

Exogenous Hemin enhances the antioxidant defense system of rice by regulating the AsA-GSH cycle under NaCl stress

Fengyan Meng ^{1, 2}, Naijie Feng ^{Corresp., 1, 2, 3}, Dianfeng Zheng ^{Corresp., 1, 2, 3}, Meiling Liu ^{1, 2}, Hang Zhou ^{2, 3}, Rongjun Zhang ^{1, 2}, XiXin Huang ^{1, 2}, Anqi Huang ^{1, 2}

Corresponding Authors: Naijie Feng, Dianfeng Zheng Email address: fengnj@gdou.edu.cn, zhengdf@gdou.edu.cn

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aimed to investigate the damage of salt stress on the leaf physiology of two rice varieties (Huanghuazhan, HHZ, and Xiangliangyou 900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were foliar sprayed with 5.0 µmol·L⁻¹ Hemin or 25.0 µmol·L⁻¹ ZnPP (Zinc protoporphyrin IX) at the three leave and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L⁻¹ sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzyme activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.

 $^{^{}f 1}$ College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China

² South China Center of National Saline-tolerant Rice Technology Innovation Cente, Zhanjiang, Guangdong, China

³ Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong, China

Exogenous Hemin enhances the antioxidant defense system of

rice by regulating the AsA-GSH cycle under NaCl stress

4 Fengyan Meng^{1,2}, Naijie Feng^{1,2,3}, Dianfeng Zheng^{1,2,3}, Meiling Liu^{1,2}, Hang Zhou^{2,3}, Rongjun

5 Zhang^{1,2}, Xixin Huang^{1,2}, Anqi Huang^{1,2}

6

3

- 7 College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong
- 8 524088, China
- 9 ² South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang,
- 10 Guangdong 524088, China
- ³ Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, Guangdong 518108,
- 12 China

13

- 14 Corresponding Author:
- Naijie Feng^{1, 2, 3} and Dianfeng Zheng^{1, 2, 3}
- 16 College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
- 17 524088, China
- 18 Email address: fengnj@gdou.edu.cn and zhengdf@gdou.edu.cn

19

20

Abstract

- 21 Abiotic stress caused by soil salinization remains a major global challenge that threatens and
- 22 severely impacts crop growth, causing yield reduction worldwide. In this study, we aimed to
- 23 investigate the damage of salt stress on the leaf physiology of two rice varieties (Huanghuazhan,
- 24 HHZ, and Xiangliangyou 900, XLY900) and the regulatory mechanism of Hemin to maintain
- 25 seedling growth under the imposed stress. Rice leaves were foliar sprayed with 5.0 μmol·L⁻¹
- 26 Hemin or 25.0 μmol·L⁻¹ ZnPP (Zinc protoporphyrin IX) at the three leave and one heart stage,
- 27 followed by an imposed salt stress treatment regime (50.0 mmol·L⁻¹ sodium chloride (NaCl)). The
- 28 findings revealed that NaCl stress increased antioxidant enzyme activities and decreased the
- 29 content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH).
- 30 Furthermore, the content of osmoregulatory substances like soluble proteins and proline was
- raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the
- 32 two varieties. However, spraying with Hemin increased the activities of antioxidants such as
- 33 superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH
- 34 cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the
- 35 physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that
- 36 impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt

- 37 stress.
- 38 **Keywords:** Hemin, Rice, AsA-GSH cycle, Enzymatic defense system
- 39 Introduction
- 40 In the background of global warming, soil salinization has accelerated due to various factors such
- as seawater back-up, over-exploitation of groundwater, and the overdevelopment of arable land
- 42 (Alkharabsheh et al., 2021). Saline land accounts for about one-fifth of the cultivated land and
- 43 one-third of the irrigated farmland on the planet, and the area is increasing even faster
- 44 (Mukhopadhyay et al., 2021). Salinity stress is one of the most widespread and severe abiotic
- 45 stresses globally. It has destructive effects on plant growth and physiological and biochemical
- 46 processes and causes a decrease in grain production. According to current data, the yield loss
- 47 caused by salt stress accounts for about 20.0% of global yield (Ding et al., 2021).
- 48 With salt stress increasing soil osmotic pressure, plant roots fail to absorb water and nutrients,
- 49 which causes delayed growth and development or even death (Liu et al., 2022). In addition, salt
- 50 stress induces excessive production of reactive oxygen species (ROS) in plant cells. ROS is weakly
- stable and easily causes oxidative stress to cells. The excessive ROS enhances cell membrane lipid
- 52 peroxidation and disrupts membrane system stability, which results in the expansion of cell
- 53 membrane permeability and extravasation of intracellular materials (Seleiman et al., 2020;
- Hasanuzzaman et al., 2020). It has been shown that ROS could break down proteins, damage DNA
- structure, and cause lipid peroxidation. (Chandrakar et al., 2017; Lin et al., 2020). This disturbs
- 56 the normal growth and physiological metabolic activities of plants. To avoid ROS accumulation,
- 57 plants use antioxidant enzymes and non-enzymatic antioxidants to scavenge excess ROS (Alisofi
- et al., 2020). Among them, antioxidant enzymes include superoxide dismutase (SOD), peroxidase
- 59 (POD), catalase (CAT), and ascorbate peroxidase (APX). Non-enzymatic antioxidants include
- ascorbic acid (AsA) and glutathione (GSH), which act as co-factors for different enzymes and
- 61 participate in various metabolic processes (Hasanuzzaman et al., 2020). In addition, plants
- accumulate osmoregulatory substances to maintain the balance of inside and outside cell osmosis.
- 63 There are two categories of osmoregulatory substances: inorganic ions (Na⁺) and organic
- substances, including proline and soluble proteins (Athar et al., 2022). Under salt stress, plants
- 65 balance the osmotic pressure between the plant and the external environment by conducting
- selective uptake of ions and promoting the accumulation of phase-soluble solutes.
- 67 Rice, a gramineous crop, has a long history of cultivation and consumption in China. The consumer
- demand for rice in China is the highest in the world, and more than half of the population eats rice
- as a major food (Huang et al., 2022; Zuo et al., 2022). However, salt stress has become one of the
- 70 major abjotic stresses which limits rice production. Many studies showed that the seedling stage
- vas an essential stage of plant development and was closely related to the later development of
- 72 tillers and spikelets. However, this stage is susceptible to the impact of salt stress (Zeng et al.,
- 73 2001). Therefore, it has become a research priority to find effective ways for improving the salt
- 74 tolerance of rice seedlings in recent years.
- 75 Plant growth regulators (PGRs) are a group of synthetic compounds with phytohormonal activity
- that improve the tolerance to abiotic stresses by affecting the expression of endogenous hormones
- in crops. Hemin is a small molecule with a porphyrin structure, consisting of nitrogen atoms on

79

Hemin acts as a substrate and promoter of heme oxygenase 1 (HO-1), an initiator and rate-limiting 80 enzyme for Hemin degradation, which has a specific inhibitor, zinc protoporphyrin (ZnPP). Hemin 81 82 triggered salt acclimation in wheat by increasing HO-1 expression, while ZnPP, an inhibitor, was shown to decrease the salt tolerance of wheat (Xie et al., 2011). Under salt stress, Hemin increased 83 proline and soluble protein contents, enhanced antioxidant enzyme activities such as SOD, CAT, 84 and APX, and alleviated oxidative damage in Cassia obtusifolia L (sickle senna) (Zhang et al., 85 2012). In addition, under zinc (Zn), lead (Pb), and chromium (Cr) metal stress, Hemin activated 86 the activities of various antioxidant enzymes (SOD, glutathione reductase (GR), and APX) in rice 87 88 seedlings, improved the content of AsA and GSH, and reduced heavy metal accumulation. At present, only a small number of studies have been conducted on the mitigation of salt stress by 89 Hemin on rice seedings. Hemin has been more frequently used to mitigate other abiotic stresses or 90 plants, such as heavy metal stress of *Medicago sativa* L (alfalfa) (Fu et al., 2011), low-temperature 91 stress of Convza blini (bear gall grass) (Zheng et al., 2021), and salt stress in Brassica juncea L 92 (mustard) (Verma et al., 2015). Furthermore, spraying plant growth regulators can improve the 93 resistance of rice seedlings during the critical period before transplanting, which is essential for 94 95 the subsequent transplanting of rice seedlings on saline land. Hence, in this study, we used two rice varieties, Huanghuazhan and Xiangliangyou900, to research the impacts of Hemin on the 96 growth and ROS metabolism (antioxidant enzymes and non-enzymatic antioxidants) of rice 97 seedlings at the three leave and one heart stage under salt stress. This experiment aimed to reveal 98 99 the mechanism of Hemin in enhancing the salt tolerance of rice and to provide theoretical basis and technical guidance for the cultivation of saline rice. 100

four pyrrole rings in a porphyrin ligated to a ferrous ion. In recent years, Hemin has been used

more frequently in different crops for its natural, non-polluting, low-cost, and high-safety features.

Materials and methods

102 Plant materials

101

- 103 The experiment was conducted in 2022 at Coastal Agricultural College in Guangdong Ocean
- 104 University. To ensure broad coverage through our experimentation, we selected the conventional
- rice variety Huanghuazhan (HHZ) and the hybrid rice variety Xiangliangyou900 (XLY900).
- 106 Shanghai Zhangdeduo Agricultural Technology Co., Ltd provided Hemin.

107 Experiment design

- 108 Seeds with uniformity of size and color were sterilized with 3.0% H₂O₂ for about 15.0 min, and
- then rinsed 3-5 times with distilled water. These seeds were soaked and germinated for 24 hours
- under dark conditions at 30.0°C. Sixty-five seeds were sown into pots containing 3.0 kg of test soil
- with 1:3 sand to latosol content. The plastic pot sizes were 19.0 cm for the upper diameter, 14.0
- cm for the lower diameter, and 17.0 cm for the height, without holes at the bottom. Regular water
- irrigation was performed until the three leave and one heart stage (about 18 days after planting).
- Rice leaves were foliar sprayed with 5.0 µmol·L-1 Hemin and 25.0 µmol·L-1 ZnPP alone or in
- 115 combination, and plants were exposed to 25.0 mmol·L⁻¹ NaCl stress twice at two 24 hours
- intervals, which resulted in the salt concentration in the soil reaching 50.0 mmol·L⁻¹ at 48 h after
- 117 spraying. In subsequent experiments, concentrations were maintained by measuring soil

