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ABSTRACT
Background: Driving is a complex skill involving various cognitive activities.
Previous research has explored differences in the brain structures related to the
navigational abilities of drivers compared to non-drivers. However, it remains
unclear whether changes occur in the structures associated with low-level sensory
and higher-order cognitive abilities in drivers.
Methods: Gray matter volume, assessed via voxel-based morphometry analysis of
T1-weighted images, is considered a reliable indicator of structural changes in the
brain. This study employs voxel-based morphological analysis to investigate
structural differences between drivers (n = 22) and non-drivers (n = 20).
Results: The results indicate that, in comparison to non-drivers, drivers exhibit
significantly reduced gray matter volume in the middle occipital gyrus, middle
temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with
driving-related experience. Furthermore, the volume of the middle occipital gyrus,
and middle temporal gyrus, is found to be marginally negative related to the years of
driving experience, suggesting a potential impact of driving experience on gray
matter volume. However, no significant correlations were observed between driving
experiences and frontal gray matter volume.
Conclusion: These findings suggest that driving skills and experience have a
pronounced impact on the cortical areas responsible for low-level sensory and motor
processing. Meanwhile, the influence on cortical areas associated with higher-order
cognitive function appears to be minimal.

Subjects Neuroscience, Anatomy and Physiology, Psychiatry and Psychology, Radiology and
Medical Imaging
Keywords Driving experience, Driving skill, Gray matter volume, Sensory and motor processing

INTRODUCTION
Driving, as a daily skill, requires the highly coordinated execution of complex cognitive
activities. Behavioral studies indicate that experienced drivers, compared to non-drivers or
novice drivers, demonstrate advantages in perceiving the road environment, particularly in
challenging road conditions. They exhibit the ability to timely perceive potential hazards
and take appropriate measures promptly. This proficiency extends beyond fundamental
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cognitive functions such as attention and motor responses, encompassing higher cognitive
functions like decision-making (Crundall, 2016; Horswill, 2016; Smith et al., 2009;
Ventsislavova et al., 2016). The paramount importance of driving skills in traffic safety has
propelled extensive neuroimaging research on the subject (Just, Keller & Cynkar, 2008;
Spiers & Maguire, 2007; Uchiyama et al., 2003; Walter et al., 2001).

Building upon the recognition of the cognitive complexities involved in driving,
Maguire et al. (2000), Maguire, Woollett & Spiers’s (2006) and Woollett & Maguire (2011)
conducted a series of experiments utilizing voxel-based morphological analysis (VBM) to
investigate the neuroanatomical correlates of licensed drivers in London, both
cross-sectionally and longitudinally. Their research revealed significant morphological
changes in the hippocampus of London taxi drivers compared to non-drivers. Given the
close association between the hippocampus and spatial navigation-related cognitive
activities, they attributed this finding to corresponding changes in the brain cortex
plasticity of drivers resulting from their long-term experience with the intricate road
layouts in the local environment.

However, driving, as a skill that requires the simultaneous involvement of various
cognitive activities, is not exclusively associated with spatial navigation cognitive abilities
related to road layouts. Clearly, experienced drivers excel in handling various unexpected
road situations (Horswill, 2016; Ventsislavova et al., 2016). Therefore, compared to
familiarity with road layouts, the ability to perceive, interpret, and respond timely to
hazardous events in complex road conditions is more crucial. Neuroimaging studies
support this notion, indicating that visual processing, auditory processing, sensorimotor
coordination, decision-making, and other low-level or higher-level cognitive activities
should also be improved with enriched driving experience (Spiers & Maguire, 2007;Wang
et al., 2015). A meta-analysis study further reveals activation in the pre-motor cortex,
occipital visual regions, occipitoparietal regions, and temporal gyrus regions during
driving (Lappi, 2015). In summary, driving is a complex task involving multiple cognitive
functions; thus, considering cortical plasticity, long-term driving not only leads to changes
in cortical regions related to spatial-related functions but also induces extensive structural
changes in the brain due to the involvement of other cognitive activities.

