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Cancer is one of the leading causes of death, with an estimated 19.3 million new cases and
10 million deaths worldwide in 2020 alone. Approximately 2.2 million cancer cases are
attributed to infectious diseases, according to the World Health Organization (WHO).
Despite the apparent involvement of some parasitic helminths (especially trematodes) in
cancer induction, there are also records of the potential suppressive effects of helminth
infections on cancer. Tapeworms such as Echinococcus granulosus, Taenia crassiceps, and
more seem to have the potential to suppress malignant cell development, although in a
few cases the evidence might be contradictory. Our review aims to summarize known
epidemiological data on the cancer-helminth co-occurrence in the human population and
the interactions of tapeworms with cancers, i.e., proven or hypothetical effects of
tapeworms and their products on cancer cells in vivo (i.e., in experimental animals) or in
vitro. The prospect of bioactive tapeworm molecules helping reduce the growth and
metastasis of cancer is within the realm of future possibility, although extensive research
is yet required due to certain concerns.
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Abstract

Cancer is one of the leading causes of death, with an estimated 19.3 million new cases and 10
million deaths worldwide in 2020 alone. Approximately 2.2 million cancer cases are attributed to
infectious diseases, according to the World Health Organization (WHO). Despite the apparent
involvement of some parasitic helminths (especially trematodes) in cancer induction, there are
also records of the potential suppressive effects of helminth infections on cancer. Tapeworms
such as Echinococcus granulosus, Taenia crassiceps, and more seem to have the potential to
suppress malignant cell development, although in a few cases the evidence might be
contradictory. Our review aims to summarize known epidemiological data on the cancer-
helminth co-occurrence in the human population and the interactions of tapeworms with cancers,
i.e., proven or hypothetical effects of tapeworms and their products on cancer cells in vivo (i.e.,
in experimental animals) or in vitro. The prospect of bioactive tapeworm molecules helping
reduce the growth and metastasis of cancer is within the realm of future possibility, although

extensive research is yet required due to certain concerns.

The intended audience
Parasitology and cancer researchers.

Introduction

Infections with pathogens have been proposed as one of the possible triggers of cancer

development (Colotta et al., 2009). However, there is also some evidence of cancer suppression
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due to concurrent infections (Oikonomopoulou et al., 2013). Although the main emphasis is on
viruses and bacteria (Schiller and Lowy, 2021.; Duong et al., 2019), eukaryotic parasitic
infections cannot be omitted. Parasites such as Leishmania spp. (Caner et al., 2022; Al-Kamel,
2017), Trypanosoma cruzi (Ribeiro Franco et al., 2023), and Toxoplasma gondii (Baird et al.,
2013) are hypothesized to be able to influence cancer development; their attenuated forms or
products show a promising anti-cancer effect in vivo/ in vitro. Regarding helminths as
multicellular parasites, the research of cancer-pathogen interactions is still in its infancy.

Helminths are prevalent parasites in humans, mainly in tropical and subtropical eeuntries.
For example, it is estimated, that the number of people infected by soil-transmitted helminths
reaches up to 1.5 billion (WHO, 2023). On the other hand, in develeped, countries with high
health care standards, the number of human infections by helminths is usually low. The latter
situation might have unanticipated consequences: the absence of certain pathogens, including
helminths, may result in a more frequent occurrence of other (mainly autoimmune) diseases,
which are rare in helminth-rich communities (“hygienic hypothesis” and “old friend hypothesis";
(Strachan et al., 2000; Rook, 2010). In other words, helminths in humans influence the immune
system by exposing it to many antigens (in a sort of training) and by producing bioactive
molecules that modify specific immune reactions. Therefore, helminths are well pre-adapted to
form a tight association with their human hosts.

Not only is the immune system influenced by helminths (in many cases, modified T-
helper cell 2 (Th2) and regulatory T cell (Treg) responses are triggered in chronic helminthoses
(Maizels and Yazdanbakhsh, 2003; Hewitson et al., 2009)), but these infections may impact
other types of human diseases, namely cancers. Some helminths are known as proven
cancerogenic agents (Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium;
these flukes belong to group 1 human carcinogens as of 2012; (IARC, 2012)). Human cancers
caused by helminth infection may include cholangiocarcinoma, colorectal cancer, hepatocellular
carcinoma, urinary bladder cancer, and other malignancies (e.g., Scholte et al., 2018, Correia da
Costa et al., 2021; Wu et al., 2022). On the other hand, some helminths display possible cancer-
suppressing ability which has been indicated by some epidemiological surveys for humans,
animal experiments or in vitro (see below for details). For example, in the mouse model,
Trichinella spiralis, as a representative of nematodes, has been repeatedly associated with cancer

