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Abiotic stress caused by soil salinization remains a major global challenge that threatens
and severely impacts worldwide crop growth causing yield reduction. Rice is an important
economic crop affected by salt stress. In this study, we aimed to investigate the damage of
salt stress on the leaf physiology of two rice varieties (HuanghuaZhan, HHZ and
XiangliangYou 900, XLY900) and the regulatory mechanism of Hemin to maintain seedling
growth under the imposed stress. Therefore, at the three leave and one heart stage,

leaves were foliar sprayed with 5 umol-L* Hemin or 25 umol-L™* ZnPP (Zinc protoporphyrin

IX) followed by an imposed salt stress treatment regime (50 mmol-L™* sodium chloride
(NaCl). The findings revealed that salt stress increased antioxidant enzyme activity and
decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and
glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble
proteins and proline was raised. Moreover, salt stress increased reactive oxygen species
(ROS) content in leaves of the two assessed varieties of rice. However, spraying with
Hemin increased the activities of antioxidants such as superoxide dismutase (S0OD),
peroxidase (POD) and catalase (CAT) and accelerated AsA-GSH cycling to remove excess
ROS. In summary, Hemin reduced the effect of salt stress on the physiological
characteristics of rice leaves due to improved antioxidant defense mechanisms that
impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused
by salt stress.
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Abstract

Abiotic stress caused by soil salinization remains a major global challenge that threatens and
severely impacts worldwide crop growth causing yield reduction. Rice is an important economic
crop affected by salt stress. In this study, we aimed to investigate the damage of salt stress on the
leaf physiology of two rice varieties (HuanghuaZhan, HHZ and XiangliangYou 900, XLY900)
and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress.
Therefore, at the three leave and one heart stage, leaves were foliar sprayed with 5 umol-L-! Hemin
or 25 pmol-L-! ZnPP (Zinc protoporphyrin IX) followed by an imposed salt stress treatment regime
(50 mmol-L-! sodium chloride [l The findings revealed that salt stress increased antioxidant
enzyme activity and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA)
and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble
proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS)
content in leaves of the two assessed varieties of rice. However, spraying with Hemin increased
the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD) and catalase
(CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the
effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant
defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the
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damage caused by salt stress.
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Introduction

In the background of global warming, soil salinization has accelerated due to various factors such
as seawater back-up, over-exploitation of groundwater and the over development of arable land
(Alkharabsheh et al., 2021). Saline land accounts for about one-fifth of the cultivated land and
one-third of the irrigated farmland on the planet, and the area is increasing at an even faster rate
(Mukhopadhyay et al., 2021). Salinity stress is one of the most widespread and severe abiotic
stresses globally. It has destructive effects on plant growth and physiological and biochemical
processes and causes a decrease in grain production. According to current data, the yield loss
caused by salt stress accounts for about 20% of global yield (Ding et al., 2021).

With salt stress increasing soil osmotic pressure, plant roots fail to absorb water and nutrients,
which causes delayed growth and development or even death (Liu et al., 2022). In addition, salt
stress induces excessive production of reactive oxygen species (ROS) in plant cells. ROS is weakly
stable and easily causes oxidative stress to cells. The excessive ROS enhances cell membrane lipid
peroxidation and disrupts membrane system stability, which results in the expansion of cell
membrane permeability and extravasation of intracellular materials (Seleiman et al., 2020;
Hasanuzzaman et al., 2020). It has been shown that ROS could break down proteins, damage DNA
structure and cause lipid peroxidation. (Chandrakar et al., 2017; Lin et al., 2020). This disturbed
the normal growth and physiological metabolic activities of plants. To avoid ROS accumulation,
plants use antioxidant enzymes and non-enzymatic antioxidants to scavenge excess ROS (Alisofi
et al., 2020). Among them, antioxidant enzymes include superoxide dismutase (SOD), peroxidase
(POD), catalase (CAT), and ascorbate peroxidase (APX). Non-enzymatic antioxidants include
ascorbic acid and glutathione, which act as co-factors for different enzymes and participate in
various metabolic processes (Hasanuzzaman et al., 2020). In addition, plants accumulate
osmoregulatory substances to maintain the balance of inside and outside cell osmosis. There are
two categories of osmoregulatory substances: inorganic ions (Na'); and organic substances,
including proline and soluble proteins (Athar et al., 2022). Under salt stress, plants balance the
osmotic pressure between the plant and the external environment by conducting selective uptake
of ions and promoting the accumulation of phase-soluble solutes.

Rice, a gramineous crop, has a long history of cultivation and consumption in China. The consumer
demand for rice in China is the most in the world, and more than half of the population eats rice
as a major food (Huang et al., 2022; Zuo et al., 2022). However, salt stress has become one of the
major abiotic stresses which limits rice production. Many studies showed that the seedling stage
was an essential stage of plant development and was closely related to the later development of
tillers and spikelets. However, this stage is susceptible to the impact of salt stress (Zeng et al.,
2001). Therefore, identification of effective avenues to improve the salt tolerance of rice seedlings
has become a major research focus in recent years.

Plant growth regulators are a group of synthetic compounds with phytohormonal activity that
improve the tolerance to abiotic stresses by affecting the expression of endogenous hormones in
crops. Hemin is a small molecule with a porphyrin structure, consisting of nitrogen atoms on four
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pyrrole rings in a porphyrin ligated to a ferrous ion. In recent years, Hemin has been used more
frequently in different crops for its natural, non-polluting, low cost, and high safety features.
Hemin acts as a substrate and promoter of heme oxygenase 1 (HO-1), an initiator and rate-limiting
enzyme for Hemin degradation, and has a specific inhibitor, zinc protoporphyrin (ZnPP). Hemin
triggered salt acclimation in wheat by increasing HO-1 expression, while ZnPP, an inhibitor, was
shown to decreased the salt tolerance of wheat (Xie et al., 2011). Under salt stress, Hemin increased
proline and soluble protein content, enhanced antioxidant enzyme activities such as SOD, CAT,
and APX, and alleviated oxidative damage in Cassia obtusifolia L (sickle senna) (Zhang et al.,
2012). In addition, under zinc (Zn), lead (Pb), and chromium (Cr) metal stress, Hemin activated
the activities of various antioxidant enzymes (SOD, glutathione reductase (GR), and APX) in rice
seedlings, improved the content of AsA and GSH, and reduced heavy metal accumulation.

At present, only a small number of studies have been conducted on the mitigation of salt stress by
Hemin on rice seedings, and based on the mitigation effect of Hemin on stresses such as heavy
metal stress of Medicago sativa L (alfalfa) (Fu et al., 2011), low-temperature stress of Conyza blini
(bear gall grass) (Zheng et al., 2021), and salt stress in Brassica juncea L (mustard) (Verma et al.,
2015). Furthermore, spraying plant growth regulators can improve the resistance of rice seedlings
during the critical period before transplanting, which is essential for the subsequent transplanting
of rice seedlings on saline land. Hence, in this study, we used two rice varieties, Huanghuazhan
and Xiangliangyou 900, to research the impacts of Hemin on the growth and ROS metabolism
(antioxidant enzymes and non-enzymatic antioxidants) of rice seedlings at the three-leaf-one-heart
stage under salt stress. This experiment aimed to reveal the mechanism of Hemin in enhancing the
salt tolerance of rice, and to provide theoretical basis and technical guidance for the cultivation of
saline rice.