However, previous investigations into changes in the brain morphology due to driving
experience have not thoroughly explored whether, beyond spatial navigation abilities,
other cognitive activities also undergo morphological changes with enriched driving
experience. To explore the brain morphological changes induced by driving experience,
particularly the impact on brain regions associated with sensory processing and higher
cognitive activities, this study will employ MRI technology to assess the gray matter
volume of both drivers and non-drivers. Our specific aim is to identify the brain regions
undergoing morphological changes in drivers due to driving experience by comparing the
gray matter volumes between drivers and non-drivers. We will focus on investigating
changes in the cortex responsible for sensorimotor processing and the frontal cortex
responsible for higher-order cognitive control resulting from long-term driving.

Previous neuroimaging studies have indicated that the act of driving engages multiple
brain regions, including the pre-motor cortex, occipital visual regions, occipitoparietal
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regions, and temporal gyrus regions in virtual simulated driving (Lappi, 2015; Uchiyama
et al., 2003; Walter et al., 2001). Although these identified brain regions are closely related
to sensorimotor functions, they may not necessarily be linked to higher-order cognitive
functions such as decision-making and executive control, which typically involve frontal
cortex. This suggests that engaging in long-term driving may not necessarily lead to the
enhancement of higher cognitive functions. It is important to note, however, that the
relationship between functional activation and changes in brain morphology is not always
straightforward (Baria et al., 2013; Park & Friston, 2013). Therefore, we will further
investigate changes in brain structure to determine whether driving skills primarily
improve low-level sensorimotor processing abilities, higher-order cognitive control
capabilities, or a combination of both.

In addition, numerous studies suggest that individuals mastering specialized skills often
undergo profound changes in specific cortical and subcortical brain structures due to
neuroplasticity. These changes are diverse, encompassing not only static alterations but
also sustained modifications in neural structures associated with the prolonged learning
and practice of a particular skill (Münte, Altenmüller & Jäncke, 2002; Schlaug, 2001;Wang
et al., 2020). In other words, for a specialized skill, the processing efficiency of certain brain
regions can continue to improve even after proficiency in the skill is achieved. These
enduring structural changes in the brain that persist after acquiring a skill are evidently
experience-related. To further address the question of which brain regions associated with
driving skills undergo sustained changes with increasing experience and which do not, we
will conduct correlational analyses between the gray matter volume of these driving-
specific brain regions and the driving experience, measured by the driver’s years of driving
experience.

MATERIALS AND METHODS
Subjects
A total of 42 participants took part in this paid experiment conducted in Beibei District,
Chongqing, China (see Table 1 for demographic details). The participant pool consisted of
22 licensed drivers (21 males, mean age: 40.4 ± 6.07 years) and 20 non-drivers (18 males,
mean age: 42 ± 1.89 years). Age and education backgrounds were carefully matched
between the two groups. All participants were right-handed and recruited based on specific
criteria to ensure uniformity. Licensed drivers had an average driving experience of
11.6 years (ranging from 6 to 23 years), while non-drivers had no prior knowledge
of driving. To maintain homogeneity, participants across both groups had no history of
major head trauma, alcohol or drug addiction, or any neurological disorders. Additionally,
all subjects provided written informed consent and were kept unaware of the experiment’s
purpose to prevent potential biases. The study was approved by the Institutional Review
Board of the Brain Imaging Center at the Southwest University (SWU) (the approval
number: H09025). The methods employed in this study followed the approved guidelines
to ensure ethical conduct throughout the research.
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Data acquisition
During the MRI scanning sessions, participants were given explicit instructions to
maintain a motionless state, close their eyes, and remain awake throughout the procedure.
The imaging data were acquired using the SIEMENS TRIO 3T MRI scanner at Southwest
University. High-resolution T1-weighted anatomical images were obtained with the
following parameters: repetition time (TR) of 2,530 ms, echo time (TE) of 3.39 ms, flip
angle of 70�, field of view (FOV) measuring 256 × 256 mm2, and a slice thickness of 1 mm.
These imaging parameters were carefully selected to ensure optimal data quality and
resolution.

