

Spider phylogenomics: untangling the Spider Tree of Life

Nicole L Garrison, Juanita Rodriguez, Ingi Agnarsson, Jonathan A Coddington, Charles E Griswold, Christopher A Hamilton, Marshal Hedin, Kevin M Kocot, Joel M Ledford, Jason E Bond

Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Tertiary Revolution 125-90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Aviculariodea, Theraphosidina, Araneomorphae, Entelegynae, Araneoidea, the RTA – clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae, and Deinopoidea. The composition of the major Paleocribellate and Neocribellate clades, the basal divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae, and even the new concept of Synspermiata, need revision after the departure of Filistatidae and Leptonetidae from the haplogyne clade. The sister pairing of filistatids with hypochilids, implies that some peculiar features of each family may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the Entelegynae, illustrating possible intermediates in the evolution of the more complex

entelegyne genitalic condition, spinning organs and respiratory organs.

1 Spider Phylogenomics: Untangling the 2 Spider Tree of Life

3 **Nicole L. Garrison¹, Juanita Rodriguez¹, Ingi Agnarsson², Jonathan A.**
4 **Coddington³, Charles E. Griswold⁴, Chris A. Hamilton¹, Marshal Hedin⁵,**
5 **Kevin M. Kocot⁶, Joel M. Ledford⁷, and Jason E. Bond^{*1}**

6 **¹Department of Biological Sciences and Auburn University Museum of Natural History,**
7 **Auburn University**

8 **²Department of Biology, University of Vermont**

9 **³Department of Entomology, National Museum of Natural History, Smithsonian**
10 **Institution, Washington, DC**

11 **⁴Arachnology, California Academy of Sciences**

12 **⁵Department of Biology, San Diego State University**

13 **⁶Department of Biological Sciences, University of Alabama**

14 **⁷Department of Plant Biology, University of California Davis**

15 ABSTRACT

16 Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in
nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have
long served as evolutionary models for studying complex mating and web spinning behaviors, key
innovation and adaptive radiation hypotheses, and have been inspiration for important theories like
sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny
typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic
framework for the entire order. To further resolve spider evolutionary relationships we have assembled a
transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut
coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene
regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships
produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider
evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb
web and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified
faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect
a major increase in biomass of non-flying insects during the Cretaceous Tertiary Revolution 125-90
million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our
results also have major implications for our understanding of spider systematics. Phylogenomic analyses
corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina,
Aviculariodea, Theraphosidina, Araneomorphae, Entelegynae, Araneoidea, the RTA – clade, Dionycha
and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae,
and Deinopoidea. The composition of the major Paleocribellate and Neocribellate clades, the basal
divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae, and even the new concept
of Synspermiata, need revision after the departure of Filistatidae and Leptonetidae from the haplogynae
clade. The sister pairing of filistatids with hypochilids, implies that some peculiar features of each family
may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the
Entelegynae, illustrating possible intermediates in the evolution of the more complex entelegyne genitalic
condition, spinning organs and respiratory organs.

17 **Keywords:** Arachnida, Araneae, Molecular Systematics, Spider phylogeny, Web evolution

18 **Authorship Statement**

19 Order of authorship following the second author (JR) determined alphabetically through senior corre-
20 sponding author (JEB).

***Corresponding Author:** 101 Rouse Life Sciences, Auburn University , AL, 36849, USA, jbond@auburn.edu

21 **INTRODUCTION**

22 Spiders (Order Araneae; Figure 1) are a prototypical, hyperdiverse arthropod group comprising >45,000
23 described species (World Spider Catalog, 2015) distributed among 3,958 genera and 114 families; by
24 some estimates the group may include >120,000 species (Agnarsson et al., 2013). Spiders are abundant,
25 generalist predators that play dominant roles in almost every terrestrial ecosystem. The order represents
26 an ancient group that has continued to diversify taxonomically and ecologically since the Devonian
27 (>380mya). They are relatively easy to collect and identify, and are one of few large arthropod orders to
28 have a complete online taxonomic catalog with synonymies and associated literature.

29 In addition to their remarkable ecology, diversity, and abundance, spiders are known for the production
30 of extraordinary biomolecules like venoms and silks as well as their utility as models for behavioral and
31 evolutionary studies (reviewed in Agnarsson et al., 2013). Stable and complex venoms have evolved
32 over millions of years to target predators and prey alike. Although few are dangerous to humans, spider
33 venoms hold enormous promise as economically important insecticides and therapeutics (Saez et al.,
34 2010; King and Hardy, 2013). Moreover, no other animal lineage can claim a more varied and elegant
35 use of silk. A single species may have as many as eight different silk glands, producing a variety of
36 super-strong silks deployed in almost every aspect of a spider's life: safety lines, dispersal, reproduction
37 (sperm webs, eggsacs, pheromone trails), and prey capture (Blackledge et al. 2011). Silken prey capture
38 webs, particularly the orb, have long been considered a key characteristic contributing to the ecological
39 and evolutionary success of this group (reviewed in Bond and Opell, 1998). Moreover, spider silks are
40 promising biomaterials, already benefiting humans in myriad ways - understanding the phylogenetic
41 basis of such super-materials will facilitate efforts to reproduce their properties in biomimetic materials
42 like artificial nerve constructs, implant coatings, and drug delivery systems (Schacht and Scheibel, 2014;
43 Blackledge et al., 2011).

44 The consensus on major spider clades has changed relatively little in the last two decades since the
45 summary of Coddington and Levi (1991) and Coddington (2005). Under the classical view, Araneae
46 comprises two clades (see Table 1 and Figure 1 for major taxa discussed throughout; node numbers
47 (Figure 1) referenced parenthetically hereafter), Mesothelae (Node 2) and Opisthothelae (Node 3).
48 Mesotheles are sister to all other spiders, possessing a plesiomorphic segmented abdomen and mid-ventral
49 (as opposed to terminal) spinnerets. Opisthothelae contains two clades: Mygalomorphae (Node 4) and
50 Araneomorphae (Node 8). Mygalomorphae is less diverse (6% of described Araneae diversity) and retains
51 several plesiomorphic features (e.g. two pairs of book lungs, few and biomechanically 'weak' silks (Dicko
52 et al., 2008; Starrett et al., 2012). Within Araneomorphae, Hypochilidae (Paleocribellatae; Node 9) is sister
53 to Neocribellatae, within which Austrochiloidea are sister to the major clades Haplodynae (Node 10) and
54 Entelegynae (Node 11), each weakly to moderately supported by few morphological features. Haplodynae
55 have simple genitalia under muscular control whereas entelegynes have hydraulically activated, complex
56 genitalia, with externally sclerotized female epigyna. Entelegynes comprise multiple, major, hyperdiverse
57 groups, including the "RTA clade" (RTA = retrolateral tibial apophysis, Node 13), its subclade Dionycha
58 (e.g., wolf, fishing, and jumping spiders; Ramírez, 2014, Node 14), and the Orbiculariae – the cribellate
59 and ecribellate orb weavers and relatives (see Hormiga and Griswold, 2014).

60 Beginning with early higher-level molecular phylogenetic studies, it gradually became clear that
61 major "stalwart" and presumably well-supported spider groups like the Neocribellatae, Haplodynae,
62 Palpimanoidea, Orbiculariae, Lycosoidea, and others (generally only known to arachnologists) were
63 questionable. Subsequent studies focusing on mygalomorph (Hedin and Bond, 2006; Bond et al., 2012)
64 and araneomorph (Blackledge et al., 2009; Dimitrov et al., 2012) relationships continued to challenge
65 the consensus view based largely on morphological data, finding polyphyletic families and ambivalent
66 support for major clades, which were sometimes "rescued" by adding non-molecular data; molecular
67 signal persistently contradicted past verities. In Agnarsson et al. (2013), a meta-analysis of available
68 molecular data failed to recover several major groups such as Araneomorphae, Haplodynae, Orbiculariae,
69 Lycosoidea, and others (Table 1). Although these authors criticized the available molecular data as
70 insufficient, their results actually presaged current spider phylogenomic inferences (Bond et al., 2014).
71 Incongruence between the traditional spider classification scheme and (non-phylogenomic) molecular
72 systematics likely has one primary cause: too few data. Non-molecular datasets to date have been
73 restricted to a relatively small set of morphological and/or behavioral characters whereas molecular
74 analyses addressing deep spider relationships have largely employed relatively few, rapidly evolving loci
75 (e.g., 28S and 18S rRNA genes, Histone 3, and a number of mitochondrial DNA markers).

76 The first analyses of spider relationships using genome-scale data, scored for 40 taxa by Bond et
77 al. (2014) and for 14 taxa by Fernández et al. (2014), considerably refined understanding of spider
78 phylogeny, the former explicitly calling into question long held notions regarding the tempo and mode
79 of spider evolution. Using transcriptome-derived data, Bond et al. (2014) recovered the monophyly
80 of some major groups (araneomorphs and mygalomorphs) but reshuffled several araneomorph lineages
81 (haplogynes, paleocribellates, orbicularians, araneoids (Node 12) and the RTA clade). Notably, Bond
82 et al. (2014) rejected *Orbiculariae*, which included both cribellate (*Deinopoidea*) and ecribellate orb
83 weavers (*Araneoidea*). Instead they suggested either that the orb web arose multiple times, or, more
84 parsimoniously, that it arose once and predated the major diversification of spiders. Despite major
85 advances in understanding of spider phylogeny, only a small percentage of spider families were sampled
86 and monophyly of individual families could not be tested. Denser taxon sampling is needed to warrant
87 changes in higher classification and to more definitively address major questions about spider evolution.

88 Herein, we apply a spider-specific core ortholog approach with significantly increased taxon and gene
89 sampling to produce a more complete and taxon specific set of alignments for phylogenetic reconstruction
90 and assessment of spider evolutionary pattern and process. Existing genome-derived protein predictions
91 and transcriptome sequences from a representative group of spiders and arachnid outgroups were used
92 to create a custom core ortholog set specific to spiders. Taxon sampling was performed to broadly
93 sample Araneae with an emphasis on lineages whose phylogenetic placement is uncertain and included
94 previously sequenced transcriptomes, gene models from completely sequenced genomes, and novel
95 transcriptome sequences generated by our research team. This resulted in a data set comprising 70 spider
96 taxa plus five additional arachnid taxa as outgroups. We test long-held notions that the orb web, in
97 conjunction with ecribellate adhesive threads, facilitated diversification among araneoids and present
98 the most completely sampled phylogenomic data set for spiders to date using an extensive dataset of
99 nearly 3,400 putative genes (~700K amino acids). Further, we test the hypothesis of a non-monophyletic
100 *Orbiculariae*, assess diversification rate shifts across the spider phylogeny, and provide phylogenomic
101 hypotheses for historically difficult to place spider families. Our results clearly demonstrate that our
102 understanding of spider phylogeny and evolution requires major reconsideration and that several long-held
103 and contemporary morphologically-derived hypotheses are likely destined for falsification.

104 MATERIALS & METHODS

105 Sampling, Extraction, Assembly

106 Spider sequence data representing all major lineages were collected from previously published transcriptomic
107 and genomic resources (N=53) and supplemented with newly sequenced transcriptomes (N=22) to
108 form the target taxon set for the current study. Existing sequence data were acquired via the NCBI SRA
109 database (<http://www.ncbi.nlm.nih.gov/sra>). Raw transcriptome sequences were downloaded, converted
110 to fastq file format, and assembled using Trinity (Grabherr et al., 2011). Genomic data sets in the form of
111 predicted proteins were downloaded directly from the literature (Sanggaard et al., 2014) for downstream
112 use in our pipeline. Newly sequenced spiders were collected from a variety of sources, extracted using
113 the TRIZol total RNA extraction method, purified with the RNeasy mini kit (Qiagen) and sequenced
114 in-house at the Auburn University Core Genetics and Sequencing Laboratory using an Illumina Hi-Seq
115 2500. This produced 100bp paired end reads for each newly sequenced spider transcriptome, which
116 were then assembled using Trinity. Proteins were predicted from each transcriptome using the program
117 TransDecoder (Haas et al., 2013).

118 Core Ortholog Approach and Data Processing

119 We employed a core ortholog approach for putative ortholog selection and implicitly compared the effect
120 of using a common arthropod core ortholog set and one compiled for spiders; the arthropod core ortholog
121 set was deployed as described in Bond et al. (2014). To generate the spider core ortholog set, we used
122 an all-versus-all BLASTP method (Altschul, Stephen F. et al., 1990) to compare the transcripts of the
123 amblypygid *Damon variegatus*, and the spiders *Acanthoscurria geniculata*, *Dolomedes triton*, *Ero leonina*,
124 *Hypochilus pococki*, *Leucauge venusta*, *Liphistius malayanus*, *Megahexura fulva*, *Neoscona arabesca*,
125 *Stegodyphus mimosarum*, and *Uloborus sp.* *Acanthoscurria geniculata* and *Stegodyphus mimosarum*
126 were represented by predicted transcripts from completely sequenced genomes while the other taxa were
127 represented by our new Illumina transcriptomes. An e-value cut-off of 10-5 was used. Next, based on

128 the BLASTP results, Markov clustering was conducted using OrthoMCL 2.0 (Li et al., 2003) with an
129 inflation parameter of 2.1.

130 The resulting putatively orthologous groups (OGs) were processed with a modified version of the
131 bioinformatics pipeline employed by Kocot et al. (2011). First, sequences shorter than 100 amino acids
132 in length were discarded. Next, each candidate OG was aligned with MAFFT (Katoh, 2005) using the
133 automatic alignment strategy with a maxiterate value of 1,000. To screen OGs for evidence of paralogy,
134 an “approximately maximum likelihood tree” was inferred for each remaining alignment using FastTree
135 2 (Price et al., 2010). Briefly, this program constructs an initial neighbor-joining tree and improves it
136 using minimum evolution with nearest neighbor interchange (NNI) subtree rearrangement. FastTree
137 subsequently uses minimum evolution with subtree pruning regrafting (SPR) and maximum likelihood
138 using NNI to further improve the tree. We used the “slow” and “gamma” options; “slow” specifies a more
139 exhaustive NNI search, while “gamma” reports the likelihood under a discrete gamma approximation with
140 20 categories, after the final round of optimizing branch lengths. PhyloTreePruner (Kocot et al., 2013)
141 was then employed as a tree-based approach to screen each candidate OG for evidence of paralogy. First,
142 nodes with support values below 0.95 were collapsed into polytomies. Next, the maximally inclusive
143 subtree was selected where all taxa were represented by no more than one sequence or, in cases where
144 more than one sequence was present for any taxon, all sequences from that taxon formed a monophyletic
145 group or were part of the same polytomy. Putative paralogs (sequences falling outside of this maximally
146 inclusive subtree) were then deleted from the input alignment. In cases where multiple sequences from
147 the same taxon formed a clade or were part of the same polytomy, all sequences but the longest were
148 deleted. Lastly, in order to eliminate orthology groups with poor taxon sampling, all groups sampled for
149 fewer than 7 of the 11 taxa and all groups not sampled for *Megahexura fulva* (taxon with greatest number
150 of identified OGs) were discarded. The remaining alignments were used to build pHMMs for HaMStR
151 with hmmbuild and hmmcalibrate from the HMMER package (Eddy, 2011).

152 For orthology inference, we employed HaMStR v13.2.3 (Ebersberger et al., 2009), which infers
153 orthology based on predefined sets of orthologs. Translated transcripts for all taxa were searched against
154 the new set of 4,934 spider-specific profile hidden Markov models (pHMMs; available for download from
155 the Dryad Data Repository) and an arthropod core ortholog set previously employed in Bond et al. (2014).
156 In the spider core ortholog analysis, the genome-derived *Acanthoscurria geniculata* OGs were used as the
157 reference protein set for reciprocal best hit scoring. *Daphnia pulex* was used as the reference species for
158 putative ortholog detection in the arthropod core ortholog analysis. Orthologs sharing a core identification
159 number were pooled together for all taxa and processed using a modified version of the pipeline used to
160 generate the custom spider ortholog set. In both analyses, sequences shorter than 75 amino acids were
161 deleted first. OGs sampled for fewer than 10 taxa were then discarded. Redundant identical sequences
162 were removed with the perl script uniqhaplo.pl (available at <http://raven.iab.alaska.edu/ntakebay/>) leaving
163 only unique sequences for each taxon. Next, in cases where one of the first or last 20 characters of an
164 amino acid sequence was an X (corresponding to a codon with an ambiguity, gap, or missing data), all
165 characters between the X and that end of the sequence were deleted and treated as missing data. Each OG
166 was then aligned with MAFFT (mafft –auto –localpair –maxiterate 1000; Katoh (2005)). Alignments
167 were then trimmed with ALISCORE (Misof and Misof, 2009) and ALICUT (Kück, 2009) to remove
168 ambiguously aligned regions. Next, a consensus sequence was inferred for each alignment using the
169 EMBOSS program infoalign (Rice et al., 2000). For each sequence in each single-gene amino acid
170 alignment, the percentage of positions of that sequence that differed from the consensus of the alignment
171 were calculated using infoalign’s “change” calculation. Any sequence with a “change” value greater than
172 75 was deleted. Subsequently, a custom script was used to delete any mistranslated sequence regions of
173 20 or fewer amino acids in length surrounded by ten or more gaps on either side. This step was important,
174 as sequence ends were occasionally mistranslated or misaligned. Alignment columns with fewer than
175 four non-gap characters were subsequently deleted. At this point, alignments shorter than 75 amino acids
176 in length were discarded. Lastly, we deleted sequences that did not overlap with all other sequences in the
177 alignment by at least 20 amino acids, starting with the shortest sequence not meeting this criterion. This
178 step was necessary for downstream single-gene phylogenetic tree reconstruction. As a final filtering step,
179 OGs sampled for fewer than 10 taxa were discarded.

180 In some cases, a taxon was represented in an OG by two or more sequences (splice variants, lineage-
181 specific gene duplications [=inparalogs], overlooked paralogs, or exogenous contamination). In order to
182 select the best sequence for each taxon and exclude any overlooked paralogs or exogenous contamination,

183 we built trees in FastTree 2 (Price et al., 2010) and used PhyloTreePruner to select the best sequence
184 for each taxon as described above. Remaining OGs were then concatenated using FASconCAT (Kück
185 and Meusemann, 2010). The OGs selected by our bioinformatic pipeline were further screened in seven
186 different ways (subsets listed in Table 2). OGs were first sorted based on amount of missing data; the
187 half with the lowest levels was pulled out as **matrix 2** (1699 genes). From matrix 2, a smaller subset of
188 OGs optimized for gene occupancy was extracted, resulting in matrix 3 (850 genes). The full supermatrix
189 was also optimized using the programs MARE (Meyer et al., 2011) and BaCoCa (Base Composition
190 Calculator; Kück and Struck (2014)). MARE assesses the supermatrix by partition, providing a measure
191 of tree-likeness for each gene and optimizes the supermatrix for information content. The full supermatrix
192 was optimized with an alpha value of 5, to produce matrix 7 (1488 genes, 58 taxa). From the MARE-
193 reduced matrix, genes having no missing partitions for any of the remaining taxa (n=50) were extracted to
194 form a starting matrix for the BEAST analyses (details below). Matrix assessment was also conducted
195 using BaCoCa, which provides a number of descriptive supermatrix statistics for evaluating bias in amino
196 acid composition and patterns in missing data. This program was used to assess for patterns of non-
197 random clusters of sequences in the data, which could potentially mislead phylogenetic analyses. Matrix
198 4 represents a 50% reduction of the full supermatrix using BaCoCa derived values for phylogenetically
199 informative sites as a guide; essentially reducing missing data from absent partitions and gaps. This
200 matrix is similar, but not identical to matrix 2. OGs for each matrix were concatenated using FASconCAT
201 (Kück and Meusemann, 2010).