Materials and methods

Plant materials

The experiment was carried out in 2022 at Binhai Agricultural College of Guangdong Ocean
University. To ensure broad coverage by our experimentation, we selected the conventional rice
variety Huanghuazhan (HHZ) and hybrid rice variety Xiangliangyou900 (XLY900). Hemin was
provided from Shanghai Changdeduo Agricultural Technology Co., Ltd.

Experiment design

Seeds were selected for uniformity of size and color, sterilized with 3% H,O, for about 15 min,
and then rinsed 3-5 times with distilled water. These seeds were soaked and germinated for 24
hours under dark conditions at 30°C. Sixty-five seeds were sown into pots containing 3 kg of test
soil with 1:3 sand to latosol content. The plastic pot sizes were 19 cm for the upper diameter, 14
cm for the lower diameter, and 17 cm for the height, without holes at the bottom of the pots.
Regular water irrigation was performed until the three leaf and one heart stage (about 18 days after
planting). Rice leaves were foliar sprayed with 5 pumol-L-! Hemin and 25 pmol-L-! ZnPP alone or
in combination, and plants were exposed to 25 mmol-L-! NaCl stress twice at two 24 h intervals
which resulted in the salt concentration in the soil reaching 50 mmol-L-! at 48 h after spraying. In
subsequent experiments, concentrations were maintained by measuring soil conductivity
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(EC=5.0+0.5 dS'm"). Each variety had five treatments: (1) normal water (CK); (2) 50 mmol-L-!
NaCl (S); (3) Hemin + 50 mmol-L-! NaCl (SH); (4) ZnPP + 50 mmol-L-! NaCl (SZ); and (5)
Hemin + ZnPP + 50 mmol-L-! NaCl (SZH). Each treatment had 25 pots. The plant samples were
harvested at 3, 5, 7, and 9 d after NaCl stress application for morphological and physiological
parameter assessment and additional samples were collected for.

Morphological measurements

Plant height was measured with a ruler, stem diameter was measured with vernier, shoot fresh and
dry weight were measured by a caliper electronic analytical balance. The shoots were dried for 30
min at 105 °C and 72 h at 85 °C.

Measurement of electrolyte leakage (EL), malonaldehyde (MDA) and Hydrogen peroxide
(H,0,) content

Electrolyte leakage (EL) was determined as described by Yu et al. (2021). The measurement of
malonaldehyde (MDA) content was carried out according to the method outlined by Ahmad et al.
(2016). The frozen leaf sample (0.5g) was extracted in 10 mL phosphate buffer (0.05 mmol-L-!
PBS, pH 7.8) and centrifuged at 6,000 rpm for 20 min. One milliliter of the supernatant was added
to 2 mL of 0.6% TBA, then boiled at 100 °C for 15 min. The mixture was cooled quickly with cold
water and centrifuged at 4,000 rpm for 20 min. The absorption value was determined at 450 nm,
532 nm and 600 nm. The H,O, content was determined according to the Rasheed et al. (2022).
More specifically, 0.5 g of the frozen sample was ground into homogenate in [j mL ofjjijll] and
centrifuged at 19,000 rpm for 20 min. Five hundred microliters of supernatant was added to 0.5
mL PBS (10 mmol-L! Ph 7.0) and ljmL KI (1 mol-L""), then the reaction mixture was incubated
at 28 °C for 1 h in the dark. The absorbance values were recorded at 410 nm.

Histochemical Detection of Hydrogen Peroxide and Superoxide Anion

The histochemical staining of hydrogen peroxide (H,0O,) and superoxide radicle (O,-") was
determined by the methods outlined in Zhang et al. (2009) and Sudhakar et al. (2015), respectively.
On day three of the stress application, the second leaf of CK, S, SH, SZ and SZH treatments of
both varieties were sampled and placed in a solution containing nitrogen blue tetrazolium (NBT)
and 3,3'-diaminobenzidine (DAB) for staining. The leaves were JilSlllllg8l and then kept at room
temperature and dark conditions for 24 h until brown and blue spots appeared, respectively. The
staining solution was discarded. 95% ethanol was used to extract the chlorophyll [§jjil 80°C water

bath. Ethanol was added continuously until the |EiESECaNESEEEIRIEERNe
Measurement of the activities of SNSRI

The frozen leaf samples were extracted in 10 mL PBS (50 mmol-L-! pH 7.8) at 4°C, centrifuged at
12,000 rpm at 4 °C for 20 min. The supernatant was used to determine SOD (EC 1.15.1.1), POD
(EC 1.11.1.7), and CAT (EC 1.11.1.6) (Habib et al., 2021) activities. SOD activity was iSO
according to the method by Lu et al. (2022). The supernatant was mixed with 14.5 mmol-L-!
methionine solution, 3 mmol-L-! EDTA-Na, solution, 60 umol-L-! riboflavin solution, and 2.25
mmol-L-! NBT solution. One unit of SOD activity was defined as the amount of enzyme that would
inhibit 50% of NBT photoreduction. POD was determined following the method outlined by
Kenawy et al. (2022). The supernatant was mixed with PBS (pH 6.0), guaiacol, and 30% H,0,.
The absorbance was measured at 470 nm. CAT was determined by the decreased absorbance rate
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of H,O; at 240 nm, as described by Basilio-Apolinar et al. (2021).

Measurement of AsA-GSH cycle products and substrate content

The procedure outlined by Costa et al. (2002) and Yan et al. (2021) was followed to measure the
contents of AsA and total AsA. More specifically, the frozen leaf sample was extracted in 5% TCA
and centrifuged at 12,000 rpm at 4°C for 15 min. The supernatant was then moved to a calibration
tube | GBS 1scd to determine the content of AsA and total AsA. For AsA, the
supernatant was mixed with a reaction solution containing 5% TCA, ethanol, H;PO,4-ethanol, BP-
ethanol, and FeCls-ethanol. The reaction was carried out at 30°C for 90 min. The absorbance was
assayed at 534 nm. For total AsA, it was similar to the AsA assay. However, the sample solutions
were first reacted with dithiothreitol (DTT)-ethanol solution and Na,HPO4-NaOH solution for 10
min. Then, 20% TCA was added and mixed with the above reaction solution. The absorbance was
assayed at 540 nm. Dehydroascorbate (DHA) content was calculated based on the difference
between total AsA and reduced AsA.

