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The species richness in Neotropics has been linked to environmental heterogeneity and a
complex geological history. We evaluated which biogeographical processes were more
associated with the diversification of Monkey tree frogs, an endemic clade from the
Neotropics. We tested the hypothesis that the diversification of Phyllomedusinae occurred
in a south-north direction in the Neotropics, and that marine introgressions and Andean
uplift had a crucial role promoting their diversification. We used 13 molecular markers on a
bayesian analysis to infer phylogenetic relationships among 57 species of Phyllomedusinae
and to estimate their divergence times. We hypothesized the ancestral range based in 12
biogeographical units defined considering the distribution of the phyllomedusine species
and potential biogeographical barriers. Ancestral range estimations were made by models
implemented in BioGeoBEARS. We found that the Phyllomedusinae hypothetical ancestor
range was probably widespread through the Neotropics, from Central America to Southern
Atlantic Forest, at 38.6 Mya. Phyllomedusines' ancestors diverged mostly through
vicariance during early stages of speciation, generally followed by jump-dispersals and
speciation in sympatry. Dispersal among areas mostly occurred from Western Amazonia
towards Northern Andes and the diagonal of dry landscapes, rejecting our south-north
diversification hypothesis. Our results revealed a complex diversification of Monkey tree
frogs, occurring simultaneously with the orogeny of Northern Andes and the South
American marine introgressions in the last 30 million years.
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ABSTRACT

The species richness in Neotropics has been linked to environmental heterogeneity and a
complex geological history. We evaluated which biogeographical processes were more
associated with the diversification of Monkey tree frogs, an endemic clade from the Neotropics.
We tested the hypothesis that the diversification of Phyllomedusinae occurred in a south-north
direction in the Neotropics, and that marine introgressions and Andean uplift had a crucial role
promoting their diversification. We used 13 molecular markers on a bayesian analysis to infer
phylogenetic relationships among 57 species of Phyllomedusinae and to estimate their
divergence times. We hypothesized the ancestral range based in 12 biogeographical units defined
considering the distribution of the phyllomedusine species and potential biogeographical

barriers. Ancestral range estimations were made by models implemented in BioGeoBEARS. We
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found that the Phyllomedusinae hypothetical ancestor range was probably widespread through
the Neotropics, from Central America to Southern Atlantic Forest, at 38.6 Mya.
Phyllomedusines' ancestors diverged mostly through vicariance during early stages of speciation,
generally followed by jump-dispersals and speciation in sympatry. Dispersal among areas mostly
occurred from Western Amazonia towards Northern Andes and the diagonal of dry landscapes,
rejecting our south-north diversification hypothesis. Our results revealed a complex
diversification of Monkey tree frogs, occurring simultaneously with the orogeny of Northern

Andes and the South American marine introgressions in the last 30 million years.

Keywords. Amphibia - Northern Andes - Biogeography - Neotropics - Paranaense sea - Pebas

system

INTRODUCTION

Extending from the central portion of Mexico through the entire Central and South
America (Morrone, 2014), the Neotropical region hosts the greatest biodiversity on Earth (Myers
et al., 2000; Antonelli & Sanmartin, 2011). The environmental heterogeneity in Neotropics, in
association with its complex geological history from the early-Cenozoic, have driven patterns of
species diversification, contributing to high levels of species richness and endemism for different
taxa (Antonelli, 2016). Regarding the northern portion of South America, well-documented
marine introgressions occurred from mid to the late-Cenozoic (~25—5 million years ago — Mya),
the so-called Pebas and Acre systems (e.g., Hoorn et al., 2010; Salas-Gismondi et al., 2015).

Probably related to global sea-level fluctuations (Hoorn, 1993), both flooding processes turned
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the Western Amazonia into a lacustrine environment during the Miocene (23—7 mya; Hoorn et
al., 2010; Salas-Gismondi ef al., 2015), affecting Magdalena River delta, paleo-Orinoco, and
proto-Amazonas River basins. Henceforth, Western Amazonia suffered drastic changes until the
emergence of current fluvial systems, including flowing changes of its main rivers (Diaz de
Gamero, 1996; Albert et al., 2018). Moreover, some orogenic processes also promoted important
changes into Neotropics, as the accelerated uplift of Eastern Cordillera of Andes during the
Miocene (Hoorn, 1993; ~10—4 mya; Gregory-Wodzicki, 2000), that led to changes in the
climatic and sedimentary sources for Western Amazonia (Insel et al., 2010; Poulsen et al., 2010;

Hoorn et al., 2017).

The entire uplift of Andes has been playing similar role for the southwestern part of
Neotropics, since it started in the early-mid Cenozoic (Giambiagi et al., 2016; Rodriguez
Tribaldos et al., 2017; Sundell et al., 2019). The Andean orogeny, in addition to climatic factors
throughout the entire Neogene and Quartenary (Garzione et al., 2006; Hoorn et al., 2020), has
been responsible for the emergence of the South American diagonal of open/dry landscapes
(DODL; Zanella, 2011; Azevedo et al., 2020), especially during the Oligocene (~25 mya) and
late Neogene (~5-3 mya). As DODL expanded, a single large forest block must have been
splitted into Amazonian and Atlantic forests (Costa, 2003; Sobral-Souza et al., 2015; Peres et al.,
2017), the last being southern confined by marine introgressions (Hernandez et al., 2005; Abello

etal.,2010).

Most studies examining the processes leading to biota diversification in the Neotropics
focus on ecologically or geographically restricted groups (Smith et al., 2014; Werneck et al.,
2015; e.g., Guarnizo et al., 2016), in a local-scale approach. Studies focusing on widespread

clades, on the other hand, could elucidate the role of multiple processes over space and deep
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time, contributing to the macroevolutionary framework (e.g., Vicente ef al., 2017; Hamdan et al.,
2019; Prieto-Torres et al., 2019; Pontes-Nogueira ef al., 2021), given the complex dynamic of
biogeographical processes in the Neotropical region. Among anurans, this scenario fits well for
Phyllomedusinae, a subfamily virtually occurring throughout the entire Neotropics. This
charismatic group, commonly known as Monkey tree frogs, comprises 67 species (Frost, 2023),

distributed from Argentina to Mexico (Duellman et al., 2016; Frost, 2023).

