo-Fisher S, Jaramillo AF, Chaparro JC, Glav
888	F, Gagliardi-Urrutia G, Moravec J, Ignacio J. 2020. Historical biogeography identifies a
889	possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs
890	(Aromobatidae: Allobates). Journal of Biogeography 47:2472–2482.
891	Rivera-Correa M, Duarte-Cubides F, Rueda-Almonacid JV, Daza JM. 2013. A new red-eyed
892	treefrog of Agalychnis (Anura: Hylidae: Phyllomedusinae) from middle Magdalena River
893	valley of Colombia with comments on its phylogenetic position. <i>Zootaxa</i> 3636:85–100.
894	Rodríguez Tribaldos V, White NJ, Roberts GG, Hoggard MJ. 2017. Spatial and temporal uplift
895	history of South America from calibrated drainage analysis. Geochemistry, Geophysics,
896	Geosystems 18:2321–2353. DOI: https://doi.org/10.1002/2017GC006909.

Ron SR, Almendariz A, Cannatella DC. 2013. The Phyllomedusa perinesos group (Anura: 897 Hylidae) is derived from a Miocene Amazonian lineage. Zootaxa 3741:289–294. 898 899 Ronquist F. 1997. Dispersal-Vicariance Analysis: A New Approach to the Quantification of 900 Historical Biogeography. Syst Biol 46:195–203. DOI: 10.1093/sysbio/46.1.195. de Sá RO, Tonini JFR, van Huss H, Long A, Cuddy T, Forlani MC, Peloso PL V, Zaher H, 901 Haddad CFB. 2019. Multiple connections between Amazonia and Atlantic Forest shaped 902 the phylogenetic and morphological diversity of Chiasmocleis Mehely, 1904 (Anura: 903 904 Microhylidae: Gastrophryninae). *Molecular Phylogenetics and Evolution* 130:198–210. DOI: https://doi.org/10.1016/j.ympev.2018.10.021. 905 906 Salas-Gismondi R, Flynn JJ, Baby P, Wesselingh FP, Antoine P-O, Salas-gismondi R. 2015. A Miocene hyperdiverse crocodylian community reveals peculiar trophic dynamics in proto-907 Amazonian mega-wetlands. Proceedings of the Royal Society B: Biological Sciences 282:4-908 8. DOI: 10.1098/rspb.2014.2490. 909 Sanmartín I. 2016. Modelos Probabilísticos em Biogeografia. In: Carvalho CJB, Almeida EAB 910 911 eds. Biogeografia da América do Sul. São Paulo: ROCA, 119–128. 912 Seger KR, da Veiga Teixeira BF, Annibale FS, Rossa-Feres D de C, Lima AP, Andrade GV, Giaretta AA, Lourenço LB. 2021. Five Independent Lineages Revealed by Integrative 913 914 Taxonomy in the Dendropsophus nanus–Dendropsophus walfordi Species Complex. Diversity 13:522. 915 Serrano FC, Pontes-Nogueira M, Sawaya RJ, Alencar LR V, Nogueira CC, Grazziotin FG. 2024. 916 There and back again: when and how the world's richest snake family (Dipsadidae) 917 dispersed and speciated across the Neotropical region. Journal of Biogeography n/a. DOI: 918