Data analysis
MRI quality control

Before initiating preprocessing steps, a rigorous initial visual quality assessment was
conducted on all images. This assessment targeted potential issues related to motion, gross
anatomical artifacts, and ensured comprehensive whole-brain coverage. Following
preprocessing, additional insights into data quality, including resolution, noise, and bias,
were obtained through CAT12 (http://www.neuro.uni-jena.de/cat, cat12.8_r1871) (Gaser
et al., 2022) and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/, v7771). A weighted average
quality score of B or higher, indicative of very good image quality, was confirmed for all
datasets. To further ensure data reliability, a post-preprocessing quality check was
performed using the CAT12 toolbox. This involved assessing sample homogeneity by
examining standard deviations before proceeding to the subsequent statistical analyses.
These stringent quality control measures contribute to the robustness of our data,
affirming the integrity and consistency of the neuroimaging results.

Processing
High-resolution structural images for each participant were processed using CAT12
(cat12.8_r1871) implemented in SPM12 to estimate gray matter volume with default
parameters. CAT12 autonomously conducted intra-subject realignment, bias correction,
segmentation, and normalization. Segmentation involved classifying brain volumes into
three voxel categories: gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF), using adaptive maximum a posteriori segmentation and partial volume
segmentation. Extracted GM maps underwent smoothing with an 8 mm full-width at
half-maximum (FWHM) kernel. Group-wise differences in GM volumes were examined

Table 1 The characteristics of the participants recruited in this study.

Variable Driver Non-driver t-value p value

Sample size 22 20

Age (years) 40.4 ± 6.07 42 ± 1.89 −1.123 0.268

Gender (male/female) 21/1 18/2 χ² = 0.47 0.493

Education (years) 9.54 ± 1.76 9.0 ± 1.34 χ² = 3 0.223

Total driving (years) 11.63 ± 4.76
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through a whole-brain analysis using a two-sample t-test within the general linear model.
Covariates, including age, gender, and total intracranial volume (TIV), were controlled.
Statistical significance was assessed using the threshold-free cluster enhancement (TFCE)
method (Salimi-Khorshidi, Smith & Nichols, 2011; Smith & Nichols, 2009) for family-wise
error (FWE) correction (p < 0.05).

To establish region-specific associations, significant clusters from the whole-brain
analysis were used to create region of interest (ROI) masks. Mean values within these
masks were extracted for each individual using the get_totals function (http://www0.cs.ucl.
ac.uk/staff/g.ridgway/vbm/get_totals.m) for SPM. Associations between voxel-based
morphometry (VBM) results and driving years in these ROIs were assessed using partial
correlation, with TIV, age, and education age as covariates in SPSS 22.0.

RESULTS
Global volumes
No significant differences were found between drivers and nondrivers in the volume of the
global MG, WM, and CSF. For details see Table 2.

Whole-brain analysis
Significant differences in gray matter (GM) volumes between drivers and non-drivers were
observed (see Fig. 1 and Table 3). The results indicated that drivers exhibited significantly
smaller GM volumes than non-drivers.

ROI analysis
The ROI analysis revealed significant volumetric differences in specific brain regions (see
Fig. 2). Specifically, Drivers displayed a smaller gray matter volume than nondrivers in
regions including the left middle temporal gyrus (t (40) = −3.607, p = 0.001 Cohen’s
d = −1.122), right middle occipital gyrus (t (40) = −3.588, p = 0.001, Cohen’s d = −1.116),
right cerebellum_4_5 (t (40) = −2.234, p = 0.031, Cohen’s d = −0.692) and right
supramarginal gyrus (t (40) = −2.994, p = 0.005, Cohen’s d = −0.925).

The relationship between the volume of ROIs and the years of driving
experience
A marginally significant negative correlation was found between the years of driving
experience and the volumes of the left middle temporal gyrus (r = −0.418, p = 0.075,

Table 2 Comparison between drivers and non-drivers in the volume of the gray matter, white
matter, cerebrospinal fluid, and whole brain.