Systematics of the subfamily seems to be well defined, regarding closely related frog
groups. Except for phylogenetic analyses exclusively based on morphology (Haas, 2003; Wiens
et al., 2005), phyllomedusines are consistently recovered as monophyletic, and a sister taxon to
Pelodryadinae from the Australo-Papuan region, both constituting subfamilies of Hylidae
treefrogs (Wiens et al., 2005; Frost et al., 2006; Faivovich et al., 2010; Pyron & Wiens, 2011;
Duellman et al., 2016; Jetz & Pyron, 2018; Dubois et al., 2021). Phylogenetic relationships for
some clades of Phyllomedusinae are also consistent in the most comprehensive phylogenetic
approaches (Faivovich et al., 2010; Pyron & Wiens, 2011). Some discussion occurs regarding
the early branching events in the group, since molecular approaches on phyllomedusine’s
phylogeny show a low sampling for Phrynomedusa Miranda-Ribeiro, 1923, a rare genus only
known from a few localities of the Serra do Mar and Serra da Mantiqueira on the South
American Atlantic Forest (Baéta ef al., 2016). On the other hand, Pelodryadinae is widespread in
Australia and Papua New Guinea (Frost, 2023). More speciose than Phyllomedusinae, the
pelodryadine frog subfamily is a clade composed by 223 species, whose systematics is object of

a long-term debate regarding its internal clades relationships (Dubois ef al., 2021; Frost, 2023).

Molecular estimates indicated that the split between phyllomedusines and pelodryadines

occurred during the late Paleocene (~55 Ma), a time when both the Neotropics and Australo-
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Papuan regions were connected to Antarctica via a land bridge (Duellman ef al., 2016; Van Den
Ende et al., 2017). Such estimates also suggest the Most Recent Common Ancestor (MRCA) of
Phyllomedusinae emerging during the late Eocene, following the appearance of the MRCA of
Pelodryadinae. Diversification within Phyllomedusinae started in the Oligocene (Duellman et al.,
2016; Jetz & Pyron, 2018) as South America began separating from Antarctica. Considering that
some lineages diversified in South America after their ancestral lineages arrived via Antarctica
(e.g., orchids, Givnish et al., 2016; sea spiders, Dietz et al., 2019; ungulate mammals, Reguero et
al., 2014), it is plausible to hypothesize that the MRCA of all phyllomedusines also diversified in
a south-north direction. Furthermore, certain speciation processes within phyllomedusines have
tentatively been associated with the uplift of the Eastern Cordillera of the Andes (e.g., Duelman
etal.,2016; Ron et al., 2013). However, the historical biogeography of this clade has not yet

been explored in a statistical framework.

Herein, we combined sequences of multiple molecular markers of 53 species of
Phyllomedusinae to produce a time-calibrated phylogeny. Then we reconstructed the subfamily
diversification throughout Neotropical region, aiming to answer the following questions: (1)
How were the hypothetical ancestors of Phyllomedusinae clade distributed along Neotropics?
And (2) which biogeographical processes drove the current subfamily distribution? We tested the
hypothesis that speciation in Phyllomedusinae occurred in a south-north direction in South

America, and that diversification was associated to marine introgressions and Andean orogeny.

MATERIALS AND METHODS

Sequence data and phylogenetic analyses

Peer] reviewing PDF | (2023:10:91653:0:2:NEW 16 Oct 2023)



Peer]

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

We performed a phylogenetic inference using sequences retrieved from GenBank
(Supplementary data S1). The molecular data available for the group warrants careful
consideration. In the last decade, taxonomic reviews, phylogenies, and the description of new
species based on molecular data have led to frequent species synonymy and the recognition of
populations as new species within phylomedusines (e.g. Faivovich et al., 2011; Baéta et al.,
2016; Castroviejo-Fisher et al., 2017, Pereira et al., 2018; Andrade et al., 2020). However,
GenBank curation has not been able to keep up to date with the taxonomy of the group. To avoid
problems with misidentification and taxonomic inconsistencies, we took special care when
selecting the sequences for Phyllomedusinae, considering the collection site of each accession

number and cross-validating the species distribution following Frost (2023).

Our analysis included 57 species of Phyllomedusinae in the ingroup, in addition to 20
Pelodryadinae and 18 Hylinae, both subfamilies composing the outgroup. Molecular sampling
covered 85% of all known species of Phyllomedusinae, including all genera of the subfamily
(Frost, 2023). Considering the data availability in GenBank, we included as much data as
possible in our analysis, excluding only the sequences that showed no significant similarity due
to the absence of query coverage (BLAST utility; Zhang et al., 2000). Our analysis comprised all
the species of Callimedusa Duellman, Marion, and Hedges, 2016 (6 spp.), Cruziohyla Faivovich,
Haddad, Garcia, Frost, Campbell, and Wheeler, 2005 (3 spp.), Hylomantis (2 spp.), and
Pithecopus Cope, 1866 (12 spp.), as well as a representative selection of Agalychnis (9 species
sampled from 14 spp. described), Phasmahyla Cruz, 1991 (7 species sampled from 8 spp.
described), Phyllomedusa Wagler, 1830 (15 species sampled from 16 spp. described), and

Phrynomedusa (3 species sampled from 6 spp. described). We searched for 13 molecular
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markers, both nuclear (CXCR4, POMC, RAGI1, RHOD, SIAH, and Tyr) and mitochondrial

genes (125, tRNA-Val, 16S, tRNA-Leu, ND1, tRNA-Ile, and CytB) genes.

The amount of missing information (x = 33%, ranging from 6% to 92%; not accounting
for gaps) does not seem alarming, considering that the two best-represented genes in our
analyses (12S/16S) provided a strong backbone for placing most species, as stated by Pyron &
Wiens (2011). In fact, 81% of the species had complete data for the 12S gene partition (x = 12%
missing data), while the 16S partition was fully represented for 79% of the species (x = 9%
missing data), and all species were represented in at least one of them. Previous studies in the
literature have supported this sample design for conducting model-based phylogenetic analyses,
both theoretically and empirically (e.g., Wiens, 2003; Driskell ef al., 2004; Thomson & Shaffer,
2010; Wiens & Morrill, 2011), yielding taxonomically highly congruent and well-supported
results (for a detailed discussion, see Pyron & Wiens, 2011). We used MAFFT by EMBL-EBI
web toolkit (Li et al., 2015) for aligning our sequences. For nuclear markers, we employed the
G-INS-i strategy, assuming global homology and aligning the entire region. For mitochondrial
fragments, we used the E-INS-i algorithm, which is recommended for sequences with conserved
domains and a high number of gaps. We concatenated all genes into a single matrix (7,290 bp, 95
terminals) using SequenceMatrix v.1.7 (Vaidya et al., 2011; Supplementary data S2 and S3). To
determine the appropriate nucleotide substitution models, we conducted a search using
PartitionFinder (Lanfear et al., 2017; 38 partitions; Supplementary data S1 and S2), under

greedy algorithm.