- 118 conductivity (EC= 5.0 ± 0.5 dS·m⁻¹). Each variety had five treatments: (1) normal water (CK); (2)
- 119 50.0 mmol·L⁻¹ NaCl (S); (3) Hemin + 50.0 mmol·L⁻¹ NaCl (SH); (4) ZnPP + 50.0 mmol·L⁻¹ NaCl
- 120 (SZ); and (5) Hemin + ZnPP + 50.0 mmol·L⁻¹ NaCl (SZH). Each treatment had twenty-five pots.
- The plant samples were harvested at 3, 5, 7, and 9 d after NaCl stress application for morphological
- and physiological parameter assessment.
- 123 Morphological measurements
- Plant height was measured with a ruler; stem diameter was measured with a vernier; shoot fresh
- and dry weight were measured by a caliper electronic analytical balance. The shoots were dried
- 126 for 30.0 min at 105.0°C and for 72 h at 85.0°C.
- 127 Measurement of electrolyte leakage (EL), malonaldehyde (MDA), and Hydrogen peroxide
- 128 (H_2O_2) content
- 129 Electrolyte leakage (EL) was determined as described by Yu et al. (2021). The measurement of
- malonaldehyde (MDA) content was determined according to the method outlined by Ahmad et al.
- 131 (2016). The frozen leaf sample (0.5 g) was extracted in 10.0 mL phosphate buffer (0.05 mmol·L⁻¹
- PBS, pH 7.8) and centrifuged at 6,000 rpm for 20.0 min. One milliliter of the supernatant was
- added to 2.0 mL 2-thiobarbituric acid (0.6%, TBA), then boiled at 100.0°C for 15.0 min. The
- mixture was cooled quickly with cold water and centrifuged at 4,000 rpm for 20.0 min. The
- absorption value was determined at 450 nm, 532 nm, and 600 nm. The H₂O₂ content was
- determined according to the Rasheed et al. (2022). Specifically, five hundred milligrams of the
- frozen sample was ground into homogenate in 5.0 mL of 0.1% trichloroacetic acid (TCA) and
- centrifuged at 19,000 rpm for 20.0 min. Five hundred microliters of supernatant were added to 0.5
- mL PBS (10.0 mmol·L⁻¹, pH 7.0) and 1.0 mL potassium iodide (1.0 mol·L⁻¹, KI), then the reaction
- mixture was incubated at 28.0°C for 1.0 h in the dark. The absorbance values were recorded at 410
- 141 nm
- 142 Histochemical Detection of Hydrogen Peroxide and Superoxide Anion
- The histochemical staining of hydrogen peroxide (H_2O_2) and superoxide radicle $(O_2 \cdot \cdot)$ was
- determined by the methods outlined in Zhang et al. (2009) and Sudhakar et al. (2015), respectively.
- On day three of the stress application, the second leaf of CK, S, SH, SZ, and SZH treatments of
- both varieties were sampled and placed in a solution containing nitrogen blue tetrazolium (NBT)
- and 3,3'-diaminobenzidine (DAB) for staining. The leaves were infiltrated and then kept at room
- temperature and dark conditions for 24 h until brown and blue spots appeared, respectively. The
- staining solution was discarded. Ethanol (95.0%) was used to extract the chlorophyll in an 80.0°C
- water bath. Ethanol was added continuously until the chlorophyll had been completely cleared
- from the leaf samples, and then these samples were used for photography.
- 152 Measurement of the activities of superoxide dismutase (SOD), peroxidase (POD), and
- 153 catalase (CAT)
- The frozen leaf samples were extracted in 10.0 mL PBS (50.0 mmol·L⁻¹, pH 7.8) at 4.0°C
- 155 centrifuged at 12,000 rpm at 4.0°C for 20.0 min. The supernatant was used to determine SOD (EC
- 1.15.1.1), POD (EC 1.11.1.7), and CAT (EC 1.11.1.6) (Habib et al., 2021) activities. SOD activity
- was determined according to the method by Lu et al. (2022). The supernatant was mixed with 14.5
- 158 mmol·L⁻¹ methionine (Met) solution, 3.0 mmol·L⁻¹ EDTA-Na₂ solution, 60.0 μmol·L⁻¹ riboflavin

- solution, and 2.25 mmol·L⁻¹ nitrogen blue tetrazolium (NBT) solution. One unit of SOD activity
- was defined as the amount of enzyme that would inhibit 50.0% of NBT photoreduction. POD was
- determined following the method outlined by Kenawy et al. (2022). The supernatant was mixed
- with PBS (pH 6.0), guaiacol, and 30.0% H₂O₂. The absorbance was measured at 470 nm. CAT
- was determined by the decreased absorbance rate of H₂O₂ at 240 nm, as described by Basilio-
- 164 Apolinar et al. (2021).
- 165 Measurement of AsA-GSH cycle products and substrate content
- 166 The procedure outlined by Costa et al. (2002) and Yan et al. (2021) was followed to measure the
- 167 contents of AsA and total AsA. Specifically, the frozen leaf sample was extracted in 5.0%
- trichloroacetic acid (TCA) and centrifuged at 12,000 rpm at 4.0°C for 15.0 min. The supernatant
- was used to determine the content of AsA and total AsA. For AsA, the supernatant was mixed with
- a reaction solution containing 5.0% TCA, ethanol, 0.4% phosphoric acid (H₃PO₄)-ethanol, 0.5%
- bathophenanthroline (BP)-ethanol, and 0.03% ferric chloride (FeCl₃)-ethanol. The reaction was
- carried out at 30.0°C for 90.0 min. The absorbance was assayed at 534 nm. For total AsA, it was
- similar to the AsA assay. However, the sample solutions were first reacted with 60.0 mmol·L⁻¹
- dithiothreitol (DTT)-ethanol solution and Na₂HPO₄ (0.2 mol·L⁻¹)-NaOH (1.2 mol·L⁻¹) solution for
- 175 10.0 min. Then, 20.0% TCA was added and mixed with the above reaction solution. The
- absorbance was assayed at 540 nm. Dehydroascorbate (DHA) content was calculated based on the
- difference between total AsA and reduced AsA.
- 178 The glutathione (GSH) and oxidized glutathione (GSSG) content was determined according to the
- method described by Kaya et al. (2023). Namely, five hundred milligrams of frozen sample was
- ground into homogenate in 5.0 mL of 5.0% metaphosphoric acid (HPO₃) and centrifuged at 20,000
- 181 x g for 20.0 min. The supernatant was used to determine the content of total glutathione
- 182 (GSH+GSSG) and oxidized glutathione (GSSG). The supernatant was mixed homogeneously with
- 183 the reaction solution, which contained 5.0% sulfosalicylic acid, 1.84 mol·L⁻¹ triethanolamine
- 184 (TEA), and was incubated in a 25.0°C water bath for 1.0 h. Then 50.0 mmol·L⁻¹ phosphate buffer
- 185 (PBS), 10.0 mmol·L⁻¹ nicotinamide adenine dinucleotide phosphate (NADPH), 12.5 mmol·L⁻¹
- 186 (5,5'-Dithiobis-(2-nitrobenzoic acid)) DTNB were added, and the reaction continued kept warm at
- 187 25.0°C for 10.0 min. Then 50 U glutathione reductase (GR) was added to the reaction mixture.
- The absorbance value of (GSH+GSSG) was measured at 412 nm. Besides adding the reaction
- solution, which contained 5.0% sulfosalicylic acid, 1.84 mol·L⁻¹ TEA, and 2-vinyl pyridine (2-VP), the subsequent steps were kept consistent with the determination of (GSH+GSSG) content.
- The GSSG absorbance value was measured at 412 nm. GSH content was calculated according to
- the following formula.
- The GSH content = GSH+GSSG content GSSG content.
 Measurement of the critical enzyme indexes of the AsA-GSH cycle
- 195 Five hundred milligrams of the frozen leaf sample was placed in a mortar, ground into a powder
- with 5.0 mL phosphate buffer solution (50.0 mmol·L⁻¹ PBS, pH 7.8), and loaded into a centrifuge
- tube. The centrifuge tube was centrifuged at 12,000 x g for 20.0 min. The resulting solution was
- used to measure the levels of ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate
- 199 reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and

- 200 glutathione reductase (GR, EC 1.6.4.2).
- 201 The APX activity was determined according to the method described by Sharifi et al. (2021). The
- assay mixture contained 0.1 mL of enzyme extract, 2.6 mL EDTA-Na₂ (0.1 mmol·L⁻¹), 0.15 mL
- 203 AsA (5.0 mmol·L⁻¹) and 20.0 mmol·L⁻¹ H₂O₂. The absorbance was assayed at 290 nm. (E=2.8
- 204 mM⁻¹ cm⁻¹). MDHAR activity was measured using the method described by Hasanuzzaman et al.
- 205 (2011). The reaction mixture consisted of 25.0 mmol·L⁻¹ PBS (pH 7.8), 7.5 mmol·L⁻¹ AsA, 2.0
- 206 mmol·L⁻¹ NADPH, 50 U AsA oxidase (EC 1.10.3.3), and enzyme extract. The absorbance was
- assayed at 340 nm. (E=6.2 mM⁻¹ cm⁻¹). DHAR activity was determined using the method
- described by Shan and Liu (2017). DHAR was assayed in a mixed solution containing 25.0
- 209 mmol·L⁻¹ PBS (pH 7.8), 20.0 mmol·L⁻¹ GSH, 10.0 mmol·L⁻¹ DHA, and enzyme extract. The
- absorbance was assayed at 340 nm. (E=14 mM⁻¹ cm⁻¹). GR activity was determined according to
- 211 Keles and Oncel (2002). GR (EC 1.6.4.2) was assayed in a mixed solution containing 25.0 mmol·L
- ¹ PBS (pH 7.8), 2.0 mmol·L⁻¹ ethylene diamine tetra acetic acid (EDTA), 10.0 mmol·L⁻¹ GSSG,
- 213 24.0 mmol·L⁻¹ NADPH, and enzyme extract. The absorbance was assayed at 340 nm. (E=6.2 mM⁻¹
- 214 ¹ cm⁻¹).

215 Measurement of soluble protein and proline content

- 216 Soluble protein content was determined according to the method described by Tian et al. (2022).
- 217 The absorbance value was measured at 595 nm using Coomassie brilliant blue. Proline content
- was carried out according to the method by Liu et al. (2020). The frozen sample (0.5 g) was ground
- 219 in 5.0 mL of 3.0% sulfosalicylic acid and then centrifuged at 3,000 x g for 10.0 min. Two milliliters
- of the supernatant were added to 2.0 mL acetic acid and 2.0 mL acidic ninhydrin and then incubated
- in a water bath at 100.0°C for 30.0 min. After cooling, 4.0 mL of toluene was added, and the
- absorbance was measured at 520 nm.

223 Statistical analysis

- The data was analyzed using Microsoft Excel 2019 and SPSS 25.0. The figures were drawn in
- Origin 2021. Duncan test (p < 0.05) was used to evaluate the difference within treatments, and the
- significant differences among different materials were determined.

227228

229

Result

The morphological parameters of rice seedlings

- 230 There was significant inhibition of rice growth under NaCl stress, which showed a remarkable
- decrease in plant height, stem base width, shoot fresh weight, and shoot dry weight (Table 1 and
- Table 2). From days 3 to 9, in comparison to CK, the plant height, stem diameter, shoot fresh
- 233 weight, and shoot dry weight of HHZ under NaCl stress significantly decreased by 13.48%-
- 234 16.58%, 23.08%-28.95%, 29.67%-32.41%, and 21.14%%-23.34%, respectively. Similarly, in the
- 235 XLY900 variety, the above indicators decreased by 10.67%-13.98%, 17.43%-23.08%, 27.24%-
- 236 30.71% and 18.22%-22.15%, respectively. Exogenous Hemin alleviated the inhibition of rice
- seedling growth by NaCl stress (Fig. 1). From days 3 to 9, in comparison to the NaCl treatment,
- 238 the plant height, stem diameter, shoot fresh weight and shoot dry weight of HHZ with SH treatment
- 239 were significantly higher by 9.62%-12.38%, 20.00%-32.10%, 18.63%-27.43%, and 11.96%-