The glutathione (GSH) and oxidized glutathione (GSSG) content was determined according to the
method described by Kaya et al. (2023). Namely, 0.5 g frozen sample was ground into homogenate
in JmL of 5% metaphosphoric acid and centrifuged at 20,000 x g for 20 min. The supernatant was
used to determine the content of total glutathione (GSH+GSSG) and oxidized glutathione (GSSG).
The supernatant was mixed homogeneously with the reaction solution, which contained 5%
sulfosalicylic acid, 1.84 mol-L-! triethanolamine, and was incubated in a 25°C water bath for 1h.
Then 50 mmol-L-! phosphate buffer, 10 mmol-L-' NADPH, 12.5 mmol-L-! DTNB was added and
the reaction continued kept warm at 25°C for 10 min, and [iilll 50 U glutathione reductase (GR)]
The absorbance value of (GSH+GSSG) was measured at 412 nm. Besides adding the reaction
solution, which contained 5% sulfosalicylic acid, 1.84 mol-L-! triethanolamine and 2-vinylpyridine
(2-VP), the subsequent steps were kept consistent with the determination of (GSH+GSSG) content.
The GSSG absorbance value was measured at 412 nm.

8 GSH content = GSH+GSSG content - GSSG content.

Measurement of the critical enzyme indexes of the AsA-GSH cycle

BB of the frozen leaf sample was placed in a mortar, ground into a powder with 50 mmol-L-!
sodium phosphate buffer solution (pH7.8), and loaded into a centrifuge tube. The centrifuge tube
was centrifuged at 12,000 x g for 20 min. The resulting solution was used to measure the levels of
ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC
1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC
1.6.4.2).

The APX activity was determined according to the method described by Sharifi et al. (2021). The
assay mixture contained 0.1 mL of enzyme extract, 2.6 mL EDTA-Na, (0.1 mmol-L!), 0.15 mL
AsA (5 mmol-L!) and 20 mmol-L-! H,O,. The absorbance was assayed at 290 nm. (E=2.8 mM!
cm™'). MDHAR activity was measured using the method described by Hasanuzzaman et al. (2011).
The reaction mixture consisted of 25 mmol-L-' sodium phosphate buffer solution (pH7.8), 7.5
mmol-L-! AsA, 2 mmol-L-' NADPH, 50 U AsA oxidase (EC 1.10.3.3), and enzyme extract. The
absorbance was assayed at 340 nm. (E=6.2 mM-! cm!). DHAR activity was determined using the
method described by Shan and Liu (2017). DHAR was assayed in a mixed solution containing 25
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mmol-L! sodium phosphate buffer solution (pH7.8), 20 mmol-L-' GSH, 10 mmol-L-! DHA, and
enzyme extract. The absorbance was assayed at 340 nm. (E=14 mM-! cm™"). GR activity was [l
according to Keles and Oncel (2002). GR (EC 1.6.4.2) was assayed in a mixed solution containing
25 mmol-L! sodium phosphate buffer solution (pH 7.8), 2 mmol-L-! EDTA, 10 mmol-L"! GSSG,
24 mmol-L-! NADPH, and enzyme extract. The absorbance was assayed at 340 nm. (E=6.2 mM-!
cm™).

Measurement of soluble protein and proline content

Soluble protein content was determined according to the method described by Tian et al. (2022).
The absorbance value was measured at 595 nm using Coomassie brilliant blue. Proline content
was carried out according to the method by Liu et al. (2020). The frozen sample (0.5g) was ground
in [§ mL of 3% sulfosalicylic acid and then centrifuged at 3,000 x g for 10 min. Two milliliters of
the supernatant was added to [ mL acetic acid and [§ mL acidic ninhydrin, and then incubated in a
water bath at 100 °C for 30 min. After cooling, lmL of toluene was added and the absorbance
measured at 520nm.

Statistical analysis

The data was analyzed by Microsoft Excel 2019 and SPSS 25.0. The figures were drawn in Origin
2021. Duncan test (p <0.05) was used to evaluate the difference within treatments, and the
significant differences among different materials were determined.

Result

The morphological parameters of rice seedlings

There was significant inhibition of rice growth under NaCl stress, which showed a remarkable
decrease in plant height, stem base width, shoot fresh weight, and shoot dry weight (Table 1 and
Table 2). From days 3 to 9, in comparison to CK, the plant height, stem diameter, shoot fresh
weight and shoot dry weight of HHZ under NaCl stress significantly decreased by 13.48%-
16.58%, 23.08%-28.95%, 29.67%-32.41% and 21.14%%-23.34% respectively. Similarly, in
XLY900, the above indicators decreased by 10.67%-13.98%, 17.43%-23.08%, 27.24%-30.71%
and 18.22%-22.15% respectively. Exogenous Hemin alleviated the inhibition of rice seedling
growth by NaCl stress (Fig. 1). From days 3 to 9, in comparison to the NaCl treatment, the plant
height, stem diameter, shoot fresh weight and shoot dry weight of HHZ with SH treatment were
significantly higher by 9.62%-12.38%, 20.00%-32.10%, 18.63%-27.43%, and 11.96%-15.84%,
respectively. Similarly, in XLY900, the above indicators were increased by 5.33%-8.01%,
15.56%-24.14%, 15.85%-26.58%, and 12.78%-14.26%, respectively. This finding suggested that
the Hemin effectively mitigated the [ iSO eCeEee s
Hemin promoted a higher growth of HHZ seedlings. In contrast to the NaCl treatment, ZnPP
treatment did not lead to an increase in plant height, stem base width, shoot fresh weight, or shoot
dry weight in either assessed rice variety. The addition of Hemin reversed the inhibition caused by
ZnPP and enhanced the growth of rice seedlings. From days 3 to 9, in comparison to the SZ
treatment, the plant height, stem diameter, shoot fresh weight and shoot dry weight of HHZ with
SH treatment were increased [ESISRSIEEIERE. 7.50%0-12.20%, 9.12%-19.43%, and 8.56%-
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10.66%, respectively. Similarly, in XLY900jlhe above indicators increased by 2.54%-4.92%,
7.78%-15.91%, 9.86%-16.19%, and 6.70%-10.32%, respectively.

The membrane damage and ROS accumulation in rice seedlings

Compared to the CK, EL, MDA, and H,O, contents in _ gradually increased with
the increased period of NaCl stress treatment (Fig. 2). Compared to CK, the El of HHZ and
XLY900 under NaCl stress significantly increased by 16.26%-126.50% and 35.25%-71.98% from
days 3 through to 9, respectively. After NaCl treatment, there was a significant rise in the MDA
and H,0, content of HHZ in the NaCl treatment. This increase ranged from 31.79% to 51.73% for
MDA and 13.92% to 30.29% for H,O, during the period from day 3 to 9, as compared to CK. In
the NaCl treatment of XLY900, the content of MDA and H,0, was significantly increased by
22.25%-40.52% and 20.26%-25.09%, compared with CK, from days 3 to 9, respectively. The
H,0; and MDA contents of HHZ were higher than that of XLY900 on 9 d after NaCl stress,
showing that NaCl stress was more harmful to HHZ, which was more sensitive to NaCl stress than
XLY900.