For the phylogenetic analysis, we conducted a Bayesian inference concurrent with node
dating using the software BEAST v2.7.4 (Bouckaert et al., 2019). We performed two independent

Markov chain Monte Carlo (MCMC) simulations with a chain length of 200,000,000 generations
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and a pre-burn-in of 20% using the CIPRES Science Gateway (Miller et al., 2010). We linked the
partitions into one phylogenetic species tree and incorporated clock models specific to each gene.
Due to the limited fossil record in Hylidae, we followed the approach of Hime ez al. (2021) and
calibrated our node dating using a fossil-calibrated phylogenomic tree. Specifically, we set a
prior for the split between Phyllomedusinae and Pelodryadinae to the late Paleocene to early
Eocene period, approximately 44.5 million years ago (95% HPD: 39.3-49.5 Mya).
Unfortunately, both phyllomedusines and pelodryadines are underrepresented in Hime's study (n
= 2 for both subfamilies). Given the low taxon-sampling represent a problem to the divergence
time estimation (Soares & Schrago, 2012), we also incorporated molecular clock models based
on substitution rates reported in the literature for a nuclear (POMC: 0.0043/site/Myr; de
Magalhaes et al., 2017) and a mitochondrial gene (CytB: 0.0161/site/Myr; Stock et al., 2012).
Thus, we performed our search using optimised relaxed clock models (Douglas et al., 2021),
with a substitution rate of 0.0161/site/Myr for CytB and 0.0043/site/Myr for POMC (Stock et al.,
2012; Magalhaes et al., 2017). We estimated the mean clock rates for all the other partitions
under weak priors (1/x distribution). We inferred the species tree using a Yule model prior, while
keeping all other priors at their default values. We assessed the convergence of the MCMC
chains by examining the estimated sample size (ESS > 200) and checking for model parameter
stationarity using TRACER 1.7 (Rambaut et al., 2018). We discarded the initial 25% of each
chain as burn-in and summarized the output as a maximum clade credibility (MCC) tree using
mean node heights in Treednnotator v.2.6.2 (Bouckaert et al., 2014). We pruned the MCC tree
using the ape R package (Paradis ef al., 2004), retaining only the species of Phyllomedusinae and

Pelodryadinae for subsequent ancestral geographical range estimation.
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Geographical distribution data

Our geographical dataset consists of georeferenced points obtained from the Global
Biodiversity Information Facility (GBIF, 2023; https://www.gbif.org/), which is the largest
online source of distributional records (Zizka et al., 2020). The geographical points were
obtained using the R software (R Core Team, 2023) package rgbif (Chamberlain & Boettiger,
2017), and the records were later treated in the software to eliminate duplicates and remove

uncertain records.

Study area and regionalization

Multiple regionalization schemes have been proposed in the literature (e.g., Olson et al.,
2001; Morrone, 2006, 2014; Dinerstein et al., 2017; Escalante, 2017). Our regionalization
scheme primarily relies on the terrestrial ecoregions of the world, which were defined based on
floristic maps and vegetational types (Olson ef al., 2001; Dinerstein ef al., 2017). Studies
focusing on neotropical species often involve a considerable number of biogeographical units
due to the landscape heterogeneity of the Neotropical region (see Carneiro et al., 2018; Réjaud et
al., 2020; Pontes-Nogueira et al., 2021). Thereafter, we defined 12 biogeographical units (Fig.
1A) based on relevant landscape modifications that could have influenced Phyllomedusinae
diversification (Fig. 1B), such as the uplift of mountain ranges (e.g., Cordilleira of Andes),
riverine barriers (e.g., Amazonas and Madeira rivers) and phytophysiognomic differences (e.g.,
DODL). Given that the Neotropics were once connected to Oceania through an Antarctic land

bridge, we included the Australo-Papuan Pelodryadinae subfamily (the sister clade to the
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Phyllomedusinae subfamily) sampled in our phylogeny for estimating the ancestral geographical

range.

In order to refine the biogeographical results regarding the MRCA of Phyllomedusinae +
Pelodryadinae, we also included Oceania in our regionalization scheme. Therefore, our
regionalization scheme encompasses the following regions (Fig. 1A): Central America (A, being
southern limited by Choc6 Department and Pacific Coast of Colombia; its connectivity
southwards having been enhanced over time due to the formation of Isthmus of Panama),
Northern Andes (B, encompassing Western, Central and Eastern Cordilleras of Northern Andes;
it becomes a geographical barrier through the Miocene, due to the acceleration on the uplift of
Eastern Cordillera), Western (C), Eastern (D), and Southern Amazonia (E; limited by Amazonas
and Madeira rivers; the three areas were differently affected by marine introgressions occurred
along the Miocene), Caatinga (F; reducing connectivity between forested areas as the DODL
expanded), Cerrado (G; reducing connectivity between forested areas as the DODL expanded),
Northern (H), Central (I), and Southern Atlantic Forest (J; divided by Serra do Mar and
Mantiqueira Mountain Ranges; the three areas being differently affected by the late uplift of both
mountain ranges), Chaco/Pampas (K, encompassing Chaco, Pantanal, and the Uruguayan
savanna, northern limited by Araucaria moist forests; reducing connectivity between forested
areas as the DODL expanded), and Oceania (L, comprising the whole New Guinea island, the
Wallacea region and Australia; continent with a complex history of connectivity with South

America through Antarctica over geological time).

We used the R package SpeciesGeoCoder (Topel et al., 2017) to code the presence of all
species in each biogeographical unit using a threshold of 5%. This means that for a species to be

considered present in a unit, its distribution in that unit must be higher than 5% of all the
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distributional records for that species. The result was later revised using Frost’s (2023)

description of the species distribution.

Ancestral geographical range estimation

Ancestral range estimation is performed based on the current distribution of sampled
species and their phylogenetic relationships (Sanmartin, 2016). Several models for ancestral
range estimation have been proposed in the literature, with the Dispersal-Vicariance Analysis
(DIVA; Ronquist, 1997), the Dispersal-Extinction-Cladogenesis (DEC; Ree et al., 2005; Ree &
Smith, 2008), and the BayArea model (Landis et al., 2013) being the most widely employed.
These models have been incorporated into the BioGeoBEARS R package (Matzke, 2013, 2014)
which provides a unified Maximum Likelihood (ML) environment for biogeographical analysis.
This allows for the use of parameters that control biogeographical processes and model testing,
eliminating the need for arbitrary model selection. In our study, we implemented eight models in
BioGeoBEARS, all of them being variations of DEC and DIVALIKE (the ML version of the
original DIVA included in BioGeoBEARS). We chose not to use BAYAREALIKE (the ML
version of the original BayArea included in BioGeoBEARS) because it does not consider
vicariance in its estimation (Matzke, 2013). Some models considered time-stratified dispersal
matrices (TS), which are multipliers based on the landscape evolution of the study region (see
Fig. 1C, and Supplementary data S4 and Table S4.1 for details). The values in the TS matrices
restrict the probabilities of dispersal between geographical units, ranging from 0 (when a
geographical barrier completely prevents dispersal) to 1 (when there are no dispersal limitations
between units). To weigh the relative significance of the TS matrices, we also included the free

parameter w, which acts as an exponent on the matrices (see Dupin ef al., 2017). Additionally, to
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account for the colonization of novel biogeographical areas at the time of cladogenesis (Matzke,
2014, 2022; Klaus & Matzke, 2020), we included the parameter j. We set the maximum range
size to 5, which corresponds to the number of areas occupied by the most widespread species in
our clade. We compared all the models using AIC (Akaike Information Criterion) and calculated