Drivers (ml) Non-drivers (ml) t p

Gray matter 661.52 ± 54.88 674.9 ± 43.55 −0.869 0.390

White matter 536.89 ± 48.17 537.56 ± 49.89 −0.045 0.965

Cerebrospinal fluid 266.57 ± 37.85 251.81 ± 35.16 1.306 0.199

Whole brain 1,465 ± 103.59 1,464.28 ± 96.96 0.023 0.982
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Fig. 3A), the right middle occipital gyrus (r = −0.414, p = 0.078, Fig. 3B). However, the
correlation between the volume of right cerebellum_4_5 (r = −0.395, p = 0.095, Fig. 3C), as
well as the right supramarginal gyrus (r = −0.007, p = 0.978, Fig. 3D) and the years of
driving experience, did not reach significance.

DISCUSSION
In this study, we explored the brain morphological changes induced by driving experience,
particularly in the brain regions associated with sensory and higher-level cognitive
processing. Building upon these analyses, we investigated whether these relevant brain
regions undergo sustained changes associated with enriched experience. Our results
indicate that, compared to non-drivers, drivers exhibit smaller gray matter volumes in the
middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum_4_5.
Notably, no significant gray matter volume changes related to driving were observed in the
frontal cortex. This suggests that driving skills have a pronounced impact on the cortical

Table 3 Scatter plots illustrating correlations between ROI volumes and driving years.

Region BA Cluster size
(mm3)

MNI coordinate (peak) p
(peak)

TFCE value

x y z

MTG_L 37 1,950 −57 −71 11 0.01 1,779.77

Cerebellum_4_5_R / 1,641 26 −44 −20 0.012 1,728.13

SMG_R 3 933 56 −24 41 0.019 1,554.51

MOG_R 19 491 47 −81 18 0.029 1,410.60

Note:
p < 0.05 FWE corrected with threshold-free cluster enhancement (TFCE). BA (Brodmann area). MTG_L (left middle
temporal gyrus), Cerebellum_4_5_R (right cerebellum 4_5), SMG_R (right supramarginal gyrus), MOG_R (right middle
occipital gyrus).

Figure 1 Voxel-based morphometry (VBM) analysis results. Brain regions exhibiting a significant
decrease in gray matter volume in drivers compared to non-drivers are depicted. The maps were thre-
sholded using threshold-free cluster enhancement (TFCE) at p < 0.05, corrected for family-wise error
(FWE) across the whole brain. Visualization of brain space graphs was performed using BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) (Xia, Wang & He, 2013). TFCE statistics are represented by the
color bar. Full-size DOI: 10.7717/peerj.17228/fig-1
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areas responsible for low-level sensory and motor processing, while the influence on
cortical areas associated with high-level cognitive functions is minimal. Additionally, we
found a marginally negative correlation between the gray matter volumes of the right
middle occipital gyrus, left middle temporal gyrus with years of driving experience.
However, no significant gray matter volume changes related to driving experience were
observed in the supramarginal gyrus and cerebellum_4_5. This implies that the gray
matter volumes of the right middle occipital gyrus and left middle temporal gyrus are

Figure 2 Scatter plot of individual volume in the ROIs between driver and non-driver. Individual
volumes in specific regions of interest (ROIs) are presented: (A) MTG_L, (B) MOG_R, (C) cere-
brellum_4_5_R and (D) SMG_R. The horizontal lines represent the mean of each group while the error
bars represent the standard deviation (SD). The asterisks (�) at the top of graph denote �p < 0.05,
��p < 0.01; Note: MTG_L (left middle temporal gyrus), MOG_R (right middle occipital gyrus), cere-
bellum_4_5_R (right cerebellum_4_5), SMG_R (right supramarginal gyrus).