Compared with NaCl treatment, spraying Hemin effectively reduced EL and the MDA and H,O,
contents of both rice varieties. In contrast to the NaCl treatment, the EL of both HHZ and X1.Y900
exhibited a noticeable decrease in the SH treatment, including reductions of 9.64% to 28.20% and
8.78% to 18.41%, respectively. The MDA and H,0, content in the SH treatment of HHZ compared
to the NaCl treatment decreased by 15.20%-20.28% and 11.59%-18.14%, respectively. Similarly,
in the SH treatment of XLY900, MDA and H,O, content decreased by 8.30%-16.52% and 5.97%-
15.72% compared to the NaCl treatment from day 3 to 9, respectively. Electron leakage, MDA,
and H,0, remained high in both varieties under ZnPP treatment. Throughout the stress period, the
SZH treatment led to a reduction in EL, MDA content, and H,O, content of both HHZ and
XLY900, when compared to the SZ treatment. On day 3 and 9, compared to SZ treatment, EL of
HHZ exhibited noticeable decreases of 9.21% and 10.43%, respectively, inf§ZH treatment. From
days 3 to 9, compared to SZ treatment, the EL of XLY900 jjilli SZH treatment declined by 6.09%-
9.01%. From days 3 to 9, compared with SZ treatment, the MDA and H,O, [§ililgili were decreased
by 6.51%-7.15% and 3.51%-10.99% in HHZ with SZH treatment, were reduced by 1.44%-7.71%
and 1.22%-9.71% in XLY900 with SZH treatment, respectively.

The histochemical localization of reactive oxygen species in rice leaves

The distribution of H,O, and superoxide anion (O,-") were localized and expressed visually by
histochemical | SSEMEEEEE of HHZ and XLY900 rice leaves. H,O, was stained with dark brown
spots and O, - was stained with dark blue spots (Fig. 3). Compared to CK, dark brown and dark
blue spots were significantly increased in rice leaves of both varieties under NaCl stress. Compared
to the NaCl treatment, dark brown and dark blue spots on leaves were significantly decreasedjilj
HHZ and XLY900 with the SH treatment, which indicated that foliar spraying of Hemin could
potentially reduce the accumulation and distribution of H,O, and O,-". ZnPP treatment failed to
lower the accumulation of ROS [iljllSJIBElEE. and dark brown spots and dark blue spots remained
at a higher [Sl@IEE. There was a reduced accumulation of ROS with the combination of ZnPP
and Hemin. Compared to the ZnPP treatment, the number of dark brown spots and dark blue spots
decreased in HHZ and XLY90@llith SZH treatments.
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The superoxide dismutase, peroxidase and catalase activity in rice seedlings

With the extension of exposure time, the SOD and POD activities in the NaCl treatment of HHZ
showed an upward and downward trend, respectively, and CAT activity showed an increased trend
compared to CK (Fig. 4). Compared to CK, the SOD, POD, and CAT activities in the NaCl
treatment of XLY900 showed an upward trend with the prolonged time of NaCl stress. The SOD
and POD activities in NaCl treatment of HHZ reached the maximum at 3 d of NaCl stress, which
were significantly increased, by 13.82% and 13.64%, respectively. CAT activities increased by
11.45%-21.71% from 3 to 9 d of NaCl stress compared to CK. In comparison to CK, the SOD,
POD, and CAT activities of XLY900 under NaCl stress increased by 7.30%-26.63%, 6.64%-
14.26%, and 15.97%-24.76% respectively, from days 3 through to 9. The application of exogenous
Hemin boosted the SOD, POD, and CAT activities of SH treatment in two rice varieties. Compared
to NaCl treatment, the SOD, POD, and CAT activities of HHZ [jjiilji SH treatment were increased
by 4.41%-17.66%, 6.48%-12.67%, and 6.43%-17.33%, respectively, from days 3 through to 9. In
comparison to NaCl treatment, the SOD and CAT activities of XLY900 with SH treatment were
increased, by 5.53%-27.47% and 10.54%-18.12%, from day 3 to 9, respectively, while POD
activity increased by 4.53%-9.20% except for the day 5. Compared with the NaCl treatment, the
ZnPP treatment did not enhance the enzyme activity under the [iiji§lj but lowered the enzyme
activity. For example, compared to NaCl treatments, on day 3, the CAT activity in SZ treatment
of HHZ was significantly decreased by 6.54%; on day 5, the SOD activity in SZ treatment of
XLY900 was significantly reduced by 11.12%. The combination with Hemin relieved the adverse
effects of ZnPP and i iSiSNEEIEEENEIEIEEEEINES. Compared with the SZ treatment, the
SZH treatment of HHZ showed SOD activity increased by 3.10%-13.12% from day 3 through to
9; POD activity was significantly enhanced by 8.05% on day 9; CAT activity was significantly
raised by 11.52% on day 3. Compared with the SZ treatment, the SZH treatment of XLY900
showed SOD activity markedly increased by 15.79% and 22.93% on day 3 and 5, respectively;
POD activity significantly enhanced by 7.47%-8.07% from day 5 to 9; CAT activity was
significantly raised by 13.67% and 12.48% on day 5 and 7, respectively.

The assessment of the non-enzymatic antioxidants of the AsA-GSH cycle in rice leaves in rice
leaves

As the period of NaCl stress was extended, the AsA content decreased and the DHA and
AsA+DHA content increased in the leaves of HHZ and XLY900 (Fig. 5). From day 5 through to
9, compared to CK, the AsA content in the NaCl treatment of HHZ and XLY900 significantly
decreased by 2.16%-15.52% and 4.62%-14.26%, respectively. In comparison to CK, the DHA and
AsA+DHA content of HHZ under NaCl stress increased by 21.16%-60.17% and 4.47%-34.18%,
respectivelyj ISHIBEEEEE. the assessed parameters increased by 57.73%-67.58% and 10.39%-
32.46%, respectively, from day 3 to 9. The application of exogenous Hemin further|jjSSSig8l the
AsA content and [illlll§l88 the accumulation of DHA and AsA+DHA. Compared to the NaCl
treatment, the AsA content in SH treatment of HHZ and XLY900 significantly increased, by
4.63%-15.54% and 5.46%-10.44%, respectively, from day 5 through to 9. In comparison to NaCl
treatment, the DHA and AsA+DHA content in SH treatment of HHZ decreased by 15.53%-30.23%
and 5.06%-19.87%, respectively, from day 3 to O [SEESEEEE. the assessed parameters decreased
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by 19.87%-29.67% and 5.43%-12.57%. Under NaCl stress, ZnPP treatment mainly raised DHA
and AsA+DHA contents in the leaves of the two assessed rice varieties. In comparison to the salt
stress treatment samples, on day 7, the DHA and AsA+DHA S8l in the SZ treatment of HHZ
were significantly increased by 15.00% and 8.49%; on day 9, the DHA content in the SZ treatment
of XLY900 was significantly increased by 8.00%. In the combination of ZnPP and Hemin, the
AsA content was higher, and the DHA and AsA+DHA contents were lower in both rice varieties
compared to the ZnPP treatment. In comparison to SZ treatments, on day 5 and 9, the AsA content
in the SZH treatment of HHZ was significantly increased by 11.53% and 3.22%, respectively; on
day 5 and 7, the AsA content in the SZ treatment of XLY900 was significantly increased by 7.15%
and 9.09%, respectively. In comparison to SZ treatment, the DHA and AsA+DHA content in SZH
treatment of HHZ decreased by 12.39%-26.77% and 2.81%-14.35% from day 3 to 9, respectively.
Similarly, the assessed parameters of XLY900 decreased by 8.08%-16.27% and 1.72%-7.34%,
respectively.