919	https://doi.org/10.1111/jbi.14/90.
920	Silva JMC. 1995. Biogeographic analysis of the South American Cerrado avifauna. Steenstrupia
921	21:49–67.
922	Smith BT, McCormack JE, Cuervo AM, Hickerson M, Aleixo A, Cadena CD, Perez-Eman J,
923	Burney CW, Xie X, Harvey MG. 2014. The drivers of tropical speciation. <i>Nature</i> 515:406-
924	409.
925	Sobral-Souza T, Lima-Ribeiro MS, Solferini VN. 2015. Biogeography of Neotropical
926	Rainforests: past connections between Amazon and Atlantic Forest detected by ecological
927	niche modeling. Evolutionary Ecology 29:643–655. DOI: 10.1007/s10682-015-9780-9.
928	Sundell KE, Saylor JE, Lapen TJ, Horton BK. 2019. Implications of variable late Cenozoic
929	surface uplift across the Peruvian central Andes. Scientific reports 9:1–12.
930	Thomson RC, Shaffer HB. 2010. Sparse supermatrices for phylogenetic inference: taxonomy,
931	alignment, rogue taxa, and the phylogeny of living turtles. Systematic biology 59:42–58.
932	Vicente N, Kergoat GJ, Dong J, Yotoko K, Legendre F, Nattier R, Robillard T. 2017. In and out
933	of the Neotropics: historical biogeography of Eneopterinae crickets. Journal of
934	Biogeography 44:2199–2210.
935	Wagenmakers E-J, Farrell S. 2004. AIC model selection using Akaike weights. <i>Psychonomic</i>
936	Bulletin & Review 11:192–196. DOI: 10.3758/BF03206482.
937	Werneck FP, Leite RN, Geurgas SR, Rodrigues MT. 2015. Biogeographic history and cryptic
938	diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC
939	Evolutionary Biology 15:1–24.

940	Wiens JJ. 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic biology
941	52:528–538.
942	Wiens JJ, Fetzner Jr JW, Parkinson CL, Reeder TW. 2005. Hylid frog phylogeny and sampling
943	strategies for speciose clades. Systematic biology 54:778–807.
944	Wiens JJ, Morrill MC. 2011. Missing data in phylogenetic analysis: reconciling results from
945	simulations and empirical data. Systematic biology 60:719–731.
946	Wüster W, Salomão MDG, Quijada-Mascareñas JA, Thorpe RS, BBBSP. 2002. Origin and
947	evolution of the South American pitviper fauna: evidence from mitochondrial DNA
948	sequence analysis. In: Biology of the Vipers. Eagle Mountain Publishing Eagle Mountain,
949	Utah, 111–128.
950	Zanella FC V. 2011. Evolução da biota da diagonal de formações abertas secas da América do
951	Sul. In: Carvalho CJB, Almeida EAB eds. Biogeografia da América do Sul: padrões e
952	processos. São Paulo: Roca, 198–220.
953	Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A Greedy Algorithm for Aligning DNA
954	Sequences. Journal of Computational Biology 7:203–214. DOI:
955	10.1089/10665270050081478.
956	Zimmermann H, Zimmermann E. 1988. Etho-Taxonomie und zoogeographische
957	artengruppenbildung bei pfeilgiftfröschen (Anura: Dendrobatidae). Salamandra (Frankfur
958	am Main) 24:125–160.
959	Zizka A, Antunes Carvalho F, Calvente A, Rocio Baez-Lizarazo M, Cabral A, Coelho JFR,
960	Colli-Silva M, Fantinati MR, Fernandes MF, Ferreira-Araújo T, Gondim Lambert Moreira

