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Context Exogenous use of potential organic compounds through diûerent modes is a
promising strategy for the induction of water stress tolerance in crop plants for better
yield. Aims The present study aimed to explore the possible role of alpha lipoic acid (ALA)
to induce water stress tolerance in mungbean lines when applied exogenously through
diûerent modes. Methods The experiment was conducted in a ûeld with split split plot
arrangement having three replicates for each treatment. Two regimes of irrigation
including normal irrigation and reduced irrigation were applied. The plants allocated to
reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0 mM,
0.1 mM, 0.15 mM) were applied through diûerent modes (seed priming, foliar or
priming+foliar). Key results ALA treatment through diûerent modes manifested higher
growth both under reduced irrigation (water stress) and normal irrigation. Compared to
other two modes, application of ALA as seed priming was found more eûective in
ameliorating the adverse impacts of water stress on growth and yield that associated with
their better content of leaf photosynthetic pigments, maintenance of plant water relations,
levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and
decreased lipid peroxidation and H2O2 levels. The maximum increase in SFW (29 and 28%)
and SDW (27 and 24%) and in 100 GW (24 and 23%) and TGY (20 and 21%) in water
stressed mungbean plants of line 16003 and 16004 respectively was recorded due to ALA
seed priming than other modes of applications Conclusions Conclusively, 0.1, 0.15 mM
levels of ALA as seed priming than other modes were found better to obtain better yield of
mungbean plants under deûcit irrigation with better drought tolerant induction by
improving physio-biochemical mechanisms. Implications The ûndings of the study will be
helpful for the agriculturalists working in arid and semi-arid regions to obtain the better
yield of mungbean that will be helpful to fulûll the food demand in those areas up to some
extent .
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8 ABSTRACT

9

10 Context

11 Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of 

12 water stress tolerance in crop plants for better yield.  

13 Aims

14 The present study aimed to explore the possible role of alpha lipoic acid (ALA) to induce water stress tolerance in 

15 mungbean lines when applied exogenously through different modes. 

16 Methods

17 The experiment was conducted in a field with split split plot arrangement having three replicates for each treatment. 

18 Two regimes of irrigation including normal irrigation and reduced irrigation were applied. The plants allocated to 

19 reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0 mM, 0.1 mM, 0.15 mM) 

20 were applied through different modes (seed priming, foliar or priming+foliar). 

21 Key results

22 ALA treatment through different modes manifested higher growth both under reduced irrigation (water stress) and 

23 normal irrigation. Compared to other two modes, application of ALA as seed priming was found more effective in 

24 ameliorating the adverse impacts of water stress on growth and yield that associated with their better content of leaf 

25 photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved 

26 activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in 

27 SFW (29 and 28%) and SDW (27 and 24%) and in 100 GW (24 and 23%) and TGY (20 and 21%) in water stressed 

28 mungbean plants of line 16003 and 16004 respectively was recorded due to ALA seed priming than other modes of 

29 applications

30 Conclusions

31 Conclusively, 0.1, 0.15 mM levels of ALA as seed priming than other modes were found better to obtain better yield 

32 of mungbean plants under deficit irrigation with better drought tolerant induction by improving physio-biochemical 

33 mechanisms.

34 Implications

35 The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain the 

36 better yield of mungbean that will be helpful to fulfill the food demand in those areas up to some extent.

37 Keywords: Antioxidation; Seed yield; Lipoic acid; Exogenous application; Deficit irrigation; Mungbean 

38 INTRODUCTION 
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39 Vigna radiata L. (Wilczek) (commonly named as mungbean is known as golden or green gram because of its high 

40 protein contents in its seeds that are being used highly in sprouted or as dry seed form. Mungbean is the third most 

41 important legume grain after pigeon pea and chickpea (Bangar et al., 2019; Mujahid et al., 2022). It is cultivated 

42 predominantly across the Asian countries and has also expanded to some parts of South America, Australia and 

43 Africa (Nair et al., 2019b; Pratap et al., 2020). It is fast growing, self-pollinating, diploid and short duration crop. It 