Akaike weights (Akaike, 1974; Burnham & Anderson, 2004; Wagenmakers & Farrell, 2004).

RESULTS

Phylogeny and divergence time estimation

Bayesian inference recovered all the genera in our sample with high posterior
probabilities (PP = 1.00 for all genera; Fig. 2), both in Phyllomedusinae and Pelodryadinae. We
recovered Cruziohyla as the sister clade to the other Phyllomedusinae genera (PP = 1.00; Fig. 2),
with the MRCA of the genus dating from 16.2 Mya (HPD 95%: 4.4-30.6 Mya). Phrynomedusa,
the next diverging lineage (PP = 0.59; Fig. 2), exhibited an MRCA that diversified from 17.8
Mya (HPD 95%: 8.0-28.7 Mya). We found Agalychnis Cope, 1864 as the sister to Hylomantis
Peters, 1873 (PP = 1.00; Fig. 2), a clade age estimated to be 29.8 Mya (HPD 95%: 24.3-35.7
Mya). Regarding the core of Phyllomedusinae (i.e., MRCA of Callimedusa, Phasmahyla,
Phyllomedusa, and Pithecopus; PP = 1.00; Fig. 2), a clade mainly diversified in forested areas,
our estimation suggests an age of 32.4 Mya (HPD 95%: 27.1-38.0 Mya). We recovered
Phasmahyla as sister group to the other three genera, being the MRCA of the clade
Phyllomedusa (Callimedusa + Pithecopus) (PP = 1.00; Fig. 2) estimated to be 27.1 Mya (HPD

95%: 22.5-32.0 Mya).

Ancestral geographical range estimation
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The best-fitted model in our analysis was DECTS+; (Table 1; AIC = 406.9; AICw ~
1.00), incorporating landscape evolution in the Neotropics and jump dispersal processes (Fig. 3;
see Supplementary data S5 for details). We found the divergence of Phyllomedusinae +
Pelodryadinae (52.4 Mya; HPD 95%: 46.6-58.6 Mya) occurred through vicariance, with the
MRCA of Pelodryadinae subsequently dispersing through Oceania (unit L; Figs. 3, 4a;
Supplementary data S5). Meanwhile, the MRCA of Phyllomedusinae exhibited a wide

distribution across the Neotropics, encompassing units ABHI (Figs. 3, 4a).

The earliest diversification event within the clade occurred when sympatric populations
of the MRCA gave rise to Cruziohyla in Central America (unit A, 38.6 Mya; HPD 95%: 32.7—
45.0 Mya). Subsequently, a vicariant event isolated populations in the Central Atlantic Forest at
36.9 Mya (HPD 95%: 31.3-43.0 Mya), leading to the origin of the Phrynomedusa genus (unit I,
Figs. 3, 4b; Supplementary data S5). Within the ABH range, ancestral populations underwent
another vicariant process at 29.8 Mya (HPD 95%: 24.3-35.7 Mya; Figs. 4c¢), resulting in the
emergence of Hylomantis in the Northern Atlantic Forest (unit H) with species diversifying in
sympatry, and Agalychnis in Central America and the Northern Andes (units AB). The MRCA of
Agalychnis underwent an early vicariant process (27.4 Mya; HPD 95%: 21.9-33.1 Mya; Fig. 4d),
resulting in the divergence of the Andean species A. hulli Duellman and Mendelson, 1995 (unit
B) from other species (unit A). Subsequently, the Central American species of Agalychnis began

to diversify primarily in sympatry in the last 24 million years.

Table 1. AIC comparisons of the Ancestral range estimation models.

AlIC

Models LnL* n* d* e* J* w* AIC .
weights
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DECTSHj** -2005 3 0.0072 <0.001 0.051 1 4069 ~1
DECTS -208 2 0.0086 <0.001 O 1 420

0.0015
DIVALIKETS+/ -210.7 3 0.0079 <0.001 0.052 1 427.3 <0.001
DECTSH+j+w -2157 4 0.004 <0.001 0.017 0.0067 4394 <0.001
DIVALIKETS -2184 2 0.011 <0.001 O 1 440.7

<0.001
DECTS+w -2206 3 0.0048 <0.001 O 0.0031 447.2

<0.001
DIVALIKETS++w -225.6 4  0.0048 <0.001 0.018 0.0049 4593 <0.001
DIVALIKETS+w -230 3 0.0068 <0.001 0 0.083  466.1 <0.001
DEC+j -2369 3 0.0025 <0.001 0.0087 1 479.9

<0.001
DEC -240.3 2 0.0029 <0.001 O 1 484.7

<0.001
DIVALIKE+; -2444 3 0.0028 <0.001 0.012 1 494.8

<0.001
DIVALIKE -250.3 2 0.0037 <0.001 O 1 504.7

<0.001

*LnL = log-likelihood of the model. n = number of free parameters in the model (that being d, e, j and w); d = rate of range
expansion (i.e. anagenetic dispersal); e = rate of range contraction (i.e. extinction); j = jump dispersal process; and w = dispersal
multiplier parameter (for TS models).

**DECTSH+j is shown in bold and represents the best model under AIC and AIC weights.

On the other hand, the MRCA of Phasmahyla + (Phyllomedusa (Callimedusa +
Pithecopus)) colonised the Central Atlantic Forest (unit I; 32.4 Mya; HPD 95%: 27.1-38.0; Fig.
4b) through a jump dispersal event from the ancestral range ABH. Sympatric populations in the
Central Atlantic Forest gave rise to the genus Phasmahyla (unit I). This genus displayed two
distinct clades: one diversified through jump dispersal to the Northern Atlantic Forest and
Cerrado (units G and H) in the past 7 Mya, while the other clade began diversifying through
dispersal within the Central Atlantic Forest (unit I) and subsequent jump dispersal to the
Northern Atlantic Forest approximately 5 Mya. Additionally, ancestral populations from the

Central Atlantic Forest (unit I) underwent jump dispersal to Western Amazonia (unit C) at 27.1
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Mya (HPD 95%: 22.5-32.0 Mya; Fig. 4b), leading to the MRCA of (Phyllomedusa (Callimedusa

+ Pithecopus)) in sympatry.