- 15.84%, respectively. Similarly, in the XLY900 variety, the above indicators were increased by 240
- 5.33%-8.01%, 15.56%-24.14%, 15.85%-26.58%, and 12.78%-14.26%, respectively. This finding 241
- suggested that the Hemin effectively mitigated the detrimental effects of NaCl stress on rice 242
- seedling development. Hemin promoted a higher growth of HHZ seedlings. In contrast to the NaCl 243
- 244 treatment, the ZnPP treatment did not increase plant height, stem base width, shoot fresh weight,
- or shoot dry weight in both rice variety. The addition of Hemin reversed the inhibition caused by 245
- ZnPP and enhanced the growth of rice seedlings. From days 3 to 9, in comparison to the SZ 246
- treatment, the plant height, stem diameter, shoot fresh weight and shoot dry weight of HHZ with 247
- SH treatment were increased by 5.15% 7.16%, 7.59%-12.20%, 9.12%-19.43%, and 8.56%-248
- 10.66%, respectively. Similarly, in the XLY900 variety, the plant height, stem diameter, shoot 249
- fresh weight and shoot dry weight with SH treatment were increased by 2.54%-4.92%, 7.78%-250
- 15.91%, 9.86%-16.19%, and 6.70%-10.32%, respectively. 251
- The membrane damage and ROS accumulation in rice seedlings 252
- Compared to the CK, EL, MDA, and H₂O₂ contents in the two assessed rice varieties gradually 253
- increased with the increased period of NaCl stress treatment (Fig. 2). Compared to CK, the EL of 254
- HHZ and XLY900 under NaCl stress significantly increased by 16.26%-126.50% and 35.25%-255
- 71.98% from days 3 through to 9, respectively. After NaCl stress, there was a significant rise in 256
- 257 the MDA and H₂O₂ content of HHZ in the NaCl treatment. This increase ranged from 31.79% to
- 51.73% for MDA and 13.92% to 30.29% for H₂O₂ from days 3 to 9, compared to CK. In the NaCl 258
- treatment of XLY900, the contents of MDA and H₂O₂ were significantly increased by 22.25%-259
- 40.52% and 20.26%-25.09%, compared with CK, from days 3 to 9, respectively. The H₂O₂ and 260
- MDA contents of HHZ were higher than that of XLY900 on 9 d after NaCl stress, showing that 261
- NaCl stress was more harmful to HHZ, which was more sensitive to NaCl stress than the XLY900 262
- 263 variety.
- Spraying Hemin effectively reduced EL and the MDA and H₂O₂ contents of both rice varieties 264
- compared with NaCl treatment. In contrast to the NaCl treatment, the EL of both HHZ and 265
- XLY900 exhibited a noticeable decrease in the SH treatment, including reductions of 9.64% to 266
- 28.20% and 8.78% to 18.41%, respectively. The MDA and H₂O₂ contents in the SH treatment of 267
- HHZ compared to the NaCl treatment decreased by 15.20%-20.28% and 11.59%-18.14%, 268
- 269 respectively. Similarly, in the SH treatment of XLY900, MDA and H₂O₂ contents decreased by
- 8.30%-16.52% and 5.97%-15.72% compared to the NaCl treatment from days 3 to 9, respectively. 270
- EL, MDA, and H₂O₂ remained high in both varieties under ZnPP treatment. Throughout the stress 271
- period, the SZH treatment reduced EL, MDA contents, and H₂O₂ content of both HHZ and 272
- XLY900 compared to the SZ treatment. On days 3 and 9, compared to the SZ treatment, EL of 273
- HHZ exhibited noticeable decreased of 9.21% and 10.43%, respectively, in the SZH treatment. 274
- 275 From days 3 to 9, compared to the SZ treatment, the EL of XLY900 with the SZH treatment
- declined by 6.09%-9.01%. From days 3 to 9, compared with the SZ treatment, the MDA and H₂O₂ 276
- contents were decreased by 6.51%-7.15% and 3.51%-10.99% in HHZ with the SZH treatment, 277
- and were reduced by 1.44%-7.71% and 1.22%-9.71% in XLY900 with the SZH treatment, 278
- respectively. 279
- The histochemical localization of reactive oxygen species in rice leaves 280

The distribution of H_2O_2 and superoxide anion (O_2) were localized and expressed visually by 281 histochemical analysis of HHZ and XLY900 rice leaves. H₂O₂ was stained with dark brown spots, 282 and O₂ was stained with dark blue spots (Fig. 3). Compared to CK, dark brown and dark blue 283 spots were significantly increased in rice leaves of both varieties under NaCl stress. Compared to 284 285 the NaCl treatment, dark brown and dark blue spots on leaves were significantly decreased in abundance HHZ and XLY900 with the SH treatment, which indicated that foliar spraying of 286 Hemin could potentially reduce the accumulation and distribution of H₂O₂ and O₂. ZnPP 287 treatment failed to lower the accumulation of ROS, and dark brown spots and dark blue spots 288 remained higher in the leaves sampled from both assessed rice varieties. There was a reduced 289 accumulation of ROS with the combination of ZnPP and Hemin. Compared to the ZnPP treatment, 290 291 the number of dark brown spots and dark blue spots decreased in HHZ and XLY900 leaf samples with the SZH treatments. 292

293 The superoxide dismutase, peroxidase, and catalase activity in rice seedlings

With the extension of exposure time, the SOD and POD activities in the NaCl treatment of HHZ 294 showed an upward and downward trend and CAT activity showed an increased trend compared to 295 CK (Fig. 4). Compared to CK, the SOD, POD, and CAT activities in the NaCl treatment of 296 XLY900 showed an upward trend with the prolonged time of NaCl stress. The SOD and POD 297 298 activities in NaCl treatment of HHZ reached the maximum at 3 d of NaCl stress, which was significantly increased, by 13.82% and 13.64%, respectively. CAT activities increased by 11.45%-299 21.71% from days 3 to 9 of NaCl stress compared to CK. In comparison to CK, the SOD, POD, 300 and CAT activities of XLY900 under NaCl stress increased by 7.30%-26.63%, 6.64%-14.26%, 301 and 15.97%-24.76%, respectively, from days 3 through to 9. The application of exogenous Hemin 302 boosted the SOD, POD, and CAT activities of SH treatment in the two assessed rice varieties. 303 304 Compared to NaCl treatment, the SOD, POD, and CAT activities of HHZ with the SH treatment were increased by 4.41%-17.66%, 6.48%-12.67%, and 6.43%-17.33%, respectively, from days 3 305 through to 9. In comparison to NaCl treatment, the SOD and CAT activities of XLY900 with the 306 SH treatment were increased, by 5.53%-27.47% and 10.54%-18.12%, from days 3 to 9, 307 respectively, while POD activity increased by 4.53%-9.20% except for the day 5. Compared with 308 the NaCl treatment, the ZnPP treatment did not enhance the enzymes' activities under the applied 309 310 stress but lowered them. For example, compared to NaCl treatments, on day 3, the CAT activity in the SZ treatment of HHZ was significantly decreased by 6.54%; on day 5, the SOD activity in 311 the SZ treatment of XLY900 was significantly reduced by 11.12%. The combination with Hemin 312 relieved the adverse effects of ZnPP and increased the activities of the assessed enzymes. 313 Compared with the SZ treatment, the SZH treatment of HHZ showed SOD activity increased by 314 3.10%-13.12% from days 3 through to 9; POD activity was significantly enhanced by 8.05% on 315 day 9; CAT activity was significantly raised by 11.52% on day 3. Compared with the SZ treatment, 316 the SZH treatment of XLY900 showed SOD activity markedly increased by 15.79% and 22.93% 317 on days 3 and 5, respectively; POD activity significantly enhanced by 7.47%-8.07% from days 5 318 to 9; CAT activity was significantly raised by 13.67% and 12.48% on days 5 and 7, respectively. 319

The assessment of the non-enzymatic antioxidants of the AsA-GSH cycle in rice leaves in rice

321 leaves

As the period of NaCl stress was extended, the AsA content decreased, but the DHA and 322 AsA+DHA content increased in the leaves of HHZ and XLY900 (Fig. 5). From days 5 through to 323 9, compared to CK, the AsA content in the NaCl treatment of HHZ and XLY900 significantly 324 decreased by 2.16%-15.52% and 4.62%-14.26%, respectively. Compared to CK, the DHA and 325 326 AsA+DHA content of HHZ under NaCl stress increased by 21.16%-60.17% and 4.47%-34.18%, respectively. For the XLY900 variety, the assessed parameters increased by 57.73%-67.58% and 327 10.39%-32.46%, respectively, from days 3 to 9. The application of exogenous Hemin further 328 increased the AsA content and reduced the accumulation of DHA and AsA+DHA. Compared to 329 the NaCl treatment, the AsA content in the SH treatment of HHZ and XLY900 significantly 330 increased by 4.63%-15.54% and 5.46%-10.44%, respectively, from days 5 to 9. Compared to NaCl 331 332 treatment, the DHA and AsA+DHA contents in the SH treatment of HHZ decreased by 15.53%-30.23% and 5.06%-19.87%, respectively, from day 3 to 9. For the XLY900 variety, the assessed 333 parameters were reduced by 19.87%- 29.67% and 5.43% -12.57% from days 3 to 9. Under NaCl 334 stress, ZnPP treatment mainly raised DHA and AsA+DHA contents in the leaves of the two 335 assessed rice varieties. In comparison to the NaCl treatment, on day 7, the DHA and AsA+DHA 336 contents in the SZ treatment of HHZ were significantly increased by 15.00% and 8.49%; on day 337 9, the DHA content in the SZ treatment of XLY900 was significantly increased by 8.00%. In the 338 339 combination of ZnPP and Hemin, the AsA content was higher, and the DHA and AsA+DHA contents were lower in both rice varieties compared to the ZnPP treatment. In comparison to the 340 SZ treatments, on days 5 and 9, the AsA content in the SZH treatment of HHZ was significantly 341 increased by 11.53% and 3.22%, respectively; on days 5 and 7, the AsA content in the SZ treatment 342 of XLY900 was significantly increased by 7.15% and 9.09%, respectively. Compared to the SZ 343 treatment, the DHA and AsA+DHA content in the SZH treatment of HHZ decreased by 12.39%-344 345 26.77% and 2.81%-14.35% from days 3 to 9, respectively. Similarly, the assessed parameters of XLY900 decreased by 8.08%-16.27% and 1.72%-7.34%, respectively. 346 Figure 6 showed that as the period of stress exposure was extended, the contents of GSH and 347 GSH+GSSG in NaCl treatment leaves of HHZ and XLY900 decreased, and the GSSG content in 348 NaCl stressed leaves of HHZ and XLY900 increased. On days 3, 5, and 9, compared to the CK, 349 the GSH content in the NaCl treatment of HHZ significantly decreased by 5.83%, 8.27%, and 350 351 2.28%, respectively, and in the XLY900 variety, the GSH content significantly reduced 3.49%, 7.17%, and 8.68%, respectively. From days 3 to 9, compared to the control, the GSSG content in 352 the NaCl treatment of HHZ and XLY900 significantly increased by 7.25%-22.36% and 8.20%-353 16.87%, respectively. On days 3 and 5, compared to CK, the GSH+GSSG content in the NaCl 354 treatment of HHZ significantly decreased 4.63% and 6.96%, respectively. Similarly, on days 5 and 355 9, in the XLY900 variety, the GSH content significantly decreased 5.22% and 6.93%, respectively. 356 357 The Hemin further increased the contents of GSH and GSH+GSSG and reduced the accumulation of DHA. Compared to the NaCl treatment, the GSH content in the SH treatment of HHZ and 358 XLY900 increased by 1.96%-14.31% and 3.60%-8.69% from days 5 to 9, respectively. Compared 359 to NaCl treatment, the GSSG content in the SH treatment of HHZ and XLY900 decreased by 360 8.57%-22.36% and 5.74%-6.35% from days 3 to 9, respectively. Under NaCl stress, ZnPP 361 treatment mainly raised GSSG content in the leaves. Compared to NaCl treatments, on days 3 and 362

- 7, the GSSG content in the SZ treatment of XLY900 significantly increased by 4.71% and 8.34%.
- In the combination of ZnPP and Hemin, the GSH and GSH+GSSG contents were higher, and the
- 365 GSSG content was lower in both rice varieties compared to the ZnPP treatment. Compared to the
- 366 SZ treatment, the GSH content in the SZH treatment of HHZ and XLY900 increased by 1.77%-
- 10.55% and 1.80%-8.16% from days 3 to 9, respectively. Compared to the SZ treatment, the GSSG
- content in the SZH treatment of HHZ and XLY900 decreased by 4.90%-5.82% and 6.71%-8.33%
- from days 3 to 9, respectively. In comparison to the SZ treatments, on days 3, 5, and 7, the GSSG
- 370 content in the SZH treatment of HHZ was significantly increased by 4.90%, 9.11%, and 3.22%,
- 371 respectively, and on days 3 and 9, the GSSG content in the SZH treatment of XLY900 was
- significantly increased by 6.41% and 4.34%, respectively.