44 is helpful as effective utilization of summer fellows to increase crop production and cropping intensity (Singh et al., 

45 2016). Vigna radiata L. (Wilczek) seeds contain antifungal, antibacterial and anticancer properties (Turk et al., 

46 2018; Uppalwar et al., 2021). Mungbean has low input requirements and a wider adaptability (Khalid et al., 2019; 

47 Singh et al., 2022). As a leguminous crop it has a strong root system helpful in the atmospheric nitrogen fixation in 

48 soil (about 58-109 kg/ha) with Rhizobium (Allito et al., 2015; Lindstrom & Mousavi, 2020). Therefore, it plays an 

49 essential role in sustaining productivity and improving of soil fertility (Favero et al., 2021). It is an excellent source 

50 of antioxidants like phenolics and flavonoids. It is also a rich source of micronutrients and vegetable proteins (Guo 

51 et al., 2012; Nair et al., 2015a; Foyer et al., 2016) and hence has use in multifarious food (Arnoldi et al., 2014; 

52 Ebert, 2014) and green gram manure (Boelt et al., 2014). Water stress is one of the principal environmental stresses 

53 that hinders plant growth, development, and crop productivity; especially in arid and semi-arid environments (dos 

54 Santos et al., 2022).

55 The deleterious impacts of water stress include reduction in plant growth, disruption of photosynthetic 

56 pigments, reduction in water and nitrogen use efficiency and abnormalities in cell structure. It also modifies the 

57 activities of cellular metabolites (Chen et al., 2019). Moreover, water stress causes over accumulation of reactive 

58 oxygen species (ROS) resulting in oxidative damages resulting in many adverse impacts including, stomatal closure; 

59 altered activities of cellular enzymes results in reduced photosynthesis. Generation of ROS also causes membrane 

60 lipid peroxidation and subsequently it damages the membrane and also damages the proteins and nucleic acids 

61 (Hasanuzzaman et al., 2021).

62 Plants have developed a variety of defense mechanisms to counteract the ROS induced damages, such as 

63 increased accumulation of non-enzymatic and activities of enzymatic antioxidant including glutathione, ascorbic 

64 acid, carotenoids, tocopherols, CAT (EC 1.11.1.6), ascorbate peroxidase (APX) (EC 1.11.1.11), guaiacol peroxidase 

65 (GPX) (EC 1.11.1.7) and SOD (EC 1.15.1.1) (Rajput et al., 2021).

66 Different phenolic compounds are also well-known antioxidants enhancing oxidative stress tolerance in 

67 plant tissues (Chen et al., 2019). Though the plants have well known mechanism to cope the stresses but its extent of 

68 defense is plant specific and type of stress specific. Different ways are being used to enhance plant stress tolerance 

69 against different stresses. It has been reported that the application of effective, affordable, and cheap chemicals is 

70 found effective to enhance plant tolerance to biotic and abiotic stress, including the water stress (Youssef et al., 

71 2021; Akhter et al., 2023; Ramadan et al., 2022). Amongst these, ALA is also considered as one of the novel 

72 substances among others but few recent reports are available. Mostly these studies are conducted in pots rather than 

73 in field conditions focusing the salt, osmotic, and heavy metal stresses (Terzi et al., 2018; Youssef et al., 2021; Mian 

74 et al., 2021; Rajput et al., 2021; Ramadan et al., 2022), while the present study was conducted under field water 

75 deficit conditions. Moreover, earlier studies were focusing on earlier vegetative stages, either the attributes studied 
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76 or in case of ALA exogenous application. Whereas in present study the ALA was applied as seed priming or as 

77 foliar spray at the vegetative stage 

78 Alpha lipoic acid [formula, C8H14O2S2, molar mass 206.33g/mol] is a small molecule of disulfide, which 

79 act as co-enzyme of ³-ketoglutarate dehydrogenase and pyruvate dehydrogenase in mitochondria. It was first 