Full-size DOI: 10.7717/peerj.17228/fig-2
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associated with driving experience, confirming that the key difference brought about by
driving experience lies in the efficiency of low-level sensory.

Previous research indicates that extensive learning and practice of specialized skills lead
to notable changes in brain structures associated with those skills (Draganski et al., 2004;
Maguire et al., 2000; Münte, Altenmüller & Jäncke, 2002; Zou et al., 2012). During the
learning process, the brain undergoes profound anatomical changes, such as alterations in
cell size, growth, or atrophy of neurons or glial cells, due to increased efficiency in neural
pathways associated with specific cognitive activities (Anderson, 1980; Duerden &
Laverdure-Dupont, 2008). For instance, musicians exhibit significant gray matter volume
changes in sensorimotor-related regions (Münte, Altenmüller & Jäncke, 2002; Schlaug,
2001), while chess players show adaptability in the thalamus (Duan et al., 2014; Wang
et al., 2020). However, the relationship between skill acquisition and cortical volume
remains contentious. Although the prevailing view suggests a positive correlation between
the duration of skill practice and cortical gray matter volume, i.e., “more skill, more gray
matter volume” (Hyde et al., 2009; Münte, Altenmüller & Jäncke, 2002; Sluming et al.,

Figure 3 Scatter plots illustrating correlations between ROI volumes and driving years. (A) Scatter
plot depicting the negative correlation between the volume of the left middle temporal gyrus and driving
years. (B) Scatter plot illustrating the negative correlation between the volume of the right middle
occipital gyrus and driving years. (C) Scatter plot showing the correlation between the volume of the right
cerebellum_4_5 and driving years. (D) Scatter plot presenting the correlation between the volume of the
right supramarginal gyrus and driving years. Note: MTG (left middle temporal gyrus), MOG_R (right
middle occipital gyrus), cerebellum_4_5_R (right cerebellum_4_5), SMG_R (right supramarginal
gyrus). Full-size DOI: 10.7717/peerj.17228/fig-3
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2002), some studies present contradictory conclusions. Numerous studies found that
training and expertise might lead to local decreases in cortical volume, i.e., “more skill, less
gray matter volume” (Granert et al., 2011; Hänggi et al., 2010, 2014). The former implies
that the brain enhances efficiency in cognitive activities related to a particular skill by
increasing the number of neurons and synapses associated with skill-related cognitive
processing (Draganski et al., 2004; Hyde et al., 2009; Sluming et al., 2002). In contrast, the
latter suggests that reduced gray matter volume was results from an increasing proportion
of myelinated axons in white matter during structural changes of the human brain, as
demonstrated in the myelination model (Whitaker et al., 2016). For example, previous
study has found that the occipital and temporal lobes white matter increased myelination
and lead to gray matter reduction (Megías et al., 2018).

Consistent with the myelination model, our study did not find any brain regions that
increased gray matter volume with mastery of driving skills or increased driving
experience. Instead, we observed significant decreases in gray matter volume in brain
cortical regions related to driving skills. This suggests that, at least for driving skills, the
brain improves efficiency in related cognitive activities by decreasing proportion of gray
matter in the occipitotemporal cortex. Thus, our results support the notion of “more skill,
less gray matter volume,” from the myelination model.

The supramarginal gyrus is a crucial component of the somatosensory association
cortex, playing a vital role in multisensory integration, action reprogramming, tool-use
actions, and predictive motion planning and responses. It is commonly considered
responsible for processing sensorimotor information (Hartwigsen et al., 2012; Lesourd
et al., 2017; McDowell et al., 2018; Potok et al., 2019) and undergoes plastic changes with
movement-related experiences (Elbert & Rockstroh, 2004; Jäncke, Shah & Peters, 2000;
Jäncke, 2009). James et al. (2014) reported a reduction in gray matter volume in the
sensorimotor region among expert musicians, suggesting neuroplastic splicing in response
to increased demands of multisensory integration in motor skills. Similarly, our study
observed a comparable phenomenon, where proficiency in driving skills resulted in
decreased gray matter volume in the supramarginal gyrus. Importantly, we further
discovered that the extent of this movement-related gray matter volume reduction is
limited and does not continually decrease with prolonged driving experience. This result
indicates that, as a daily skill requiring complex cognitive processing, there is a ceiling to
the improvement in cognitive processing efficiency related to bodily movements with
increasing driving experience (Dayan & Cohen, 2011). The key factor contributing to
variations in driving abilities among drivers is not whether they can smoothly execute
movements like pressing the accelerator or brake pedals but rather the preceding cognitive
processing involved in these movement-related skills.