202 **Phylogenetics**

203 Table 2 summarizes run parameters of the seven individual maximum likelihood analyses conducted
204 for each of the supermatrices. We selected the optimal tree for each supermatrix using the computer
205 program ExaML ver. 3.0.1 (Kozlov et al., 2015). Models of amino acid substitution were selected using
206 the AUTOF command in ExaML. Bootstrap data sets and starting parsimony trees for each matrix were
207 generated using RAxML (Stamatakis, 2014) and each individually analyzed in ExaML. We generated
208 225-300 replicates for each matrix which were then used to construct a majority-rule bootstrap consensus
209 bootstrap tree; a custom python script was used to automate the process and write a bash script to execute
210 the analyses on a high performance computing (HPC) cluster. The arthropod core OG bootstrap analysis
211 was conducted using RAxML. All analyses were conducted on the Auburn University CASIC HPC and
212 Atrax (Bond Lab, Auburn University).

213 A coalescent-based method as implemented in ASTRAL (Accurate Species Tree Algorithm) (Mirarab
214 et al., 2014) was used to infer a species tree from a series of unrooted gene trees. The ASTRAL approach is
215 thought to be more robust to incomplete lineage sorting, or deep coalescence, than concatenation methods
216 or other shortcut coalescent-based approaches (Mirarab et al., 2014). We first constructed individual gene
217 trees for all partitions contained within matrix A. Gene trees were generated using ML based on 100
218 RAxML random addition sequence replicates followed by 100 bootstrap replicates (Table 2). Subsequent
219 species tree estimation was inferred using ASTRAL v4.7.6, from all individual unrooted gene trees (and
220 bootstrap replicates), under the multi-species coalescent model.

221 A chronogram was inferred in a Bayesian framework under an uncorrelated lognormal relaxed clock
222 model (Drummond et al., 2006; Drummond and Rambaut, 2007) using Beast v1.8.1 (Drummond et al.,
223 2012). For this analysis we used 43 partitions of a matrix which included complete partitions for all
224 taxa derived from the MARE-optimized matrix 7. The model of protein evolution for each partition was
225 determined using the perl script ProteinModelSelection.pl in RAxML. Beast analyses were run separately
226 for each partition using eight calibration points based on fossil data. The most recent common ancestor
227 (MRCA) of Mesothelae + all remaining spiders was given a lognormal prior of (mean in real space) 349
228 Ma (SD=0.1) based on the Mesothelae fossil *Palaeothele montceauensis* (Selden, 1996). The MRCA
229 of extant araneomorphs was given a lognormal prior of (mean in real space) 267 Ma (SD=0.2) based
230 on the fossil *Triassaraneus andersonorum* (Selden et al., 1999). The MRCA of extant mygalomorphs
231 was given a lognormal prior of (mean in real space) 278 Ma (SD=0.1) based on the fossil *Rosamygale*
232 *grauvogeli* (Selden and Gall, 1992). The MRCA of Haplogynae + Hypochilidae was given a lognormal
233 prior of (mean in real space) 278 Ma (SD=0.1) based on the fossil *Eoplectreurus gertschi* (Selden and
234 Penney, 2010). The MRCA of Deinopoidea (cribellate orb-weavers) was given a lognormal prior of
235 (mean in real space) 195 Ma (SD=0.3) based on the fossil *Mongolarachne jurassica* (Selden et al.,
236 2013). The MRCA of ecribellate orb-weavers was given a lognormal prior of (mean in real space) 168

237 Ma (SD=0.4) based on the fossil *Mesozygiella dunlopi* (Penney and Ortuño, 2006). The MRCA of
238 Nemesiidae, excluding *Damarchus*, was given a lognormal prior of (mean in real space) 168 Ma (SD=0.4)
239 based on the nemesiid fossil *Cretamygale chasei* (Selden, 2002). Finally, the MRCA of Antrodiaetidae
240 was given a lognormal prior of (mean in real space) 168 Ma (SD=0.4) based on the fossil *Cretacattyma*
241 *raveni* (Eskov and Zonstein, 1990). Two or more independent Markov Chain Monte Carlo (MCMC)
242 searches were performed until a parameter effective sample size (ESS) >200 was achieved. ESS values
243 were examined in Tracer v1.5. Independent runs for each partition were assembled with LogCombiner
244 v1.7.5 and 10% percent of generations were discarded as burn-in. Tree files for each partition were
245 uniformly sampled to obtain 10,000 trees. A total of 430,000 trees (10,000 trees from each partition) were
246 assembled with LogCombiner v1.7.5 and a consensus tree was produced using TreeAnnotator v1.8.1. A
247 chronogram containing all taxa was generated using a penalized likelihood method in r8s v1.8 (Sanderson,
248 2002). The 95% highest posterior density dates obtained for the Beast analysis were incorporated as
249 constraints for node ages of the eight fossil calibrated nodes. The analysis was performed using the TN
250 algorithm, cross validation of branch-length variation and rate variation modeled as a gamma distribution
251 with an alpha shape parameter.

252 To detect diversification rate shifts, we performed a Bayesian analysis of diversification in BAMM
253 (Bayesian Analysis of Macroevolutionary Mixtures; Rabosky et al., 2014). For this analysis we used the
254 chronogram obtained by the r8s analysis in order to maximize taxon sampling. To account for non-random
255 missing speciation events, we quantified the percentage of taxa sampled per family and incorporated
256 these into the analysis. We also accounted for missing families sampled at various taxonomic levels. The
257 MCMC chain was run for 100,000,000 generations, with sampling every 10,000 generations. Convergence
258 diagnostics were examined using coda (Plummer et al., 2006) in R. Ten percent of the runs were discarded
259 as burn-in. The 95% credible set of shift configurations was plotted in the R package BAMMtools
260 (Rabosky et al., 2014).

261 Character state reconstructions of web type following Blackledge et al. (2009) were performed using
262 a maximum likelihood approach. The ML approach was implemented using the rayDISC command in
263 the package corHMM (Beaulieu et al., 2013) in R (Ihaka and Gentleman, 1996). This method allows
264 for multistate characters, unresolved nodes, and ambiguities (polymorphic taxa or missing data). Three
265 models of character evolution were evaluated under the ML method: equal rates (ER), symmetrical (SYM)
266 and all rates different (ARD). A likelihood-ratio test was performed to select among these varying models
267 of character evolution.

268 RESULTS

269 Summary of Genomic Data

270 Twenty-one novel spider transcriptomes were sequenced, with an average of 72,487 assembled contigs
271 (contiguous sequences) ranging from 6,816 (*Diguetia sp.*) to 191,839 (*Segestria sp.*); specimen data and
272 transcriptome statistics for each sample are summarized in Supplemental Tables S1 and S2 respectively.
273 Median contig length for the novel transcriptomes was 612 bp. The complete taxon set, including spider
274 and outgroup transcriptomes from the SRA database, had an average contig number of 53,740 and a range
275 of 5,158 (*Paratropis sp.*) to 202,311 (*Amaurobius ferox*) with a median contig length of 655. The newly
276 constructed spider-specific core ortholog group (OG) set contained 4,934 OGs, more than three times the
277 number of arthropod core orthologs used in prior spider analyses (Bond et al., 2014) and represents a
278 significant step forward in generating a pool of reasonably well-vetted orthologs for spider phylogenomic
279 analyses. The arthropod and spider core orthology sets had 749 groups in common; 4,185 OGs in the
280 spider core were novel. Of the spider-core groups, 4,249 (86%) were present in the sequenced genome of
281 our HaMSTR reference taxon of choice *Acanthoscurria geniculata* (Sanggaard et al., 2014) and were
282 retained for use in downstream ortholog detection. The number of TransDecoder predicted proteins and
283 ortholog detection success for each taxon is summarized in Table S2. Annotations for the arthropod set
284 can be found in Bond et al. (2014); Supplemental Table S3 summarizes gene annotations for the spider
285 core ortholog set generated for this study. Our new HaMStR spider core ortholog set and *Acanthoscurria*
286 *geniculata* BLAST database file can be downloaded from the Dryad Data Repository at doi.xxxx.xxxxxx.

287 Phylogenetic Analyses

288 Seven super matrices were generated for downstream non time-calibrated analyses (Figure 2), one drawn
289 from the arthropod core set and six using the spider core set. Data set sizes, summarized in Table 2, ranged

290 from a maximum of 3,398 OGs with a higher percentage of missing cells (38.5%), 850 OGs with 19.6%
291 missing, to 549 OGs (arthropod core set) with 33% missing data. Two matrices were generated using
292 automated filtering approaches implemented by BaCoCa (Kück and Struck, 2014) and MARE (Meyer
293 et al., 2011). In BaCoCa we sorted partitions using number of informative sites, capturing the top half
294 (1700 OGs) of the matrix containing the most informative sites. RCFV values generated by BaCoCa were
295 <0.05 for all taxa in all partitions for each of the matrices, indicating homogeneity in base composition.
296 Additionally, there was no perceptible taxonomic bias observed in shared missing data (Supplemental
297 Figures S1-S6). The MARE optimized matrix comprised 58 taxa and 1,488 genes with 19.6% missing
298 data. For graphical representations of gene occupancy for each matrix, see Supplemental Figures S7-S12.
299 Blast2GO (Conesa et al., 2005) gene ontology distributions of molecular function for OGs recovered
300 from both the spider and arthropod ortholog sets (Supplemental Figures S13 and S14) can be found in the
301 supplemental materials.

302 Our phylogenetic analyses (see Table 2 and Discussion), the results of which are summarized in
303 Figure 2, consistently recover many well-supported monophyletic groups: Araneae, Mygalomorphae,
304 Araneomorphae, Haplodynae (excluding Filistatidae and Leptonetidae), Entelegynae, the RTA clade,
305 Dionycha, and Lycosoidea. Within Mygalomorphae, Atypoidina and Avicularioidea are monophyletic;
306 Nemesiidae is polyphyletic. Filistatidae (*Kukulcania*) is removed from other haplogynes and emerges as
307 the sister group to *Hypochilus*. Interestingly, Leptonetidae emerges as the sister group to Entelegynae.
308 Eresidae, controversially, is sister to Araneoidea. Deinopoidea is polyphyletic. Oecobiidae is sister to
309 Uloboridae, which are together sister to Deinopidae plus the RTA clade. Homalonychidae (previously
310 unplaced by phylogenomics) and by implication the entire Zodarioidea (Miller et al., 2010), is sister to
311 Dionycha plus Lycosoidea. Hahniidae, represented by the cyphoecine *Calymmaria*, is sister to Dictynidae.
312 Thomisidae belongs in Lycosoidea as proposed by Homann (1971) and Polotow et al. (2015).

313 Coalescent-based species-tree analysis in ASTRAL employed unrooted gene trees based on the
314 3,398 gene matrix as input and inferred a well-supported tree (most nodes >95% bs; Figure 2). With
315 few exceptions the topology recovered using this approach was congruent with the likelihood-based
316 supermatrix analysis. Conflicting nodes, some corresponding to key araneomorph lineages, which were
317 moderately to weakly supported in concatenated analyses, are summarized in Figure 2.

318 A chronogram based on 43 partitions with no missing data (matrix 7, see Table 2) is shown in Figure 4.
319 Divergence time estimates are summarized in Table 3: Mesothelae - Opisthothelae at 340 Ma (287-398
320 95% CI); Mygalomorphae - Araneomorphae at 308 Ma (258-365 95% CI); Haplodynae + Hypochilidae -
321 Entelegynae at 276 Ma (223-330 95% CI); RTA + Deinopoidea - *Stegodyphus* + Araneoidea at 214 Ma
322 (154-280 95% CI); RTA - Dionycha at 138.8 Ma (Figure 4).

323 Diversification rate shift analysis estimated three instances of significant diversification shifts within
324 spiders (95% credibility). The highest rate shift is within the RTA + Dionycha + Lycosoidea (Figure 5)
325 followed by Avicularioidea and within Araneoidea ($f = 0.23; 0.21$; Figure 5).

326 Maximum likelihood ancestral state reconstruction of web type (Figure 6) shows that the spider
327 common ancestor likely foraged from a subterranean burrow, sometimes sealed by a trapdoor. The
328 ancestral condition for araneomorphs may have been a stereotypical aerial sheet. Entelegynae ancestors
329 probably spun orbs, which were subsequently lost at least three times. RTA taxa largely abandoned webs to
330 become hunting spiders. Precise location of these character state shifts depends upon sufficient sampling;
331 denser sampling reduces the number of unobserved evolutionary events. While this analysis contains only
332 47 of 114 spider families, the sequence and overall mapping to the spider backbone phylogeny is strongly
333 supported.

334 DISCUSSION

335 Our phylogenomic analyses represent the largest assessment of spider phylogeny to date using genomic
336 data, both in terms of taxa and number of orthologs sampled. Our results are largely congruent with
337 our earlier work (Bond et al., 2014); we recover all of the major backbone lineages (Mygalomorphae,
338 Araneomorphae, RTA, etc.), but reiterate that our understanding of spider evolutionary pattern and
339 process needs thorough reconsideration. This expanded study reinforces the ancient origin of the orb
340 web hypothesis and shows that rates of spider species diversification appear to be associated with web
341 change or loss – or with modification of the male palp rather than the origin of the orb web. It shows that
342 the Haplodynae are polyphyletic with Filistatidae as sister to Hypochilidae and Leptonetidae as sister to

343 Entelegynae. It also suggests a position for two enigmatic families – Hahniidae and Homalonychidae –
344 and provides an alternate view of RTA relationships and the contents of Dionycha clade.

345 **Data Characteristics and Development of Spider Core Orthologs**

346 Transcriptome analyses are unquestionably data rich. Thousands of assembled sequences emerge from
347 even modest RNA-seq experiments, providing, among other things, a basis for identifying phylogenetically
348 informative orthologs. This bounty comes with a few caveats. Isoforms, paralogous sequences, and
349 assembly artifacts (chimeric contigs) can mislead inference of single-copy orthologous genes. The data
350 represent one snapshot – a specific organism, point in time, and combination of tissues – that can lead
351 to gaps in downstream supermatrices due to stochastic sampling issues. Large amounts of missing data,
352 due to missing loci and indels introduced during alignment, can arise post-assembly in the ortholog
353 detection and filtering stages of phylogenomic analyses (compare Bond et al. (2014) to Fernández et al.
354 (2014)). Lemmon et al. (2009) and a number of other authors (Roure et al., 2013; Dell'Ampio et al.,
355 2014; Xia, 2014) have discussed the potential negative effects of such missing data in large phylogenomic
356 (transcriptome-based) datasets. Phylogeny inference may also be misled by recombination (Springer
357 and Gatesy, 2016), especially in genes with exons separated by long introns; spider genomes published
358 to date are intron-rich (Sanggaard et al., 2014). Recent studies argue that the phylogenetic signal from
359 transcriptomes can conflict with alternative reduced representation approaches like targeted sequence
360 capture (Jarvis et al., 2014; Brändley et al., 2015; Prum et al., 2015). From vast amounts of bird genome
361 protein-coding data, Jarvis et al. (2014) concluded that these loci were not only insufficient (low support
362 values), but also misleading due to convergence and high levels of incomplete lineage sorting during rapid
363 radiations.

364 Simulation studies now predict that 10's-100's of loci will resolve most phylogenies, albeit sensitive
365 to factors such as population size or speciation tempos (Knowles and Kubatko, 2011; Leache and Rannala,
366 2011; Liu and Yu, 2011). To mitigate the impacts of paralogy, incomplete lineage sorting, and missing data,
367 we developed *a priori* a set of spider core orthologs that comprise a database consisting of over 4,500 genes
368 that are expected to be recovered from most whole spider RNA extractions and are likely orthologous.
369 We summarize the annotations for each of the genes in the HaMStR pHMM file in Supplemental table S3.

370 Our approach enhances repeatability, downstream assessment, scalability (taxon addition), and data
371 quality. Studies that employ pure clustering approaches like OMA stand-alone (Altenhoff et al., 2013)
372 may produce more data (i.e., more “genes”) on the front end; however, they are not as scalable, lack
373 comparability, and, if not carefully curated or filtered, will retain some low quality loci. Although adding
374 more genes is one strategy (e.g., (Lopardo and Hormiga, 2015)), it is increasingly clear that taxon sampling
375 and data quality are more important than quantity (Lemmon and Lemmon, 2013; Bond et al., 2014).

376 **A Modified View of Spider Evolution and Key Innovations**

377 Once considered the “crowning achievement of aerial spiders” (Gertsch, 1979), the orb web and con-
378 sequent adaptive radiation of araneoid spiders (ecribellate orb weavers and their relatives) captured the
379 imagination of spider researchers for over a century. The evolution of adhesive threads and the vertical
380 orientation of the orb web, positioned to intercept and retain flying insects, has been long considered
381 a “key innovation” that allowed spiders to inhabit a new adaptive zone (Bond and Opell, 1998). It is
382 important to note that several prior authors speculated about orb web adaptive value, such as Levi (1980),
383 Opell (1979, 1983), and Coddington (1986), although Bond and Opell (1998) quantified the pattern
384 in a formal phylogenetic framework. Over 25% of all spider species are araneoids. Given orb weaver
385 monophyly on quantitative phylogenies, rigorous empirical studies tended to confirm the orb as a prime
386 cause of spider diversification. Nevertheless, a lack of correlation of the orb web and species richness has
387 been apparent for some time. Griswold et al. (1998) noted that over 50% of Araneoidea no longer build
388 recognizable orb webs and suggested that “the orb web has been an evolutionary base camp rather than a
389 summit.”

390 Bond et al. (2014) tested two alternative evolutionary scenarios for orb web evolution, reflecting
391 different analytical results; parsimony implied multiple independent origins, and maximum likelihood
392 implied one origin and subsequent multiple losses. The current study (Figure 6) favors the latter: the orb
393 evolves at the base of the araneoid + deinopoid + RTA clade, but is lost at least three times independently.
394 Large amounts of morphological and behavioral data (albeit often correlated with features essential to the
395 orb) still support the single origin hypothesis (Coddington, 1986, 1991; Scharff and Coddington, 1997;
396 Griswold et al., 1998; Agnarsson et al., 2013). Our results suggest both that the orb web originated earlier

397 than previously supposed, and that heretofore-unsuspected clades of spiders descend from orb weavers.
398 In a sense, this ancient origin hypothesis reconciles the implications of genomic data with the classical
399 evidence for multiple, homologous, complex, co-adapted character systems.