We identified at least three major diversification patterns within the Phyllomedusa genus
(Fig. 3). Firstly, the clade comprising Ph. vaillanti Boulenger, 1882 and Ph. bicolor Boddaert,
1772 originated at 13.2 Mya (HPD 95%: 8.4—18.1 Mya) through sympatric speciation within
Western Amazonia, followed by subsequent dispersal throughout Amazonia and the Northern
Andes. Secondly, the Ph. tarsius Cope, 1868 group experienced jump dispersal events, initially
colonizing the Northern Andes at 6.1 Mya (HPD 95%: 2.7-9.9 Mya) and later moving to Eastern
Amazonia from 4.5 Mya (HPD 95%: 1.8-7.7 Mya). Species within this group then dispersed to
Southern Amazonia (Ph. camba De la Riva, 1999; units CE) and the Northern Andes (Ph.
tarsius; units BCD). Thirdly, the Ph. burmeisteri Boulenger, 1882 group underwent jump
dispersal events, colonizing Chaco (unit K), followed by subsequent dispersal to the Northern
Atlantic Forest (unit H) and Southern Atlantic Forest (unit J) between 16.2 (HPD 95%: 12.0—
20.7 Mya; Fig. 4e) to 7.6 (HPD 95%: 5.3—-10.1 Mya; Fig. 4e) million years ago. Species from
this group further dispersed to Chaco (Ph. iheringii Boulenger, 1885; units JK), Caatinga (Ph.
bahiana Lutz, 1925; units FH), Central Atlantic Forest (Ph. tetraploidea Pombal and Haddad,
1992 and Ph. distincta Lutz, 1950; units 1J), Central America (Ph. venusta Duellman and Trueb,

1967; units AB), and Cerrado (Ph. burmeisteri; units GHIJ) within the last 2 million years.

The MRCA of Pithecopus and Callimedusa remained in Western Amazonia (unit C) at
23.6 Mya (HPD 95%: 19.1-28.2 Mya). Both genera exhibited distinct patterns of diversification.
Pithecopus displayed a colonization pattern in the Cerrado region (unit G) through two separate
jump dispersal events. The first jump dispersal to the Cerrado occurred at 15.7 Mya (HPD 95%:

12.2-19.3 Mya; Fig. 4f), leading to a clade that diversified through sympatric speciation in
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Cerrado and additional jump dispersals to the Atlantic Forest. The second jump dispersal to the
Cerrado took place around 14.2 Mya (HPD 95%: 10.9-17.8 Mya; Fig. 4f), resulting in a clade
primarily diversifying through sympatric speciation in Cerrado and range expansions (i.e.,
anagenetic dispersals) to the Atlantic Forest and Chaco. Additionally, Pi. hypochondrialis
Daudin, 1800 reached the Northern Andes and Eastern/Southern Amazonia. However, Pi.
gonzagai Andrade, Haga, Ferreira, Recco-Pimentel, Toledo, and Bruschi, 2020, a species within
this clade, originated from a jump dispersal event from the Cerrado to the Northern Atlantic
Forest and Caatinga at 5.3 Mya (HPD 95%: 1.6-9.1 Mya). On the other hand, the Callimedusa
genus had an early sympatric speciation that gave rise to C. fomopterna Cope, 1868. This species
expanded its range through the entire Amazonia region (units CDE) at 18.6 Mya (HPD 95%:
13.4-24.0 Mya) and colonised the Northern Andes (unit B). Subsequently, another sympatric
speciation occurred within Western Amazonia around 14.2 Mya (HPD 95%: 8.2-20.3 Mya; Fig.
4f). This cladogenesis resulted in the origin of C. atelopoides Duellman, Cadle, and Cannatella,
1988 and the MRCA of the other Callimedusa species, who reached the Northern Andes by jump

dispersal, afterward diversifying in sympatry since 10.4 Mya (HPD 95%: 5.1-15.8 Mya; Fig. 4f).

DISCUSSION

In the present study, we provided a detailed analysis of the diversification and
colonisation history of Monkey tree frogs across the Neotropics. By sampling 85% of the
formally described phyllomedusine species, using mitochondrial and nuclear markers, our results
represent a robust framework to discuss the processes concerning the biogeographical history of
the group. Regarding the phylogenetic relationships among phyllomedusine genera, our topology

is mostly congruent with previous studies in literature based on molecular data (e.g., Faivovich et
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al., 2005; 2010; Pyron & Wiens, 2011; Rivera-Correa et al., 2013; Duellman et al., 2016; Jetz &
Pyron, 2018). Furthermore, our results on node dating and ancestral geographical range
estimation indicates the diversification of phyllomedusines was markedly influenced by
environmental changes resulting from the Miocene marine introgressions and Andean orogeny.
In detail, most lineages in Phyllomedusinae diversified in a dynamic scenario that occurred in
Western Amazonia, which was limited by the Pebas System and the Paranaense sea

(north/westward and southward, respectively) during the Miocene.

The most evident divergence recovered in phylogenetic inference was the relative
position of Cruziohyla and Phrynomedusa genera. Previous studies usually recover
Phrynomedusa as the first branching lineage in Phyllomedusinae (Faivovich et al., 2005; 2010;
Pyron & Wiens, 2011) or composing a clade Cruziohyla + Phrynomedusa (Duellman et al.,
2016; Jetz & Pyron, 2018). Since the split between the lineage that will give rise to Cruziohyla
and the other phylomedusines occurred at 38.6 Mya (HPD 95%: 32.7-45.0 Mya), our results
imply a first conquest of the northern Neotropics between the late Eocene and middle Oligocene.
At the genus level, the topology we found for Phasmahyla deviates from the previous studies,
but none of them coincide (Faivovich et al., 2005; 2010; Pyron & Wiens, 2011; Duellman et al.,
2016; Jetz & Pyron, 2018; Pereira ef al., 2018), and therefore the phylogeny of the genus remains
under debate. Also, some inconsistences regarding Phasmahyla argue for a careful taxonomic
review. Phasmahyla cruzi Carvalho-e-Silva, Silva, and Carvalho-e-Silva, 2009, for instance, is
assumed to be known only from its type locality (Rio das Pedras Reserve, Municipality of
Mangaritiba, state of Rio de Janeiro, Brazil; Frost, 2023). However, there are no molecular data
on Genbank from this population, and the species was represented by a specimen assigned to

other locality (Picinguaba, municipality of Ubatuba, state of Sdo Paulo, Brazil; Pyron & Wiens,
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2011; Faivovich et al., 2005; 2010; Duellman et al., 2016; Jetz & Pyron, 2018; Pereira et al.,
2018; present study, Supplementary data S1). We found other occasional divergences regarding
the relative position of some species in Pithecopus and Phyllomedusa, compared to other studies
(Faivovich et al., 2010; Pyron & Wiens, 2011; Duellman et al., 2016; Jetz & Pyron, 2018;

Pereira et al., 2018).