373 The AsA-GSH cycle enzymatic activities in rice leaves

- As shown in Figure 7, APX, MDHAR, DHAR, and GR activities were increased along with the
- period of stress treatment. Compared to the CK, and during the stress period, the activities of the
- above four enzymes in the NaCl treatment of HHZ were markedly enhanced by 11.00%-18.88%,
- 377 14.95%-54.23%, 23.19%-56.82%, and 12.22%-27.96% respectively. Similarly, in the XLY900
- variety, the assessed parameters were significantly increased 18.82%-21.21%, 29.84%-51.15%,
- 379 19.62%-46.87% and 10.48%-13.56%, respectively. The use of Hemin further improved the
- activities of APX, MDHAR, DHAR, and DHAR. Compared with NaCl treatment, from days 3 to
- 9, the activities of APX, MDHAR, DHAR, and GR in the SH treatment of HHZ were enhanced
- 382 by 15.18%-25.33%, 19.95%-58.63%, 7.10%-33.25%, and 8.65%-14.11%, while in SH treatment
- 202 C XI X/000 : 1.17.7(0/ 26.057), 1.10/0 55.25/0, and 6.05/0 1.11/0, while in 611 treatment
- 383 of XLY900 were increased 17.76%-26.90%, 11.84%-50.44%, 15.92%-24.11% and 7.47%-
- 384 12.26%, respectively. However, with ZnPP, APX, MDHAR, DHAR, and GR activities were
- diminished. On day 3, compared to the NaCl treatment, the APX activity of HHZ in the SZ
- treatment was significantly decreased by 17.03%. On day 9, compared to CK, the GR activity of
- 387 HHZ and XLY900 in the SZ treatment was significantly decreased by 7.14% and 6.46%,
- respectively. The combination of ZnPP with Hemin increased the above enzyme activities. In HHZ
- with the SZH treatment, the APX activity was significantly increased by 11.41% and 21.15% on
- day 3 and 7, respectively; the MDHAR activity was markedly increased by 21.78%-38.70%, from
- day 3 to 9; the DHAR activity was dramatically increased by 9.98%-29.65%, from day 3 to 7; the
- 392 GR activity was remarkably increased by 13.47%, and 8.81%, on day 7 and 9, respectively,
- 393 compared with the SZ treatment. In XLY900 with the SZH treatment, the APX activity
- significantly increased by 21.60% and 29.99% on day 5 and day 9, respectively compared with the
- 395 SZ treatment. Similarly, the MDHAR activity was markedly increased by 32.81% and 20.13% on
- days 5 and 7, respectively. Compared with the SZ treatment, the DHAR activity of XLY900 in the
- 397 SZH treatment was dramatically increased by 14.37%-16.89% from days 5 to 9, and the GR
- activity was remarkably increased by 7.18%-9.02% from days 5 to 9.

399 The content of osmoregulatory substances in rice leaves

- 400 The applied salt stress caused a significant increase in proline content in the leaves of HHZ and
- 401 XLY900 (Fig. 8 a and b). Compared to the CK, the proline content of HHZ under NaCl stress was
- significantly increased by 34.95%-65.34% from days 3 to 9. From days 3 to 9, compared to the
- 403 CK, the proline content of XLY900 with NaCl treatment dramatically increased by 18.95%-

54.16%. Under NaCl stress, the proline content increased to a greater degree in HHZ than in 404 XLY900. Hemin treatment further enhanced the proline content in the leaves of the two assessed 405 rice varieties. Compared to NaCl treatment, the proline content of HHZ and XLY900 with SH 406 treatment significantly increased by 8.38%-27.10% and 15.02%-24.35%, respectively, from days 407 408 3 to 9. Proline content of rice leaves was not elevated by ZnPP treatment. For example, on day 3, compared to the NaCl treatment, the proline content of XLY900 with the SZ treatment decreased 409 by 8.64%. In combination with ZnPP and Hemin, the proline content was enhanced. Compared to 410 the SZ treatment, the proline content of HHZ with the SZH treatment had a maximum increase of 411 26.87% on day 9, and XLY900 with the SZH treatment had a maximum increase of 26.51% on 412 day 7. Compared with the CK, the soluble protein content of HHZ markedly increased in the early 413 414 stage (day 3) and then decreased in the later stage (days 5 to 9) under NaCl stress (Fig.8 c and d). The soluble protein content in XLY900 increased during the stress period, with the difference 415 reaching significant levels at all four time points. The foliar application of Hemin enhanced soluble 416 protein content in the leaves of two rice varieties. Compared with the NaCl treatment, soluble 417 protein content in the SH treatment of HHZ noticeably increased by 2.75% on day 9 while 418 significantly elevated by 3.93% and 1.17%, respectively in XLY900. Spraying ZnPP did not 419 increase soluble protein content. For example, on day 3, soluble protein content significantly 420 421 decreased by 3.20% in the SH treatment of HHZ compared with the NaCl treatment. When ZnPP was combined with Hemin, soluble protein content was enhanced. For example, on day 3, the 422 soluble protein content of HHZ and XLY900 in the SZH treatment was increased by 3.02% and 423 3.21%, respectively. 424

Discussion

425

426 Globally, salt stress is the most prevalent abiotic stress that limits crop growth and development. Studies have shown that salt stress impedes the growth of several crops, such as wheat (Ashraf et 427 al., 2023), sorghum (Liu et al., 2023), and soybean (Feng et al., 2021). Excessive salt interferes 428 with normal biological and physiological processes to negatively impact plant growth (Talubaghi 429 et al., 2022), such as reduced plant height, narrowed stem base width, and diminished biomass. 430 The results obtained from the experimentation performed in this study were similar to those 431 432 reported in the above studies. More specifically, under salt stress, the seedling growth of both HHZ and XLY900 was significantly inhibited, and all the morphological indexes were decreased (Table 433 1 and Table 2). Foliar spraying of Hemin positively regulated various morphological indicators 434 and promoted shoot growth and biomass accumulation in rice seedlings. Liu et al. (2021) showed 435 that Hemin improved the growth of maize seedlings and increased biomass accumulation under 436 drought stress. Furthermore, Hemin was degraded in plants to produce CO, which alleviated the 437 438 inhibition of wheat growth by NaCl stress (Ling et al., 2009). Exogenous ZnPP was unable to promote rice growth under salt stress in this study, which was consistent with the research of Cao 439 et al. (2011). 440

441 ROS can be used at low concentrations as a secondary messenger or signaling molecule (Antoniou et al., 2016). Plants generate and remove ROS in dynamic balances under normal growth conditions. Under abiotic stress conditions, ROS level surges and it is destructive, leading to

changes in the structure of DNA, proteins, and enzymes, ultimately resulting in programmed cell 444 death (Gill and Tuteja, 2010; Singh et al., 2019). MDA is one of the membrane lipid peroxidation 445 products whose content can reflect the level of ROS and the degree of membrane lipid 446 peroxidation. EL can evaluate cell membrane permeability. The higher EL value indicates greater 447 448 damage to the cell membrane. (Ben Youssef et al., 2021). In this experiment, the findings showed that salt stress caused higher EL, increased MDA and H₂O₂ contents in the two assessed rice 449 varieties and that the results were positively correlated with stress duration (Fig. 2). Compared 450 with XLY900, HHZ had a much greater increase in the above three indexes, indicating that HHZ 451 was more sensitive to the NaCl stress. This was similar to the findings of a previous study (Chen 452 et al., 2022). The localization of H₂O₂ and O₂ in leaves was measured by histochemical methods. 453 454 Salt stress induced the accumulation of H_2O_2 and O_2 in the leaves of HHZ and XLY900 compared with the CK (Fig. 3). This conformed with the finding of Jabeen et al. (2020) who worked on 455 cultivated rice under salt stress. Hemin could mitigate the damage caused by stress in plants, 456 reducing ROS accumulation, MDA content, and cell membrane permeability (Chen et al., 2009; 457 Cui et al., 2012). The results of this experiment were in agreement with these previous findings. 458 Foliar spraying of Hemin effectively diminished EL, H₂O₂, and MDA contents (Fig. 2), reduced 459 H_2O_2 and O_2 - accumulation (Fig. 3) and alleviated the damage of salt stress to the cell membranes. 460 461 Exogenous ZnPP could not scavenge excess ROS and maintain cell membrane stability. When ZnPP was combined with Hemin, it scavenged part of the ROS and alleviated oxidative damage, 462 this finding was in agreement with the previous finding by Zhang et al. (2012). 463 Facing stress, plants activate antioxidant defense systems to minimize damage caused by oxidative 464 stress. Among them, antioxidant enzymes mainly include SOD, CAT, and POD. SOD represents 465 the first barrier for plants to resist ROS damage caused by abiotic stresses and catalyzes the 466 467 transformation of O₂. to O₂ (Karuppanapandian and Kim 2013). CAT eliminates H₂O₂ with minimal energy consumption and very high conversion rates for large-scale scavenging of ROS 468 (Zamocky et al., 2012). POD has a strong affinity for H₂O₂ and is used for the fine-tuning 469 modulation of H₂O₂ (Abogadallah 2010). In this study, compared with the CK, SOD, and POD 470 activities of NaCl treatment in HHZ were firstly increased and then decreased, and CAT activity 471 was increased (Fig. 4 a, c, and e); but SOD, POD, and CAT activities of NaCl treatment in XLY900 472 473 was increased with stress duration (Fig. 4 b, d, and f). This indicated that rice eliminated ROS in the short term of salt stress by increasing the activity of antioxidant enzymes; in the long term, rice 474 accumulated more ROS, which could not be scavenged in time by antioxidant enzymes. The results 475 obtained from the experimentation performed in this study were similar to those reported 476 previously by others (Vaidyanathan et al., 2003; Seckin et al., 2009; Kumari et al., 2023). Foliar 477 spraying of Hemin enhanced SOD, POD, and CAT activities in leaves of the two assessed rice 478 varieties under assessment when exposed to salt stress (Fig. 4). This demonstrated that exogenous 479 Hemin stimulated the antioxidant enzyme system in rice and facilitated the increase of enzyme 480 activities, which avoided oxidative damage and ensured normal plant growth. The inhibitor ZnPP 481 could not increase the activities of antioxidant enzymes or even inhibit them. ZnPP combined with 482 Hemin mitigated the inhibitory effect caused by ZnPP (Fig. 4). Based on a previous study (Zhang 483 et al., 2012), it is hypothesized that Hemin enhances antioxidant enzyme activity in rice leaves by 484