400 Recent discoveries of large, cribellate orb web-weaving taxa from the late Triassic agree with our
401 molecular dates. Diverse Mesozoic deinopoids (Selden et al., 2015) are consistent with the “orb web
402 node” at 213 mya (Figure 4, Table 3). Under this view, modern uloborids and deinopids are distinct
403 remnants of this diverse group. Selden et al. (2015) previously noted that if other extant taxa “emerged
404 from the deinopoid stem or crown group it would render the whole-group Deinopoidea paraphyletic”; we
405 discuss this scenario in detail below.

406 Contrary to the contemporary paradigm that the evolution of the orb web and adhesive sticky threads
407 elevated rates of diversification among the araneoid spiders, our BAMM analysis (Figure 5) indicates that
408 the highest rates of diversification likely occurred among the RTA spiders followed by mygalomorphs and
409 then araneoids as a distant third, the latter driven-in part-by the secondarily non-orb weaving theridiids
410 and linyphiids. These results imply that other foraging strategies (e.g. cursorial hunting and irregular
411 sheets) were a more “successful” strategy than the orb. Indeed, the point estimate for the RTA node during
412 the early Cretaceous (138.8 mya; Figure 4, Table 3) precedes the subsequent diversification of the RTA
413 clade at 100-125 mya.

414 This date coincides with the Cretaceous Tertiary Revolution (KTR). Angiosperms radiated exten-
415 sively at 125-90 Ma (Crane, 1987; Wang et al., 2013), as did various plant-dependent insect lineages,
416 including weevils (McKenna et al., 2009), lepidopterans (Wahlberg et al., 2013), ants (Moreau, 2006),
417 and holometabolous insects in general (Misof et al., 2014), although some insect lineages do not show
418 a pulse (e.g., darkling beetles; Kergoat et al., 2014). Spiders, as important insect predators, may also
419 have diversified rapidly along with their prey (e.g., Penney et al., 2003; Penalver, 2006; Selden and
420 Penney, 2010). The fossil and phylogenomic data presented here show that most spider lineages predate
421 the KTR (Selden and Penney, 2010; Bond et al., 2014). Among these, the RTA clade especially, but
422 also mygalomorphs and araneoids, diversified in response to the KTR insect pulse. That aerial web
423 spinners specialized on rapidly radiating clades of flying insects is hardly surprising. Similarly, if forest
424 litter habitats became more complex and spurred insect diversification (Moreau, 2006), ground-dwelling
425 spiders may also have diversified at unusual rates. Perhaps the most dramatic change in insect abundances
426 occurred with the origin and early diversification of the social insects that today dominate animal biomass
427 on the planet: the ants and the termites (Hölldobler and Wilson, 1990). Both groups date back to 150-125
428 my and diversified during the KTR (LaPolla et al., 2013; Ward, 2014; Legendre et al., 2015). A major
429 increase in biomass of non-flying insects may have favoured spiders that feed on cursorial prey and thus
430 could help explain the concurrent increase in diversification in the RTA clade, mygalomorphs, and non-orb
431 weaving araneoids such as cobweb weavers (Dziki et al., 2015).

432 Taken together, this new evidence on character evolution, divergence estimates, and rates of diversifi-
433 cation indicates that previous conclusions regarding the timing and rate of spider evolution were imprecise,
434 if not faulty. Our data support an ancient orb web hypothesis that is further bolstered by a wealth of
435 fossil data showing that a cribellate deinopoid stem group likely diversified during the early Mesozoic.
436 Molecular divergence clock estimates are consistent with the placement of the orb web further down the
437 tree as well as suggesting that some of the greatest rates of species diversification coincided with the KTR.
438 The latter suggests that spiders took advantage of increased abundance of cursorial prey.

439 These findings likely diminish the hypothesis proposed by Bond and Opell (1998) that the vertically
440 oriented orb web represented a key innovation, particularly in light of the fact that over half of araneoid
441 species do not build an orb web (e.g. Theridiidae and Linyphiidae; noted by Griswold et al., 1998;
442 Fernández et al., 2014). We already knew that major orb web-weaving groups are very successful in spite
443 of abandoning the orb (Blackledge et al., 2009).

444 **Spider Systematics**

445 Although our results show that many classical ideas in spider systematics require revision (e.g. mygal-
446 morph families, Haplogynae, paleocribellates, higher araneoids, and RTA + dionychan lineages), they
447 also robustly support many classical taxonomic concepts.

448 **Mygalomorphae relationships.**

449 Since Raven (1985), Mygalomorphae (Table 1, Node 4) has continuously represented a challenge to
450 spider systematics. As discussed by Hedin and Bond (2006) and Bond et al. (2012), nearly half the

451 families are probably non-monophyletic. While our sampling here and previously (Bond et al., 2014)
452 is far greater than any other published phylogenomic study (e.g., Fernández et al. (2014) included just
453 one theraphosid), taxon sampling remains insufficient to address major issues aside from deeper level
454 phylogenetic problems. However, the data (Figure 2) support Euctenizidae as a monophyletic family,
455 but not Nemesiidae. As indicated in Bond et al. (2014), the once controversial Atypoidina (Node 5)
456 consistently has strong statistical support in all analyses. Alternatively, the placement of paratropidids,
457 ctenizids, and idiopids remains questionable and warrants further sampling.

458 **Haplogynae relationships.**

459 The traditional view of spider phylogeny (Coddington, 2005) places Paleocribellatae and Austrochiloidea
460 (Table 1) as sister groups to all the remaining Araneomorphae taxa – Haplogynae and Entelegynae.
461 Our current tree (Figure 2) is congruent with Bond et al. (2014) in placing Paleocribellatae (Table 1,
462 *Hypochilus*; Figure 1, Node 9) as sister to Neocribellatae. Filistatidae (*Kukulcania*), formerly placed as
463 sister to all other haplogynes, pairs with *Hypochilus* in a novel arrangement. This arrangement suggests
464 that characters formerly considered “primitive” to araneomorphs, for example, mobile leg three cribellate
465 silk carding and an M-shaped midgut, might instead be synapomorphies for the new hypochilid-filistatid
466 clade. Remaining haplogynae relationships are somewhat congruent with previously published analyses
467 (Ramírez, 2000). However, one of the more intriguing results is the placement of the morphologically
468 intermediate “haplogynae” (Table 1) *Calileptonetidae* (Leptonetidae) as sister to Entelegynae, suggesting
469 that leptonetids may represent intermediate genitalic forms between haplogynae and the relatively more
470 complex entelegynae condition (Ledford and Griswold, 2010). As outlined by Ledford and Griswold
471 (2010), a number of previous analyses (Platnick et al., 1991; Ramírez, 2000; Griswold et al., 2005)
472 discussed the “rampant” homoplasy required to place leptonetids (sister to Telemidae) among haplogynes
473 and suggest two possible scenarios – leptonetids are proto-entelegynes, or they are the sister group to the
474 remaining Haplogynae. Our phylogenomic analyses support the former hypothesis favored by Ledford
475 and Griswold (2010), and puts the discovery of the cribellate *Archoleptoneta* into better phylogenetic
476 context. These results provide a novel and robust phylogenetic framework for understanding the evolution
477 of entelegynae genitalia.

478 **Araneoidea relationships.**

479 Our reconstruction of araneoid relationships departs dramatically from the traditional classification scheme
480 and a number of recently published molecular systematic studies (e.g., Blackledge et al., 2009; Dimitrov
481 et al., 2012). *Theridiidae* (cobweb spiders) is sister to the remaining araneoids as opposed to occupying a
482 more derived position within that clade. Comparisons to Dimitrov et al. (2012) should be viewed with
483 caution: that analysis had a large suite of taxa not included here, and many results of that analysis had only
484 weak support. Nevertheless, our phylogenomic data agree in supporting the close relationship between
485 Mysmenidae, Mimetidae, and Tetragnathidae. Unlike that study, we recover nesticids sister to linyphioids
486 (Pimoidae plus Linyphiidae) rather than theridiids: Theridioid (Theridiidae and Nesticidae) diphyley is
487 a surprising result, which has already been shown with standard markers by Agnarsson et al. (2013).
488 Theridioids have strikingly similar spinning organs and tarsus IV comb for throwing silk, but are otherwise
489 genetically distinct. We retain the more inclusive linyphioids as close relatives of Araneidae + Nephilidae.
490 Clearly relationships among the derived araneoids require more intensive sampling, especially of missing
491 families (Theridiosomatidae, Malkaridae, Anapidae, etc.) to adequately resolve their phylogeny.

492 **Deinopoidea relationships.**

493 The addition of nearly 30 terminals to the Bond et al. (2014) dataset corroborates the non-monophyly of
494 the classically defined Orbiculariae, although the orb and its behavioral, morphological, and structural
495 constituents may be homologous. Deinopoidea, with these data, is polyphyletic. Instead, a new clade,
496 Uloboridae + Oecobiidae, is sister to Araneoidea + Deinopidae + the RTA clade. Bootstrap support
497 was consistently low for this node in all analyses except matrix 6 (Figure 2), which omits the eresid
498 exemplar *Stegodyphus*. The placement of the two eresid taxa (Table 1), *Stegodyphus* and *Oecobius*
499 continues to present difficulties here as in previous published phylogenomic studies. Fernández et al.
500 (2014) found alternative placements for *Oecobius* (their only eresid) whereas Bond et al. (2014) typically
501 recovered *Stegodyphus* as the sister group to all entelegynes (recovered here as the sister group to
502 araneoids) and *Oecobius* as a member of a clade comprising uloborid and deinopid exemplars, but with
503 notably lower support. Disparities between the two analyses may be attributed to differences in taxon

504 sampling, which, as noted above, was far greater in Bond et al. (2014). On the other hand, increased
505 taxon sampling across the tree diminished node support in some places. However, it is worth noting
506 that support was very strong in the ASTRAL species tree analysis, suggesting that while there may be
507 some conflict among individual data partitions there is an overwhelming amount of signal in the data
508 for a **Deinopoidea** + RTA relationship. This trend was noted by Bond et al. (2014) who found that only
509 2.4% of all bootstrap replicates recovered a monophyletic Orbiculariae. Based on these data and the
510 putative rapid diversification that occurred once the orb web was abandoned, it is clear that resolving
511 relationships at this point in spider evolutionary history remains a challenge. Finally, Bond et al. (2014)
512 and **Agnarsson et al. (2013)** recovered an unexpected relationship between eresoid taxa and deinopoids
513 that consistently rendered the Deinopoidea paraphyletic or polyphyletic if *Oecobius* was included in
514 the analysis. Our results, here including an additional uloborid exemplar, still confirm Deinopoidea
515 polyphyly. Perhaps careful examination of ***Oecobius* web morphology and spinning behavior** will provide
516 independent corroboration of this molecular signal.

517 **RTA and Dionycha relationships.**

518 Although all of our analyses recover a monophyletic RTA clade, relationships among its members
519 reflect some departure from the traditional **view of RTA phylogeny** but are largely consistent with a
520 more recent **morphology-based study**. First, we recover a clade that comprises a mix of agelenoids
521 (Agelenidae, Desidae, and Amphinectidae) as a sister group to Dictynidae + Hahniidae and Amaurobiidae.
522 The taxonomic composition of Dictynidae, Hahniidae and Amaurobiidae, as well as their phylogenetic
523 placement, remains problematic and in a state of flux (**Coddington, 2005**; Spagna et al., 2010; Miller et al.,
524 2010). The typical hahniine hahniids have been difficult to place due to their long branches (Spagna and
525 Gillespie, 2008; Miller et al., 2010). *Calymmaria*, has been moved into “Cybaeidae s.l.” by Spagna et al.
526 (2010), suggesting that the relationships among hahniids, cybaeids, and dictynids need further scrutiny.

527 Second, **these data indicate a novel placement for Amaurobiidae**. Amaurobiids have also been hard to
528 place, though this is in part because Amaurobiidae are a moving target. The term “Amaurobiids” needs to
529 be clarified, as most of nine subfamilies discussed in Lehtinen (1967) are now placed elsewhere. We use
530 *Callobius*, from the type subfamily of the family. Our amaurobiid placement, basal to an agelenoid and
531 dictynoid grouping corroborates previous findings (Miller et al., 2010; Spagna et al., 2010). Dictynids
532 on the other hand were considered one of the unresolved sister groups to amauroboids, zodarioids, and
533 **dionychans** (Spagna et al., 2010). Here the placement of our **dictynid exemplar *Cicurina*** is more precise:
534 sister group to the hahniid *Calymmaria*.

535 Third, we recover **Homalonychidae (representing Zodarioidea)** as the sister group to dionychans
536 and lycosoids, once again, mirroring the results of **Agnarsson et al. (2013)**. Previously Zodarioidea
537 was placed closer to the base of the RTA clade (Miller et al., 2010). Dionychans here include salticids,
538 anyphaenids, corinnids, and gnaphosids whereas crab spiders (Thomisidae) nest with the lycosoids
539 containing a paraphyletic Pisauridae. Placement of Thomisidae within Lycosoidea goes back at least
540 to Homann (1971) and was formally established by the total evidence analysis of Polotow et al. (2015).
541 Although Ramírez (2014) placed Thomisidae outside of Lycosoidea, in one of his slightly suboptimal
542 results thomisids were included in Lycosoidea. The relationships we recover among dionychan and
543 lycosoid taxa are largely congruent with those inferred by Ramírez (2014) in a massive morphological
544 study of Dionycha and RTA exemplars. Given the general incongruence among previous morphological
545 and molecular spider systematic studies, it will be interesting to see how Ramírez (2014) phylogeny and
546 familial-level reevaluations compare as phylogenomic studies expand. Raven (1985) was a landmark
547 study for mygalomorphs; perhaps Ramírez (2014) may serve in the same capacity for one of the most
548 diverse branches on the spider tree of life.

549 **CONCLUSIONS**

550 Following **Coddington and Levi (1991)**, higher-level spider systematics underwent a series of challenges
551 from quantitative studies of morphology, producing provocative but weakly-supported hypotheses. (**Gris-**
552 **wold et al., 1998, 2005**). Total evidence studies, **for example**, Wood et al. (2012a,b) for Palpimanoidea,
553 Polotow et al. (2015) for Lycosoidea, appear to have settled some local arrangements, but much of the
554 backbone of the spider tree of life remains an open question. Phylogenomics has already brought data-rich,
555 convincing solutions to long standing controversies, for example, phylogeny of the orb web (Bond et al.,
556 2014; Fernández et al., 2014). Phylogenomics portends a new and exciting period for spider evolutionary

biology. Recent advances in digital imaging, proteomics, silk biology and major fossil discoveries mean that our understanding of spider evolution will likely accelerate by leaps and bounds in the coming years. The tempo and mode of spider evolution is likely different than previously thought. At this point it seems reasonably clear that the orb web evolved earlier phylogenetically than previously thought, only to be subsequently lost at least three times independently during the Cretaceous. While the orb web has certainly been successful, a likely dramatic increase in the abundances of cursorial insects during the KTR, including the emergence of most social insects, also impacted the success of other foraging strategies, including webless hunting. Our results and that of others like Ramírez (2014) show that spider systematics still remains a work in progress.

566 ADDITIONAL INFORMATION AND DECLARATIONS

567 Acknowledgments

568 This is contribution 7XX of the Auburn University Museum of Natural History.

569 Competing Interests

570 The authors declare there are no competing interests

571 Author Contributions

572 Jason E. Bond, Nicole L. Garrison, and Juanita Rodriguez designed the study, analyzed the data and wrote
573 the paper. Kevin Kocot and Chris A. Hamilton played integral roles in the development of the spider core
574 ortholog data set and gene tree analyses respectively. All remaining authors contributed specimens and/or
575 transcriptomes, assisted in writing manuscript sections, and reviewed drafts of the paper.

576 Accession Numbers

577 Illumina transcriptome sequence data are available from NCBI database archive under accession numbers
578 SAMNXXXXX-SAMNXXXXX. Phylogenomics data matrices were deposited on XX November 2015
579 in the Dryad Digital Repository at <http://dx.doi.org/xx.xxxx/drayd.xxxx>.

580 Supplemental Information

581 Supplemental information, figures and tables, can be found online at <http://dx.doi.org/xx.xxxx/peerj>.

582 REFERENCES

583 Agnarsson, I., Coddington, J. A., and Kuntner, M. (2013). Systematics - progress in the study of spider
584 diversity and evolution. In Penney, D., editor, *Spider Research in the 21st Century*, pages 58–111.
585 Manchester.

586 Altenhoff, A. M., Gil, M., Gonnet, G. H., and Dessimoz, C. (2013). Inferring Hierarchical Orthologous
587 Groups from Orthologous Gene Pairs. *PLoS ONE*, 8(1):e53786.

588 Altschul, Stephen F., Gish, Warren, Miller, Webb, Myers, Eugene W., and Lipman, David J. (1990). Basic
589 Local Alignment Search Tool. *Journal of Molecular Biology*, 215:403–410.

590 Beaulieu, J. M., O'Meara, B. C., and Donoghue, M. J. (2013). Identifying Hidden Rate Changes in
591 the Evolution of a Binary Morphological Character: The Evolution of Plant Habit in Campanulid
592 Angiosperms. *Systematic Biology*, 62(5):725–737.

593 Blackledge, T. A., Kuntner, M., and Agnarsson, I. (2011). The form and function of spider orb webs:
594 evolution from silk to ecosystems. *Advances in Insect Physiology*, 41:175.

595 Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson,
596 I. (2009). Reconstructing web evolution and spider diversification in the molecular era. *Proceedings of
597 the National Academy of Sciences of the United States of America*, 106(13):5229–5234.

598 Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M., and Agnarsson, I. (2014).
599 Phylogenomics Resolves a Spider Backbone Phylogeny and Rejects a Prevailing Paradigm for Orb
600 Web Evolution. *Current Biology*, 24(15):1765–1771.

601 Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A Reconsideration of the
602 Classification of the Spider Infraorder Mygalomorphae (Arachnida: Araneae) Based on Three Nuclear
603 Genes and Morphology. *PLoS ONE*, 7(6):e38753.

604 Bond, J. E. and Opell, B. D. (1998). Testing Adaptive Radiation and Key Innovation Hypotheses in
605 Spiders. *Evolution*, 52(2):403.

606 Brandley, M. C., Bragg, J. G., Singhal, S., Chapple, D. G., Jennings, C. K., Lemmon, A. R., Lemmon,
607 E. M., Thompson, M. B., and Moritz, C. (2015). Evaluating the performance of anchored hybrid
608 enrichment at the tips of the tree of life: a phylogenetic analysis of Australian Eugongylus group scincid
609 lizards. *BMC Evolutionary Biology*, 15(62).