. ESEESONONSPENONNNE. (- contents of GSH and
GSH+GSSG in NaCl treatment leaves of both HHZ and XLY900 decreasedff GSSG in NaCl
treatment leaves of both HHZ and XLY900 increased. On day 3, 5, and 9, and compared to the
CK, the GSH content in the NaCl treatment of HHZ significantly decreased 5.83%, 8.27% and
2.28%, respectivelyj il BB, the GSH content significantly decreased 3.49%, 7.17% and
8.68%, respectively. From days 3 to 9, and when compared to the control, the GSSG content in
the NaCl treatment of HHZ and XLY900 significantly increased by 7.25%-22.36% and 8.20%-
16.87%, respectively. On day 3, and day 5, compared to CK, the GSH+GSSG content in the NaCl
treatment of HHZ significantly decreased 4.63% and 6.96%, respectivelyfOn day 5 and day 9 in
XLY900, the GSH content significantly decreased 5.22% and 6.93%, respectively. The Hemin
further boosted the content of GSH and GSH+GSSG and reduced the accumulation of DHA.
Compared to the NaCl treatment, the GSH content in SH treatment of HHZ and XLY900
increased, by 1.96%-14.31% and 3.60%-8.69% from day 5 through to 9, respectively. In
comparison to NaCl treatment, the GSSG content in SH treatment of HHZ and decreased by
8.57%-22.36% and 5.74%-6.35% from day 3 to 9, respectively. Under NaCl stress, ZnPP treatment
mainly raised GSSG content in the leaves. In comparison to NaCl treatments, on day 3 and day 7,
the GSSG content in the SZ treatment of XLY900 were significantly increased by 4.71% and
8.34%. In the combination of ZnPP and Hemin, the GSH and GSH+GSSG content were higher,
and the GSSG content was lower in both rice varieties compared to the ZnPP treatment. Compared
to the SZ treatment, the GSH content in SZH treatment of HHZ and XLY900 increased, by 1.77%-
10.55% and 1.80%-8.16% from day 3 through to 9, respectively. Compared to the SZ treatment,
the GSSG content in SZH treatment of HHZ and XL Y900 decreased, by 4.90%-5.82% and 6.71%-
8.33% from day 3 through to 9, respectively. In comparison to SZ treatments, on day 3, 5 and 7,
the GSSG content in the SZH treatment of HHZ were significantly increased by 4.90%, 9.11%
and 3.22%, respectivelyfjon day 3 and 9, the GSSG content in the SZH treatment of XLY900 was
significantly increased by 6.41% and 4.34%, respectively.

The AsA-GSH cycle enzymatic activities in rice leaves

As shown in Figure 7, APX, MDHAR, DHAR, and GR activities were increased along with the
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period of stress treatment. Compared [l lduring the stress period, the activities of the above
four enzymes in the NaCl treatment of HHZ were markedly enhanced by 11.00%-18.88%,
14.95%-54.23%, 23.19%-56.82% and 12.22%-27.96% respectively. Similarly, in XLY900, the
assessed parameters were significantly increased 18.82%-21.21%, 29.84%-51.15%, 19.62%-
46.87% and 10.48%-13.56%, respectively. The use of Hemin further improved the activity of
APX, MDHAR, DHAR, and DHAR. Compared with NaCl treatment, from day 3 to 9, the activities
of APX, MDHAR, DHAR, and GR in the SH treatment of HHZ were enhanced by 15.18%-
25.33%, 19.95%-58.63%, 7.10%-33.25% and 8.65%-14.11%, while in SH treatment of XLY900
were increased 17.76%-26.90%, 11.84%-50.44%, 15.92%-24.11% and 7.47%-12.26%,
respectively. However, with the use of ZnPP the activity of APX, MDHAR, DHAR, and GR was
diminished. On day 3, in comparison to NaCl treatment, the APX activity of HHZ in SZ treatment
was significantly decreased by 17.03%. On day 9, in comparison to CK, the GR activity of HHZ
and XLY900 in SZ treatment was significantly decreased, by 7.14% and 6.46%, respectively. The
combination of ZnPP with Hemin increased the above enzyme activities. In HHZ with SZH
treatment, compared with SZ treatment, the APX activity was significantly increased by 11.41%
and 21.15% on day 3 and day 7, respectively; the MDHAR activity was markedly increased by
21.78%-38.70%, from day 3 to 9; the DHAR activity was dramatically increased by 9.98%-
29.65%, from day 3 to 7; the GR activity was remarkably increased by 13.47%, and 8.81%, on day
7, and day 9, respectively. In XLY900 with SZH treatment, compared with SZ treatment, the APX
activity significantly increased by 21.60% and 29.99% on day 5 and day 9, respectively. Similarly,
flhe MDHAR activity was markedly increased by 32.81% and 20.13% on day 5, and day 7,
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The content of osmoregulatory substances in rice leaves

The applied salt stress caused a significant increase in proline content in the leaves of HHZ and
XLY900 (Fig. 8 a and b). Compared to CK, the proline content of HHZ under NaCl stress was
significantly increased by 34.95%-65.34%, from days 3 to 9. From days 3 to 9, compared to CK,
the proline content of XLY900 with NaCl treatment dramatically increased by 18.95%-54.16%.
Under NaCl stress, the proline content increased to a greater degree in HHZ than in XLY900.
Hemin treatment further enhanced the proline content in the leaves of the two assessed rice
varieties. Compared to NaCl treatment, the proline content of HHZ and XLY900 with SH
treatment significantly increased by 8.38%-27.10%, and 15.02%-24.35%, respectively, from days
3 to 9. Proline content of rice leaves was not elevated by ZnPP treatment. For example, on day 3,
compared to NaCl treatment, the proline content of XLY900 with SZ treatment decreased by
8.64%. In combination with ZnPP and Hemin, the proline content was enhanced. Compared to SZ
treatment, the proline content of HHZ with SZH treatment had a maximum increase of 26.87% on
day 9, and XLY900 with SZH treatment had a maximum increase of 26.51% on day 7. The soluble
protein content of HHZ markedly increased in the early stage (3 ) and then decreased in the later
stage (B compared with CK under NaCl stress (Fig.8 ¢ and d). The soluble protein content in
XLY900 increased during the stress period with the difference reaching significant levels at all
four-time points. The foliar application of Hemin enhanced soluble protein content in the leaves
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of two rice varieties. Compared with the salt stress treatment, soluble protein content noticeably
increased by 2.75%, in SH treatment of HHZ, on day 9, while significantly elevated by 3.93%,
and 1.17%, respectively in XLY900. Spraying ZnPP did not increase soluble protein content. For
example, compared with NaCl treatment, soluble protein content significantly decreased by 3.20%,
in SH treatment of HHZ, on day 3. When ZnPP was combined with Hemin, soluble protein content
was enhanced. For example, on day 3, soluble protein content was increased by 3.02% and 3.21%,
respectively, of HHZ and XLY900 in SZH treatment.