suppression (Wang et al., 2009; Kang et al., 2013; Vasilev et al., 2015). In the human population,
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some epidemiological data support this view. For example, the decline of Ascaris lumbricoides
prevalence in Korea during 1971—1992 has been followed by a remarkable increase in breast
cancer incidence during 1992—2013 (Yousefi et al., 2023) and the mean survival time of
patients with adult T-cell leukemia was longer if they had a concurrent infection with
Strongyloides stercoralis (Plumelle et al., 1997). The first possible cancer-suppressing effect of a
flatworm has been postulated with Echinococcus granulosus, a highly pathogenic cestode
responsible for human cystic echinococcosis (van Knapen, 1980).

Regarding tapeworms (Cestoda), their life cycles contain one or two intermediate hosts
and a final host. Based on the tapeworm species, humans can harbor either larval or adult
cestodes (or both, like in the case of Taenia solium). The adults live exclusively in the digestive
tract (the intestine), whereas larval stages invade various tissues/organs and may be life-
threatening (larvae of Echinococcus spp., T. solium, etc.). Although some experimental data with
laboratory rodents (see below) show that the presence of tapeworm larvae or their products could
negatively influence cancer cells, it is ethically and practically disputable to infect cancer-
bearing patients with living worms, which cause other pathologies. In this regard, the situation
substantially differs from some other helminth treatment procedures considered in the recent
years (e.g., the curative application of Trichuris suis in people with inflammatory bowel disease;
(Huang et al., 2018)). Fortunately, state-of-the-art parasitology offers advanced molecular tools
to characterize and produce parasite effector molecules in vitro. Such molecules can potentially
affect cancer cells directly (tapeworm molecules interfere with the cancer cell activities) or
indirectly (stimulation of the immune system to intervene in cancer growth/survival) (Fig. 1).

Our review aims at the up-to-date knowledge of in vivo (using experimental animals)/in
vitro interactions between tapeworms/tapeworm products and cancers, reflecting, for particular
helminth species and infections caused by them, the circumstantial epidemiological pieces of

evidence, in situ observations as well as experimental data using the tools of cell biology.

Survey methodology

Our study includes articles on tapeworms and their effect on cancers. Due to the complexity of
helminth-influenced immune responses, we included only studies discussing the connection
between tapeworm-activated immune systems and cancer. The Web of Science and PubMed

databases were used for the literature search. The following keywords and their combinations
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were used: ,,Tapeworm®, ,,Cestod*, ,,Cancer*, “Taenia”, “Echinococcus”, “Mesocestoides”, and
“Hymenolepis”; the alternative terms like “Echinococcosis” or “Hydatidosis” were also
considered. The papers were checked for their suitability for this review. The non-relevant
articles (covering, e.g., anthelmintic drugs and their effect on cancer, and immune responses
triggered by helminth infections with no relation to cancer) were excluded. On the other hand, all
papers describing any cestode-cancer and cestode-immune system-cancer interactions were
selected and analyzed. For example, the combination “cancer” AND “tapeworm” (Web of
Science) produced 101 results, and 39 were found reliable and used in our review. Altogether,

we included 44 papers on cestode-cancer interactions in our review (Fig. 2).

Particular tapeworm species and cancer

Echinococcus granulosus

Several epidemiological studies indicated a possible influence of E. granulosus cysts on cancers
in humans. Akgiil et al. (2003) observed a reduced cancer prevalence in E. granulosus patients in
a retrospective study in Turkey, and the authors hypothesized that the infection could suppress
cancer development. Although there is also a retrospective study from Cyprus with results to the
contrary (Oikonomopoulou et al., 2016). However, the latter involved patients with previously
treated cystic echinococcosis and not an active infection at the time of cancer diagnosis
(Gundogdu et al., 2017). Another retrospective study showed that patients with hepatocarcinoma
co-infected with E. granulosus had a longer survival time than those without this tapeworm (Bo
et al., 2020).

Recently, the interactions of E. granulosus with host immunity and cancers have been
thoroughly reviewed by Guan et al. (Guan-et-al5-2019). As to the experiments with living larvae,
the promising cancer-suppressing effects were tested on fibrosarcoma cells in vitro. Co-
cultivation with tapeworm larvae led to the inhibition of proliferation and reduced viability of the
cells (Darani et al., 2012). Additionally, in vivo, laboratory rats infected with E. granulosus
protoscoleces showed significant suppression of chemically-induced mammary carcinoma
development (Altun et al., 2015).