Similar to the supramarginal gyrus, the cerebellum_4_5 is also a region associated with
movement-related functions. Previous research indicates that the cerebellum integrates
multisensory information from the somatosensory cerebellar hemispheres to compute a
“state estimate,” which is crucial for accurate action planning and optimization (Bhanpuri,
Okamura & Bastian, 2013; Imamizu et al., 2000). Recent studies have identified a
reduction in specific lobule gray matter volume associated with drum training and musical
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instrument usage (Baer et al., 2015; Bruchhage et al., 2020). Clearly, these musical skills
require coordination of movement speed and integration of temporal-motor information.
Prior research suggests the involvement of the cerebellum in fine control processes during
driving-related motor execution based on predetermined motivations (Spiers & Maguire,
2007), emphasizing the cerebellum’s necessity in coordinating movement speed and
temporal-motor integration for driving behavior (Hung et al., 2014). Thus, the observed
reduction in gray matter volume in the cerebellum_4_5 in our study likely signifies
substantial changes in driving-related movement preparation and coordination control
abilities resulting from mastering driving skills. Unfortunately, despite the association
between cerebellum_4_5 and driving skills, its gray matter volume does not change with
increasing driving experience. Therefore, the differential impact of driving experience does
not seem to stem from alterations in movement preparation and coordination control.

In summary, evidence from gray matter volume suggests that improvements in
movement-related skills related to driving reach a relatively rapid ceiling. This raises a new
question regarding the enhancements in cognitive functions implied by extensive driving
experience. The wealth of experiential knowledge gained through driving signifies a
heightened proficiency in promptly responding to diverse situations on the road. This is
particularly salient within the intricate milieu of the Chongqing highway system, replete
with a complex road network and a multitude of vehicles. Evidently, the richness of driving
experience not only culminates in the acquisition of a substantial repertoire of
driving-related motor skills but also necessitates more streamlined sensory processing.
This, in turn, engenders heightened efficacy in situation analysis and facilitates decisive
decision-making.

In addition to the SMG and the cerebellum_4_5, we observed marginal reductions in
gray matter volume in the middle occipital gyrus and middle temporal gyrus, both
associated with driving experience. Importantly, the extent of gray matter volume
reduction in these two brain regions does not seem to reach a specific limit over an
extended period but rather diminishes with increasing driving experience. Previous
research has confirmed the involvement of the middle occipital gyrus and middle temporal
gyrus in various cognitive processes, notably including visual perception, auditory
perception, and audio-visual cross-modal sensory integration (Duan et al., 2014; Fan et al.,
2017;Weng et al., 2017). Prior studies have established that learning a particular task leads
to a reduction in task-related activation in these brain regions (Marois, Leung & Gore,
2000; Summerfield & Egner, 2009). Therefore, the reduction in gray matter volume in these
two brain regions may be associated with more efficient sensory perception.