610 Coddington, J. (1986). The monophyletic origin of the orb web. In Shear, W., editor, *Spiders: Webs,
611 Behavior, and Evolution*, pages 319–363. Stanford University Press, Stanford, California.

612 Coddington, J. A. (1991). Cladistics and spider classification: araneomorph phylogeny and the monophyly
613 of orbweavers (Araneae: Araneomorphae; Orbiculariae). *Acta Zoologica Fennica*, 190:75–87.

614 Coddington, J. A. (2005). Phylogeny and classification of spiders. In Ubick, P., Paquin, P., Cushing, P.,
615 and Roth, V., editors, *Spiders of North America: an identification manual*, pages 18–24. American
616 Arachnological Society.

617 Coddington, J. A. and Levi, H. W. (1991). Systematics and Evolution of Spiders (Araneae). *Annual
618 Review of Ecology and Systematics*, 22:565–592.

619 Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M. (2005). Blast2go: a
620 universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*,
621 21(18):3674–3676.

622 Crane, P. (1987). The origin of angiosperms and their biological consequences. In Friis, E., Chaloner, W.,
623 and Crane, P., editors, *Vegetational consequences of the angiosperm diversification*, pages 105–144.
624 Cambridge University Press, Cambridge.

625 Dell'Ampio, E., Meusemann, K., Szucsich, N. U., Peters, R. S., Meyer, B., Borner, J., Petersen, M.,
626 Aberer, A. J., Stamatakis, A., Walzl, M. G., Minh, B. Q., von Haeseler, A., Ebersberger, I., Pass, G.,
627 and Misof, B. (2014). Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic
628 Relationships of Primarily Wingless Insects. *Molecular Biology and Evolution*, 31(1):239–249.

629 Dicko, C., Porter, D., Bond, J., Kenney, J. M., and Vollrath, F. (2008). Structural Disorder in Silk Proteins
630 Reveals the Emergence of Elastomericity. *Biomacromolecules*, 9(1):216–221.

631 Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Alvarez-Padilla, F., and Hormiga, G. (2012).
632 Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by
633 denser taxonomic sampling. *Proceedings of the Royal Society B: Biological Sciences*, 279(1732):1341–
634 1350.

635 Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed Phylogenetics and
636 Dating with Confidence. *PLoS Biology*, 4(5):e88.

637 Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees.
638 *BMC Evolutionary Biology*, 7(1):214.

639 Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with
640 BEAUti and the BEAST 1.7. *Molecular biology and evolution*, 29(8):1969–1973.

641 Dziki, A., Binford, G., Coddington, J. A., and Agnarsson, I. (2015). Spintharus flavidus in the caribbean—a
642 30 million year biogeographical history and radiation of a ‘widespread species’. Technical report, PeerJ
643 PrePrints.

644 Ebersberger, I., Strauss, S., and von Haeseler, A. (2009). HaMStR: Profile hidden markov model based
645 search for orthologs in ESTs. *BMC Evolutionary Biology*, 9(1):157.

646 Eddy, S. R. (2011). Accelerated Profile HMM Searches. *PLoS Computational Biology*, 7(10):e1002195.

647 Eskov, K. Y. and Zonstein, S. (1990). First Mesozoic mygalomorph spiders from the Lower Cretaceous
648 of Siberia and Mongolia, with notes on the system and evolution of the infraorder Mygalomorphae
649 (Chelicerata: Araneae). *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen*, 178:325–368.

650 Fernández, R., Hormiga, G., and Giribet, G. (2014). Phylogenomic Analysis of Spiders Reveals Non-
651 monophyly of Orb Weavers. *Current Biology*, 24(15):1772–1777.

652 Gertsch, W. J. (1979). *American spiders*. Number Ed. 2. Van Nostrand Reinhold Co.

653 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L.,
654 Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnrke, A., Rhind, N., di Palma,
655 F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length
656 transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology*,
657 29(7):644–652.

658 Griswold, C. E., Coddington, J. A., Hormiga, G., and Scharff, N. (1998). Phylogeny of the orb-web
659 building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). *Zoological Journal of the Linnean
660 Society*, 123(1):1–99.

661 Griswold, C. E., Ramírez, M., Coddington, J., and Platnick, N. (2005). Atlas of Phylogenetic Data for
662 Entelegyne Spiders (Araneae: Aranomorphae: Entelegynae), with Comments on Their Phylogeny.
663 *Proceedings of the California Academy of Sciences*, 56:1–324.

664 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B.,
665 Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks,
666 N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., and Regev,
667 A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for
668 reference generation and analysis. *Nature Protocols*, 8(8):1494–1512.

669 Hedin, M. and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using
670 nuclear rRNA genes (18s and 28s): Conflict and agreement with the current system of classification.
671 *Molecular Phylogenetics and Evolution*, 41(2):454–471.

672 Homann, H. (1971). Die Augen der Araneae. *Zeitschrift für Morphologie der Tiere*, 69(3):201–272.

673 Hormiga, G. and Griswold, C. E. (2014). Systematics, Phylogeny, and Evolution of Orb-Weaving Spiders.
674 *Annual Review of Entomology*, 59(1):487–512.

675 Hölldobler, B. and Wilson, E. O. (1990). *The ants*. Harvard University Press.

676 Ihaka, R. and Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. *Journal of
677 Computational and Graphical Statistics*, 5(3):299.

678 Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth, B. C., Nabholz, B.,
679 Howard, J. T., and others (2014). Whole-genome analyses resolve early branches in the tree of life of
680 modern birds. *Science*, 346(6215):1320–1331.

681 Katoh, K. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. *Nucleic
682 Acids Research*, 33(2):511–518.

683 Kergoat, G. J., Soldati, L., Anne-Laure Clamens, Jourdan, H., Jabbour-Zahab, R., Genson, G., Bouchard,
684 P., and Condamine, F. L. (2014). Higher level molecular phylogeny of darkling beetles (Coleoptera:
685 Tenebrionidae): Darkling beetle phylogeny. *Systematic Entomology*, 39(3):486–499.

686 King, G. F. and Hardy, M. C. (2013). Spider-Venom Peptides: Structure, Pharmacology, and Potential for
687 Control of Insect Pests. *Annual Review of Entomology*, 58(1):475–496.

688 Knowles, L. L. and Kubatko, L. S. (2011). *Estimating species trees: practical and theoretical aspects*.
689 John Wiley and Sons.

690 Kocot, Moroz, L., Citarella, M., and Halanych, K. (2013). PhyloTreePruner: A Phylogenetic Tree-Based
691 Approach for Selection of Orthologous Sequences for Phylogenomics. *Evolutionary Bioinformatics*,
692 page 429.

693 Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., Santos, S. R., Schander,
694 C., Moroz, L. L., Lieb, B., and Halanych, K. M. (2011). Phylogenomics reveals deep molluscan
695 relationships. *Nature*, 477(7365):452–456.

696 Kozlov, A. M., Aberer, A. J., and Stamatakis, A. (2015). ExaML version 3: a tool for phylogenomic
697 analyses on supercomputers. *Bioinformatics*, 31(15):2577–2579.

698 Kück, P. (2009). ALICUT: a Perlscript which cuts ALISCORE identified RSS. *Department of Bioinfor-
699 matics, Zoologisches Forschungsmuseum A. Koenig (ZFMK), Bonn, Germany, version*, 2.

700 Kück, P. and Meusemann, K. (2010). FASconCAT: Convenient handling of data matrices. *Molecular
701 Phylogenetics and Evolution*, 56(3):1115–1118.

702 Kück, P. and Struck, T. H. (2014). BaCoCa – A heuristic software tool for the parallel assessment of
703 sequence biases in hundreds of gene and taxon partitions. *Molecular Phylogenetics and Evolution*,
704 70:94–98.

705 LaPolla, J. S., Dlussky, G. M., and Perrichot, V. (2013). Ants and the Fossil Record. *Annual Review of
706 Entomology*, 58(1):609–630.

707 Leache, A. D. and Rannala, B. (2011). The Accuracy of Species Tree Estimation under Simulation: A
708 Comparison of Methods. *Systematic Biology*, 60(2):126–137.

709 Ledford, J. M. and Griswold, C. E. (2010). A study of the subfamily Archoleptonetinae (Araneae,
710 Leptonetidae) with a review of the morphology and relationships for the Leptonetidae. *Zootaxa*,
711 2391:1–32.

712 Legendre, F., Nel, A., Svenson, G. J., Robillard, T., Pellens, R., and Grandcolas, P. (2015). Phylogeny of
713 Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data
714 and Controlled Fossil Evidence. *PLOS ONE*, 10(7):e0130127.

715 Lehtinen, P. T. (1967). Classification of the cribellate spiders and some allied families, with notes on

716 the evolution of the suborder Araneomorpha. In *Annales zoologici fennici*, pages 199–468. Societas
717 Zoologica Fennica Vanamo.

718 Lemmon, A. R., Brown, J. M., Stanger-Hall, K., and Lemmon, E. M. (2009). The Effect of Ambiguous
719 Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. *Systematic
720 Biology*, 58(1):130–145.

721 Lemmon, E. M. and Lemmon, A. R. (2013). High-Throughput Genomic Data in Systematics and
722 Phylogenetics. *Annual Review of Ecology, Evolution, and Systematics*, 44(1):99–121.

723 Levi, H. W. (1980). Orb-webs: primitive or specialized. In Gruber, J., editor, *Proceedings of the 8th
724 International Congress of Arachnology*, pages 367–370.

725 Li, L., Stoeckert, C. J., and Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic
726 genomes. *Genome research*, 13(9):2178–2189.

727 Liu, L. and Yu, L. (2011). Estimating Species Trees from Unrooted Gene Trees. *Systematic Biology*,
728 60(5):661–667.

729 Lopardo, L. and Hormiga, G. (2015). Out of the twilight zone: phylogeny and evolutionary morphology
730 of the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in
731 symphytognathoids (Araneae, Araneoidea): Phylogeny and Morphology of Mysmenidae. *Zoological
732 Journal of the Linnean Society*, 173(3):527–786.

733 McKenna, D. D., Sequeira, A. S., Marvaldi, A. E., and Farrell, B. D. (2009). Temporal lags and overlap in
734 the diversification of weevils and flowering plants. *Proceedings of the National Academy of Sciences*,
735 106(17):7083–7088.

736 Meyer, B., Meusemann, K., and Misof, B. (2011). MARE: MAtrix REduction—a tool to select optimized
737 data subsets from supermatrices for phylogenetic inference. *Bonn (Germany): Zentrum für molekulare
738 Biodiversitätsforschung (zmb) am ZFMK*.

739 Miller, J. A., Carmichael, A., Ramírez, M. J., Spagna, J. C., Haddad, C. R., Řezáč, M., Johannessen, J.,
740 Král, J., Wang, X.-P., and Griswold, C. E. (2010). Phylogeny of entelegyne spiders: Affinities of the
741 family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in
742 spinning organ evolution (Araneae, Araneoidea, Entelegynae). *Molecular Phylogenetics and Evolution*,
743 55(3):786–804.

744 Mirarab, S., Reaz, R., Bayzid, M. S., Zimmermann, T., Swenson, M. S., and Warnow, T. (2014). ASTRAL:
745 genome-scale coalescent-based species tree estimation. *Bioinformatics*, 30(17):i541–i548.

746 Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., Frandsen, P. B., Ware, J., Flouri,
747 T., Beutel, R. G., and others (2014). Phylogenomics resolves the timing and pattern of insect evolution.
748 *Science*, 346(6210):763–767.

749 Misof, B. and Misof, K. (2009). A Monte Carlo Approach Successfully Identifies Randomness in Multiple
750 Sequence Alignments : A More Objective Means of Data Exclusion. *Systematic Biology*, 58(1):21–34.

751 Moreau, C. S. (2006). Phylogeny of the Ants: Diversification in the Age of Angiosperms. *Science*,
752 312(5770):101–104.

753 Opell, B. (1979). Revision of the genera and tropical American species of the spider family Uloboridae.
754 Revisión de los géneros de las especies americanas tropicales de arañas de la familia Uloboridae.
755 *Bulletin of the Museum of Comparative Zoology*, 148(10):443–549.

756 Opell, B. D. (1983). A review of the genus Tangaroa (Araneae, Uloboridae). *Journal of Arachnology*,
757 pages 287–295.

758 Penalver, E. (2006). Early Cretaceous Spider Web with Its Prey. *Science*, 312(5781):1761–1761.

759 Penney, D. and Ortuño, V. M. (2006). Oldest true orb-weaving spider (Araneae: Araneidae). *Biology
760 Letters*, 2(3):447–450.

761 Penney, D., Wheater, C. P., and Selden, P. A. (2003). Resistance of spiders to Cretaceous-Tertiary
762 extinction events. *Evolution*, 57(11):2599–2607.

763 Platnick, N. I., Coddington, J. A., Forster, R. R., and Griswold, C. E. (1991). Spinneret Morphology and
764 the Phylogeny of Haplogyne Spiders (Araneae, Araneomorphae). *American Museum novitates*, 3016.

765 Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence diagnosis and output
766 analysis for MCMC. *R news*, 6(1):7–11.

767 Polotow, D., Carmichael, A., and Griswold, C. E. (2015). Total evidence analysis of the phylogenetic
768 relationships of Lycosoidea spiders (Araneae, Entelegynae). *Invertebrate Systematics*, 29(2):124.

769 Price, M. N., Dehal, P. S., Arkin, A. P., and others (2010). FastTree 2—approximately maximum-likelihood
770 trees for large alignments. *PloS one*, 5(3):e9490.

771 Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M., and Lemmon, A. R.
772 (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing.
773 *Nature*, 526(7574):569–573.

774 Rabosky, D. L., Donnellan, S. C., Grundler, M., and Lovette, I. J. (2014). Analysis and Visualization of
775 Complex Macroevolutionary Dynamics: An Example from Australian Scincid Lizards. *Systematic
776 Biology*, 63(4):610–627.

777 Ramírez, M. J. (2000). Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae,
778 Araneomorphae). *Journal of Arachnology*, 28(2):149–157.

779 Ramírez, M. J. (2014). The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae).
780 *Bulletin of the American Museum of Natural History*, 390(1):1–374.

781 Raven, R. J. (1985). The Spider Infraorder Mygalomorphae (Araneae): Cladistics and Systematics.
782 *Bulletin of the American Museum of Natural History*, 182(1):1–184.

783 Rice, P., Longden, I., Bleasby, A., and others (2000). EMBOSS: the European molecular biology open
784 software suite. *Trends in genetics*, 16(6):276–277.

785 Roure, B., Baurain, D., and Philippe, H. (2013). Impact of Missing Data on Phylogenies Inferred from
786 Empirical Phylogenomic Data Sets. *Molecular Biology and Evolution*, 30(1):197–214.

787 Saez, N. J., Senff, S., Jensen, J. E., Er, S. Y., Herzig, V., Rash, L. D., and King, G. F. (2010). Spider-Venom
788 Peptides as Therapeutics. *Toxins*, 2(12):2851–2871.

789 Sanderson, M. J. (2002). Estimating Absolute Rates of Molecular Evolution and Divergence Times: A
790 Penalized Likelihood Approach. *Molecular Biology and Evolution*, 19(1):101–109.

791 Sanggaard, K. W., Bechsgaard, J. S., Fang, X., Duan, J., Dyrlund, T. F., Gupta, V., Jiang, X., Cheng, L.,
792 Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thøgersen, I. B., Vanthournout,
793 B., Wang, T., Zhu, Y., Funch, P., Enghild, J. J., Schausler, L., Andersen, S. U., Villesen, P., Schierup,
794 M. H., Bilde, T., and Wang, J. (2014). Spider genomes provide insight into composition and evolution
795 of venom and silk. *Nature Communications*, 5.

796 Schacht, K. and Scheibel, T. (2014). Processing of recombinant spider silk proteins into tailor-made
797 materials for biomaterials applications. *Current Opinion in Biotechnology*, 29:62–69.

798 Scharff, N. and Coddington, J. A. (1997). A phylogenetic analysis of the orb-weaving spider family
799 Araneidae (Arachnida, Araneae). *Zoological Journal of the Linnean Society*, 120(4):355–434.

800 Selden, P. A. (1996). First fossil mesothelid spider, from the Carboniferous of France. *Revue suisse de
801 Zoologie*, 2:585–96.

802 Selden, P. A. (2002). First British Mesozoic spider, from Cretaceous amber of the Isle of Wight, southern
803 England. *Palaeontology*, 45:973–983.

804 Selden, P. A., Anderson, J. M., Anderson, H. M., and Fraser, N. C. (1999). Fossil araneomorph spiders
805 from the Triassic of South Africa and Virginia. *Journal of Arachnology*, pages 401–414.

806 Selden, P. A., Dunlop, J. A., and Garwood, R. J. (2015). Carboniferous araneomorph spiders reinterpreted
807 as long-bodied harvestmen. *Journal of Systematic Palaeontology*, (ahead-of-print):1–11.

808 Selden, P. A. and Gall, J.-C. (1992). A Triassic mygalomorph spider from the northern Vosges, France.
809 *Palaeontology*, 35:211–235.

810 Selden, P. A. and Penney, D. (2010). Fossil spiders. *Biological Reviews*, 85(1):171–206.

811 Selden, P. A., Shih, C., and Ren, D. (2013). A giant spider from the Jurassic of China reveals greater
812 diversity of the orbicularian stem group. *Naturwissenschaften*, 100(12):1171–1181.

813 Spagna, J. C., Crews, S. C., and Gillespie, R. G. (2010). Patterns of habitat affinity and Austral/Holarctic
814 parallelism in dictynoid spiders (Araneae: Entelegynae). *Invertebrate Systematics*, 24(3):238.

815 Spagna, J. C. and Gillespie, R. G. (2008). More data, fewer shifts: Molecular insights into the evolution of
816 the spinning apparatus in non-orb-weaving spiders. *Molecular Phylogenetics and Evolution*, 46(1):347–
817 368.

818 Springer, M. S. and Gatesy, J. (2016). The gene tree delusion. *Molecular Phylogenetics and Evolution*,
819 94:1–33.

820 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
821 phylogenies. *Bioinformatics*, 30(9):1312–1313.

822 Starrett, J., Garb, J. E., Kuelbs, A., Azubuike, U. O., and Hayashi, C. Y. (2012). Early events in the
823 evolution of spider silk genes. *PLoS One*, 7(6):e38084.

824 Wahlberg, N., Wheat, C. W., and Peña, C. (2013). Timing and Patterns in the Taxonomic Diversification
825 of Lepidoptera (Butterflies and Moths). *PLoS ONE*, 8(11):e80875.

826 Wang, B., Zhang, H., and Jarzembowski, E. A. (2013). Early Cretaceous angiosperms and beetle evolution.
827 *Frontiers in Plant Science*, 4.

828 Ward, P. S. (2014). The Phylogeny and Evolution of Ants. *Annual Review of Ecology, Evolution, and*
829 *Systematics*, 45(1):23–43.