Due to the pathogenicity of this tapeworm, the research has frequently shifted toward
selected components/fractions and identified molecules of E. granulosus larvae. Injection of

larval cystic fluid into mice, which were then inoculated with B16F10 melanoma cells, resulted
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in tumor growth inhibition (Darani et al., 2016); the same happened if the cystic fluid was
applied to mice with already developed melanomas (Rad et al., 2018). Regarding particular
components, the 78 kDa fraction was confirmed to produce a similar effect in mice (Rad et al.,
2018). As for other types of cancers, the cystic fluid triggered the inhibition of tumor growth
in mice injected subcutaneously with CT27 colon carcinoma cells; the survival time of mice
significantly improved (Berriel et al., 2013). Similar results were also observed using a lung
cancer line (Berriel et al., 2021).

Under in vitro conditions, apoptosis of breast cancer cells was induced in the presence of
E. granulosus larval cystic fluid. This effect was also observed using glycoprotein fractions and
one 78 kDa fraction of the cystic fluid (Daneshpour et al., 2019). As for melanomas, the miRNA-
365 component of the cystic fluid can induce apoptosis in the A375 melanoma cell line
(Mohammadi et al., 2021); however, this conflicts with the results from Gao et al. (Gao et al.,
2018), who described inhibition of apoptosis using the complete cystic fluid.

Regarding particular bioactive molecules, EgKI-1 is a Kunitz-type protease inhibitor
produced by E. granulosus (Ranasinghe et al., 2015). Culturing several human tumor cell lines in
vitro in the presence of recombinant EgKI-1 inhibited their growth and hindered the ability of
these cells to migrate, while not affecting the growth of normal cells. EgKI-1 was also able to
induce apoptosis in human breast cancer cells. Applying this protease inhibitor to mice with the
same breast cancer cell line also suppressed tumor growth in vivo (Ranasinghe et al., 2018).
Another interesting Kunitz-type protease inhibitor from E. granulosus is Kunitz4. Peptides
derived from Kunitz4 have been shown to induce apoptosis and inhibit proliferation in cancer
cell lines in vitro due to being an ion channel blocker (Rashno et al., 2023).

Besides these direct effects of tapeworm products, immune-mediated processes may play
a significant role. One of the critical processes in activating anti-tumor immunity is the
recognition of antigens on the surface of tumor cells. Similarities between the antigens in the
cystic fluid of E. granulosus and those produced by lung cancer cells were described (Yong et
al., 1979). One of these antigens is the O-glycosylated Tn antigen (o N-acetylgalactosamine-O-
serine / -threonine), expressed by larvae and adults of E. granulosus, which has also been
detected in the sera of patients with cystic echinococcosis. This glycoprotein is abundant on the
surface of many tumor cells, including lung, breast, and pancreatic cancers (Springer, 1997).

Antibodies raised against E. granulosus larvae reacted with tumor cell excretory-secretory
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products. Analogously, the same cross-reactivity was observed with sera from breast cancer
patients and E. granulosus larval cyst antigens. Thus, it is thought that this antibody response
against the Tn antigen could activate anti-tumor immunity (Alvarez Errico et al., 2001). Sera
from breast cancer patients also responded to a non-glycosylated 27 kDa molecule isolated from
E. granulosus larval cysts (Sharafi et al., 2016). Moreover, murine antibodies raised against E.
granulosus cystic fluid recognize some antigens on CT27 colon carcinoma cells. Thus, the cross-
reactivity of antigens could inhibit CT27 tumor growth in mice treated with E. granulosus cystic
fluid (Berriel et al., 2013). An antibody cross-reaction could also explain the cytotoxic effect of
serum from echinococcosis patients on human lung cancer cells in vitro (Karadayi et al., 2013).
Regarding the cross-reactivity phenomenon, the cancer cell-derived antigens are believed to be
poorly immunogenic. On the other hand, the parasite antigens are usually highly immunogenic;
therefore, in the case of similar motifs shared between cancer and parasite, the cross-reacting
antibodies might represent a path for cancer immunotherapy in the future (Ubillos et al., 2007;
Yousefi et al., 2023).