80 isolated from the liver by Reed in 1951 and discovered in 1973 (Reed et al., 1951). It is found in both eukaryotic and 

81 bacterial organisms (Terzi et al., 2018). ALA and its reduced form, dihydrolipoic (DHLA) have powerful 

82 antioxidant potential which could reduce the ROS levels and free radicals, chelate metal ions, weaken oxidative 

83 stress, promote the endogenous antioxidant�s regeneration such as coenzyme Q10, glutathione as well as its own 

84 levels (Huang & Huang, 2004; Liu et al., 2005; Alban et al., 2018). Moreover, ALA is the only known antioxidant 

85 that has both lipo-soluble and water-soluble properties. Unlike liposoluble antioxidants which only act on the cell 

86 membrane and unlike water soluble antioxidant which only act on cytoplasm, ALA plays a dual protection role that 

87 can function simultaneously on cell membrane as well as the cytoplasm (Çelik & Ozkaya, 2002; Mian et al., 2021).

88 Due to its two sulfhydryl moieties, it binds with metals and enable them to scavenge the free radicals, that 

89 are responsible for its antioxidant capacity (Fogacci et al., 2020). Exogenous ALA application has been found to 

90 mitigate the lipid peroxidation regulates the osmotic potential and leaf photosynthetic performance under abiotic 

91 stresses (Gorcek & Erdal, 2015; Sezgin et al., 2019; Elkelish et al., 2021; Youssef et al., 2021; Alomran et al., 2023). 

92 Exogenous use of ALA increases the enzymatic antioxidant activities such as monodehydro ascorbate reductase 

93 (MDHAR), glutathione reductase (GR), GPX, CAT and SOD under osmotic stress (Rajput et al., 2021; Terzi et al., 

94 2018). Additionally, ALA has been found involved in the restoration of grain yield and quality attributes of water 

95 stressed wheat plants (Elkelish et al., 2021). Under diverse environmental stress ALA has found helpful for 

96 induction of stress tolerance mechanisms in several plant species by improving the photosynthesis (Turk et al., 2018; 

97 Terzi et al., 2018; Sezgin et al., 2019). 

98 Only few reports regarding the role of ALA in alleviation of negative impacts of water deficit stress are available 

99 and only are in the cereals. Moreover, regarding legumes the roles of exogenous ALA through different modes in 

100 the induction of water stress tolerance has not yet been reported/explored. It was hypothesized that exogenous 

101 application of ALA through different modes may result in ameliorating the water stress-induced adverse impacts on 

102 seed yield of mungbean lines. The objectives of the study were to find out the ameliorative impacts of deficit 

103 irrigation on yield of two differentially water stress tolerant mungbean lines in relation with the plant water 

104 relations, photosynthetic pigments, lipid peroxidation and oxidative defense mechanism. The objectives of the study 

105 were also the selection of most effective level of ALA either applied as seed priming, foliar spray or combination of 

106 both for better seed yield of mungbean in field conditions under deficit irrigation that is still not found yet.   

107 MATERIALS AND METHODS

108 Experimental conditions

109 Present experiment was conducted to assess the response of two high yielding mung bean lines (16003 and 16004) 

110 to exogenously supplied ALA through different modes when grown under field water deficit conditions. Line 16003 

111 is a drought sensitive one while the line 16004 is a moderately drought tolerant (Anonymous, 2019). The whole 

112 experiment was conducted in the Adaptive Research Complex located in Sheikhupura, Punjab Pakistan. The 
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113 experiment was conducted from September to December in 2020 and 2021 in two consecutive years. However, the 

114 data presented for different attributes in this study is given only for the single year due to similar findings. These 

115 selected mungbean lines are being cultivated by the farmers due to their high yielding potential. The seeds of these 

116 lines were obtained from the lentil section of Ayub Agriculture Research Institute (AARI). There were two regimes 

117 of irrigation i.e., normal irrigation (3 irrigation during growth period) and reduced irrigation (water stress) (only 

118 once). The experiment was arranged in a split-split plot design with three replicates for each treatment. The 