830 Wood, H. M., Griswold, C. E., and Gillespie, R. G. (2012a). Phylogenetic placement of pelican spiders
831 (Archaeidae, Araneae), with insight into evolution of the “neck” and predatory behaviours of the
832 superfamily Palpimanoidea. *Cladistics*, 28(6):598–626.

833 Wood, H. M., Matzke, N. J., Gillespie, R. G., and Griswold, C. E. (2012b). Treating fossils as terminal
834 taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders.
835 *Systematic Biology*, page sys092.

836 World Spider Catalog (2015). World Spider Catalog, Version 16.5. Natural History Museum Bern.

837 Xia, X. (2014). Phylogenetic Bias in the Likelihood Method Caused by Missing Data Coupled with
838 Among-Site Rate Variation: An Analytical Approach. In Hutchison, D., Kanade, T., Kittler, J., Klein-
839 berg, J. M., Kobsa, A., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen,
840 B., Terzopoulos, D., Tygar, D., Weikum, G., Basu, M., Pan, Y., and Wang, J., editors, *Bioinformatics*
841 *Research and Applications*, volume 8492, pages 12–23. Springer International Publishing, Cham.

842

Table 1. Summary of all phylogenomic analyses. Data matrix numbers correspond to Figure 2, inset.

Lineage	Composition and Placement	Description/Characteristics
¹ Araneae	All spiders	Cosmopolitan; cheliceral venom glands, ability to produce silk from abdominal appendages (spinnerets); male pedipalps modified for sperm transfer
² Mesothelae	Plesiomorphic sister group to all living spiders	SE Asia; mid ventrally positioned spinnerets; distinct dorsal abdominal tergites, very narrow sternum
³ Opisthothelae	The two major spider lineages	Typical terminal spinneret placement and sternal morphology
⁴ Mygalomorphae	Trapdoor, baboon and funnel spiders, tarantulas, and their kin	Paraxial chelicerae with venom glands; most lead sedentary lives in burrows; lack anterior median spinnerets; often large and hirsute; two pairs of book lungs
⁵ Atypoidina	Sister group to remaining mygalomorphs	Most species with vestigial abdominal tergites and unique modifications to male pedipalp
⁶ Aviculariodea	All remaining mygalomorph taxa	Includes major mygalomorph families, nearly half of which are likely not monophyletic
⁷ Theraphosoidina	Comprises families Theraphosidae and Barychelidae	Includes the typically large and hirsute tarantulas and baboon spiders
⁸ Araneomorphae	Over 90% of all spider diversity	Anterior median spinnerets fused to form a cribellum (later lost multiple times)
⁹ Paleocribellatae	Comprises single family Hypochilidae; hypothesized sister group to all other araneomorphs	Hypochilid synapomorphies, e.g., cheliceral depression; also retain a number of primitive traits including two pairs of book-lungs
Neocribellatae	Remaining spider lineages	Paracribellum (complimentary spinning field to cribellum); extension of venom gland into prosoma
Austrochiliodea	Families Austrochilidae and Gradungulidae; sister group to all other neocribellate lineages	Gondwanan taxa with notched tarsal organs; typically with two pairs of booklungs – posterior pair modified as tracheae in some taxa
¹⁰ Haplogynae	Neocribellate lineage with simple genitalia; includes spitting spiders and cellar spiders	Spinnerets lack tarsiopores; mating with palps inserted simultaneously; in some taxa female genital opening lacks an epigynum; chelicerae fused at base, synspermia, male palpal organ simple
¹¹ Entelegynae	Comprises all remaining spider lineages with complex genitalia	Female genitalia with a “flow through system” of separate copulatory and fertilization ducts; male palpal organ typically under hydraulic control

Table 1 – continued from previous page

Lineage	Composition and Placement	Description/Characteristics
Palpimanoidea	Comprises a number of enigmatic families	Araneophages with lateral scopulae on anterior legs
Eresoidea	Includes 3 families: Eresidae, Hersiliidae, Oecobiidae; sister to remaining entelegynes	Controversial superfamily; oecobiids and hersiliids share a unique attack behavior
Orbiculariae	Comprises the Deinopoidea and Araneoidea	Members of this lineage include cribellate and ecribellate orb-web weavers as well as derived araneoids that use adhesive threads to construct sheet and cob-webs
Deinopoidea	Includes the cribellate orbicularian families Uloboridae and Deinopidae	Construct cribellate orb web; long considered sister group to adhesive orb web weavers on basis of behavioral web construction data
¹² Araneoidea	Spider superfamily that includes adhesive orb web weaving taxa and others	Members of this lineage all use adhesive threads; monophyly supported by a number of spinning and other morphological characteristics
¹³ RTA	Large diverse lineage of spiders that includes wolf, jumping, running, fishing, and crab spiders	Defined primarily by the presence of a projection on the male palp – the retrolateral tibial apophysis (RTA)
¹⁴ Dionycha	Subclade of the RTA lineage, comprises about 1/3 of all spider diversity	Defined as a group based on their two clawed condition with flanking tufts of setae for adhesion to smooth surfaces
Lycosoidea	Large superfamily comprising 10 families including fishing and wolf spiders	Monophyly of this superfamily is based on a number of morphological features (not universal) including a grate-shaped tapetum, an oval-shaped calamistrum, and male palpal features

843
844**Table 2.** Summary of all phylogenomic analyses. Data matrix numbers correspond to Figure 2, inset.845
846

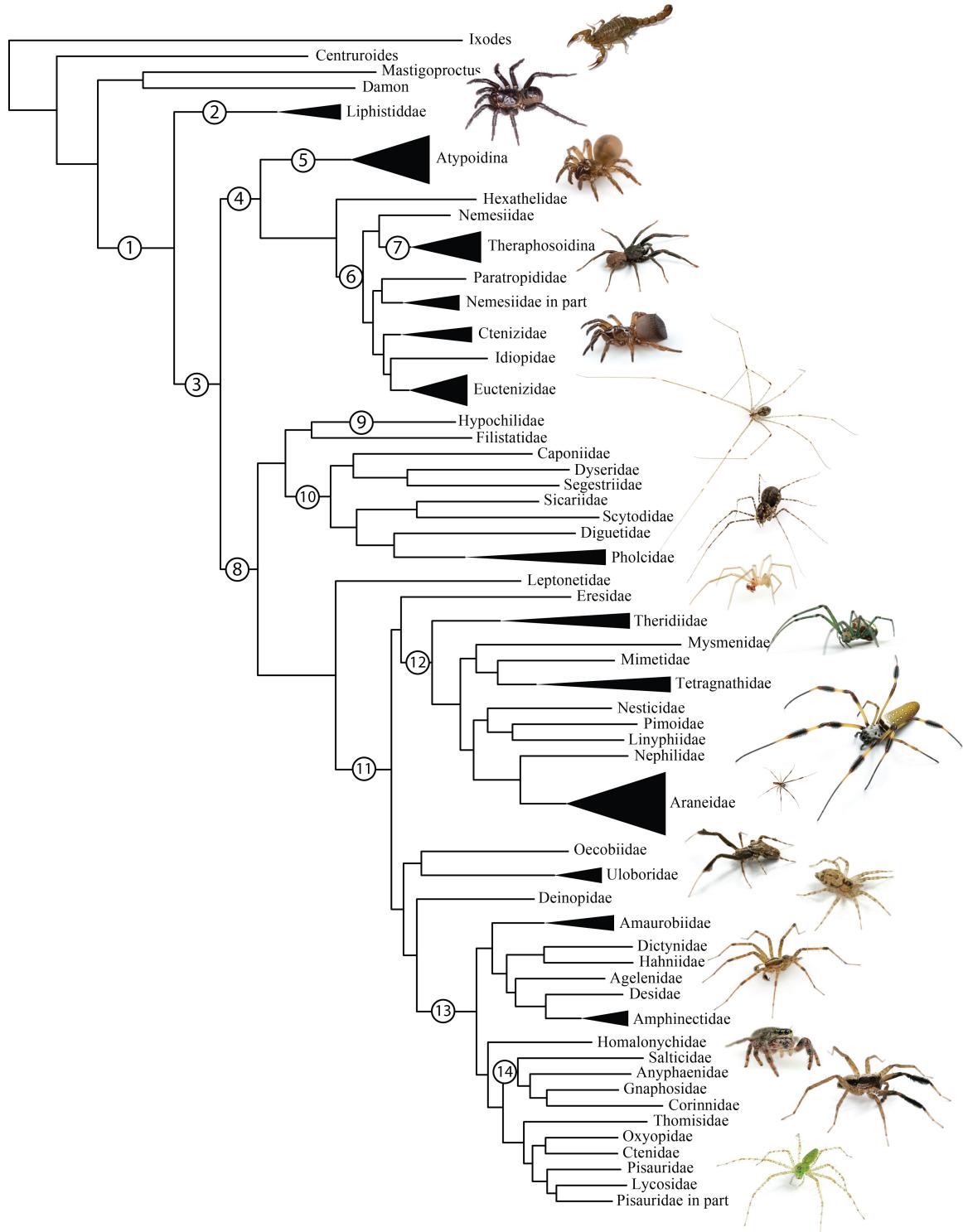

Data Set	#OGs	#AAs	% missing	#reps	Log Likelihood	Notes
(1) All genes	3,398	696,652	38.5%	225	- 20949310.821967	ExaML AUTOF
(2) 1st reduce	1,699	410,717	26.0%	300	- 14297508.033111	ExaML AUTOF
(3) 2nd reduce	850	230,582	19.6%	300	-8098715.107390	ExaML AUTOF
(4) BCC	1,699	311,756	33.6%	300	- 10017456.343941	ExaML AUTOF
(5) Arthropod core OG	549	107,307	33.0%	1000	-2729523.038858	ExaML AUTOF bs in RAxML
(6) 74 taxa (- Stegodyphus)	3,398	629,566	38.8%	300	- 20569138.970981	ExaML AUTOF
(7) MARE (58 taxa, 55 in- group)	1,488	351,333	19.6%	295	-9227466.065087	ExaML AUTOF
(8) ASTRAL	3,398			100		100 bootstrap reps per parti- tion

Table 3. Posterior probabilities (PP), ages (Ma), and 95% confidence intervals (CI) for the highest posterior density (HPD) recovered by the BEAST analysis. Node numbers correspond to Figure 5. Node numbers in bold correspond to numbers in Figure 1 and Table 1.

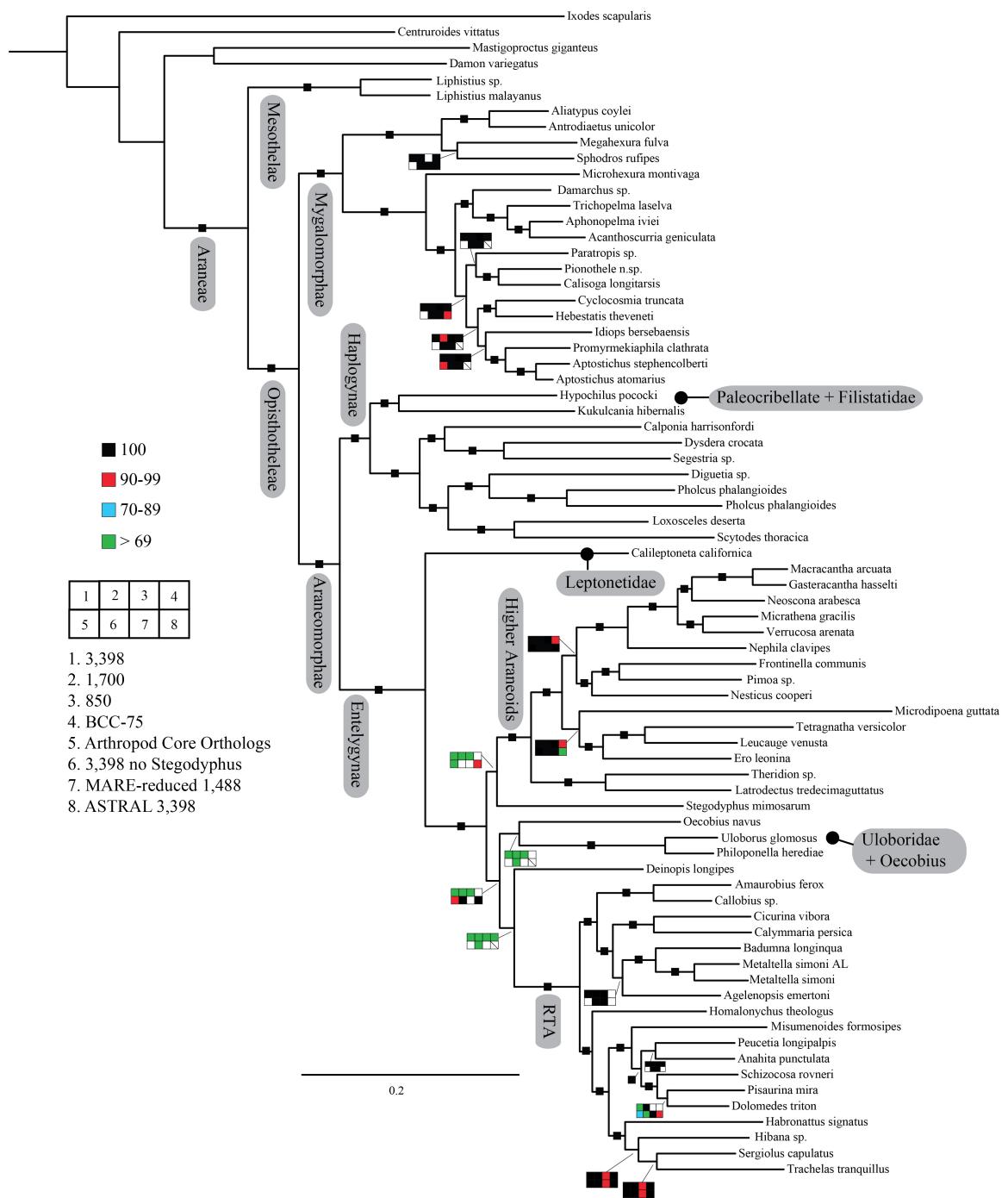

Node	Age	HPD 95% CI	Taxonomic Group
1	340	287-398	Araneae
3	309	258-365	Opistothele
4	261	218-307	Mygalomorphae
5	108	49-192	Atypoidina
6	114	57-197	Avicularoidea
7	47	2-125	Theraphosoidina
8	276	223-330	Opistothelae
10	190	121-262	Haplogynae
11	214	154-280	Entelegynae
12	170	114-233	Araneoidea
13	139	83-201	RTA
14	86	40-139	Dionycha
15	218	53-389	
16	37	2-109	
17	79	18-163	
18	162	85-257	
19	93	47-151	
20	71	25-127	
21	48	35217	Ctenizidae
22	232	165-299	
23	160	49-254	
24	158	85-232	
25	101	28-179	
26	81	23-148	Pholcidae
27	197	137-263	
28	92	26-172	Theridiidae
29	148	96-208	
30	127	75-186	
31	100	44-160	
32	64	15-123	Tetragnathidae
33	130	81-186	

Table 3 – continued from previous page

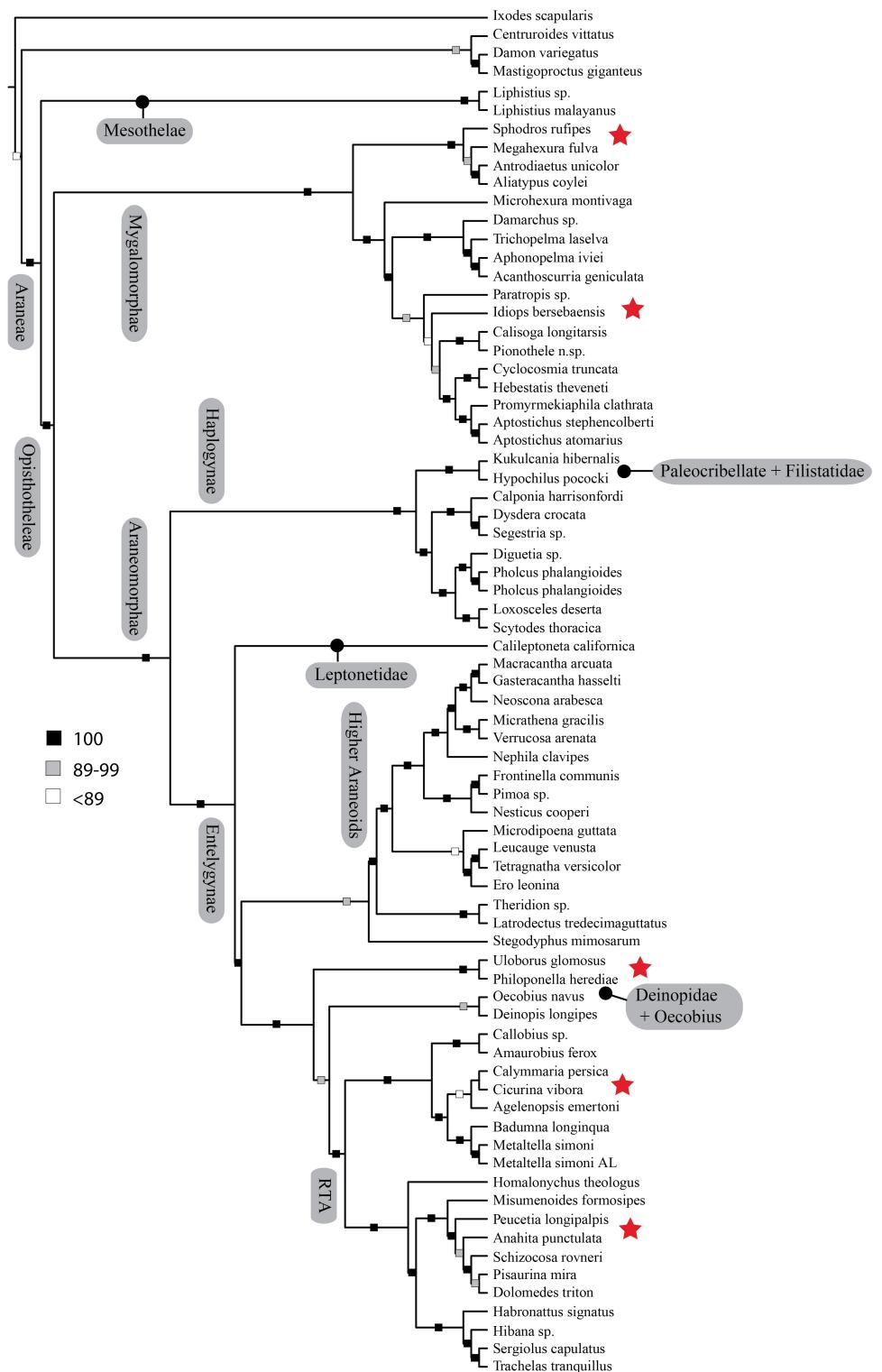
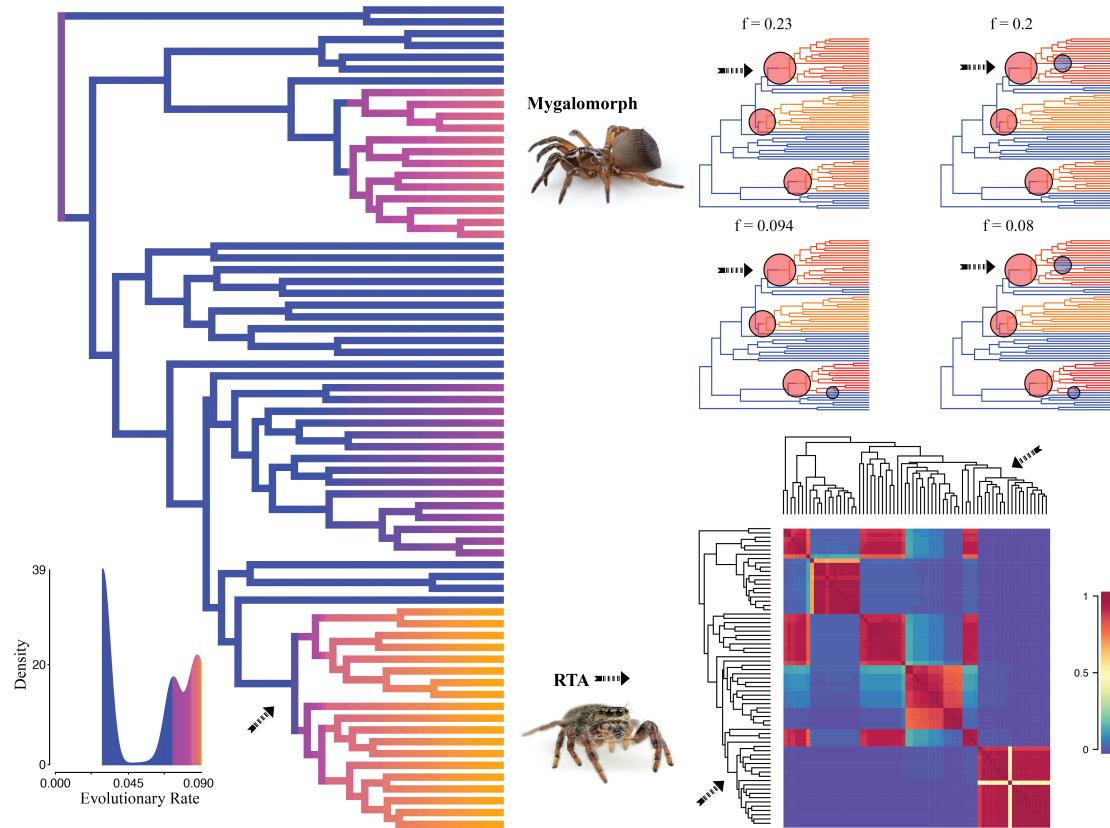