Discussion

Globally, salt stress is the most prevalent abiotic stress that limits crop growth and development.
Research has shown that salt stress impedes the growth of several crops, such as wheat (Ashraf et
al., 2023), sorghum (Liu et al., 2023), and soybean (Feng et al., 2021). Excessive salt interferes
with normal biological and physiological processes to negatively impact plant growth (Talubaghi
et al., 2022), such as reduced plant height, narrowed stem base width and diminished biomass. The
results obtain from the experimentation performed in this study was similar to those results
reported previously by [lll@]. More specifically, under salt stress, the seedling growth of both HHZ
and XLY900 was significantly inhibited, and all the morphological indexes were decreased (Table
1 and Table 2). Foliar spraying of Hemin positively regulated various morphological indicators
and promoted aboveground growth and biomass accumulation in rice seedlings. Liu et al. (2021)
showed that Hemin improved the growth of maize seedlings and increased biomass accumulation
under drought stress. Furthermore, Hemin degraded in plants to produce CO, which alleviated the
inhibition of wheat growth by NaCl stress (Ling et al., 2009). Exogenous ZnPP was unable to
promote rice growth under salt stress in this study, which was consistent with the research of Cao
etal. (2011).

ROS can be used at low concentrations as a secondary messenger or signaling molecule (Antoniou
et al., 2016). Plants generate and remove ROS in dynamic balances under normal growth
conditions. Under abiotic stress conditions, ROS levels surge, which in large quantities is
destructive, leading to changes in the structure of DNA, proteins and enzymes, ultimately resulting
in programmed cell death (Gill and Tuteja 2010; Singh et al., 2019). MDA is one of the membrane
lipid peroxidation products whose content can reflect the level of ROS and the degree of membrane
lipid peroxidation. EL can evaluate cell membrane permeability. The higher EL value indicates
the greater the degree of damage to the cell membrane. (Ben Youssef et al., 2021). In this
experiment, the findings showed that salt stress caused higher leaf EL, increased MDA and H,O,
contents in two rice varieties and that the results were positively correlated with stress duration
(Fig. 2). Compared with XLY900, HHZ had a much|§ii§ll@@#lincrease in the above three indexes,
indicating that HHZ was more sensitive to the imposed stress. This was similar to the findings of
a previous study (Chen et al., 2022). The localization of H,O, and O," in leaves was measured by
histochemical methods. Salt stress induced the accumulation of H,O, and O, " in the leaves of
HHZ and XLY900 compared with CK (Fig. 3). This is in conformity with the findings of Jabeen
et al. (2020) who worked on cultivated rice under salt stress. Hemin has the ability to mitigate the
damage caused by stress in plants, reducing ROS accumulation, MDA content and cell membrane
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permeability (Chen et al., 2009; Cui et al., 2012). The results of this experiment were in agreement
with these previous findings. Foliar spraying of Hemin effectively diminished EL levels, H,O, and
MDA content (Fig. 2), reduced H,O, and O,-- accumulation (Fig. 3), and alleviated the damage of
salt stress to the cell membranes. Exogenous ZnPP could not scavenge excess ROS and maintain
cell membrane stability. When ZnPP was combined with Hemin, it scavenged part of the ROS and
alleviated oxidative damage, this finding is in agreement with the findings reported previously by
Zhang et al. (2012).

Facing stress, plants activate antioxidant defense systems to minimize damage caused by oxidative
stress. Among them, antioxidant enzymes mainly include SOD, CAT, and POD. SOD represents
the first barrier for plants to resist ROS damage caused by abiotic stresses and catalyzes the
transformation of O, to O, (Karuppanapandian and Kim 2013). CAT eliminates H,O, with
minimal energy consumption and very high conversion rates for large-scale scavenging of ROS
(Zamocky et al., 2012). POD has a strong affinity for H,O, and is used for the fine tuning
modulation of H,O, (Abogadallah 2010). In this study, compared with CK, SOD and POD
activities of NaCl treatment in HHZ was firstly increased and then decreased, and CAT activity
was increased (Fig. 4 a, ¢ and e); but SOD, POD and CAT activities of NaCl treatment in XLY900
showed an upward trend with stress duration. (Fig. 4 b, d and f). This indicates that in the short
term of salt stress, rice eliminates ROS by increasing the activity of antioxidant enzymes; in the
long term of salt stress, rice accumulates more ROS, which cannot be scavenged in time by
antioxidant enzymes. The results obtain from the experimentation performed in this study was
similar to those results reported previously by others (Vaidyanathan et al., 2003; Seckin et al.,
2009 and Kumari et al., 2023). Foliar spraying of Hemin enhanced SOD, POD and CAT activities
in leaves of the two rice varieties under assessment when exposed to salt stress (Fig. 4). This
demonstrates that exogenous Hemin stimulates the antioxidant enzyme system in rice and
facilitates the increase of enzyme activity, which avoids oxidative damage and ensures normal
plant growth. The inhibitor ZnPP was unable to increase the activities of antioxidant enzymes or
even inhibited them. ZnPP combined with Hemin mitigated the inhibitory effect caused by ZnPP,
with improved SOD, POD and CAT activities (Fig. 4). Based on a previous study (Zhang et al.,
2012), it is hypothesized that Hemin enhances antioxidant enzyme activity in rice leaves by
promoting [[illfexpression and thereby increasing the antioxidant enzyme activity, while ZnPP acts
as an inhibitor of HO hindering its expression which restricts the increase in antioxidant enzyme
activity.