Echinococcus granulosus may also affect specific groups of immune cells associated with
anti-cancer immunity. For example, the application of a mucin-like peptide isolated from E.
granulosus larvae (Egmuc) led to an increase in the number of activated NK cells in the mouse
spleen, with NK cells being an essential component of anti-tumor immunity and used in tumor
immunotherapy (Salagianni et al., 2012); activated NK1.1 cells probably also caused reduced
tumor development in mice treated with E. granulosus cystic fluid (Berriel et al., 2021).
Splenocytes isolated from Egmuc-treated mice had a cytotoxic effect on pancreatic tumor cells
of the Panc02 line when cultured in vitro (Noya et al., 2013). In addition, EgKI-1 produced by E.
granulosus inhibits neutrophil chemotaxis (Ranasinghe et al., 2015), and antigen B isolated from
the cystic fluid of E. granulosus has the same effect (Shepherd et al., 1991; Mamuti et al., 2006).
Neutrophils are involved in the host immune response against E. granulosus infection (Zhang et
al., 2008). They are also associated with the progression, metastasis, and angiogenesis in the
tumor microenvironment (Coffelt et al., 2016). Thus, inhibition of neutrophil chemotaxis
mediated by E. granulosus products could contribute to the observed anti-tumor effect of this
tapeworm.

Although most of the research points to the cancer-suppressing effect of E. granulosus,

there are also studies opposing this fact. For example, Turhan et al. (2015) postulate that E.
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granulosus infection in mice enhances the development of liver metastases with 4T1 cell line
breast tumors. Furthermore, the co-cultivation of HepG2 cells with E. granulosus protoscoleces
led to increased proliferation in vitro and larger subcutaneous tumors in mice (Yasen et al.,
2021). It appears, then, that the products do not affect all cancer cell lines equally. Therefore, the
story of E. granulosus-derived components participating in the fight against cancer must be taken

with caution, and further studies are welcome.

Taenia crassiceps

The tapeworm T. crassiceps is well known for its ability to rapidly reproduce in the intermediate
host, making it a suitable laboratory model using rodents (Willms and Zurabian, 2010). As for
humans, infections by larval stages are quite rare and appear to be linked with
immunocompromised patients (Heldwein et al., 2006); therefore, there is no epidemiological
data on tapeworm-cancer associations in humans. The direct effect of 7. crassiceps cysticerci on
cancer was investigated in the experimental model of ulcerative colitis-associated carcinoma
(CACQ). Infection of mice with 7. crassiceps cysticerci before the application of the carcinogen
resulted in fewer tumors (Leon-Cabrera et al., 2014). Expression of both B-catenin, which plays a
role in cell proliferation, and CXCR2, a neutrophil chemokine receptor (interleukin 8 receptor p),
have been suppressed in CAC mice infected with 7. crassiceps; elevated levels of these markers
are associated with bowel cancer (Ou et al., 2019). An increase in the macrophage population
and locally high levels of IL-4 in the intestinal tissue have also been observed during 7.
crassiceps infection (Ledesma-Soto et al., 2015). Excretory-secretory products of 7. crassiceps
larvae display a similar anti-carcinogenic effect when administered post-CAC induction (Callejas
et al., 2019). Since the development of CAC is associated with an inflammatory environment, the
tumor-suppressing effect of 7. crassiceps could be linked with its ability to shift the immune
response towards the anti-inflammatory Th2 (Terrazas et al., 1998).

GK-1, a peptide isolated from 7. crassiceps larvae, could contribute to the anti-tumor
effect. The synthetically generated GK-1 administered to breast cancer-bearing mice induced
increased necrosis of tumors and reduction of lung metastases (Torres-Garcia et al., 2017); the
same effects were observed in mice with subcutaneous B16F10 melanomas (Pérez-Torres et al.,

2013).
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GK-1 also increases the efficiency of the dendritic cell mouse vaccination system to
activate specific anti-tumor T cells. The most substantial effect on melanoma tumor reduction
and mouse survival was observed when dendritic cells were pre-stimulated with GK-1 (Pifion-
Zarate et al., 2014). The anti-tumor effect was strengthened by combining GK-1 with an anti-
PDL1 ("programmed cell death ligand 1") antibody. PDL1 can be expressed on the surface of
tumor cells (Keir et al., 2008), thereby reducing the cytotoxic effect of T cells on tumor cells by
binding their receptor and inducing T cell apoptosis (Iwai et al., 2002). Mice treated with GK-1
and anti-PDL1 antibodies developed smaller B16F10 subcutaneous tumors and had their survival
improved (Vera-Aguilera et al., 2017). GK-1 alone applied to mice with established B16F10
melanomas suppressed tumor growth. There was also an increase in the population of tumor-
infiltrating CD8+ T cells, with decreased PD1 (receptor for PDL1) expression in these CD8+ T
cells. Reducing PD1 expression in activated lymphocytes could increase their cytotoxic activity

and lead to the observed suppression of tumor growth (Rodriguez-Rodriguez et al., 2020).