Node	Age	HPD 95% CI	Taxonomic Group
34	107	52-165	
35	76	25-131	
36	94	49-149	
37	61	22-116	Araneidae
38	33	29312	
39	41	33420	
40	191	134-258	
41	152	64-228	
42	21	28126	Uloboridae
43	174	117-242	
44	112	60-174	
45	44	4-113	
46	92	44-149	
47	74	29-126	
48	47	34243	
49	120	68-182	
50	104	57-160	
51	71	28-121	
52	52	36130	
53	70	28-120	Lycosoidea
54	50	35735	
55	49	15-93	
56	37	27211	

Figure 1. Summary, preferred tree, of spider relationships based on phylogenomic analyses shown in Figure 2. Numbers at nodes correspond to superscripts in Table 1. Images in descending order: Scorpion, Mesothelae, Antrodiacetidae, Paratropopidae, Ctenizidae, Pholcidae, Scytodidae, Theridiidae, Tetragnathidae, Nephilidae, Uloboridae, Amaurobiidae, Agelenidae, Salticidae, Lycosidae, Oxyopidae.


Figure 2. Summary of phylogenomic analyses (different matrices outlined in Table 2) on the phylogenetic hypothesis based on ExaML analysis of dataset 1 (3,398 OGs). Box plots indicate bootstrap value ranges for each node across matrices 1-7; single solid blocks indicate bootstrap values of 100% in all analyses.

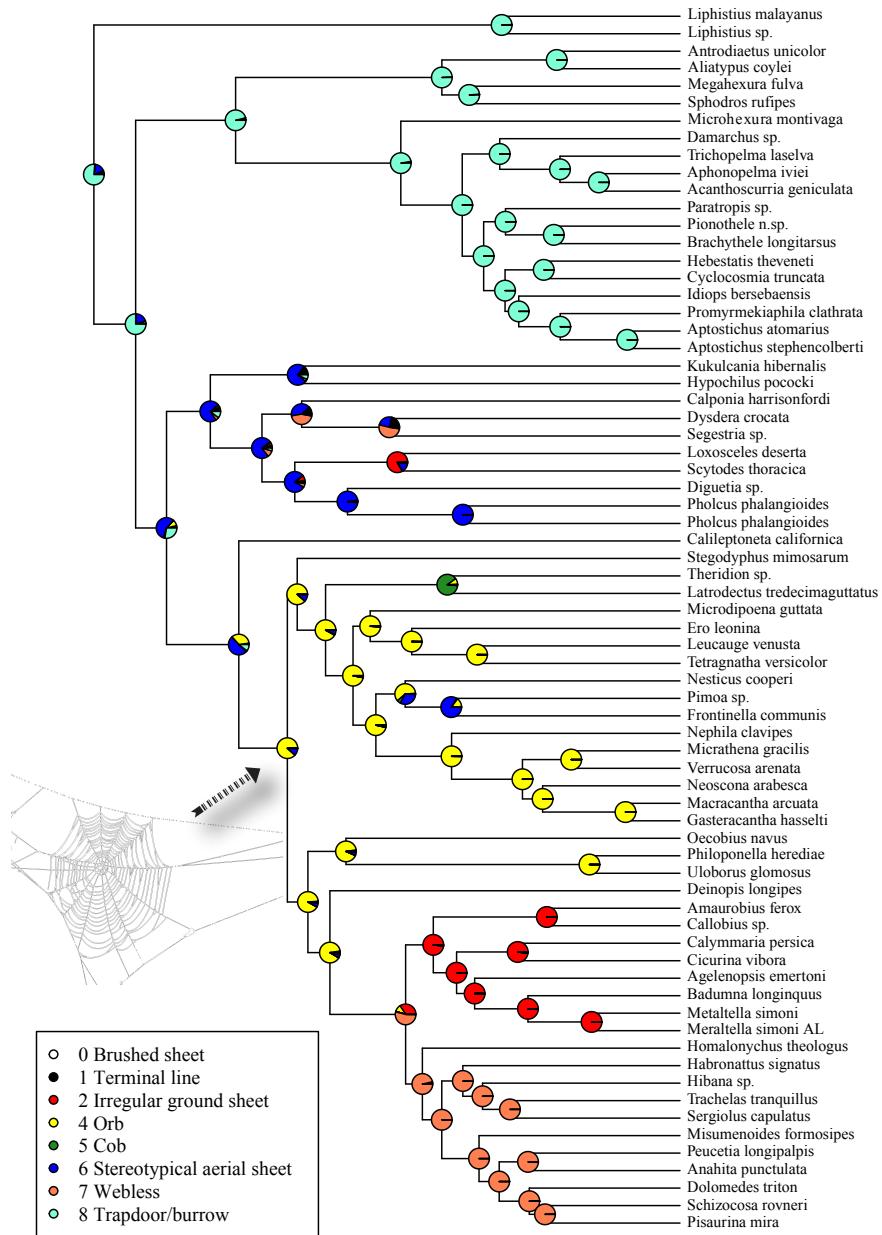

Figure 3. ASTRAL gene tree analysis of spider relationships based on 3,398 genes. Relative support value ranges reported at each node (inset legend); red stars indicate branches not congruent with tree shown in Figures 1, 2.

Figure 4. Chronogram resulting from two Bayesian MCMC runs performed in BEAST showing estimated divergence time for major spider lineages. Time scale on x axis; node point estimates and 95% confidence intervals (blue bars) are reported in Table 2.

Figure 5. Time-calibrated phylogeny of spiders with branches colored by reconstructed net diversification rates (lower left). Rates on branches are means of the marginal densities of branch-specific rates. Inset histogram shows posterior density of speciation rates. **Smaller phylogenies (top right) show the four distinct shift configurations with the highest posterior probability.** For each distinct shift configuration, the locations of rate shifts are shown as red (rate increases) and blue (rate decreases) circles, with circle size proportional to the marginal probability of the shift. The macroevolutionary cohort analysis (lower right) displays the pairwise probability that any two species share a common macroevolutionary rate dynamic. Dashed arrow indicates position of RTA clade on each tree.

Figure 6. ML ancestral state reconstructions of web type on the time-calibrated phylogeny of spiders. Circle areas correspond to probability of ancestral states. The arrow points to one of the main diversification rate shift reconstructed by BAMM at the MRCA of the RTA clade.

849 **SUPPLEMENTAL MATERIALS**

850

Table S1. Specimen locality data.

Family	Genus	Specific Epithet	Specimen ID	Locality	Latitude/Longitude
Agelenidae	<i>Agelenopsis</i>	<i>emertoni</i>	AUMS5739	Auburn, Lee Co, AL, USA	32.6028°N 85.4554°W
Amaurobiidae	<i>Callobius</i>	<i>sp.</i>	AUMS11930	Muir Woods, Marin Co, CA, USA	37.8922°N 122.5717°W
Amphinectidae	<i>Metaltella</i>	<i>simoni</i>	AUMS11905	Auburn University, Lee Co, AL, USA	32.5986°N 85.4833°W
Amphinectidae	<i>Metaltella</i>	<i>simoni</i>	AUMS11915	SanDiego Co, CA, USA	NA
Antrodiaetidae	<i>Aliatypus</i>	<i>coylei</i>	AUMS56	near Monterey, Monterey Co, CA, USA	36.5714°N 121.9043°W
Antrodiaetidae	<i>Antrodiaetus</i>	<i>unicolor</i>	MY2335	near Hendersonville, Transylvania Co, NC, USA	35.2192°N 82.7794°W
Anyphaenidae	Hibana	sp.	AUMS11902	Louise Kreher Forest Ecology Preserve, Auburn, Lee Co, AL, USA	32.6603°W 85.4836°W
Araneidae	Micrathena	gracilis	AUMS5620	Dadeville, Co, AL, USA	32.8318°N 85.7636°W
Araneidae	Verrucosa	arenata	AUMS11901	Louise Kreher Forest Ecology Preserve, Auburn, Lee Co, AL, USA	32.6603°N 85.4836°W
Atypidae	Sphodros	rufipes	AUMS146	EV Smith Research Station, Macon Co, AL, USA	32.4257°N 85.9015°W
Barychelidae	Trichopelma	laselva	AUMS8485	La Selva, CR	10.4295°N 84.0095°W
Caponiidae	Calponia	harrisonfordi	1347-JML-001	Russian Ridge Open Space Park, San Mateo Co, CA, USA	37.3149°N 122.1872°W
Ctenidae	Anahita	punctulata	AUMS11932	Auburn, Lee Co, AL, USA	32.6028°N 85.4554°W

Supplemental Table 1 – continued from previous page

Family	Genus	Specific Epithet	Specimen ID	Locality	Latitude/Longitude
Ctenizidae	Cyclocosmia	truncata	AUMS120	Grove Hill, Auburn, Lee Co, AL, USA	32.5841°N 85.4604°W
Ctenizidae	Hebestatis	theveneti	AUMS152	Tuolumne Co, CA, USA	38.0453°N 119.9747°W
Deinopidae	Deinopis	longipes	AUMS8783	La Selva, CR	10.4295°N 84.0095°W
Desidae	Badumna	longinquus	AUMS11914	Petaluma, Sonoma Co, CA, USA	38.2247°N 122.6264°W
Dictynidae	Cicurina	vibora	HED003	Temples of Thor Cave, Williamson Co, TX, USA	NA
Diguetidae	Diguetia	sp.	AUMS11919	Iperial Co, CA, USA	NA
Dipluridae	Microhexura	montivaga	HED001	Mt Gibbes, Mt Mitchell SP, Yancey Co, NC, USA	35.7394°N 82.2850°W
Dysderidae	Dysdera	crocata	AUMS11924	Golden Gate Park, San Francisco Co, CA, USA	37.7686°N 122.4659°W
Euctenizidae	Aptostichus	atomarius	MY4002	Winchester, Riverside Co, CA, USA	33.7069°N 117.0844°W
Euctenizidae	Aptostichus	stephencolberti	AUMS20	Marina Dunes State Park, Monterey Co, CA, USA	36.7035°N 121.8068°W
Euctenizidae	Promyrmekiaphila lathrata		AUMS5761	near Cazadero, Sonoma Co, CA, USA	38.5231°N 123.0845°W
Filistatidae	Kukulcania	hibernalis	AUMS8597	Auburn, Lee Co, AL, USA	32.6094°N 85.4544°W
Gnaphosidae	Sergiolus	capulatus	AUMS5674	Opelika, Lee Co, AL, USA	32.6887°N 85.4012°W
Hahniidae	Calymmaria	persica	AUMS11926	Petaluma, Sonoma Co, CA, USA	38.2247°N 122.6264°W
Homalonychidae	Homalonychus	theologus	AUMS11917	Imperial Co, CA, USA	NA
Hypochilidae	Hypochilus	pococki	AUMS155	Laurel Falls Trail, Sevier Co, TN, USA	35.6782°N 83.5929°W
Idiopidae	Idiops	bersebaensis	AUMS6746	Namibia, Africa	17.0021°S 13.2445°E

Supplemental Table 1 – continued from previous page

Family	Genus	Specific Epithet	Specimen ID	Locality	Latitude/Longitude
Leptonetidae	Calileptoneta	californica	1348-JML-001	Mount Diablo State Park, Contra Co, CA, USA	37.8745°N 121.9616°W
Linyphiidae	Frontinella	communis	AUMS5733	Auburn University, Lee Co, AL, USA	32.5987°N 85.4835°W
Liphistiidae	Liphistius	sp.	AUMS5743	Thailand	NA
Lycosidae	Schizocosa	rovneri	AUMS5122	Oxford, Lafayette Co, MS, USA	32.4116°N 89.4183°W
Mecicobothriidae	Megahexura	fulva	AUMS154	East of Groveland, Tuolumne Co, CA, USA	38.0453°N 119.9747°W
Mimetidae	Ero	leonina	AUMS8817	Tuskegee National Forest, Macon Co, AL, USA	32.4418°N 85.6328°W
Nemesiidae	Brachythele	longitarsis	AUMS47	Jasper Ridge, San Mateo Co, CA, USA	37.4132°N 122.2050°W
Nemesiidae	Damarchus	sp.	AUMS5127	Ramnagar Nepal	NA
Nemesiidae	Pionothele	n.sp.	AUMS6718	Namibia, Africa	23.5698°S 15.0398°E
Nephilidae	Nephila	clavipes	AUMS5736	Donald E. Davis Arboretum, Auburn University, Lee Co, AL, USA	32.5950°N 85.4834°W
Nesticidae	Nesticus	cooperi	HED002	Nantahala River Gorge, Swain Co, NC, USA	35.4111°N 83.5220°W
Oecobiidae	Oecobius	navus	AUMS5741	Auburn University, Lee Co, AL, USA	32.6000°N 85.4823°W
Oxyopidae	Peucetia	longipalpis	AUMS5740	Opelika, Lee Co, AL, USA	32.6887°N 85.4012°W
Paratropididae	Paratropis	sp.	AUMS148	Socotá, Departamento Boyaca, Columbia	6.08976°N 72.6198°W
Pholcidae	Pholcus	phalangioides	AUMS5732	Auburn University, Lee Co, AL, USA	32.6000°N 85.4823°W

Supplemental Table 1 – continued from previous page

Family	Genus	Specific Epithet	Specimen ID	Locality	Latitude/Longitude
Pholcidae	Pholcus	phalangioides	1304-JML-001	Petaluma, Sonoma Co, CA, USA	38.2247°N 122.6264°W
Pimoidae	Pimoa	sp.	AUMS14951	Del Norte Co, CA	NA
Pisauridae	Dolomedes	triton	AUMS11906	Opelika, Lee Co, AL, USA	32.6544°N 85.3973°W
Salticidae	Habronattus	signatus	HED004	Ocotillo, Imperial Co, CA, USA	32.7386°N 115.9941°W
Scytodidae	Scytodes	thoracica	AUMS5673	Grove Hill, Lee Co, AL, USA	32.5841°N 85.4604°W
Segestriidae	Segestria	sp.	AUMS11925	Golden Gate Park, San Francisco, CA, USA	37.7686°N 122.4659°W
Sicariidae	Loxosceles	deserta	1346-JML-001	Yarnell, Yavapai Co, AZ	32.0756°N 110.6258°W
Tetragnathidae	Leucauge	venusta	AUMS11903	Chewacla State Park, Auburn, Lee Co, AL, USA	32.5536°N 85.4845°W
Tetragnathidae	Tetragnatha	versicolor	AUMS5738	Donald E. Davis Arboretum, Auburn University, Lee Co, AL, USA	32.5950°N 85.4834°W
Theraphosidae	Aphonopelma	iviei	APH2038	East of Plymouth, Amador Co, CA, USA	38.4759°N 120.8230°W
Theridiidae	Theridion	sp.	AUMS5737	Donald E. Davis Arboretum, Auburn University, AL, USA	32.5950°N 85.4834°W
Thomisidae	Misumenooides	formosipes	AUMS6454	Opelika, Lee Co, AL, USA	32.6887°N 85.4012°W
Uloboridae	Philopenella	herediae	AUMS8784	La Selva, CR	10.4295°N 84.0095°W
Uloboridae	Uloborus	glomosus	AUMS11904	Chewacla State Park, Auburn, Lee Co, AL, USA	32.5536°N 85.4845°W

Table S2. Transcriptome sequence and assembly data.