The AsA-GSH cycle is an essential ROS scavenging mechanism, and mainly consists of the
antioxidant enzymes APX, MDHAR, DHAR, and GR and the nonenzymatic antioxidants AsA and
GSH, which can alleviate the oxidative damage caused by salt stress (Wang et al., 2022). As part
of the cycling process: AsA is catalyzed by APX, which converts H,O, to H,O and is oxidized to
MDHA. MDHA is converted to AsA by reduction-oxidation reaction with MDHAR or to DHA
by a non-enzymatic disproportionation reaction. DHAR catalyzes DHA and GSH to produce AsA
and GSSG, while GSSG can be restored to GSH by GR (Nahar et al., 2015; Tan et al., 2022). AsA
and GSH act as nonenzymatic antioxidants and assist other antioxidant enzymes in scavenging
ROS. In this study, salt stress decreased AsA content and increased DHA and AsA+DHA content
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inrice leaves (Fig. 5), indicating that APX activity enhancement decreased the AsA content. Foliar
spraying of Hemin significantly improved AsA content and diminished DHA and AsA+DHA
content. This finding suggests that the increase in MDHAR and DHAR activities causes an
increase in AsA content and a decrease in DHA content. Under salt stress, GSH and GSH+GSSG
content decreased, and GSSG content increased, while exogenous Hemin treatment increased GSH
and GSH+GSSG content and decreased GSSG content in rice leaves (Fig. 6). This shows that the
enhanced GR activity facilitated the conversion of GSSG to GSH and maintained a high level of
reduction state GSH, which was in agreement with the research of Piao et al. (2022). |iES8
EISERE that Hemin improved cellular reduction ability at a high level, [llISHESSIBIEE oxidative
damage. In addition, in this experiment, salt stress increased APX, MDHAR, DHAR, and GR
activities in two rice varieties compared with the control (Fig. 7). It indicated that salinity stress
increased the H,O, content of rice leaves, which prompted APX to accelerate the scavenging of
H,0O,; while the increased activities of MDHAR, DHAR and GR were beneficial to the resistance
of a leaf to oxidative damage, which was a stress response to excess H,0,. Foliar spraying of
Hemin further induced the activities of APX, MDHAR, DHAR, and GR (Fig. 7). FiNiiSSgiEs
have suggested that this might be possible by upregulating the transcription of genes for enzymes
related to the metabolism of the degradation products CO and GSH, which could increase the
enzyme activity to help plants mitigate the oxidative damage caused by [iSISlEESEE (Zhang et al.,
2016). ZnPP cannot be degraded to CO,; in plants and reduces endogenous CO, production by
blocking [Jil] expression; thus, could not enhance the activities of MDHAR, DHAR, and GR under
salt stress. Moreover, Hemin induced [jil] gene expression and enhanced gene expression of critical
enzymes in the AsA-GSH cycle, while ZnPP prevented Jjil] expression and even strengthened the
inhibitory effect of NaCl stress on the AsA-GSH cycle in rice seedlings (Cui et al., 2012). These
results reflect that Hemin improved the efficiency of ROS scavenging in rice leaves, which
maintained cell membrane stability and enhanced the resistance of rice.

Although saline soils contain water, plants cannot absorb the water, mainly because the soil has a
high level of ions that increase the osmotic pressure of the external environment, which prevents
plant cells from absorbing water or even leads to the loss of water from plant root cells. Therefore,
plants ensure water absorption by increasingjjfjsmoregulatory substances and decreasing the
difference in osmotic potential between the inside and outside cells. The important osmoregulatory
substances, soluble proteins, and proline have different physiological functions in maintaining
osmotic balance in plants. Soluble proteins can help the bound water in plant cells and maintain
the stability of the cell structure (Hao et al., 2021). Proline is a potential non-enzymatic antioxidant
that functions as a scavenger of single-linear oxygen molecules and hydroxyl radicals; thus, proline
prevents lipid peroxidation of cell membranes and avoids exposure of plants to ROS-induced
oxidative damage (Szabados and Savoure 2010). In this study, we found that with the increase[§f
NaCl stress exposure, soluble protein content initially increased and then decreased in HHZ, while
it GONRSESRSISEssE <L Y000 (Fig. 7). A previous study has shown that salt stress disrupts
the protein synthesis pathway at later stages, accelerating its catabolism, generating large amounts
of amino acids, and ultimately reducing protein content (Alisofi et al., 2020). This could be the
reason for the decrease in soluble protein content in HHZ leaves. The soluble protein content in
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XLY900 leaves was enhanced to relieve the difference in osmotic potential. The two rice varieties
exposed to salt stress had significantly increased proline content. Compared with XLY900, salt
stress caused HHZ to produce much more proline (Fig. 8 ¢ and d). This was similar to the results
of Gao et al. (2016), in which salt-sensitive varieties had high proline content [ Sl when
exposed to stress. Foliar spraying of Hemin promoted the accumulation of osmoregulatory
substances in rice leaves, which significantly increased soluble protein and proline contents.
However, in the ZnPP treatment, the content of osmoregulatory substances was reduced instead of
increased | SIIEEESEIEIE rcported by Zhao et al. (2022). Together, these results indicate
indicates that Hemin induces a large accumulation of proline and soluble proteins, which is
beneficial for the absorption of water and the maintenance of cellular osmotic pressure in rice
leaves under salt stress.

Conclusions

During the seedling stage, the activity of antioxidant enzymes and the [§Sill§ill§ of non-enzymatic
antioxidants initially rose in response to salt stress. This response effectively countered the
accumulation of [ESINEINESIEIESESREE) induced by the stress. However, with prolonged
exposure to stress, the enzyme activity continued to increase while the content of the antioxidants
decreased, failing to adequately alleviate the stress in a timely manner. The accumulated ROS and
membrane lipid peroxides exacerbated the damage caused by the imposed stress, eventually
leading to a decrease in growth. The application of Hemin [iSHESHESHRNSNER 2 dditionally
enhanced the antioxidant enzymes activity and elevated the non-enzymatic antioxidants contents,
which contributed to an overall improvement in the antioxidant capacity of rice, resulting in a
reduction of membrane lipid peroxidation. | SISSESISEEE functionality of the AsA-GSH cycle il

EREcE CORSCOCHI SRS o resistance of rice to the imposed stress.
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Table 1l(on next page)

Effects of exogenous Hemin on the morphological indexes of rice seedlings under NaCl
stress

Notes: Data in this table is meanzstandard error of at least three replicates. According to

Duncan's multiple range tests, different letters indicate significant difference at the five

percent significant level Within each column.
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1 Table1l
2 Effects of exogenous Hemin on the morphological indexes of rice seedlings under NaCl
3 stress
morphological o NaCl stress time (d)
indexes Varieties Treatments
3 5 7 9
Plant height (cm) HHZ CK 31.67£0.20a 32.63+0.19a 33.57+0.07a 33.63+0.09a
S 27.13+0.71c  27.93+£0.13d  28.00+0.00d 29.10+0.21d
SH 29.83+0.19b 30.97+0.17b 31.47+£0.03b 31.90£0.15b
SZ 27.00+£1.00c  27.63+0.57d 27.90+0.57d 28.50+0.32d
SZH 28.93+0.03b  29.57+0.03¢c  29.80£0.30c  29.97+0.09c
XLY900 CK 32.90+0.31a 33.43+0.18a 33.80+0.46a 34.67+0.03a
S 28.30+0.06d 29.40+0.12d 29.70+0.06d 30.97+0.27d
SH 30.57+£0.03b  30.97+0.23b 31.33+0.18b 33.17+0.33b
SZ 28.33+£0.03d  29.50+0.06d 29.50+0.06d 30.50+0.06d
SZH 29.10+£0.10c  30.25+0.14c  30.53+0.03c 32.00+0.00c
Stem diameter HHZ CK 3.2740.06a  3.47+0.06a  3.63+£0.06a  3.80+0.10a
(mm) S 2.43£0.00d  2.67+0.12d  2.63£0.06d  2.70+0.12d
SH 3.07£0.06b  3.20+0.00b  3.40+0.00b  3.57+0.06b
SZ 2.63+0.15d  2.67+£0.12d  2.73£0.06d  2.87+0.21d
SZH 2.83+0.06c  2.93+0.06c  3.07+0.06c  3.20+0.00c
XLY900 CK 3.5340.03a  3.63+0.03a  3.77+0.03a  3.90+0.00a
S 2.87+0.03d  3.00+0.00d  2.90+0.06d  3.00+0.00d
SH 3.3740.03b  3.47+0.09b  3.60+£0.00b  3.63%0.03b
SZ 2.93+0.07d  3.00£0.06d  2.93+0.03d  3.10=0.06d
SZH 3.20+£0.00c  3.23+0.03¢  3.40+0.00c  3.47+0.03c