promoting heme oxygenase (HO) expression thereby increasing the antioxidant enzyme activity. 485 ZnPP acts as an inhibitor of HO, hindering its expression which restricts the increase in antioxidant 486 enzyme activity. 487 The AsA-GSH cycle is an essential ROS scavenging mechanism. It mainly consists of the 488 489 antioxidant enzymes APX, MDHAR, DHAR, and GR and the nonenzymatic antioxidants AsA and GSH, which can alleviate the oxidative damage caused by salt stress (Wang et al., 2022). As part 490 of the cycling process, under APX catalysis, AsA converts H₂O₂ to H₂O, which is then oxidized 491 to DHA. DHA is converted to AsA by a reduction oxidation reaction with MDHAR or to DHA by 492 a non-enzymatic disproportionation reaction. DHAR catalyzes DHA and GSH to produce AsA 493 and GSSG, while GSSG can be restored to GSH by GR (Nahar et al., 2015; Tan et al., 2022). AsA 494 and GSH act as nonenzymatic antioxidants and assist other antioxidant enzymes in scavenging 495 ROS. In this study, salt stress decreased AsA content and increased DHA and AsA+DHA contents 496 in rice leaves (Fig. 5), indicating that APX activity enhancement decreased the AsA content. Foliar 497 spraying of Hemin significantly improved AsA content and diminished DHA and AsA+DHA 498 contents. This finding suggested that the increase in MDHAR and DHAR activities caused an 499 increase in AsA content and a decrease in DHA content. Under salt stress, GSH and GSH+GSSG 500 contents decreased, and GSSG content increased, while exogenous Hemin treatment increased 501 502 GSH and GSH+GSSG contents and decreased GSSG content in rice leaves (Fig. 6). This showed that the enhanced GR activity facilitated the conversion of GSSG to GSH and maintained a high 503 level of reduction state GSH, which was in agreement with the research of Piao et al. (2022). 504 Together, these findings indicated that Hemin improved cellular reduction ability at a high level 505 to protect against oxidative damage. In addition, in this experiment, salt stress increased APX, 506 MDHAR, DHAR, and GR activities in the two assessed rice varieties compared with the control 507 508 (Fig. 7). It indicated that salinity stress increased the H₂O₂ content of rice leaves, which prompted APX to accelerate the scavenging of H₂O₂, while the increased activities of MDHAR, DHAR and 509 GR were beneficial to the resistance of a leaf to oxidative damage, which was a stress response to 510 excess H₂O₂. Foliar spraying of Hemin further induced the activities of APX, MDHAR, DHAR, 511 and GR (Fig. 7). A previous study had suggested that this might be possible by upregulating the 512 transcription of genes for enzymes related to the metabolism of the degradation products CO and 513 514 GSH, which could increase the enzyme activity to help plants mitigate the oxidative damage caused by the stress (Zhang et al., 2016). ZnPP could not be degraded to CO₂ in plants and reduce 515 endogenous CO₂ production by blocking HO expression. Thus, it could not enhance the activities 516 of MDHAR, DHAR, and GR under salt stress. Moreover, Hemin induced HO gene expression and 517 enhanced gene expression of critical enzymes in the AsA-GSH cycle, while ZnPP prevented HO 518 expression and even strengthened the inhibitory effect of NaCl stress on the AsA-GSH cycle in 519 520 rice seedlings (Cui et al., 2012). These results reflected that Hemin improved the efficiency of ROS scavenging in rice leaves, which maintained cell membrane stability and enhanced the 521 resistance of rice. 522 Although saline soils contain water, plants cannot absorb the water, mainly because the soil has a 523 high level of ions that increase the osmotic pressure of the external environment, which prevents 524 plant cells from absorbing water or even leads to the loss of water from plant root cells. Therefore, 525

527

528

529530

531

532

533

534

535536

537

538

539

540

541

542543

544

545

546

547

548

plants ensure water absorption by increasing their production of osmoregulatory substances and decreasing the difference in osmotic potential between the inside and outside cells. The important osmoregulatory substances, soluble proteins, and proline have different physiological functions in maintaining osmotic balance in plants. Soluble proteins can help the bound water in plant cells and maintain the stability of the cell structure (Hao et al., 2021). Proline is a potential non-enzymatic antioxidant that scavengers of single-linear oxygen molecules and hydroxyl radicals. Thus, proline prevents lipid peroxidation of cell membranes and avoids exposure of plants to ROS-induced oxidative damage (Szabados and Savoure 2010). In this study, we found that with the increased period of NaCl stress exposure, soluble protein content initially increased and then decreased in HHZ, while it continued to increase in the XLY900 variety (Fig. 7). A previous study has shown that salt stress disrupts the protein synthesis pathway at later stages, accelerating its catabolism, generating large amounts of amino acids, and ultimately reducing protein content (Alisofi et al., 2020). This could be why there is a decrease in soluble protein content in HHZ leaves. The soluble protein content in XLY900 leaves was enhanced to relieve the difference in osmotic potential. The two assessed rice varieties exposed to salt stress had significantly increased proline content. Compared with the XLY900 variety, salt stress caused the HHZ variety to produce much more proline (Fig. 8 c and d). This was similar to the result of Gao et al. (2016), in which salt-sensitive varieties had high proline content when exposed to stress. Foliar spraying of Hemin promoted the accumulation of osmoregulatory substances in rice leaves, significantly increasing soluble protein and proline contents. However, in the ZnPP treatment, the content of osmoregulatory substances was reduced instead of increased, with similar observations previously reported by Zhao et al. (2022). Together, these results indicate that Hemin induces a large accumulation of proline and soluble proteins, which is beneficial for the absorption of water and the maintenance of cellular osmotic pressure in rice leaves under salt stress.

549550

551

552

553554

555

556

557

558

559560

561

562

563

Conclusions

During the seedling stage, the activity of antioxidant enzymes and the content of non-enzymatic antioxidants initially increased in response to salt stress. This response effectively countered the accumulation of ROS induced by the stress. However, with prolonged exposure to stress, the enzyme activity continued to increase while the content of the antioxidants decreased, failing to alleviate the stress promptly. The accumulated ROS and membrane lipid peroxides exacerbated the damage caused by the imposed stress, eventually leading to a decrease in growth. The application of Hemin via foliar spray enhanced the antioxidant enzyme activity and elevated the non-enzymatic antioxidant contents, which contributed to an overall improvement in the antioxidant capacity of rice, resulting in a reduction of membrane lipid peroxidation. This, in turn, ensured the continued functionality of the AsA-GSH cycle to enhance rice's resistance to the imposed stress.

Funding

564 Special Projects in Key Areas of Ordinary Colleges of the Educational Commission of Guangdong

- Province (2021ZDZX4027), Innovation Team Project of ordinary colleges of the Educational
- 566 Commission of Guangdong Province (2021KCXTD011), Zhanjiang Science and Technology
- 567 Bureau (2022A01016), Research start-up project of Guangdong Ocean University (R20046),
- Research start-up project of Guangdong Ocean University (060302052012).

570 Competing interest

- 571 The authors declare that the research was conducted in the absence of any commercial or financial
- 572 relationships that could be construed as a potential conflict of interest.

573

574

Author Contributions

- Fengyan Meng conceived and designed the study performed the experiments, analyzed the data,
- authored or reviewed drafts of the article, interpreted the results and improved the manuscript, and
- 577 approved the final draft.
- Naijie Feng conceived and designed the experiment performed the experiments, authored or
- reviewed drafts of the article, and approved the final draft.
- Dianfeng Zheng analyzed the data, authored or reviewed drafts of the article, and approved the
- 581 final draft.
- Meiling Liu carried out experiments, prepared figures and/or tables, and approved
- 583 the final draft.
- Hang Zhou reviewed drafts of the article and approved the final draft.
- Rongiun Zhang performed the experiments, prepared figures and/or tables, and approved the final
- 586 draft.
- 587 Xixin Huang analyzed the data, prepared figures and/or tables, and approved the final
- 588 draft.
- Angi Huang analyzed the data, prepared figures and/or tables, and approved the final draft.

590

591

References

- Abogadallah G M. 2010. Antioxidative defense under salt stress. Plant signaling behavior 5: 369-374 DOI:
- 593 10.4161/psb.5.4.10873.
- Ahmad P, Abdel Latef A A, Hashem A, Abd Allah E F, Gucel S, Tran L S P. 2016. Nitric oxide mitigates salt
- stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant science 7:
- 596 347 DOI: 10.3389/fpls.2016.00347.
- 597 Alisofi S, Einalia A, Sangtarash M H. 2020. Jasmonic acid-induced metabolic responses in bitter melon
- 598 (Momordica charantia) seedlings under salt stress. Journal of horticultual science biotechnology 95: 247-259
- 599 DOI: 10.1080/14620316.2019.1663135.
- Alkharabsheh H M, Seleiman M F, Hewedy O A, Battaglia M L, Jalal R S, Alhammad B A, Schillaci C, Ali N,
- 601 Al-Doss, A. 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture:
- a review. Agronomy-basel 11: 2299 DOI: 10.3390/agronomy11112299.

- Antoniou C, Savvides A, Christou A, Fotopoulos V. 2016. Unravelling chemical priming machinery in plants:
- 604 the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement. Current opinion in
- 605 plant biology 33: 101-107 DOI: 10.1016/j.pbi.2016.06.020.
- Ashraf M A, Hafeez A, Rasheed R, Hussain I, Farooq U, Rizwan M, Ali S. 2023. Evaluation of physio-
- morphological and biochemical responses for salt tolerance in wheat (Triticum aestivum L.) cultivars. Journal of
- 608 plant growth regulation 43: 4402-4422 DOI: 10.1007/s00344-023-10905-4.
- 609 Athar H U, Zulfilar F, Moosa A, Ashraf M, Zafar Z U, Zhang L X, Ahmed N, Kalaji H M, Nafees M, Hossain
- 610 M A, Islam M S, Elsabagh A, Siddique K H M. 2022. Salt stress proteins in plants: an overview. Frontiers in
- 611 plant science 13: 999058 DOI: 10.3389/fpls.2022.999058.
- Basilio-apolinar A, Eugenio Gonzalez-de La Vara L, Gabriel Ramirez-pimentel J, Aguirre-Mantilla Cesar L,
- 613 Iturriaga Gabriel, Covarrubias-Prieto Jorge, Carlos Raya-Perez Juan. 2021. Silicon induces changes in the
- antioxidant system of millet cultivated in drought and salinity. Chilean journal of agricultural research 81: 655-
- 615 663 DOI: 10.4067/S0718-58392021000400655.
- 616 Ben Youssef R, Jelali N, Boukari N, Albacete A, Martinez C, Alfocea F P, Abdelly C. 2021. The Efficiency of
- different priming agents for improving germination and early seedling growth of local tunisian barley under
- 618 salinity stress. Plants basel 10: 2264 DOI: 10.3390/plants10112264.
- Cao Z, Geng B, Xu S, Xuan, W, Nie, L, Shen, W B, Liang, Y C, Guan, R Z. 2011. BnHO1, a haem oxygenase-1
- 620 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. Journal of
- 621 experimental botany 62: 4675-4689 DOI: 10.1093/jxb/err190.
- 622 Chandrakar V, Yadu B, Meena R K, Dubey A, Keshavkant S. 2017. Arsenic-induced genotoxic responses and
- 623 their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant physiology
- 624 biochemistry 112: 74-86 DOI: 10.1016/j.plaphy.2016.12.023.
- 625 Chen G, Zheng D, Feng N, Zhou H, Mu D W, Zhao L M, Shen X F, Rao G S, Meng F Y, Huang A Q. 2022.
- 626 Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Scientific reports 12:
- 627 8228 DOI: 10.1038/s41598-022-11408-0.
- 628 Chen X Y, Ding X, Xu S, Wang R, Xuan W, Cao Z Y, Chen J, Wu H H, Ye M B, Shen W B. 2009. Endogenous
- 629 hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative
- 630 stress in wheat seedling leaves. Journal of integrative plant biology 51: 951-960 DOI: 10.1111/j.1744-
- 631 7909.2009.00869.x.
- 632 Costa H, Gallego S M, Tomaro M L. 2002. Effect of UV-B radiation on antioxidant defense system in sunflower
- 633 cotyledons. Plant science 162: 939-945 DOI: 10.1016/S0168-9452(02)00051-1.
- 634 Cui W T, Li L, Gao Z Z, Wu H H, Xie Y J, Shen W B. 2012. Haem oxygenase-1 is involved in salicylic acid-
- 635 induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. Jornal of experimental botany
- 636 63: 5521-5534 DOI: 10.1093/jxb/ers201.
- 637 Ding Z, Kheir A M S, Ali O A M, Hafez E M, ElShamey E A, Zhou ZnX, Wang B Z, Lin X E, Ge, Y, Fahmy
- 638 A E, Seleiman M F. 2021. A vermicompost and deep tillage system to improve saline-sodic soil quality and
- 639 wheat productivity. Journal environmental management 277: 111388 DOI: 10.1016/j.jenvman.2020.111388.
- 640 Feng N, Yu M, Li Y, Jin D, Zheng D F. 2021. Prohexadione-calcium alleviates saline-alkali stress in soybean
- 641 seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicology environmental
- 642 safety 220: 112369 DOI: 10.1016/j.ecoenv.2021.112369.
- Fu G, Zhang L, Cui W, Wang Y Q, Shen W B, Ren Y; Zheng T Q. 2011. Induction of heme oxygenase-1 with