Much of the current information provided on the node dating of phylomedusine’ frogs
come from studies focusing on large-scale approaches, but with a low representativeness for the
clade. Phylogenomic studies using similar sets of fossil calibrations point to a split between
Phyllomedusinae and Pelodryadinae occurring at 47.4 Mya (Feng et al., 2017) or 44.5 Mya
(Hime et al., 2020; Portik et al., 2023), implying in an early diversification of phyllomedusines at
24.5 Mya (CI 95%: 20.0-29.7 Mya; Feng et al., 2017), 23.2 Mya (HPD 95%: 18.4-28.1 Mya;
Hime et al., 2020) or 27.5 Mya (HPD 95%: 24.0-35.8 Mya; Portik et al., 2023). The divergence
time estimation of the clade may be taken carefully, given the low representativeness of
phyllomedusines in some of these previous works (Feng et al., 2017; Hime et al., 2020) and the
recognised impact of taxon-sampling on time estimations under bayesian frameworks (Soares &
Schrago, 2012; Matschiner, 2019; Luo et al., 2023). Our results set both the split
phyllomedusine-pelodryadine and the early onset of diversification in Phyllomedusidae to the
past, occurring at 52.4 Mya (HPD 95%: 46.6-58.6 Mya) and 38.6 Mya (HPD 95%: 32.7-45.0
Mya), respectively. In other words, our findings assign the phyllomedusines the status of a clade
that dates from the late-Eocene/early-Oligocene rather than the late-Oligocene. Similar results
were obtained previously by a maximum likelihood approach performed using an extensive

sampling of the subfamily (Duellman et al., 2016), suggesting the split phyllomedusine-
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pelodryadine to be 61.8 Mya (HPD 95%: 57.5-66.1 Mya) and the Phyllomedusinae dated to 33.3

Mya (HPD 95%: 29.0-37.6 Mya).

The split we found for the MRCA of Phyllomedusinae + Pelodryadinae occurred by
vicariance (Figures 3 and 4A; Supplementary data S5). At the early Eocene, our results suggest
that the MRCA of Phyllomedusinae + Pelodryadinae was widely distributed throughout South
America, Oceania, and, therefore, Antarctica (Fig. 4A). The diversification between the two
subfamilies during the passage from late-Eocene to early-Oligocene occurred concurrently to the
convoluted process of separation between the three continents, as proposed by Duellman et al.
(2016). Hence, the vicariance associated was probably caused by landmasses movement,
promoting the initial divergence of pelodryadines and phyllomedusines. Moreover, our results
emphasize much of the early diversification of the Phyllomedusinae was influenced by
vicariances from this widespread Neotropical ancestor (e.g., MRCA of the clade Hylomantis +
Agalychnis, diversification of Phrynomedusa and Agalychnis genera; Figure 3 and 4B-D).
Hence, our results reject the “south-north” diversification hypothesis of the Phyllomedusinae
subfamily, as the diversification within the group occurred from Western Amazonia towards
Northern Andes and the diagonal of dry landscapes. Our findings show a different scenario from
Duellman et al. (2016) proposal, where the authors argued the split between the two subfamilies
may took place within the Neotropics, with “protopelodryadines” dispersing to Australia
afterward. Since our sampling focused in Phyllomedusinae, it is difficult to extend the discussion
to the context of the whole Hylidae family. We encourage future biogeographical studies to

examine the question in more detail.

Our results on the DECTS+/ model suggest that Western Amazonia (unit C) acted as a

species pump for Phyllomedusa, Pithecopus and Callimedusa genera. This area is frequently

Peer] reviewing PDF | (2023:10:91653:0:2:NEW 16 Oct 2023)



Peer]

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

recovered for ancestral ranges in several animal groups (e.g., lizards, Prates et al., 2017; snakes,
Dal Vechio et al., 2018; Pontes-Nogueira et al., 2021). Western Amazonia was recovered as the
ancestral area for the clade Phyllomedusa (Callimedusa + Pithecopus) after a jump dispersal in
the split between Phasmahyla and the clade Phyllomedusa (Callimedusa + Pithecopus). This
scenario took place from the early to the middle Miocene, concomitantly to the occurrence of
lacustrine conditions due to the Pebas system (Hoorn et al., 2010, 2017; Jaramillo et al., 2010;
Figs. 4e, 4f), and virtually affecting the entire Western Amazonia. Previous studies also
emphasise the influence of Pebas system over the biogeography of neotropical anuran fauna,
driving their evolutionary history in different ways (Carvalho, 1954; Zimmermann and
Zimmermann, 1988; Fouquet et al., 2012; 2021a; 2022; Réjaud et al., 2020). The absence of an
overall pattern in Anura seems to be related to the diversity of natural history traits. Hence, Pebas
system turned Western Amazonia an unsuitable environment for ground-dweller frogs,
negatively affecting the diversification of terrestrial (Phyzelaphryninae and Allobates
Zimmermann and Zimmermann, 1988; Fouquet ef al., 2012; Réjaud et al., 2020) and burrowing
(Synapturanus Carvalho, 1954; Fouquet et al., 2021a) clades. On the other hand, the marine
incursion was crucial for the origin and diversification of aquatic clades (Pipa Linnaeus, 1758;
Fouquet et al., 2022). Here, we found evidence of Pebas system promoting the diversification of
arboreal anurans, given that the most speciose clade in Phyllomedusinae had origin and
diversification in this area. This is an important finding, since other studies regarding arboreal
frogs have shown diversification after the regression of the Pebas system (e.g., Boana
albopunctata Spix, 1824 species group; Fouquet et al., 2021b). As far as we know, our present

study is the most comprehensive framework on this issue.
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From Western Amazonia, we found that phyllomedusines conquered the central and
southern regions of the Neotropics in the last 16 million years (Figs. 4E and 4F), encompassing
the genera Pithecopus and Phyllomedusa. Pithecopus lineages jump-dispersed from Western
Amazonia twice during the middle Miocene, occupying areas that would later become the
diagonal of open/dry landscapes (DODL). We observed a similar pattern in the most speciose
clade in Phyllomedusa, encompassing the Ph. burmeisteri group (sensu Faivovich et al., 2010):
Ph. boliviana Boulenger, 1902, Ph. sauvagii Boulenger, 1882, and Ph. venusta Duellman and
Trueb, 1967. Both cases exemplify a “north-southern" biogeographical colonisation of the
Neotropics, far mentioned on literature for several groups (snakes, Wiister et al., 2002; Hamdan
et al., 2019; termites, Carrijo et al., 2020), including frogs (e.g., Fouquet ef al., 2012, 2014). This

further contradicts the hypothesis of a “south-north” diversification pattern for this subfamily.