Family	Species	Reads	Contigs	Ave. Len.	TransDecoder	ARTH	SPID
Tetragnathidae	Leucauge venusta	15567091	127727	919	51004	988	3972
Pimoidae	Pimoa sp.	46352103	160889	978.3	47496	998	3915
Araneidae	Verrucosa arenata	14468378	94721	911.9	41450	976	3993
Araneidae	Gasteracantha hasselti	12564452	50554	858.2	19944	978	4020
Theridiidae	Latrodectus tredecimguttatus	27605467	10259	1110.6	9266	904	3399
Araneidae	Macracantha arcuata	17523883	34411	787.9	16560	949	3826
Mysmenidae	Microdipoena guttata	16972695	156439	617.5	70785	998	3940
Araneidae	Neoscona arabesca	28551664	161311	745.6	47096	992	3834
Linyphiidae	Frontinella communis	28476743	27195	757.1	11753	862	3126
Araneidae	Micrathena gracilis	56963267	38210	856.6	16269	935	3719
Nephilidae	Nephila clavipes	34853551	32305	753.9	15200	935	3653
Nesticidae	Nesticus cooperi	20188741	41169	714	15744	945	3715
Tetragnathidae	Tetragnatha versicolor	33465090	34328	815.4	15917	938	3672
Theridiidae	Theridion sp.	37459365	24669	733.7	10013	800	2810
Uloboridae	Uloborus glomosus	12362545	114137	657	40782	970	3810
Deinopidae	Deinopis longipes	39222056	36976	705.7	12764	880	3375
Uloboridae	Philoponella herediae	47234871	40659	655.9	16468	947	3656
Eresidae	Stegodyphus mimosarum	NA	NA	NA	26888	965	4055
Oecobiidae	Oecobius navus	25031200	24989	695.4	12582	881	3183
Leptonetidae	Calileptoneta californica	59806212	37641	582	11687	875	3240
Caponiidae	Calponia harrisonfordi	59921781	14397	542.1	4297	551	1604
Diguetidae	Diguetia sp.	19838746	6816	306.9	1368	309	457
Dysderidae	Dysdera crocata	1718572	18286	452.8	5058	566	932

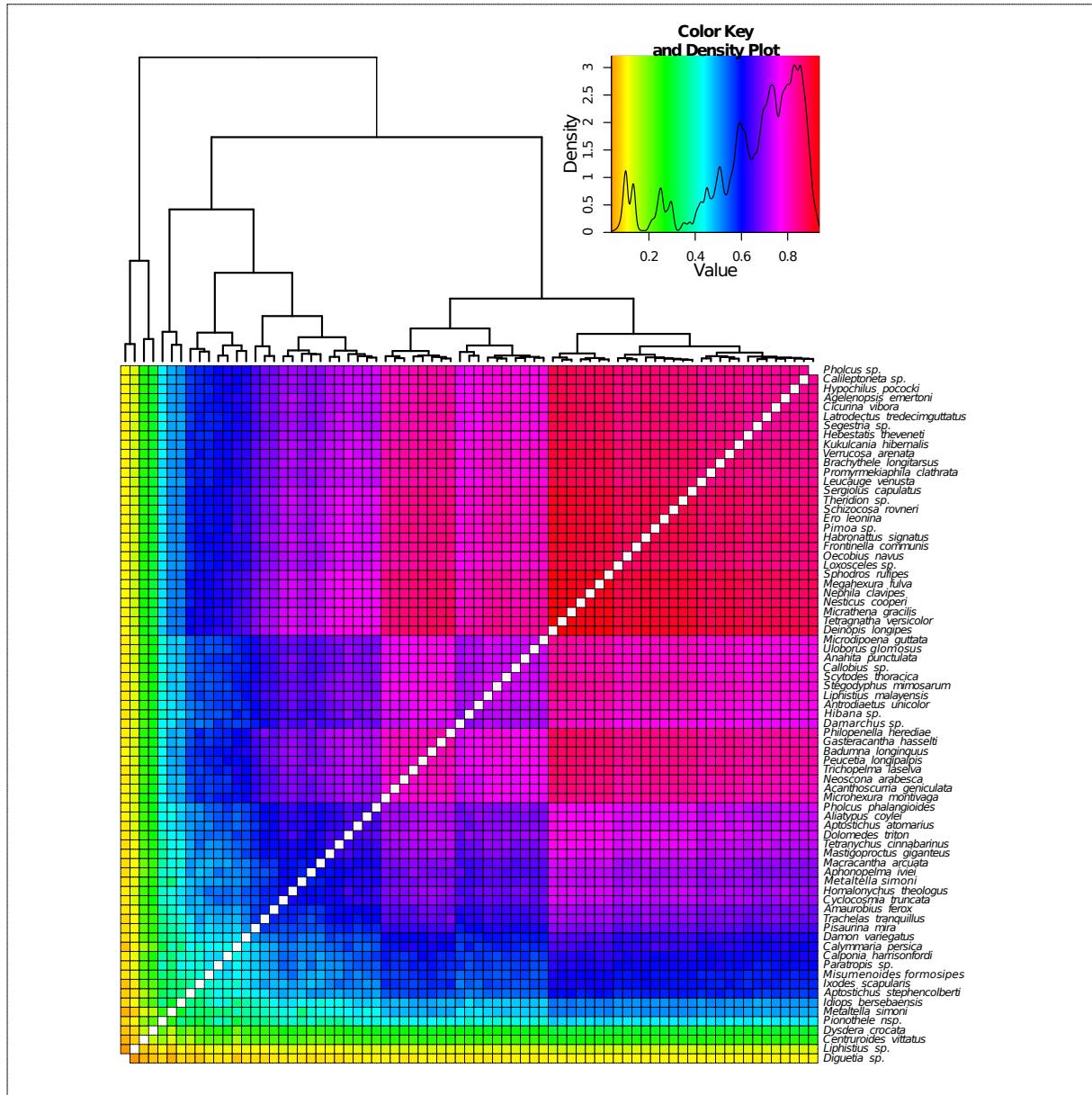
Supplemental Table 2 – continued from previous page

Family	Species	Reads	Contigs	Ave. Len.	TransDecoder	ARTH	SPID
Sicariidae	<i>Loxosceles deserta</i>	61963685	40702	582.5	11078	876	3256
Pholcidae	<i>Pholcus phalangioides</i>	58019035	40396	760.8	11883	902	2129
Segestriidae	<i>Segestria</i> sp.	38407502	191839	708.3	54753	987	3804
Filistatidae	<i>Kukulcania hibernalis</i>	42693292	29491	702.4	11121	835	3141
Pholcidae	<i>Pholcus phalangioides</i>	24861584	17870	556.9	6698	703	3183
Scytodidae	<i>Scytodes thoracica</i>	30924460	59599	855.7	18223	962	3657
Hypochilidae	<i>Hypochilus pococki</i>	25747925	19793	540.2	7561	796	2860
Mimetidae	<i>Ero leonina</i>	32363996	78785	801.7	24565	980	3971
Amphinectidae	<i>Metaltella simoni</i>	14728368	42301	574.7	18716	889	3039
Ctenidae	<i>Anahita punctulata</i>	44538794	75653	483.4	23111	961	3407
Anyphaenidae	<i>Hibana</i> sp.	40346328	55291	615.1	15212	909	2789
Desidae	<i>Badumna longinqua</i>	16455974	85746	661.9	34737	968	3557
Amaurobiidae	<i>Callobius</i> sp.	26240373	62055	499	21591	919	3401
Pisauridae	<i>Dolomedes triton</i>	13590617	81075	625.3	32520	951	3209
Amphinectidae	<i>Metaltella simoni</i>	12935049	62734	612.4	23086	950	3174
Thomisidae	<i>Misumenoides formosipes</i>	25351927	58396	570.4	21546	810	2161
Amaurobiidae	<i>Amaurobius ferox</i>	12549070	202311	530.8	35361	976	3247
Pisauridae	<i>Pisaurina mira</i>	6887470	129530	563.8	27116	958	3219
Corrinidae	<i>Trachelas tranquillus</i>	15506968	118533	467.9	30037	950	3546
Agelenidae	<i>Agelenopsis emertoni</i>	27264400	20517	719.7	8192	751	2613
Dictynidae	<i>Cicurina vibora</i>	29071083	175943	412.7	20256	852	3293
Salticidae	<i>Habronattus signatus</i>	75391275	26276	574.9	10447	843	3259
Oxyopidae	<i>Peucetia longipalpis</i>	23273514	18810	668.4	7994	737	2536
Lycosidae	<i>Schizocosa rovneri</i>	132349831	42744	871.6	14965	911	3584
Gnaphosidae	<i>Sergiolus capulatus</i>	32765239	28757	725.6	11340	820	2989
Hahniidae	<i>Calymmaria persica</i>	19286137	110707	644.9	20501	982	2165

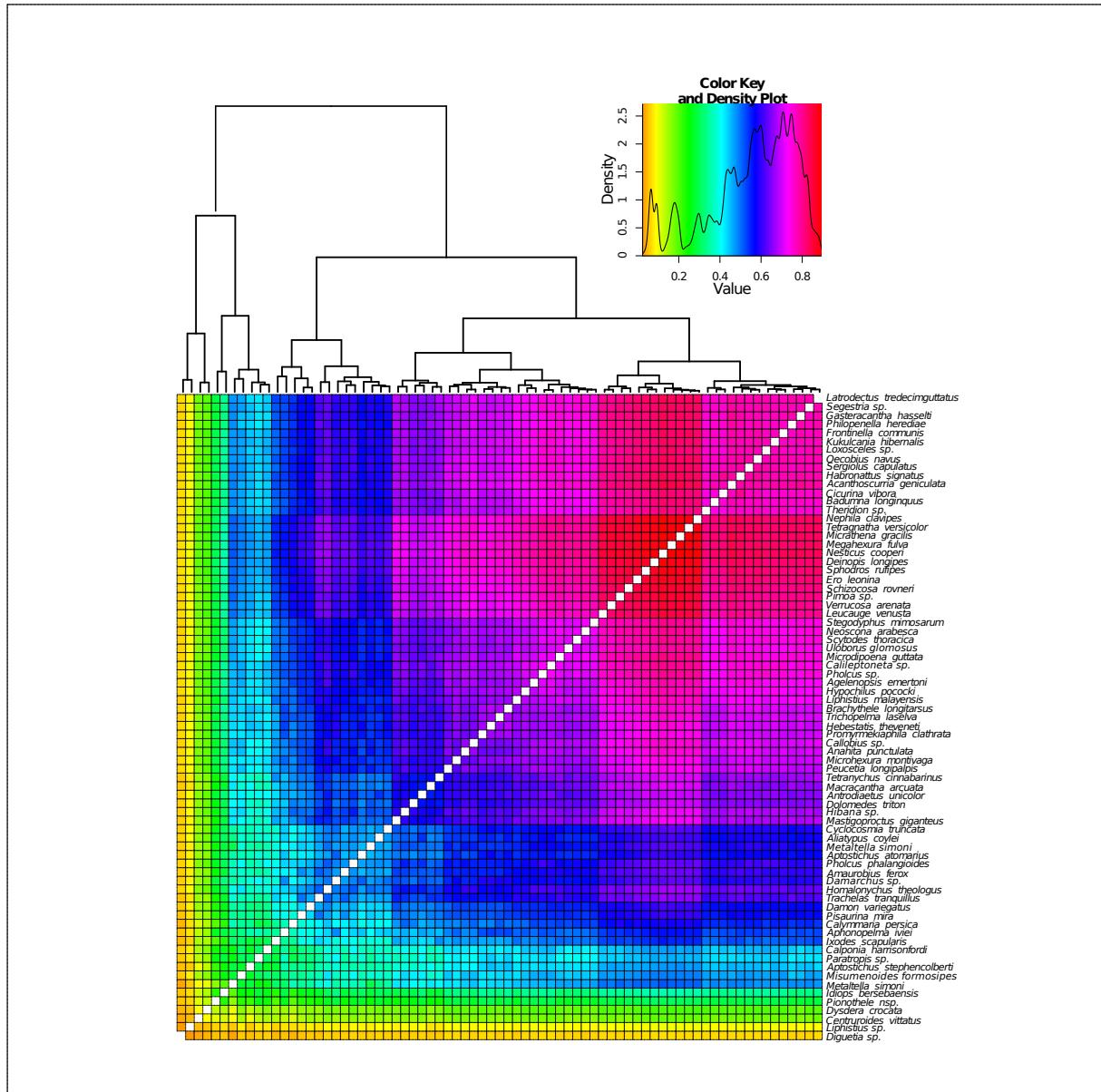
Supplemental Table 2 – continued from previous page

Family	Species	Reads	Contigs	Ave. Len.	TransDecoder	ARTH	SPID
Homolonychidae	<i>Homalonychus theogorus</i>	31165362	40734	462.1	13258	933	3167
Theraphosidae	<i>Acanthoscurria geniculata</i>	NA	NA	NA	76237	933	4249
Antrodiaetidae	<i>Aliatypus coylei</i>	29958173	23447	744.6	6098	695	2222
Antrodiaetidae	<i>Antrodietus unicolor</i>	32624239	14062	550.2	9850	756	2745
Theraphosidae	<i>Aphonopelma iviei</i>	36326210	13442	605.1	4717	596	2035
Euctenizidae	<i>Aptostichus atomarius</i>	27431535	14152	709.2	5795	643	2149
Euctenizidae	<i>Aptostichus stephencolberti</i>	30904990	13267	779.5	5344	589	1944
Nemesiidae	<i>Brachythele longitarsis</i>	30773715	20721	574.8	7674	743	2635
Ctenizidae	<i>Cyclocosmia truncata</i>	33664901	26408	604.7	8446	736	2679
Nemesiidae	<i>Damarchus</i> sp.	21876221	13519	707.8	5558	623	2089
Ctenizidae	<i>Hebestatis theveneti</i>	40097804	16167	650	6711	713	2647
Idiopidae	<i>Idiops bersebaensis</i>	23040778	6270	649.1	2897	421	1151
Mecicobothriidae	<i>Megahexura fulva</i>	59599533	40526	671.9	15303	964	4147
Dipluridae	<i>Microhexura montivaga</i>	24680385	19680	635.8	8286	761	2695
Paratropidae	<i>Paratropis</i> sp.	18409810	9021	605	3694	473	1463
Nemesiidae	<i>Pionothele</i> n.sp.	20155275	5158	631.7	2283	368	970
Euctenizidae	<i>Promyrmekiaphila</i> clathrata	24733435	22423	669.4	8445	758	2646
Atypidae	<i>Sphodros rufipes</i>	51968533	27266	715.5	11504	915	3704
Barychelidae	<i>Trichopelma laselva</i>	27264400	33544	665.4	9061	807	2861
Liphistiidae	<i>Liphistius</i> sp.	54043289	7830	370.5	1938	333	667
Liphistiidae	<i>Liphistius malayanus</i>	62897982	83669	515.4	19784	941	3568
Ixodidae	<i>Ixodes scapularis</i>	NA	18810	668.4	17799	815	2726
Phrynididae	<i>Damon variegatus</i>	64733221	83669	515.4	27304	944	3327
Buthidae	<i>Centruroides vittatus</i>	45691843	17788	378.2	4854	660	1099

Supplemental Table 2 – continued from previous page


Family	Species	Reads	Contigs	Ave. Len.	TransDecoder	ARTH	SPID
Thelyphonidae	<i>Mastigoproctus giganteus</i>	25983006	157263	623.7	43626	994	3785
Tetranychidae	<i>Tetranychus cinnabarinus</i>	26040173	30288	963.8	17083	938	3063

852


853 Supplemental Table 3

854 See /Supplemental_Material/AnnotationTable_S3.tex :too large to compile within main.tex

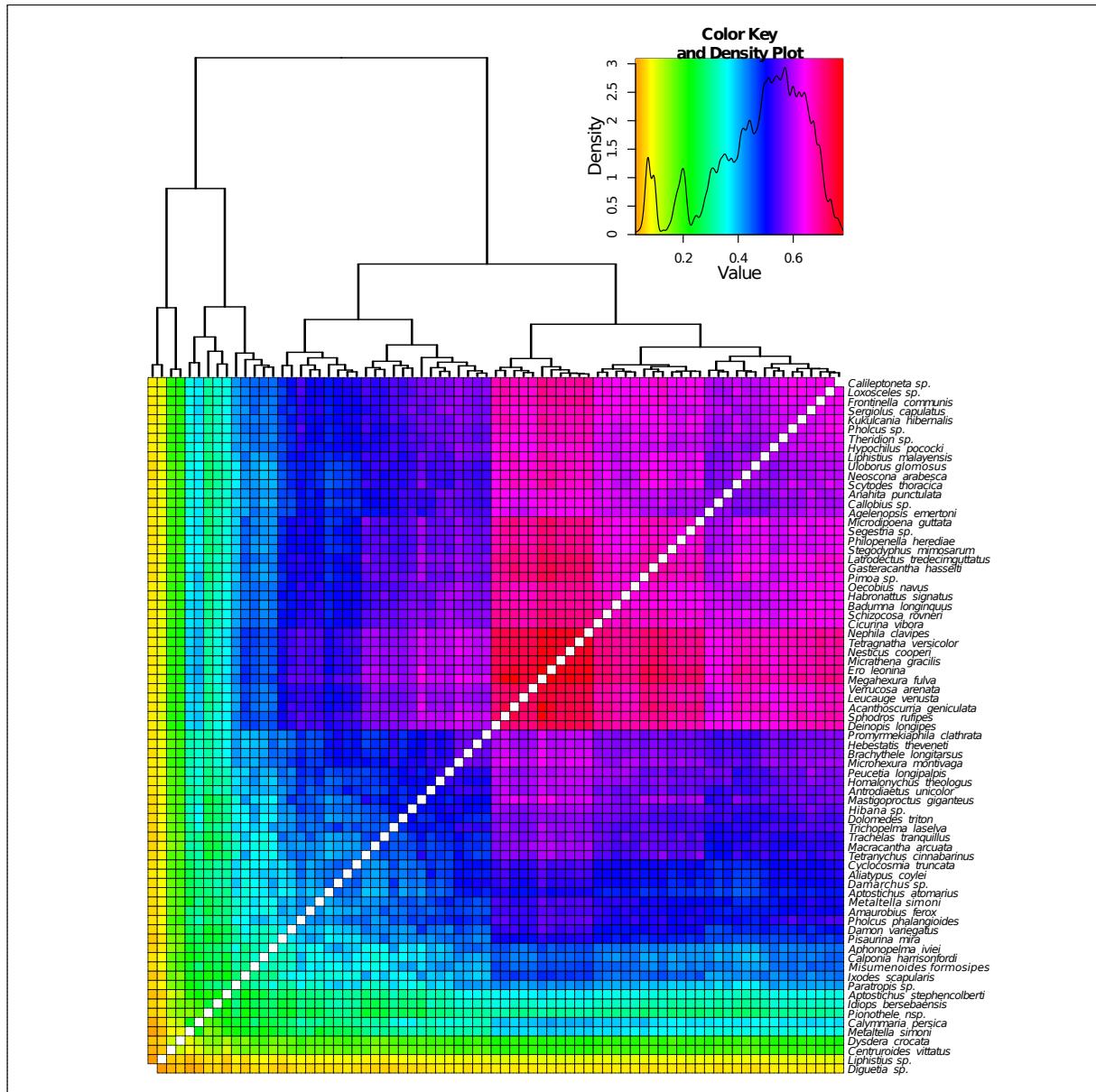
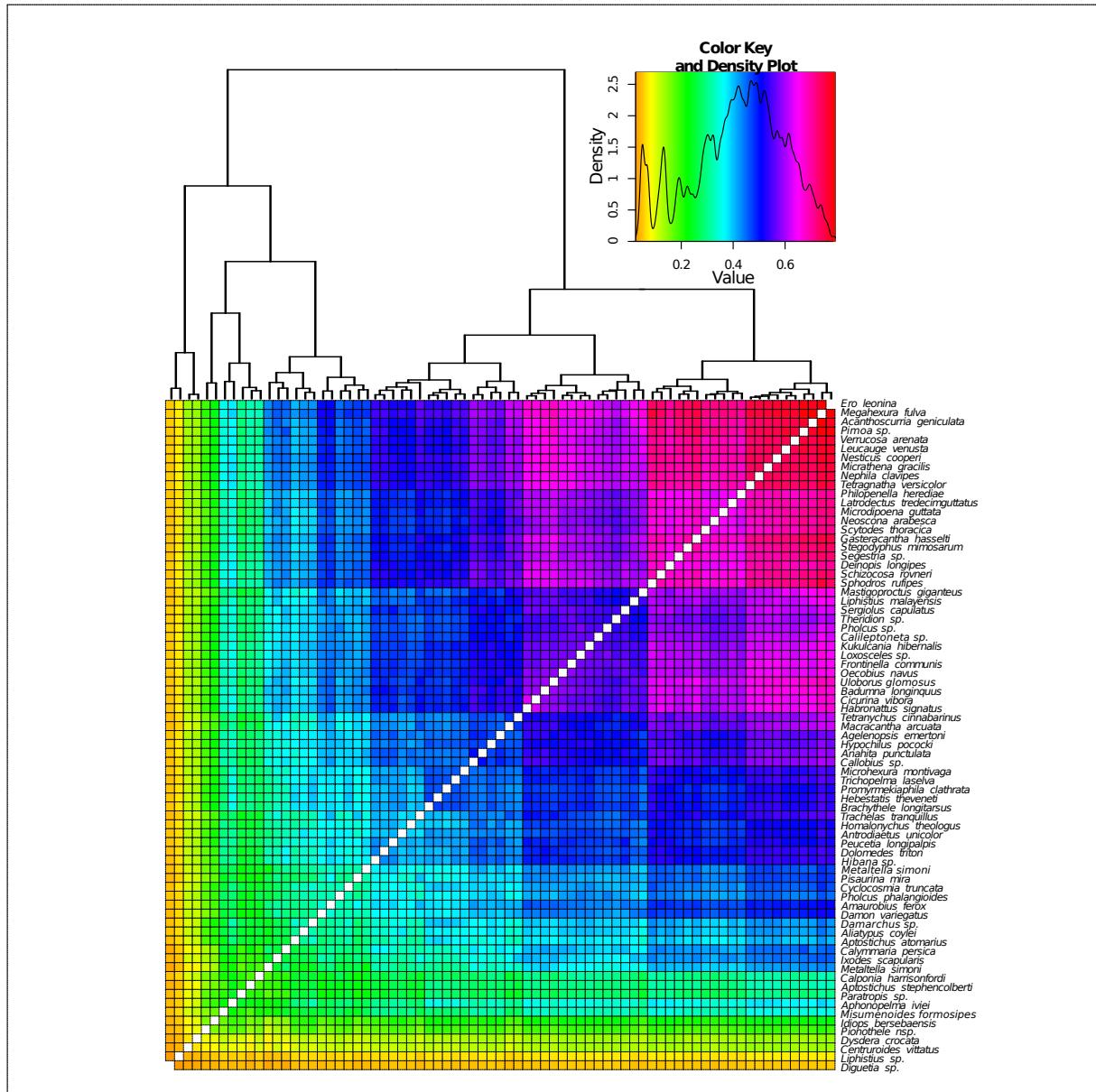