Other tapeworms

Hymenolepis nana is another tapeworm that has been observed to inhibit tumor growth.
Although this is the most prevalent tapeworm in the human intestine (adult forms), it is scarce as
an extraintestinal larval infection in humans (Olson et al., 2003). In a carcinogen-induced skin
tumor model, mice pre-infected with H. nana developed fewer tumors compared to controls.
Furthermore, infected mice showed an increased number of eosinophils and neutrophils; the
increased number of eosinophils could reduce the number of tumors (Ramos-Martinez et al.,
2019). On the other hand, the related species, Hymenolepis diminuta, did not affect the C3(1)-
TAg mouse model of breast cancer (Sauer et al., 2021).

Although the effect of Mesocestoides corti on cancer was never directly studied, in one
case, M. corti infection was used in mice to induce eosinophilia. Such activated eosinophils were
isolated and stimulated apoptosis in a lymphoma cell line in vitro (Costain et al., 2001).
Furthermore, M. corti, similar to E. granulosus, expresses the Tn antigen found on some cancer
cells (Ubillos et al., 2007; Medeiros et al., 2008). To support the data mentioned above, our
experimental results with M. corti and T. crassiceps show that tapeworm larvae inhibit

melanomas' development in experimental mice (Schreiber et al., unpublished).
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Infection with Taenia solium is more often associated with cancer promotion (Del Brutto
et al., 1997; Herrera et al., 2000); however, a recombinant form of calreticulin isolated from 7.
solium larvae has been shown to reduce the viability of the MCF-7 breast cancer cell line and the
ability to form colonies of the SKOV-3 ovarian cancer cell line in vitro (Schcolnik-Cabrera et al.,

2020).

Conclusions
The interaction between tapeworms and cancers has yet to be fully understood. Based on the

summary above, the tapeworms (like all other parasites/pathogens) might exhibit a “dual” role
concerning particular cancer type development and parasite-cancer interaction. The limitations
are based on a few tapeworm models used to test their effects on cancers and the unbalanced
amount of data available (often, only E. granulosus has been studied in this regard, and any
experimental data with humans are missing; only epidemiological surveys could indicate the
interaction). Moreover, the observed effects are frequently related to a specific tapeworm-cancer
combination. In some cases, particular authors have obtained contradictory effects (e.g.,
inhibition vs. stimulation of cancer growth by E. granulosus (Wang et al., 2009, Noya et al.,
2013)).

Our review shows that mainly tapeworm larvae invading tissues were studied in the past.
The adult worms in the intestine were usually ignored (although they could influence the gut
microbiota composition and general immune status (Walusimbi et al., 2023)). If some tapeworm
larvae/larval products lead to the reduction or elimination of primary cancers and metastases, the
molecular mechanisms behind the process should be studied and tested for their potential
medical application (as a preventive or curative tool). Such activities are currently linked to the
basic research stage (in vivo experiments with animals or in vitro tests with cancer cells); we did
not record any clinical trial using tapeworms as an effector tool to suppress cancer.

Tapeworm larvae are generally pathogenic, administering a cocktail of bioactive
tapeworm molecules (see Table 1 for example) seems like a more relevant approach. At least
three groups of such molecules can be considered: (a) In some combinations, tapeworm larvae
and cancers share antigenic epitopes (frequently glycans) that can cross-react with specific
antibodies. This way, timely immunization with tapeworm antigens (which seem more
immunogenic than the shared cancer antigens (Berriel et al., 2021; Yousefi et al., 2023) could

protect against developing cancers in specific combinations. (b) Some tapeworm products could

Peer] reviewing PDF | (2023:11:93231:1:1:NEW 12 Feb 2024)



Peer]

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300

301
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

boost various (innate or adaptive) components of the immune system, which could then eliminate
the cancer cells. The most probable mechanism is the activation of tumor-infiltrating NK cells or
specific anti-tumor CD8+ T cells (Rodriguez-Rodriguez et al., 2020; Berriel et al., 2021). (¢) It
seems that some parasite-derived molecules directly affect cancer cells (their activities, including
replication, migration, invasiveness, apoptosis, etc.), and they are effective in the in vivo system
(Ranasinghe et al., 2015, 2018). In all these possible effects of tapeworm products, the mode of
administration into the host body will play a crucial role and must be tested.