N
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Notes: Data in this table is mean = standard error of at least three replicates. According to Duncan's

multiple range tests, different letters indicate significant difference at the five percent significant
level Within each column.
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Table 2(on next page)
Effects of exogenous Hemin on the biomass of rice seedlings under NaCl stress

Notes: Data in this table is meanxstandard error of at least three replicates. According to

Duncan's multiple range tests, different letters indicate significant difference at the five

percent significant level Within each column.
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1 Table 2

2 Effects of exogenous Hemin on the biomass of rice seedlings under NaCl stress

mo1jphological Varieties Treatments NaClstress time ()
indexes
3 5 7 9
Shoot fresh HHZ CK 0.4771£0.0060a 0.474240.0109a  0.4829+0.0009a  0.5147+0.0041a
weight (g) S 0.3225+0.0092d  0.3335+0.0025d  0.3467+0.0043d  0.3617+0.0007d
SH 0.4109+0.0094b  0.3956+0.0029b  0.4270+0.0043b  0.4430+0.0029b
SZ 0.3169+0.0032d  0.3399+0.0056d  0.3398+0.0024d  0.3610+0.0091d
SZH 0.3557+£0.0109¢  0.3709+0.0040c  0.4058+0.0018c  0.4180+0.0068¢
XLY900 CK 0.5147+0.0021a 0.5110+0.0262a  0.5225+0.0053a  0.5477+0.0098a
S 0.3566+0.0101d  0.3577+0.0068c  0.3718+0.0051c  0.3985+0.0014d
SH 0.4385+0.0076b  0.4528+0.0195b  0.4546+0.0318b  0.4617+0.0160b
SZ 0.3623+0.0033d  0.3602+0.0220c  0.3732+0.0132¢  0.3923+0.0094d
SZH 0.4034+0.0057¢  0.4185+0.0088b  0.4260+0.0016b  0.4310+0.0025¢
Shoot dry HHZ CK 0.0938+0.0014a  0.0966+0.0022a  0.1004+0.0007a  0.1016+0.0015a
weight (g) S 0.0740+0.0023¢  0.0761+0.0025¢  0.0770+0.0007¢  0.0783+0.0013d
SH 0.0840+0.0012b  0.0852+0.0013b  0.0870+0.0015b  0.0907+0.0013b
SZ 0.0725+0.0024c  0.0751+0.0004c  0.0767+0.0014c  0.0779+0.0011d
SZH 0.0824+0.0006b  0.0831+0.0015b  0.0841+0.0012b  0.0846+0.0015¢
XLY900 CK 0.0933+0.0023a  0.1016+0.0017a  0.1044+0.0005a  0.1096+0.0045a
S 0.0817+0.0017d  0.0825+0.0015d 0.0818+0.0008cd 0.0853+0.0000cd
SH 0.0933+0.0006b  0.0943+0.0003b  0.0934+0.0029b  0.0962+0.0009b
SZ 0.0804+0.0023d  0.0816+0.0009d  0.0802+0.0043d  0.0811+0.0010d
SZH 0.0876+0.0006c  0.0871+0.0015¢c  0.0880+0.0000bc  0.0895+0.0006bc

3 Notes: Data in this table is mean = standard error of at least three replicates. According to Duncan's

multiple range tests, different letters indicate significant difference at the five percent significant
level Within each column.
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Figure 1

Figure 1. Effect of Hemin on growth of rice seedlings under NaCl (9 d) in HHZ (a) and
XLY900 (b).

HHZ XLY900

(a) (b)

CK S SH SZ SZH CK S SH SZ SZH
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Figure 2

Figure 2. Effect of Hemin on membrane damage and ROS accumulation of rice seedlings
under NaCl.
Electrolyte leakage in HHZ (a) and XLY900 (b); MDA in HHZ (c) and XLY900 (d) and H,0, in

HHZ (e) and XLY900 (f). Values are the meansxSD of three replicate samples. Different

letters in the data column indicate significant differences (p<0.05) according to Duncan’s

test.
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Figure 3

Figure 3. Effect of Hemin on histochemical localization of H,0, and O, on rice leaves
under NaCl stress (3 d).

XLY900

H,0, in HHZ (a) and XLY900 (b) and O, in HHZ (c) and XLY900 (d).
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Figure 4

Figure 4. Effect of Hemin on SOD, POD, and CAT activity of rice seedlings under NaCl
stress.

SOD in HHZ (a) and XLY900 (b); POD in HHZ (c) and XLY900 (d) and CAT in HHZ (e) and
XLY900 (f). Values are the means=SD of three replicate samples. Different letters in the data

column indicate significant differences (p<0.05) according to Duncan'’s test.
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Figure 5

Figure 5. Effect of Hemin on ascorbic acid content of rice seedlings under NaCl stress.

AsA in HHZ (a) and XLY900 (b); DHA in HHZ (c) and XLY900 (d) and AsA+DHA in HHZ (e) and
XLY900 (f). Values are the meansz=SD of three replicate samples. Different letters in the data

column indicate significant differences (p<0.05) according to Duncan’s test.
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Figure 6

Figure 6. Effect of Hemin on glutathione content of rice seedlings under NaCl stress.

GSH in HHZ (a) and XLY900 (b); GSSG in HHZ (c) and XLY900 (d) and GSH+GSSG in HHZ (e)
and XLY900 (f). Values are the means=SD of three replicate samples. Different letters in the

data column indicate significant differences (p<0.05) according to Duncan'’s test.
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Figure 7

Figure 7. Effect of Hemin on key enzyme activities in the AsA-GSH defense system of
rice seedlings under NaCl stress.

APX in HHZ (a) and XLY900 (b); MDHAR in HHZ (c) and XLY900 (d) DHAR in HHZ (e) and
XLY900 (f) and GR in HHZ (g) and XLY900 (h). Values are the meansz=SD of three replicate
samples. Different letters in the data column indicate significant differences (p<0.05)

according to Duncan'’s test.
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Figure 8

Figure 8. Effect of Hemin on osmoregulatory substances of rice seedlings under NaCl
stress.

Proline content in HHZ (a) and XLY900 (b); soluble protein content in HHZ (c) and XLY900 (d).
Values are the means+SD of three replicate samples. Different letters in the data column

indicate significant differences (p<0.05) according to Duncan'’s test.
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