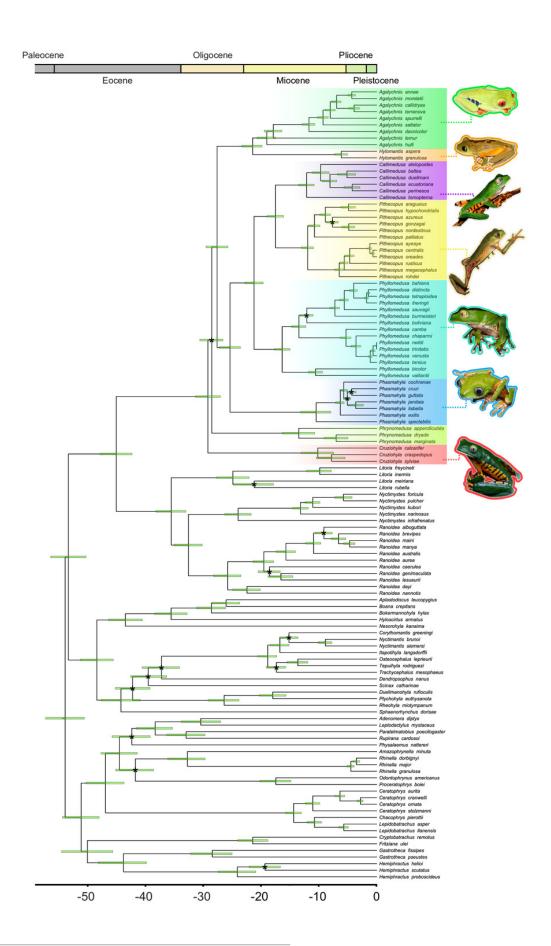
961	F, Santos NMC, Santos TAB, dos Santos-Costa RC, Serrano FC, Alves da Silva AP, de
962	Souza Soares A, Cavalcante de Souza PG, Calisto Tomaz E, Vale VF, Vieira TL, Antonelli
963	A. 2020. No one-size-fits-all solution to clean GBIF. <i>PeerJ</i> 8:e9916. DOI:
964	10.7717/peerj.9916.
965	
966	DATA AVAILABILITY STATEMENTS
967	Supplementary data is available at Figshare, under the following DOI:
968	https://doi.org/10.6084/m9.figshare.24282592.v1. The third-party data used in this study is
969	available at GBIF under the following URL: https://www.gbif.org/species/4817115.



970

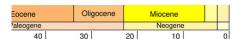
A, Map of biogeographic units used in Neotropical region and Oceania, adapted from terrestrial ecoregions of the world (Olson et al., 2001; Dinerstein et al., 2017).

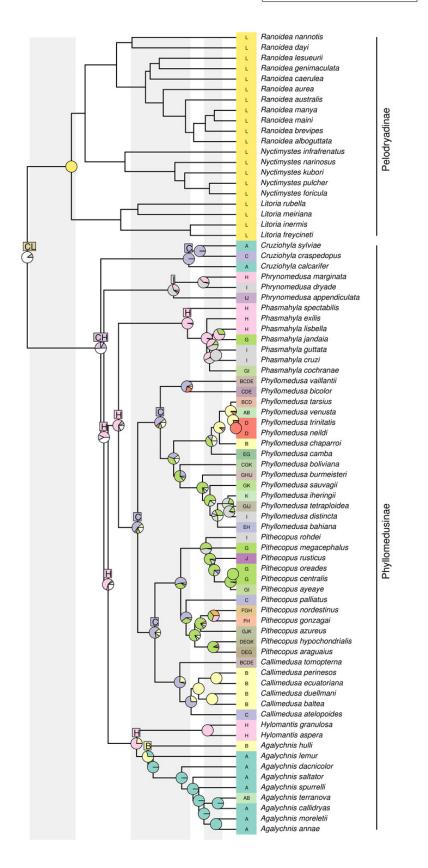
The areas are: Central America (A), Northern Andes (B), Western Amazonia (C), Eastern Amazonia (D), Southern Amazonia (E), Caatinga (F), Cerrado (G), Northern Atlantic Forest (H), Central Atlantic Forest (I), Southern Atlantic Forest (J), Chaco/Pampas (K), and Oceania (L); B, The summary of events acting as potential geographical barriers. We have used double arrows to specify instances where dispersal probabilities between the areas denoted were the only ones being affected; in contrast, we used commas to specify the cases where any dispersal through those areas had their probability decreased. Time stratification was applied to address landscape dynamics to our analysis, being indicated by the gray-white transition in geological time scale. In Neotropics, the complex Amazonas/Madeira was denoted as a geographical barrier to dispersal between Amazonian areas since late-Miocene; previously, Pebas and Acre systems were actuating on the same region along the entire Miocene. Moreover, Paranaense sea was another marine introgression occurring in Neotropics along the Miocene. The increase in connectivity between North and South America since the mid-Miocene, due to the formation of Panamá Isthmus bring another example of a geographical barrier "softened" through time. On the other hand, the uplift rates of Northern Andes and Serra do Mar and Mantiqueira Mountain Ranges had increased since mid-Miocene, becoming a harsher barrier. This is also the case of DODL, that reduced connectivity between Amazonian and Atlantic forested areas by the expansion of aridity since the very late-Miocene. See Supplementary data S4 and Tables S4.1 and S4.2 for details.