To conclude, the prospect of bioactive tapeworm molecules helping reduce the growth
and metastasis of cancer is within the realm of future possibility, although extensive research is
yet required due to certain concerns, which we already mentioned above. Furthermore, these
tapeworms may cause life-threatening tissue helminthoses, besides being the source of
substances with potential anti-cancer properties. In order to avoid infection with living parasites
by utilizing said molecules directly, the effectors’ production, their formulation, and
administration needs to be managed first, in order to test the desired effects, while the precise

mode of action of these compounds must also be characterized.
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Figure 1

Anticipated mechanisms of tapeworm effects on cancer.

Although the pathways by which tapeworms suppress tumor development are unknown in
many cases, several proposed mechanisms exist. The worms could directly damage cancer
cells through their products or indirectly by influencing the host immune system. The latter
may occur either due to the parasite exhibiting the same antigen epitopes as cancer cells or
because its products affect various immune system cells, directly killing cancer cells or
activating other immune cells. Of course, some not yet recognized processes/interactions
might also be involved. DCs - dendritic cells, NK - natural killer cells, CD8+ - CD8+ T cells,

EgKI1 - Kunitz-type protease inhibitor produced by E. granulosus
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Figure 2

Flowchart of how the literature was selected.
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Table 1l(on next page)
Summary of tapeworm products suppressing cancer development.

ESP - excretory-secretory products, GK-1 - peptide isolated from T. crassiceps larvae, EgKI-1 -

Kunitz-type protease inhibitor produced by E. granulosus, Egmuc - mucin-like peptide

isolated from E. granulosus larvae
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Table 1: Summary of tapeworm products suppressing cancer development. ESP — excretory-secretory

1
2 products, GK-1 - peptide isolated from 7. crassiceps larvae, EgKI-1 - Kunitz-type protease inhibitor
3

produced by E. granulosus, Egmuc - mucin-like peptide isolated from E. granulosus larvae

4
Tapeworm Developmental ~ Assay Effect Cancer type (abbreviations of References
stage/antigen cancer cell lines)
E. granulosus ~ Living larvae In vitro Cell lysis, proliferation WEHI-164 fibrosarcoma, BHK  Darani et al., 2012
inhibition fibroblasts
Living larvae Rats Reduced tumor growth DMBA-induced breast cancer Altun et al., 2015
Cystic fluid Mice Reduced tumor growth, NK cell B16F10 melanoma, CT27 colon  Darani et al., 2016;
activation carcinoma, LL/2 lung cancer Berriel et al., 2021
78 kDa fraction  In vitro Increased apoptosis 4T1 breast cancer Daneshpour et al.,
of cystic fluid 2016
78 kDa fraction ~ Mice Reduced tumor growth B16F10 melanoma Rad et al., 2018
of cystic fluid
miRNA-365 In vitro Increased apoptosis A375 melanoma Mohammadi et al.,
cystic fluid 2021
component
EgKI-1 Mice Inhibited neutrophil chemotaxis MDA-MB-231 breast cancer Ranasinghe et al.,
2018
EgKI-1 In vitro Inhibited proliferation and MDA-MB-231, HeLa cell line Ranasinghe et al.,
migration 2018
Egmuc Mice Increased cytotoxic effect of Panc02 pancreatic cancer Noya et al., 2013
splenocytes
T. crassiceps Living larvae/ Mice Reduced tumor growth, Th2 Colitis-associated carcinoma Leén-Cabrera et al.,
ESP polarization, reduction of b- 2014; Callejas et
catenin and CXCR2 expression al., 2019
GK-1 Mice Reduced tumor growth and 4T1 breast cancer, BI6F10 Torres-Garcia et al.,
metastases, increased numbers melanoma 2017; Rodriguez-
of cytotoxic CD8+ T Rodriguez et al.,
lymphocytes 2020
H. nana Living mature Mice Reduced tumor growth, 7,12 dimethylbenz-anthracene- ~ Ramos-Martinez et
tapeworms increased numbers of induced skin cancer al., 2019
eosinophils and neutrophils
M. corti Living larvae Mice/in Activated eosinophil-induced A20 lymphoma Costain et al., 2001
vitro apoptosis
T. solium Calreticulin In vitro Reduced ability to form MCF7, SKOV3 Schceolnik-Cabrera
colonies, reduced viability adenocarcinoma et al., 2020
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