119 experimental area was comprised two main plots corresponding to each irrigation regime (normal irrigation and 

120 reduced irrigation). Each main plot was divided to two subplots each specific for mungbean line. Each subplot was 

121 further divided into three subplots corresponding to ALA mode of application (Foliar spray, seed priming and foliar 

122 + priming). In each sub-sub plot, there were 9 furrows of 6 m length with a furrow-to-furrow distance of 60 cm. A 

123 set of three furrows was specified for each specific level of ALA (0 mM, 0.1 mM, 0.15 mM of ALA). These doses 

124 of ALA as exogenous use were selected based on the available studies regarding its exogenous use (Elrys et al., 

125 2020; Yadav et al., 2022).  For seed priming treatment the seeds of both mungbean lines were primed separately 

126 with each specific level of ALA solution for 6 h before sowing. After soaking the seeds were air-dried until the 

127 constant weight was achieved. Forty seeds were hand sown in each row with a 15 cm distance. The sowing for 

128 soaked and non-soaked seeds was done at same time. Before sowing the soil was well prepared by ploughing when 

129 the soil was at the field capacity.

130 After 8 days of seed germination, thining was done to maintain 30 cm plant to plant distance. During 

131 ploughing and land preparation the soil was supplied with adequate amount of fertilizer [N (160 Kg/ha), P (80 

132 Kg/ha) and K (50 Kg/ha)] as per the recommendations. Mungbean lines specified for foliar spray were sprayed with 

133 specific levels of ALA in evening for the maximum absorption of applied solution. Tween-20 (0.1%) was added to 

134 solutions prepared for each treatment prior to the foliar spray. Soil was covered with polythene sheet before the 

135 foliar application and then applied the ALA spray on each plant with the help of spray bottle for the accuracy of 

136 results. Fifty milliliters of solution of ALA of each treatment were applied to each specific row having 20 plants in 

137 each row. The foliar spray to plants specified for dual treatment (seed priming + foliar) were also sprayed at same 

138 time. After two weeks of foliar spray five plants were harvested from each treatment for the estimation of different 

139 growth, morphological and biochemical attributes. While the yield attributes were recorded at the maturity. The 

140 fresh leaf samples were collected after two weeks of application and stored at -80 oC to be used further for different 

141 biochemical analysis.

142 The growth parameters measured were of the shoot fresh weight (SFW), root fresh weight (RFW), shoot 

143 dry weight (SDW), root dry weight (RDW), shoot length (SL), and roots length (RL). Biochemical analysis 

144 measured included the leaf photosynthetic pigments such as leaf chlorophyll a (Chl. a), chlorophyll b (Chl. b), total 

145 chlorophyll contents (T. Chl.) and chlorophyll a/b ratio (Chl. a/b), leaf proline content, glycine betaine (GB), total 

146 phenolics content (TPC), ascorbic acid (AsA) content, total flavonoids content (TFC), total soluble proteins (TSP), 

147 leaf hydrogen peroxide (H2O2) levels and leaf malondialdehyde contents (MDA) as well as the leaf antioxidant 

148 enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). The plant samples specified 
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149 for fresh biomasses were placed in an electric oven at 70 °C for 48 h to get the dry weight after measuring the fresh 

150 masses of roots and shoots.

151 Climatic conditions during experimentation

152 The averaged climatic conditions during the experimental period from September to December, during 2020 were 

153 as; photosynthetically active radiations (PAR) 972 µmolm-2s-1 maximum temperature 28.6±1.2 °C, minimum 

154 temperature 14.75±1.3 °C, relative humidity day 52.02±1.9%, relative humidity night 76.97±3.5% and 4.17±2.62 

155 mm average rainfall pattern.