Resting state fMRI studies related to driving have consistently reported a significant
reduction in brain activity within the visual network of drivers when compared to
non-drivers (Wang et al., 2015). Building upon this evidence, we propose that the observed
decrease in gray matter volume in the middle occipital gyrus signifies a streamlining of
neural pathways dedicated to processing visual information, ultimately enhancing the
efficiency of visual signal transmission (Marois, Leung & Gore, 2000; Summerfield & Egner,
2009). This structural adaptation in the middle occipital gyrus aligns logically with the
demands of driving. During this activity, the swift and accurate analysis of information
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within the field of view, coupled with the rapid transmission of this information to higher
brain regions, forms the basis for effectively navigating unexpected situations. Notably, one
study suggests that, relative to non-drivers, drivers exhibit decreased spontaneous brain
activity in the visual and sensory networks. Another fMRI investigation indicates
weakened functional connectivity between the left posterior medial entorhinal cortex
(pmEC) and the right angular gyrus, bilateral precuneus, and some temporal regions in
drivers (Peng et al., 2018). When considered alongside our findings, this evidence suggests
that this weakened functional connectivity may be indicative of active neural pruning in
relevant brain regions. A study by Vaquero et al. (2016) found that piano-playing experts,
compared to novices, have smaller gray matter volume in the auditory cortex, further
reinforcing our assertion.

It is noteworthy that we did not observe changes in gray matter volume in the frontal
cortex, specifically associated with higher-order cognitive function such as
decision-making or executive control, due to driving skills or driving experience. This
suggests that driving skills and experience may not necessarily result in improved neural
conduction efficiency in the frontal cortes, which are responsible for higher cognitive
processes. The frontal cortex generally maintains relatively high structural stability after
the age of 30, especially when compared to sensory-related brain regions (Bethlehem et al.,
2022; Blakemore, 2012). Since our participants were mostly between 30 and 60 years old, it
was expected that the frontal cortex would not exhibit changes in gray matter volume with
driving skills and experience.

Previous task and resting state fMRI studies have indicated the involvement of the
frontal cortex in the driving-related skill (Calhoun et al., 2002; Spiers & Maguire, 2007;
Wang et al., 2015). These results suggest that the frontal cortex continue to actively
participate in driving-related cognitive activities. Combining our findings of no significant
driving-related changes in frontal gray matter volume in this study, we posit that driving
skills and experience may lead to a more active transfer of information from the sensory
cortex to the frontal cortex. However, this does not necessarily result in more efficient road
scenario analysis, more decisive and accurate decision-making, or more precise execution
control activities. This finding may help explain why experienced drivers still exhibit a
considerable accident rate.

It is noteworthy that, despite employing experienced drivers in a complex urban setting
as participants, we did not observe hippocampal changes similar to those reported by
Maguire et al. (2000), Maguire, Woollett & Spiers (2006), specifically the increase in
posterior hippocampal volume and decrease in anterior hippocampal volume.Megías et al.
(2018) also attempted to replicate the results of Maguire et al. and, like us, they failed to
find significant differences in hippocampal gray matter volume between drivers and non-
drivers. Therefore, we argue that the results from Maguire et al. should undergo further
validation.

The current preliminary findings highlight a relationship between driving experience
and brain area volumes, yet longitudinal studies are needed to establish causal evidence for
the dynamic changes in brain structures associated with driving. Moreover, larger sample
sizes are essential to draw more robust conclusions. Additionally, investigating how the
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brain volume of drivers varies across different geographical environments, such as
mountainous vs flat city roads in places, presents an intriguing avenue for future research
(Coutrot et al., 2020; Kühn et al., 2017, 2020). Finally, considering the role of
gene-environment interactions in shaping brain structure, incorporating twin studies
could further enhance our understanding of this issue.

CONCLUSION
This study employed VBM to investigate structural differences in the brains of drivers and
non-drivers, offering insights into how driving experience contributes to more efficient
driving-related cognitive processing. Gray matter volume measurements revealed that, in
comparison to non-drivers, drivers exhibited significantly smaller gray matter volumes in
the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus and
cerebellum_4_5, indicating an association with driving skills. However, no such changes
were detected in the frontal lobe associated with driving skills or experience. Further
correlational findings suggested a potential reduction in gray matter volume in
occipitotemporal regions with increasing driving experience. This suggests that the
enhanced efficiency in driving-related activities and improved sensory processing
efficiency associated with driving experience may not be attributed to increased efficiency
in higher-level cognitive processing activities related to the frontal cortex. The current
findings support the myelination theory.
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