By occurring during the middle Miocene, these biogeographical processes are concurrent
to the transition from Pebas into the Acre system, taking place in an Amazonian wetland. Firstly,
all those lineages left Western Amazonia coincidently with a period of recurring marine
incursions of the Paranaense sea (Hernandez ef al., 2005), that may have limited the Amazonia
region southward (Figs. 4E and F). These findings suggest a progressive isolation of the core
Phyllomedusinae in northern South America, agreeing with previous studies regarding the
influence of Paranaense sea in biogeographical history of herpetofauna (e.g., Magalhaes, 2012;
Seger et al., 2021). The subsequent regression of the Paranaense sea could have facilitated the
colonisation of southern areas, helping to explain the diversification pattern we found. Secondly,
the subsequent colonisation of South American Atlantic Forest by some of these Miocene
lineages of Phyllomedusinae is congruent with the very early opening of DODL, and the late

orogeny of the Serra do Mar Mountain Range. This pattern represents a jump dispersal response
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to the retraction of forested areas in due to the environmental changes drove by the opening of
DODL, commonly found in other anuran groups (e.g., Pirani ef al., 2020; Carvalho et al., 2021).
The whole biogeographical process also shed light on our findings about the diversification of
Phasmahyla genus, that remained isolated in South American Atlantic Forest in the last 10

million years.

Also, we found that several phyllomedusine’ lineages diversified along the Miocene from
Western Amazonia to northward (Figs. 3 and 4F), through the Andes and Central America. The
biogeographical history of these species suggests a colonisation of Amazonia and Northern
Andes, occupying the forested lowlands from the Miocene to the Pleistocene. During a period of
drastic changes in local drainage patterns due to the transition from Pebas into the Acre system
(Hoorn et al., 2010), we found the Phyllomedusa genus has been particularly successful
colonising the entire Amazonian region. Together, these results seem to reinforce the idea that
phyllomedusine frogs were able to survive in the lacustrine environment resulting from changes
in the Amazonian drainage pattern when compared to other frog groups. Previous studies have
already suggested the isolation and geographic expansion in other arboreal frogs may have been
affected by the Miocene marine introgressions, depending on their capacity to exploit wetland

environments for reproduction (e.g., Ortiz et al., 2023).

Following this northward diversification (Fig. 4F), we found some aspects of the
historical biogeography of phyllomedusines as closely related to the uplift of the Northern
Andes. Populations of the MRCA of Callimedusa in Western Amazonia experienced an early
divergence within this region, giving rise to Callimedusa tomopterna (Fig. 3). Subsequently,
populations from the MRCA of other Callimedusa species jump-dispersed to the Northern

Andes, where mountain uplifts potentially facilitated sympatric speciation during the mid-
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Miocene (Fig. 4F). The diversification of Pithecopus in the Cerrado can also be directly
attributed to the Andes uplift. Although the MRCA of Pithecopus primarily were in Western
Amazonia, ancestral populations reached the Cerrado by two separate jump dispersal events (Fig.
3). Divergences coincided with the final opening of the DODL, where the late Andean uplift
contributed to the uplift and dryness of the Brazilian Plateau and the subsidence of the Chaco
region (Figs. 4E and 4F; Zanella, 2011; see also Silva, 1995; Pontes-Nogueira et al., 2022). Once
ancestral lineages of Pithecopus colonised the Cerrado, they diversified in sympatry alongside
the changing landscape of this region (Fig. 3). Thus, the uplift of the Andes probably played a
main role in cladogenetic processes in phyllomedusine lineages during mountain uplift events, as
well as in areas that suffered landscape changes influenced by the elevation of the mountain

range.

The diversification of the Agalychnis and Cruziohyla genera during their conquest of
Central America is intriguing. In Agalychnis, the colonisation of the Central America by the
ancestors of the Phyllomedusinae frogs before Miocene precedes the formation of the Isthmus of
Panama, proposed to occur in the Plio-Pleistocene (~3 mya; Fig. 3; Haug & Tiedemann, 1998;
O’Dea et al., 2016). Bacon et al. (2015) demonstrated two significant waves of dispersal
between South and North America at around 20 and 5 Mya, also preceding the recent formation
hypothesis times. At a first glance, our results for Cruziohyla are in accordance with the first
wave of dispersal, as the MRCA of Cruziohyla is synchronous to the very early formation of
Isthmus of Panama and early uplift of the Eastern Cordillera of Northern Andes (Gregory-
Wodzicki, 2000). Recent biological (Bacon ef al., 2013, 2015; Bloch et al., 2016) and geological
(Farris et al., 2011; Montes et al., 2012, 2015; Jaramillo ef al., 2017) findings suggest an older

formation for the Isthmus of Panama (early-mid Miocene), despite the discussion in literature
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(e.g., O’Dea et al., 2016). However, any statement in this sense is imprecise, as the
biogeographical process associated with the early conquest of Central America during the split
between phyllomedusines and pelodryadines is not known. It is thought that range expansion
(i.e., anagenetic dispersal) is more plausible to occur by land (for land animals) and that jump
dispersals are predominantly associated with geographical barriers (see Matzke, 2014 for more
information), Therefore, further studies considering the whole Hylidae family may address this
issue more precisely. The biogeography of the Neotropics is surely intriguing and intricate, and
the history of the monkey tree frogs described here comes to add even more a level of certainty

to this statement.