- 644 β-CD-hemin complex mitigates cadmium-induced oxidative damage in the roots of Medicago sativa. Plant and
- 645 soil 345: 271-285 DOI: 10.1007/s11104-011-0779-x.
- Gao Y, Lu Y, Wu M Q, Liang E X, Li Y, Zhang D P, Yin Z T, Ren X Y, Dai Y, Deng D X. 2016. Ability to
- remove Na⁺ and retain K⁺ correlates with salt tolerance in two maize inbred lines seedlings. Frontiers in plant
- 648 science 7: 1716 DOI: 10.3389/fpls.2016.01716.
- 649 Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop
- 650 plants. Plant physiology biochemistry 48: 909-930 DOI: 10.1016/j.plaphy.2010.08.016.
- 651 Habib N, Ali Q, Ali S, Haider M Z, Javed M T, Khalid M, Perveen R, Alsahli A A, Alyemeni M N. 2021. Seed
- 652 priming with sodium nitroprusside and H₂O₂ confers better yield in wheat under salinity; water relations,
- antioxidative defense mechanism and ion homeostasis. Journal of plant growth regulation 40: 2433-2453 DOI:
- 654 10.1007/s00344-021-10378-3.
- Hao S H, Wang Y R, Yan Y X, Liu Y H, Wang J Y, Chen S. 2021. A review on plant responses to salt stress
- and their mechanisms of salt resistance. Horticulturae 7: 132 DOI: 10.3390/horticulturae7060132.
- 657 Hasnuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin S M, Al Mahmud J, Fujita M, Fotopoulos V. 2020.
- Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a
- universal defense regulator. Antioxidants 9: 681 DOI: 10.3390/antiox9080681.
- 660 Hasanuzzaman M, Hossain M A, Fujita M. 2011. Nitric oxide modulates antioxidant defense and the
- 661 methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant
- biotechnology reports 5: 353-365 DOI: 10.1007/s11816-011-0189-9.
- 663 Huang M, Zeng L, Liu C, Li X Y, Wang H L. 2022. Research on the eco-efficiency of rice production and its
- 664 improvement path: a case study from China. International journal of environmental research and public health
- 665 19: 8645 DOI: 10.3390/ijerph19148645.
- Jabeen Z, Hussain N, Irshad F, Zeng JB, Tahir A, Zhang GP. 2020. Physiological and antioxidant responses of
- 667 cultivated and wild barley under salt stress. Plant soil and environment 66: 334-344. DOI: 10.17221/169/2020-
- 668 PSE.
- 669 Karuppanapandian T, Kim W. 2013. Cobalt-induced oxidative stress causes growth inhibition associated with
- 670 enhanced lipid peroxidation and activates antioxidant responses in Indian mustard (*Brassica juncea* L.) leaves.
- 671 Acta physiologiae plantarum 35: 2429-2443 DOI: 10.1007/s11738-013-1277-y.
- 672 Kaya C, Ugurlar F, Ashraf M, Alam P, Ahmad P. 2023. Nitric oxide and hydrogen sulfide work together to
- 673 improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle. Plant physiology and
- 674 biochemistry. 194: 651-663 DOI: 10.1016/j.plaphy.2022.11.041.
- 675 Keles Y, Oncel I. 2002. Response of antioxidative defence system to temperature and water stress combinations
- 676 in wheat seedlings. Plant science 163: 783-790 DOI: 10.1016/S0168-9452(02)00213-3.
- 677 Kenawy E-R, Rashad M, Hosny A, Shendy S, Gad D, Saad-Allah K M. 2022. Enhancement of growth and
- 678 physiological traits under drought stress in Faba bean (Vicia faba L.) using nanocomposite. Journal of plant
- 679 interactions 17: 404-41 DOI: 10.1080/17429145.2022.2038293.
- 680 Kumari S, Nazir F, Jain K, Khan M I R. 2023. GABA and potassium modulates defence systems, assimilation
- 681 of nitrogen and carbon, and yield traits under salt stress in wheat. Journal of plant growth regulation DOI:
- 682 10.1007/s00344-023-10992-3.
- 683 Lin Y J, Yu X Z, Li Y H, Yang L. 2020. Inhibition of the mitochondrial respiratory components (Complex I and
- 684 Complex III) as stimuli to induce oxidative damage in *Oryza sativa* L. under thiocyanate exposure. Chemosphere

- 685 243: 125472 DOI: 10.1016/j.chemosphere.2019.125472.
- 686 Ling T, Zhang B, Cui W, Wu M Z, Lin J S, Zhou W T, Huang J J, Shen W B. 2009. Carbon monoxide mitigates
- salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting
- superoxide anion overproduction. Plant science 177: 331-340 DOI: 10.1016/j.plantsci.2009.06.004.
- 689 Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. 2022. Salt tolerance in rice: physiological responses and
- 690 molecular mechanisms. Crop journal 10: 13-25 DOI: 10.1016/j.cj.2021.02.010.
- 691 Liu J, Wi Y Q, Dong G C, Zhu G L, Zhou G S. 2023. Progress of research on the physiology and molecular
- 692 regulation of sorghum growth under salt stress by gibberellin. International journal of molecular sciences
- 693 24:6777 DOI: 10.3390/ijms24076777.
- 694 Liu L J, Huang L, Lin X Y, Sun C L. 2020. Hydrogen peroxide alleviates salinity-induced damage through
- enhancing proline accumulation in wheat seedlings. Plant cell reports. 39: 567-575. DOI: 10.1007/s00299-020-
- 696 02513-3.
- 697 Liu X, Meng Y, Wei S,Gu W R. 2021. Exogenous Hemin confers cadmium tolerance by decreasing cadmium
- 698 accumulation and modulating water status and matter accumulation in maize seedlings. Agronomy-basel 11
- 699 DOI: 10.3390/agronomy11040739.
- 700 Lu X P, Min W F, Shi Y F, Tian L, Li P F, Ma T L, Zhang Y X, Luo C K. 2022. Front plant science 13:849553
- 701 DOI: 10.3389/fpls.2022.849553.
- 702 Mukhopadhyay R, Sarkar B, Jat H S, Sharma P C, Bolan N S. 2021. Soil salinity under climate change:
- 703 Challenges for sustainable agriculture and food security. Journal of environmental management 280: 111736
- 704 DOI: 10.1016/j.jenvman.2020.111736.
- Nahar K, Hasanuzzaman M, Alam M M, Fujita M. 2015. Exogenous spermidine alleviates low temperature
- 706 injury in mung bean (*Vigna radiata* L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway.
- 707 International Journal of molecular sciences 16: 30117-30132 DOI: 10.3390/ijms161226220.
- 708 Piao L, Wang Y, Liu X M, Sun G Y, Zhang S Y, Yan J Y, Chen Y, Meng Y, Li M, Gu W R. 2022. Exogenous
- 709 Hemin alleviated cadmium stress in maize (Zea mays L.) by enhancing leaf photosynthesis, AsA-GSH cycle and
- 710 polyamine metabolism. Front in plant science 13: 993675 DOI: 10.3389/fpls.2022.993675.
- 711 Rasheed R, Ashraf M A, Ahmad S J N, Parveen N, Hussain I, Bashir R. 2022. Taurine regulates ROS
- 712 metabolism, osmotic adjustment, and nutrient uptake to lessen the effects of alkaline stress on Trifolium
- 713 alexandrinum L. plants. South african journal of botany 148: 482-498 DOI: 10.1016/j.sajb.2022.05.023.
- 714 Seckin B, Sekmen A H, Turkan I. 2009. An Enhancing effect of exogenous mannitol on the antioxidant enzyme
- 715 activities in roots of wheat under salt stress. Journal plant growth regulation 28: 12-20 DOI: 10.1007/s00344-
- 716 008-9068-1.
- 717 Seleiman M F, Semida W M, Rady M M, Mohamed G F, Hemida K A, Alhammad B A, Hassan M M, Shami
- 718 A. 2020. Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in
- salt-stressed cucumber. Plants basel 9: 1783 DOI: 10.3390/plants9121783.
- 720 Shan C J, Liu R Q. 2017. Exogenous hydrogen peroxide up-regulates the contents of ascorbate and glutathione
- 721 in the leaves of Vigna radiata (Linn.) Wilczek. exposed to salt stress. Brazilian journal botany 40: 583-589 DOI:
- 722 10.1007/s40415-016-0354-z.
- 723 Sharifi P, Amirnia R, Torkian M, Bidabadi S S. 2021. Protective role of exogenous selenium on salinity-sressed
- 724 stachys byzantine plants. Journal of soil science and plant nutrition 21: 2660-2672 DOI: 10.1007/s42729-021-
- 725 00554-5.

- Singh A, Kumar A, Yadav S, Singh I K. 2019. Reactive oxygen species-mediated signaling during abiotic stress.
- 727 Plant gene 18: 100173 DOI: 10.1016/j.plgene.2019.100173.
- 728 Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M,
- Kiranmai K, Lokesh U. 2015. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet
- 730 (Setaria italica L.) cultivars with different salinity tolerance. Plant cell reports 34: 141-156 DOI:
- 731 10.1007/s00299-014-1695-3.
- 732 Szabados L, Savoure A. 2010. Proline: a multifunctional amino acid. Trends in plant science 15: 89-97 DOI:
- 733 10.1016/j.tplants.2009.11.009.
- 734 Talubaghi M J, Daliri M S, Mazloum P, Rameeh V, Mousavi A. 2022. Effect of salt stress on growth,
- 735 physiological and biochemical parameters and activities of antioxidative enzymes of rice cultivars. Cereal
- research communications 51:403-411 DOI: 10.1007/s42976-022-00314-w.
- 737 Tan Z M, Xuan Z Y, Wu C Y, Cheng Y X, Xu C Z, Ma X C, Wang D S. 2022. Effects of selenium on the AsA-
- 738 GSH system and photosynthesis of pakchoi (Brassica chinensis L.) under lead stress. Journal of soil science and
- 739 plant nutrition 22: 5111-5122 DOI: 10.1007/s42729-022-00987-6.
- Tian T, Wang J, Wang H, Cui J, Shi X Y, Song J H, Li W D, Zhong M T, Qiu Y, Xu T. 2022. Nitrogen application
- alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings
- 742 (*Brassica napus*). Plant signaling behavior 17: e2081419 DOI: 10.1080/15592324.2022.2081419.
- 743 Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. 2003. Scavenging of reactive oxygen species in NaCl
- stressed rice (*Oryza sativa* L.) differential response in salt-tolerant and sensitive varieties. Plant science 165:
- 745 1411-1418 DOI: 10.1016/j.plantsci.2003.08.005.
- Verma K, Dixit S, Shekhawat G S, Alam A. 2015. Antioxidant activity of heme oxygenase 1 in *Brassica juncea*
- 747 (L.) Czern.(Indian mustard) under salt stress. Turkish journal of biology 39: 540-549 DOI: 10.3906/biy-1501-
- 748 28.
- Wang S, Zhou H, Feng N, Xiang H T, Liu Y, Wang F, Li W, Feng S J, Liu M L, Zheng D F. 2022. Physiological
- 750 response of soybean leaves to uniconazole under waterlogging stress at R1 stage. Journal of plant physiology
- 751 268: 153579 DOI: 10.1016/j.jplph.2021.153579.
- 752 Xie Y, Cui W, Yuan X, Shen W B, Yang Q. 2011. Heme oxygenase-1 is associated with wheat salinity
- 753 acclimation by modulating reactive oxygen species homeostasis. Journal integrative plant biology 53: 653-670
- 754 DOI: 10.1111/j.1744-7909.2011.01052.x.
- 755 Yan F, Wei H, Ding Y, Li W W, Liu Z H, Chen L, Tang S, Ding C Q, Jiang Y, Li G H. 2021. Melatonin regulates
- 756 antioxidant strategy in response to continuous salt stress in rice seedlings. Plant physiology and biochemistry
- 757 165: 239-250 DOI: 10.1016/j.plaphy.2021.05.003.
- 758 Yu M L, Wu Q, Zheng D F, Feng N J, Liang X L, Liu M L, Li Y, Mou B M. 2021. Plant growth regulators
- 759 enhance saline–alkali tolerance by upregulating the levels of antioxidants and osmolytes in soybean seedlings.
- 760 Journal of plant growth regulation 41: 3218-3232 DOI: 10.1007/s00344-021-10507-y.
- 761 Zamocky M, Gasselhuber B, Furtmuller P G, Obinger C. 2012. Molecular evolution of hydrogen peroxide
- degrading enzymes. Archives of biochemistry biophysics 525: 131-144 DOI: 10.1016/j.abb.2012.01.017.
- 763 Zeng L, Shannon M C, Lesch S M. 2001. Timing of salinity stress affects rice growth and yield components.
- 764 Agricultural water management 48(3): 191-206 DOI: 10.1016/S0378-3774(00)00146-3.
- Zhang C P, Li Y C, Yuan F G, Hu S J, He P. 2012. Effects of hematin and carbon monoxide on the salinity stress
- responses of Cassia obtusifolia L. seeds and seedlings. Plant and soil 359: 85-105 DOI: 10.1007/s11104-012-