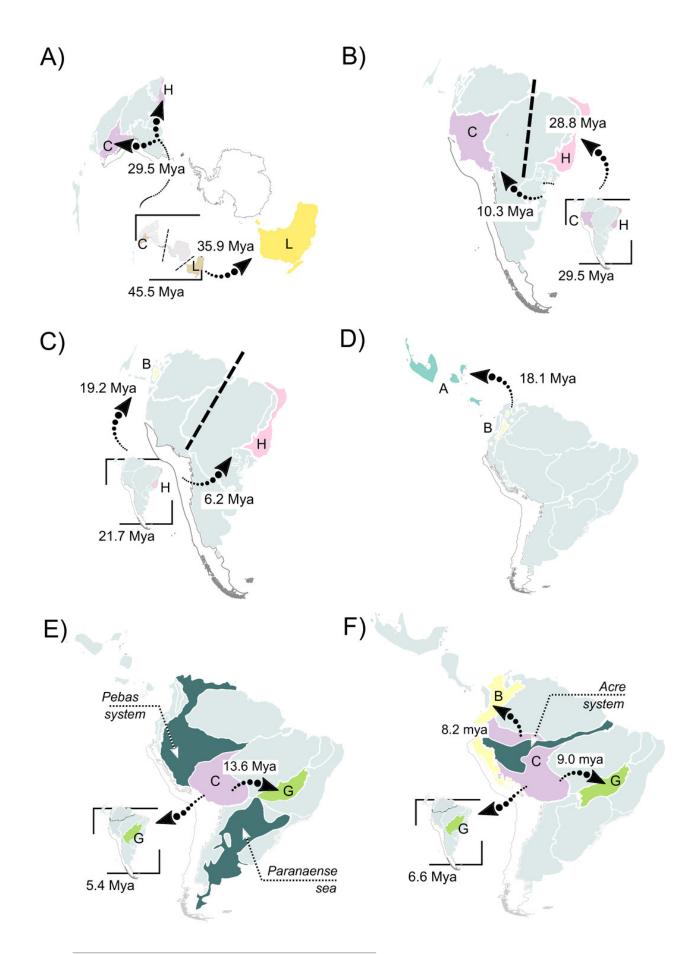
Bayesian dated phylogenetic tree of Phyllomedusinae, based on 13 mitochondrial and nuclear concatenated loci (8,660 bp, 120 terminals).

Horizontal green bars represent the 95% HPD (height posterior density) intervals for the divergence date estimates. Black asterisks indicate clades where the value of posterior probability (pp) is lower than 0.9. See Supplementary data S1 for details about partitioning and the models of nucleotide substitution and Supplementary data S5 for detailed posterior probabilities.




Ancestral range estimations from DECTS + j model implemented in BioGeoBEARS.

Colored boxes with letters represent the most probable range estimated by the model (boxes for nodes in the last 20 million years are not shown for better visualization of these nodes). Ancestral area estimations at nodes represent areas before an inferred instantaneous speciation event; colored rectangles at the tips with letters indicate the current distribution of extant species. Pie charts on nodes represent probabilities of ranges. Only the four most probable states at each node are shown for better visualization, and blank spaces represents all other probabilities (see Supplementary data S5 for more information).



			Legend			
A	H	CH		GK	FGH	AllOthers
В	1	CL		IJ	GIJ	
C	J	EG		BCD	GJK	
D	K	EH		CDE	BCDE	
F	L	FH		CGK	DEGK	
G	AB	GI		DEG	GHU	

Summary of the recovered biogeographic processes using arrows, following our time stratification (from the oldest to the newest).