CONCLUSIONS

We found that the biogeographical history of Phyllomedusinae started with a vicariance
splitting the Neotropical region, Oceania, and Antarctica. Indeed, vicariance was a common
biogeographical process at the early diversification of phyllomedusines, while jump dispersals
must have been responsible for the majority of colonizations in the group since the Miocene.
Western Amazonia seems to have figured as a species pump for most of the monkey tree frogs,
with species colonising the area and diversifying sympatrically even during the highly unstable
environment of the Miocene. Also, the orogeny of Northern Andes could have played an
important role in species diversification, promoting sympatric speciation both through the uplift
of mountains and in areas with drastic landscape changes provoked by the elevation of the
Andean Mountain range. Our results also reject the hypothesis of a “south-north” diversification

for the group. In brief, we successfully encompassed most of the historical biogeography of this
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speciose group, enabling a highly detailed description of the diversification of a charismatic frog

subfamily.
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Figure 1

A, Map of biogeographical areas in Neotropical region;

B, Map of biogeographical areas in Oceania. The areas are: Central America (A), Northern
Andes (B), Western Amazonia (C), Eastern Amazonia (D), Southern Amazonia (E), Caatinga
(F), Cerrado (G), Northern Atlantic Forest (H), Central Atlantic Forest (1), Southern Atlantic
Forest (J), Chaco/Pampas (K), and Oceania (L); C, The summary of events acting as potential
geographical barriers. We have used double arrows to specify instances where dispersal
probabilities between the areas denoted were the only ones being affected; in contrast, we
used commas to specify the cases where any dispersal through those areas had their
probability decreased. Time stratification was applied to address landscape dynamics to our
analysis, being indicated by the gray-white transition in geological time scale. In Neotropics,
the complex Amazonas/Madeira was denoted as a geographical barrier to dispersal between
Amazonian areas since late-Miocene; previously, Pebas and Acre systems were actuating on
the same region along the entire Miocene. Moreover, Paranaense sea was another marine
introgression occurring in Neotropics along the Miocene. The increase in connectivity
between North and South America since the mid-Miocene, due to the formation of Panama
Isthmus bring another example of a geographical barrier “softened” through time. On the
other hand, the uplift rates of Northern Andes and Serra do Mar and Mantiqueira Mountain
Ranges had increased since mid-Miocene, becoming a harsher barrier. This is also the case of
DODL, that reduced connectivity between Amazonian and Atlantic forested areas by the
expansion of aridity since the very late-Miocene. In Oceania, the connectivity between
Australia and both New Guinea and Zealand has also varied over the time. Furthermore,
deserts had firstly isolated Western Mesic Biome, subsequently expanding to the East since
Oligocene and affecting dispersals to the Eastern Mesic Biome. See Supplementary data S4
and Tables S4.1 and S4.2 for details.
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Figure 2

Bayesian dated phylogenetic tree of Phyllomedusidae, based on 13 mitochondrial and
nuclear concatenated loci (7,290 bp, 95 terminals).

Horizontal green bars represent the 95% HPD (height posterior density) intervals for the
divergence date estimates. Black asterisks indicate clades where the value of posterior
probability (pp) is lower than 0.9. See Supplementary data S1 for details about partitioning

and the models of nucleotide substitution.
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Figure 3

Ancestral range estimations from DECTS + j model implemented in BioGeoBEARS.

Colored boxes with letters represent the most probable range estimated by the model (boxes
for nodes in the last 20 million years are not shown for better visualization of these nodes).
Ancestral area estimations at nodes represent areas before an inferred instantaneous
speciation event; colored rectangles at the tips with letters indicate the current distribution
of extant species. Pie charts on nodes represent probabilities of ranges. Only the four most
probable states at each node are shown for better visualization, and blank spaces represents

all other probabilities (see Supplementary data S5 for more information).
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Figure 4

Summary of the recovered biogeographical processes using arrows, following our time
stratification (from the oldest to the newest).

A, a vicariant event at the split between Pelodryadinae + Phyllomedusinae, isolating both
subfamilies from a wide-distributed MRCA; B, a vicariant event originating the Phrynomedusa
genus by the isolation of populations in the Central Atlantic Forest, the same biogeographical
unit from where jump-dispersed the populations who conquest the Western Amazonia and
lead to the MRCA of (Phyllomedusa (Callimedusa + Pithecopus)) at 32.4 Mya; C, a vicariant
event, resulting in the emergence of Hylomantis and Agalychnis genera from a wide-
distributed MRCA; D, another vicariant event at the early diversification of Agalychnis genus,
at the divergence of the Andean species A. hulli; E, north-south pattern of diversification of P.
burmeisteri group, whose MRCA jump dispersed from Western Amazonia giving rise to a
diversification along Chaco and, subsequently, Atlantic Forest’ units during the early opening
of DODL; F, the divergent patterns of diversification in Pithecopus (north-south, colonizing the
Cerrado by jump dispersal in two waves) and Callimedusa (south-north, colonizing the
Northern Andes by range expansion) genera, both taking place in Miocene concurrently to

the Pebas system. See Fig. 3 for info about the units’ colors and letters.
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Table 1l(on next page)

AIC comparisons of the Ancestral range estimation models.

LnL = log-likelihood of the model. n = number of free parameters in the model (that being d,
e, jand w); d = rate of range expansion (i.e. anagenetic dispersal); e = rate of range
contraction (i.e. extinction); j = jump dispersal process; and w = dispersal multiplier
parameter (for TS models). DECTS+j is shown in bold and represents the best model under

AIC and AIC weights.
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1 Table 1. AIC comparisons of the Ancestral range estimation models. LnL = log-likelihood of the
2 model. n = number of free parameters in the model (that being d, e, j and w); d = rate of range
3 expansion (i.e. anagenetic dispersal); e = rate of range contraction (i.e. extinction); j = jump
4  dispersal process; and w = dispersal multiplier parameter (for TS models). DECTS+j is shown in

5 bold and represents the best model under AIC and AIC weights.

Models LnL n d e j w AIC A.IC

weights
DECTSHj -200.5 3 0.0072 <0.001 0.051 1 406.9 ~1
DECTS -208 2 0.0086 <0.001 0 1 420

0.0015
DIVALIKETSHj -210.7 3 0.0079 <0.001 0.052 1 427.3 <0.001
DECTSHj+w -215.7 4 0.004 <0.001 0.017  0.0067 439.4 <0.001
DIVALIKETS -2184 2 0.011  <0.001 0 1 440.7

<0.001
DECTS+w -220.6 3 0.0048 <0.001 0 0.0031 447.2

<0.001
DIVALIKETS++w -225.6 4 0.0048 <0.001 0.018  0.0049 459.3 <0.001
DIVALIKETS+w -230 3 0.0068 <0.001 0 0.083  466.1 <0.001
DEC+j -2369 3 0.0025 <0.001 0.0087 1 479.9

<0.001
DEC -2403 2 0.0029 <0.001 0 1 484.7

<0.001
DIVALIKE+; -2444 3 0.0028 <0.001 0.012 1 494.8

<0.001
DIVALIKE -250.3 2 0.0037 <0.001 0 1 504.7

<0.001
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