- 767 1194-7.
- 768 Zhang J, Yang X, Ren Y, Yang B, Liu Z W, You B W, Zhang H X, Shen W B, Chen X P. 2016. β-Cyclodextrin-
- 769 hemin enhances tolerance against salinity in tobacco seedlings by reestablishment of ion and redox homeostasis.
- 770 Plant growth regulation 81: 533-542 DOI: 10.1007/s10725-016-0230-7.
- 771 Zhang W, Jiang B, Li W, Song H, Yu Y S, Chen J F. 2009. Polyamines enhance chilling tolerance of cucumber
- 772 (Cucumis sativus L.) through modulating antioxidative system. Scientia horticulturae 122: 200-208 DOI:
- 773 10.1016/j.scienta.2009.10.001.
- 774 Zhao M, Meng Y, Wang Y, Sun G Y, Liu X M, Li J, Wei S, Gu W R. 2022. Exogenous Hemin alleviates
- cadmium stress in maize by enhancing sucrose and nitrogen metabolism and regulating endogenous hormones.
- 776 International journal of phytoremediation 25:368-380 DOI: 10.1080/15226514.2022.2086212.
- 777 Zheng T R, Zhan J Y, Yang M, Wang M J, Sun W J, Shan Z, Chen H. 2021. Hemin-induced increase in saponin
- content contributes to the alleviation of osmotic and cold stress damage to Conyza blinii in a heme oxygenase 1-
- dependent manner. Journal of Zhejiang university-science B 22: 682-694 DOI: 10.1631/jzus.B2000697.
- Zuo X, Dai J, Wu W, Jin J H, Ge W, Wang Y P, Ren L, Lin Y J, Pei Y Y, Xie H. 2022. Microfossil evidence of
- 781 rice cultivation on the southeast China coast 7500 years ago. Science china earth sciences 65: 2115-2126 DOI:
- 782 10.3389/fpls.2016.00347.

Table 1(on next page)

Effects of exogenous Hemin on the morphological indexes of rice seedlings under NaCl stress

Notes: Data in this table is mean±standard error of at least three replicates. According to Duncan's multiple range tests, different letters indicate significant difference at the five percent significant level Within each column.

PeerJ

- **1 Table 1**
- 2 Effects of exogenous Hemin on the morphological indexes of rice seedlings under NaCl
- 3 stress

morphological	Varieties	Treatments	NaCl stress time (d)			
indexes			3	5	7	9
Plant height (cm)	HHZ	CK	31.67±0.20a	32.63±0.19a	33.57±0.07a	33.63±0.09a
		S	27.13±0.71c	27.93±0.13d	28.00±0.00d	29.10±0.21d
		SH	29.83±0.19b	30.97±0.17b	31.47±0.03b	31.90±0.15b
		SZ	27.00±1.00c	27.63±0.57d	27.90±0.57d	28.50±0.32d
		SZH	28.93±0.03b	29.57±0.03c	29.80±0.30c	29.97±0.09c
	XLY900	CK	32.90±0.31a	33.43±0.18a	33.80±0.46a	34.67±0.03a
		S	28.30±0.06d	29.40±0.12d	29.70±0.06d	30.97±0.27d
		SH	30.57±0.03b	30.97±0.23b	31.33±0.18b	33.17±0.33b
		SZ	28.33±0.03d	29.50±0.06d	29.50±0.06d	30.50±0.06d
		SZH	29.10±0.10c	30.25±0.14c	30.53±0.03c	32.00±0.00c
Stem diameter	HHZ	CK	3.27±0.06a	3.47±0.06a	3.63±0.06a	3.80±0.10a
(mm)		S	2.43±0.00e	2.67±0.12d	2.63±0.06e	2.70±0.12d
		SH	3.07±0.06b	3.20±0.00b	3.40±0.00b	3.57±0.06b
		SZ	2.63±0.15d	2.67±0.12d	2.73±0.06d	2.87±0.21d
		SZH	2.83±0.06c	2.93±0.06c	3.07±0.06c	3.20±0.00c
	XLY900	CK	3.53±0.03a	3.63±0.03a	3.77±0.03a	3.90±0.00a
		S	2.87±0.03d	3.00±0.00d	2.90±0.06d	3.00±0.00d
		SH	3.37±0.03b	3.47±0.09b	3.60±0.00b	$3.63\pm0.03b$
		SZ	2.93±0.07d	3.00±0.06d	2.93±0.03d	3.10±0.06d
		SZH	3.20±0.00c	3.23±0.03c	3.40±0.00c	3.47±0.03c

- 4 Notes: Data in this table is mean \pm standard error of at least three replicates. According to Duncan's
- 5 multiple range tests, different letters indicate significant difference at the five percent significant
- 6 level Within each column.

7 8

9

10

11

12 13

14

PeerJ

Table 2(on next page)

Effects of exogenous Hemin on the biomass of rice seedlings under NaCl stress

Notes: Data in this table is mean±standard error of at least three replicates. According to Duncan's multiple range tests, different letters indicate significant difference at the five percent significant level Within each column.

Table 2
 Effects of exogenous Hemin on the biomass of rice seedlings under NaCl stress

morphological	Varieties	Treatments	NaCl stress time (d)				
indexes			3	5	7	9	
Shoot fresh weight (g)	HHZ XLY900	CK	0.4771±0.0060a	0.4742±0.0109a	0.4829±0.0009a	0.5147±0.0041a	
		S	0.3225±0.0092d	0.3335±0.0025d	0.3467±0.0043d	$0.3617 \pm 0.0007 d$	
		SH	0.4109±0.0094b	0.3956±0.0029b	$0.4270 \pm 0.0043b$	$0.4430 \pm 0.0029 b$	
		SZ	0.3169±0.0032d	0.3399±0.0056d	$0.3398 \pm 0.0024d$	$0.3610\pm0.0091d$	
		SZH	0.3557±0.0109c	0.3709±0.0040c	$0.4058 \pm 0.0018c$	$0.4180 \pm 0.0068c$	
		CK	0.5147±0.0021a	0.5110±0.0262a	$0.5225 \pm 0.0053a$	$0.5477 \pm 0.0098a$	
		S	0.3566±0.0101d	0.3577±0.0068c	0.3718±0.0051c	$0.3985 \pm 0.0014d$	
		SH	$0.4385 \pm 0.0076b$	0.4528±0.0195b	$0.4546 \pm 0.0318b$	$0.4617 \pm 0.0160 b$	
		SZ	0.3623±0.0033d	0.3602±0.0220c	$0.3732 \pm 0.0132c$	$0.3923\pm0.0094d$	
		SZH	0.4034±0.0057c	$0.4185 \pm 0.0088b$	$0.4260 \pm 0.0016b$	0.4310±0.0025c	
Shoot dry weight (g)	HHZ	CK	0.0938±0.0014a	$0.0966 \pm 0.0022a$	$0.1004\pm0.0007a$	$0.1016\pm0.0015a$	
		S	$0.0740\pm0.0023c$	$0.0761\pm0.0025c$	$0.0770 \pm 0.0007c$	$0.0783 \pm 0.0013d$	
		SH	$0.0840\pm0.0012b$	$0.0852 \pm 0.0013b$	$0.0870 \pm 0.0015b$	0.0907±0.0013b	
		SZ	0.0725±0.0024c	$0.0751\pm0.0004c$	$0.0767 \pm 0.0014c$	0.0779±0.0011d	
		SZH	$0.0824 \pm 0.0006b$	0.0831±0.0015b	$0.0841 \pm 0.0012b$	0.0846±0.0015c	
	XLY900	CK	$0.0933 \pm 0.0023a$	0.1016±0.0017a	$0.1044\pm0.0005a$	$0.1096\pm0.0045a$	
		S	0.0817±0.0017d	$0.0825 \pm 0.0015 d$	0.0818 ± 0.0008 cd	0.0853±0.0000cd	
		SH	0.0933±0.0006b	0.0943±0.0003b	$0.0934 \pm 0.0029b$	$0.0962 \pm 0.0009 b$	
		SZ	0.0804±0.0023d	0.0816±0.0009d	$0.0802 \pm 0.0043 d$	$0.0811 \pm 0.0010d$	
		SZH	0.0876±0.0006c	0.0871±0.0015c	0.0880±0.0000bc	0.0895±0.0006bc	

Notes: Data in this table is mean \pm standard error of at least three replicates. According to Duncan's

4 multiple range tests, different letters indicate significant difference at the five percent significant

5 level Within each column.

6

7

Figure 1. Effect of Hemin on growth of rice seedlings under NaCl (on day 9) in HHZ (a) and XLY900 (b).

Figure 2. Effect of Hemin on membrane damage and ROS accumulation of rice seedlings under NaCl.

Electrolyte leakage in HHZ (a) and XLY900 (b); MDA in HHZ (c) and XLY900 (d) and H_2O_2 in HHZ (e) and XLY900 (f). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

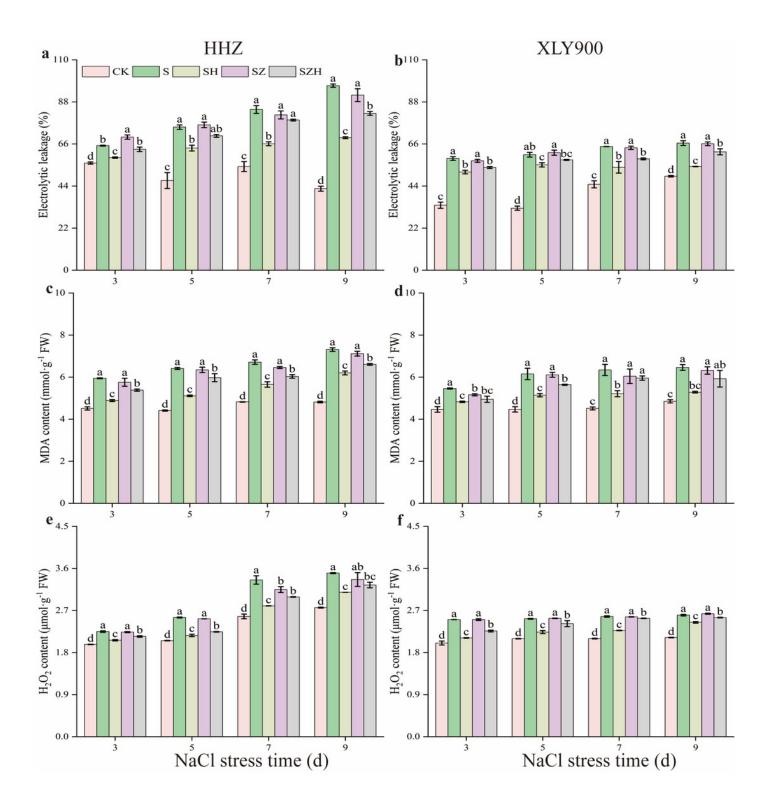


Figure 3. Effect of Hemin on histochemical localization of H_2O_2 and O_2 on rice leaves under NaCl stress (on day 3).