855

Figure S1. Clustering/heatmap analysis depicting degree of shared data between each species pair; missing data reduction (matrix 3, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.


Figure S2. Clustering/heatmap analysis depicting degree of shared data between each species pair; missing data reduction (matrix 2, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.

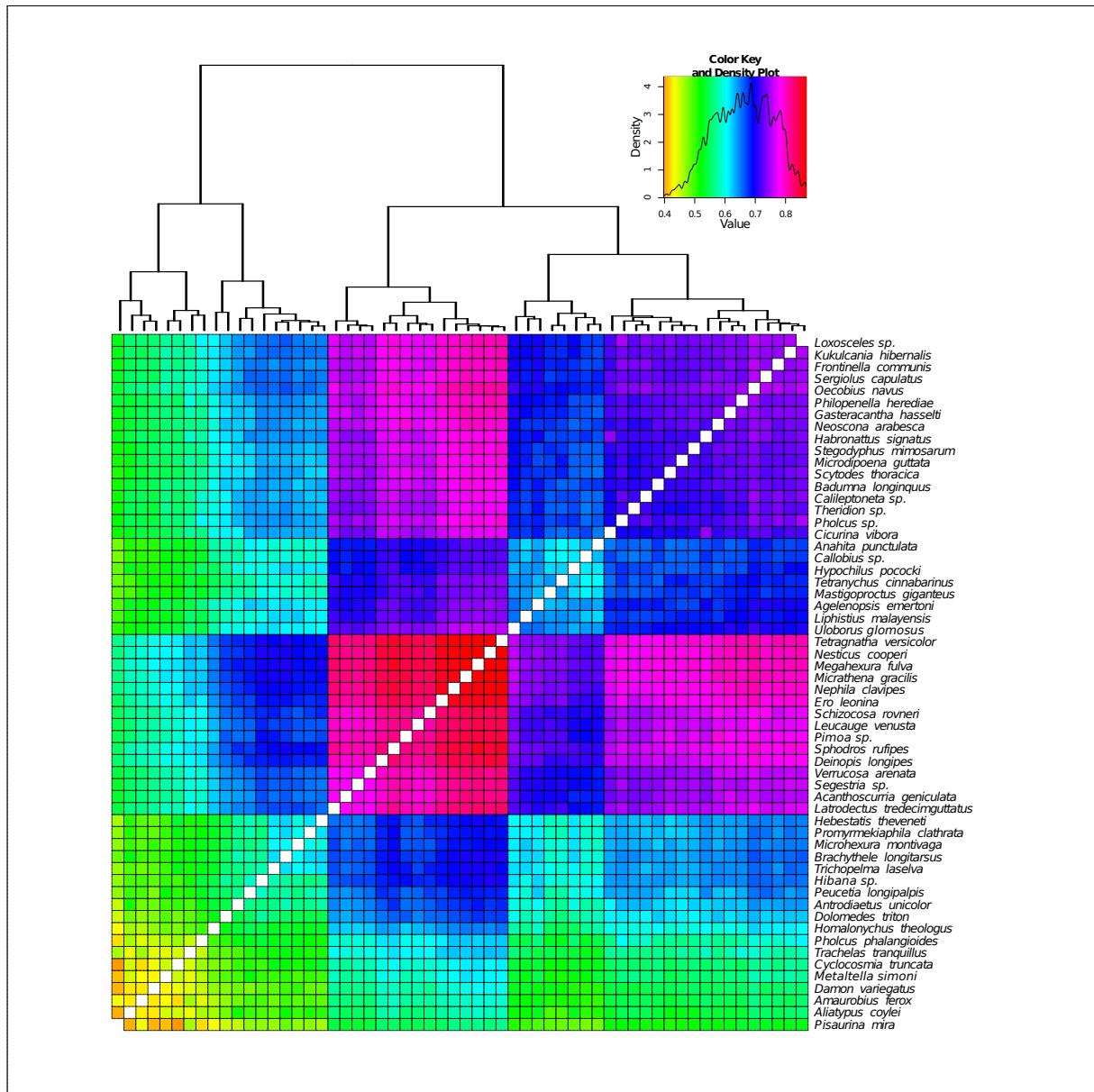
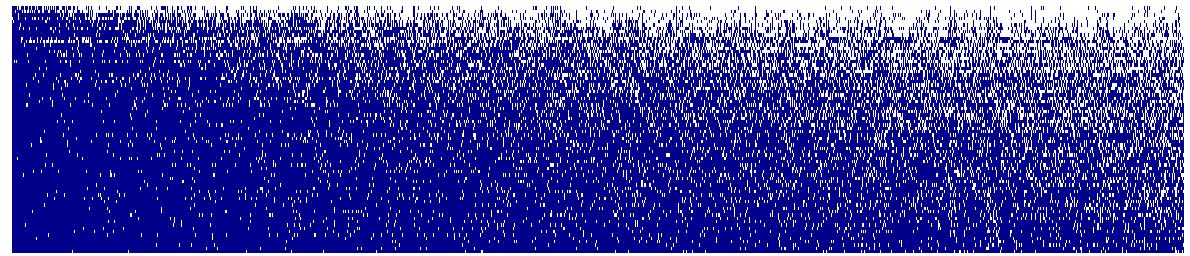
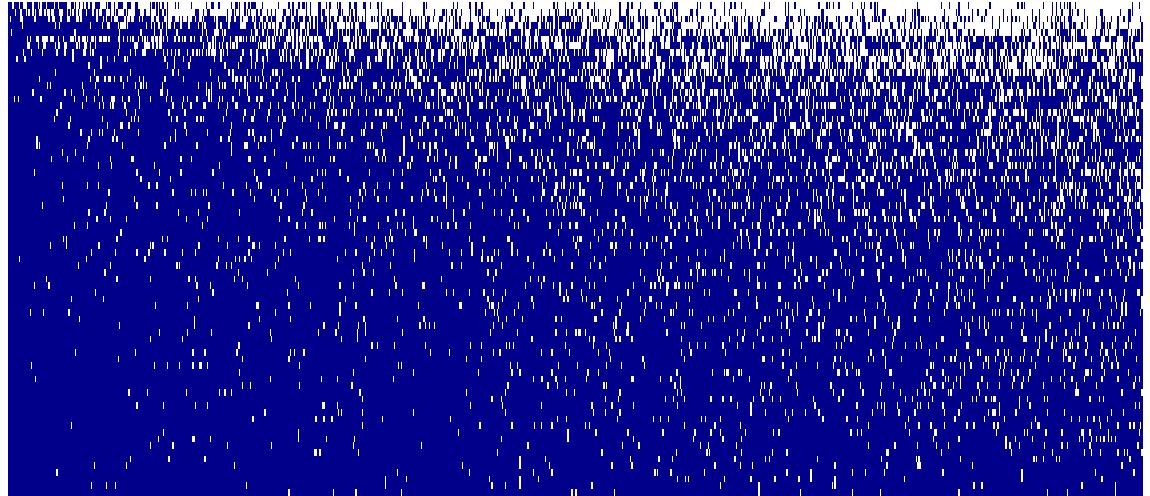
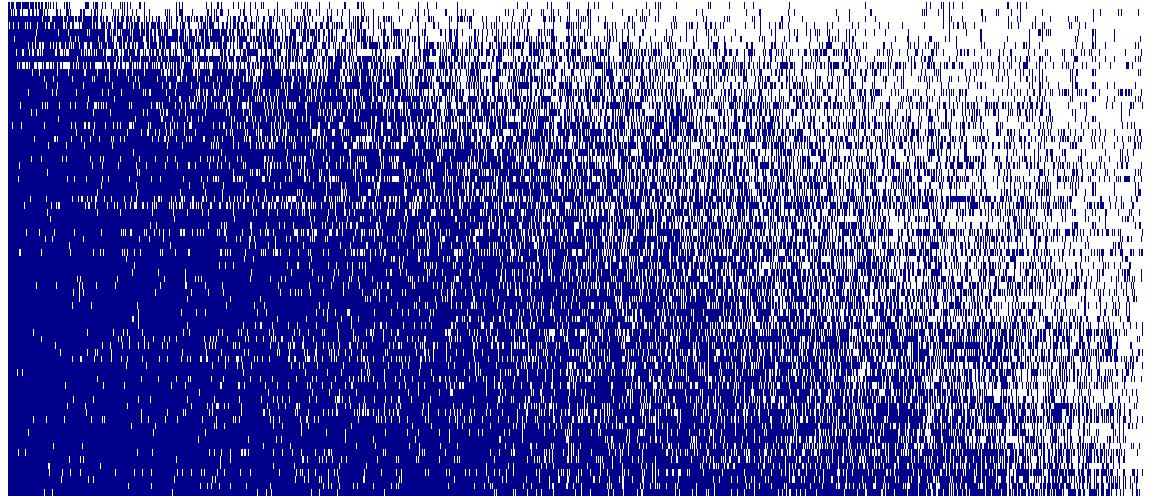
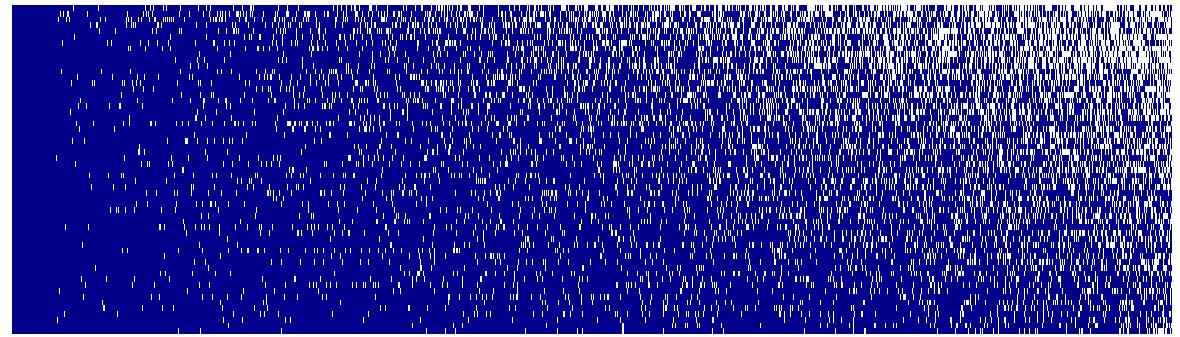

Figure S3. Clustering/heatmap analysis depicting degree of shared data between each species pair; BaCoCa reduced matrix (matrix 4, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.

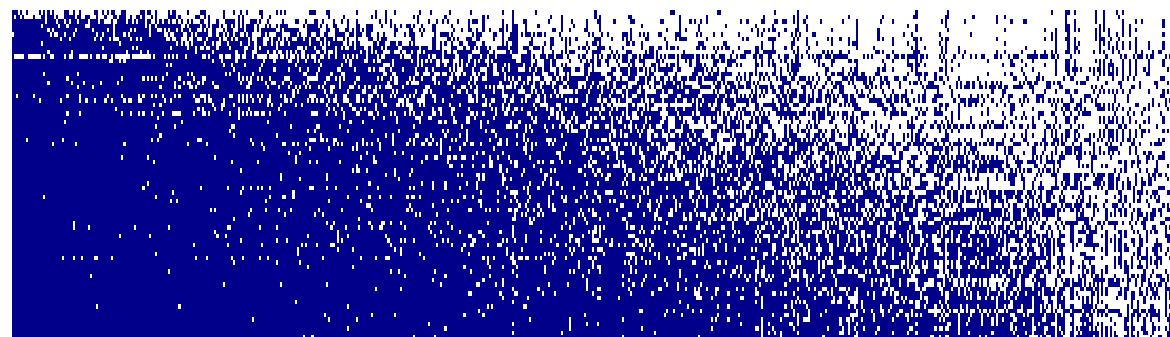
Figure S4. Clustering/heatmap analysis depicting degree of shared data between each species pair; arthropod core ortholog matrix (matrix 5, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.

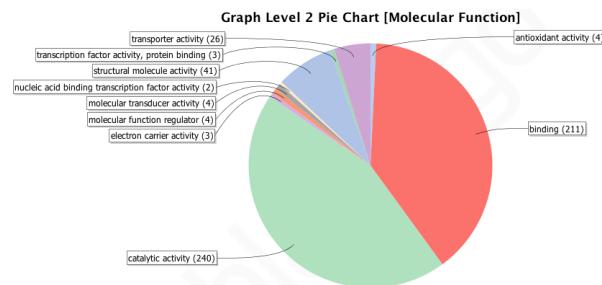

Figure S5. Clustering/heatmap analysis depicting degree of shared data between each species pair; full spider ortholog matrix (matrix 1, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.


Figure S6. Clustering/heatmap analysis depicting degree of shared data between each species pair; MARE matrix (matrix 7, Table 2). Degree of positive data overlap indicated by a color-coded heatmap (yellow = low, red = high); species order from right to left in the same order as listed from top to bottom on right side of figure. Lack of phylogenetic clustering indicates bias from shared data does not explain relationships seen in phylogenomic analyses.


Figure S7. Gene occupancy of matrix 1 (see Table 2). Colored squares represent partitions present in matrix for each OTU (x-axis, in descending order of OTU representation from left to right) and each partition or gene (y-axis, in ascending order of partition representation).


Figure S8. Gene occupancy of matrix 2 (see Table 2). Colored squares represent partitions present in matrix for each OTU (x-axis, in descending order of OTU representation from left to right) and each partition or gene (y-axis, in ascending order of partition representation).


Figure S9. Gene occupancy of matrix 3 (see Table 2). Colored squares represent partitions present in matrix for each OTU (y-axis, in descending order of OTU representation from bottom to top) and each partition or gene (x-axis, in descending order of partition representation from left to right).


Figure S10. Gene occupancy of matrix 4 (see Table 2). Colored squares represent partitions present in matrix for each OTU (y-axis, in descending order of OTU representation from bottom to top) and each partition or gene (x-axis, in descending order of partition representation from left to right).

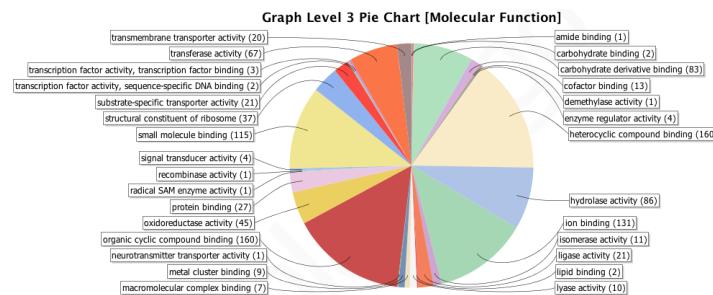

Figure S11. Gene occupancy of matrix 7 (see Table 2). Colored squares represent partitions present in matrix for each OTU (y-axis, in descending order of OTU representation from bottom to top) and each partition or gene (x-axis, in descending order of partition representation from left to right).

Figure S12. Gene occupancy of matrix 5 (see Table 2). Colored squares represent partitions present in matrix for each OTU (y-axis, in descending order of OTU representation from bottom to top) and each partition or gene (x-axis, in descending order of partition representation from left to right).

Figure S13. Gene Ontology molecular functions, levels 2 for OGs shared by Arthropod and Spider Core sets. Figures generated by Blast2GO analysis.

Figure S14. Gene Ontology molecular functions, level 3 for OGs shared by Arthropod and Spider Core sets. Figures generated by Blast2GO analysis.