A, a vicariant event at the split between Pelodryadinae + Phyllomedusinae, isolating both subfamilies from a wide-distributed MRCA; B, a vicariant event originating the Phrynomedusa genus by the isolation of populations in the Central Atlantic Forest, the same biogeographic unit from where jump-dispersed the populations who conquest the Western Amazonia and lead to the MRCA of (Phyllomedusa (Callimedusa + Pithecopus)) at 32.4 Mya; C, a vicariant event, resulting in the emergence of Hylomantis and Agalychnis genera from a widedistributed MRCA; D, another vicariant event at the early diversification of Agalychnis genus, at the divergence of the Andean species A. hulli; E, north-south pattern of diversification of P. burmeisteri group, whose MRCA jump dispersed from Western Amazonia giving rise to a diversification along Chaco and, subsequently, Atlantic Forest' units during the early opening of DODL; F, the divergent patterns of diversification in Pithecopus (north-south, colonizing the Cerrado by jump dispersal in two waves) and Callimedusa (south-north, colonizing the Northern Andes by range expansion) genera, both taking place in Miocene concurrently to the Pebas system. See Fig. 3 for info about the units' colors and letters. Maps adapted from terrestrial ecoregions of the world (Olson et al., 2001; Dinerstein et al., 2017) to highlight geological events.

Table 1(on next page)

AIC comparisons of the Ancestral range estimation models.

*LnL = log-likelihood of the model. n = number of free parameters in the model (that being d, e, j and w); d = rate of range expansion (i.e. anagenetic dispersal); e = rate of range contraction (i.e. extinction); j = jump dispersal process; and w = dispersal multiplier parameter (for TS models). **DECTS+j is shown in bold and represents the best model under AIC and AIC weights.

Models	LnL*	n*	d^*	e*	<i>j</i> *	w*	AIC	AIC
DECTS+j**	-206.7	3	0.01	<0.001	0.061	-	419.4	weights 0.99
BAYAREALIKETS+j	-211.7	3	0.0072	< 0.001	0.099	-	429.4	0.0065
DIVALIKETS+j	-211.8	3	0.012	< 0.001	0.047	-	429.5	0.0063
DECTS	-217.9	2	0.013	< 0.001	-	-	439.8	< 0.001
DECTS+j+w	-220.9	4	0.0073	< 0.001	0.027	0.094	449.9	< 0.001
BAYAREALIKETS+j+w	-223.3	4	0.0044	< 0.001	0.052	0.079	454.6	< 0.001
DIVALIKETS+j+w	-226.7	4	0.0068	< 0.001	0.022	0.047	461.4	< 0.001
DIVALIKETS	-230.3	2	0.01	0.01	-	-	464.5	< 0.001
DECTS+w	-232.6	3	0.0073	< 0.001	-	0.0031	471.3	< 0.001
DIVALIKETS+w	-237	3	0.0089	< 0.001	-	0.0039	480	< 0.001
BAYAREALIKE+j	-249.5	3	0.0023	< 0.001	0.025	-	504.9	< 0.001
DEC+j	-249.7	3	0.0035	< 0.001	0.012	-	505.4	< 0.001
DEC	-256.3	2	0.0041	< 0.001	-	-	516.6	< 0.001
DIVALIKE+j	-255.6	3	0.0038	< 0.001	0.012	-	517.2	< 0.001
BAYAREALIKETS	-257.2	2	0.013	0.053	-	-	518.5	< 0.001
DIVALIKE	-264.3	2	0.005	< 0.001	-	-	532.5	< 0.001
BAYAREALIKETS+w	-267.7	3	0.0069	0.053	-	0.0026	541.3	< 0.001
BAYAREALIKE	-283.6	2	0.0038	0.055	-	-	571.2	< 0.001