 H_2O_2 in HHZ (a) and XLY900 (b) and O_2 in HHZ (c) and XLY900 (d).

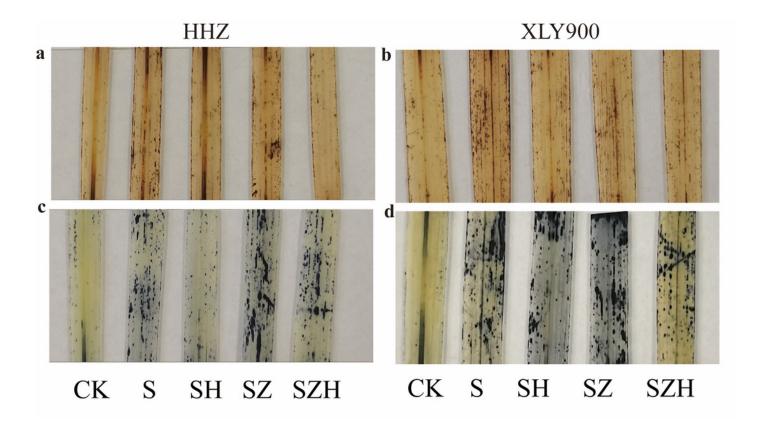


Figure 4. Effect of Hemin on SOD, POD, and CAT activity of rice seedlings under NaCl stress.

SOD in HHZ (a) and XLY900 (b); POD in HHZ (c) and XLY900 (d) and CAT in HHZ (e) and XLY900 (f). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

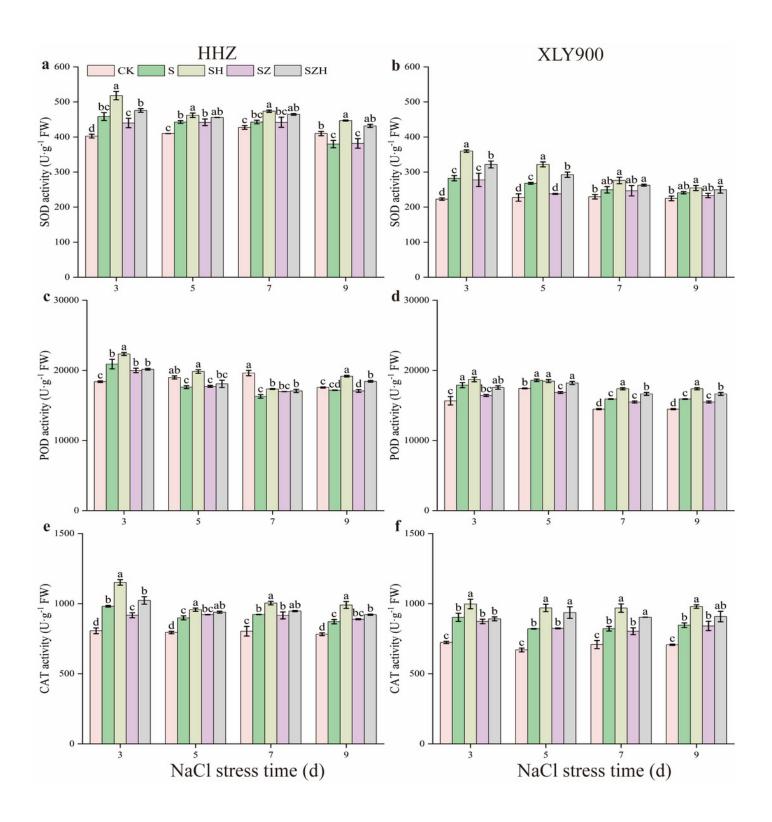


Figure 5. Effect of Hemin on ascorbic acid content of rice seedlings under NaCl stress.

AsA in HHZ (a) and XLY900 (b); DHA in HHZ (c) and XLY900 (d) and AsA+DHA in HHZ (e) and XLY900 (f). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

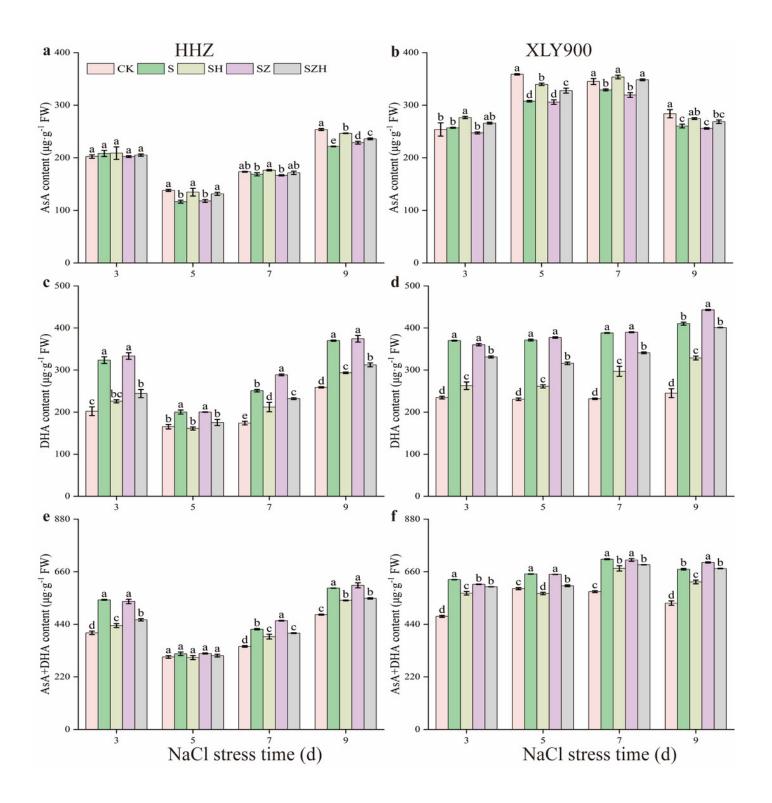


Figure 6. Effect of Hemin on glutathione content of rice seedlings under NaCl stress.

GSH in HHZ (a) and XLY900 (b); GSSG in HHZ (c) and XLY900 (d) and GSH+GSSG in HHZ (e) and XLY900 (f). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

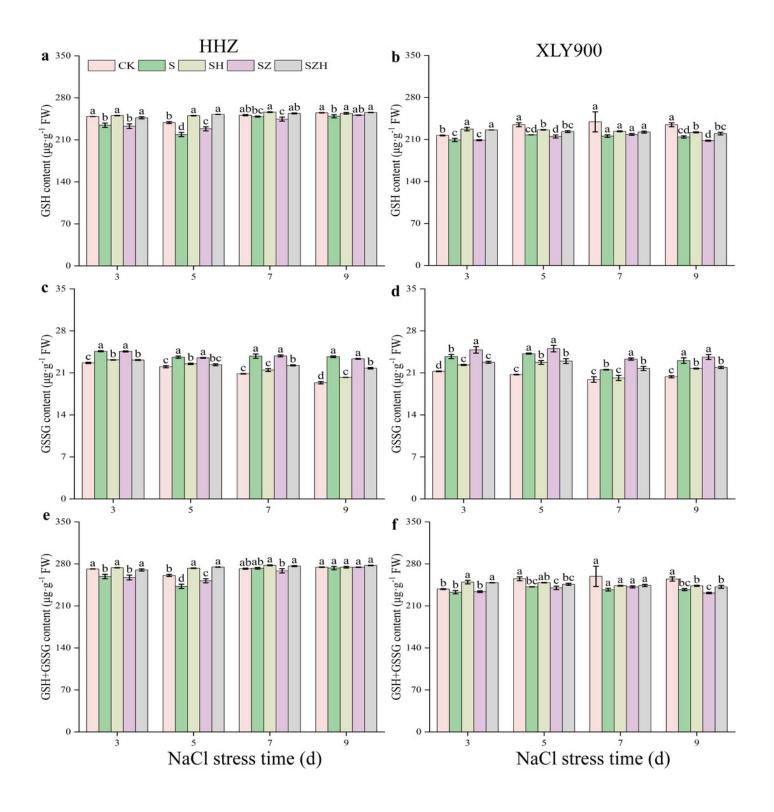


Figure 7. Effect of Hemin on key enzyme activities in the AsA-GSH defense system of rice seedlings under NaCl stress.

APX in HHZ (a) and XLY900 (b); MDHAR in HHZ (c) and XLY900 (d) DHAR in HHZ (e) and XLY900 (f) and GR in HHZ (g) and XLY900 (h). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

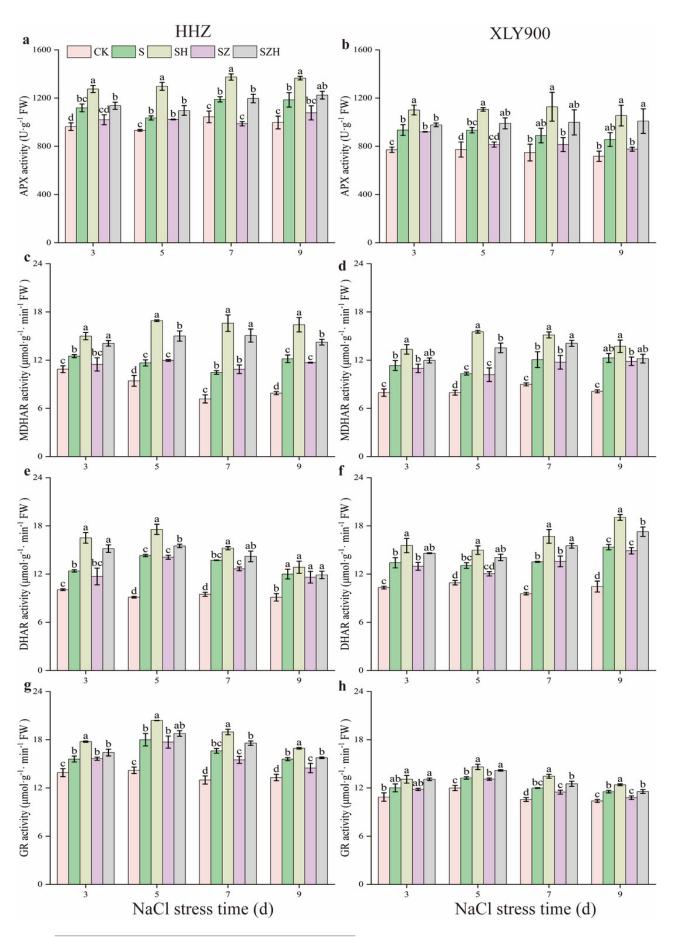


Figure 8. Effect of Hemin on osmoregulatory substances of rice seedlings under NaCl stress.

Proline content in HHZ (a) and XLY900 (b); soluble protein content in HHZ (c) and XLY900 (d). Values are the means±SD of three replicate samples. Different letters in the data column indicate significant differences (p<0.05) according to Duncan's test.