156 Soil texture and physico-chemical properties 

157 The soil of the experimental site was sandy loam having available

158 total N (0.73%) and organic matter (1.15%), and having P (8.6 ppm). The saturation percentage of the experimental 

159 soil was 34%. The average EC and pH of the soil was 2.53 ds.m-1 and 7.8, respectively. The soil solution has the 

160 soluble CO3
2- (traces), SO4

-2 (1.98 meq L-1), HCO3
- (4.93 meqL-1), Ca2++Mg2+ (14.3 meq L-1), Cl- (8.52 meq L-1), Fe 

161 (0.041meq L-1), Na (2.98 meq L-1) and SAR (0.086 meq L-1). The soil�s physical and chemical properties were 

162 assayed following Davis & Freitas, 1970.

163 Estimation of growth and morphological attributes

164 Carefully, one plant per replicate was uprooted in order to measure the fresh biomass of the root and shoot.  

165 Following washing, the root sample was blotted dry with paper to remove any remaining water. The fresh biomass 

166 of the shoot and root samples was then measured with an electric balance. Using a meter rod, the lengths of the 

167 shoot and root were measured simultaneously. The dry biomasses of the shoots and roots of these plants were then 

168 measured after being maintained at 65 °C for 72 h.

169 Determination of leaf photosynthetic pigments

170 The contents of Leaf Chl. a and Chl. b were estimated by using (Arnon, 1949) approach. An extract of 0.5 g of fresh 

171 leaf was made in 10 ml of acetone (80%). For five minutes, the extract was centrifuged at 10,000 × g. At 480, 645 

172 and 663 nm, the absorbance of the supernatant was measured using a spectrophotometer. Using the following 

173 formulas, the contents of Chl. a and Chl. b were determined: 

174 Chl. b (measured in mg g-1 FW) = [22.9 (OD 645) -4.68 (OD 663)] x V/1000 x W 163 Chl. a (measured in mg g-1 

175 FW) = [12.7 (OD 663) -2.69 (OD 645)] x V/1000 x W 164 V = volume of the leaf extract (measured in ml) 

176 W = fresh weight of the leaf tissue (measured in g)

177 However, for the estimation of leaf carotenoid contents, the formula given by (Kirk & Allen, 1965) was used.

178 Carotenoids (mg mL21) = A car/Em 100% × 1007

179 A Car (carotenoid) = (OD 480) + 0.114 (OD 663) 2 0.638(OD 645)

180 Em (Emission) = Em 100% = 2500

181 Determination of leaf osmolytes content

182 Using (Grieve & Grattan's, 1983) methodology the GB content was determined. Homogenized the 0.5 g dry leaf 

183 material using 10 ml of distilled water and kept it over-night at 4 #. Centrifuged the samples at 10,000 × g for 10 

184 minutes. Then the 1 ml of the extract and 1 ml of 2 N sulfuric acid was mixed properly and 0.2 ml of potassium tri-
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185 iodide solution (KI3) was added to it. After cooling well, the mixture for 90 minutes in an ice bath, 2.8 ml of 

186 distilled water and 5 ml of 1-2 dichloroethane added to the solution. When the two layers formed then collect the 

187 lower layer by removing the upper layer. Measured the absorbance of lower layer at 365 nm spectrophotometrically.

188 Laef proline content was determined following the method recommended by (Bates et al., 1973). Fresh leaf 0.25 g 

189 thawed in 10 ml of 3% sulfosalicylic acid solution and filtered the mixture. Then, added 2 ml of filtrate into the test 

190 tube and 2 ml of acid ninhydrin along with 2 ml of glacial acetic acid was added in it. For the preparation of acid 

191 ninhydrin: ninhydrin 1.26 g was mixed in in glacial acetic acid (30 ml) and 6 M ortho--phosphoric acid (20 ml). 

192 Then the resultant mixture was incubated at 100 # for an hour. Cool down the solution and 2 ml toluene were 

193 added to the mixture and vortexed well. Took the upper layer and measured the absorbance at 520 nm using the 

194 spectrophotometer. 

195 Estimation of activities of enzymatic antioxidants and the contents of non-enzymatic 

196 antioxidants

197 Estimation of CAT, POD and SOD activities

198 For the estimation of the activities of antioxidant enzymes, TSP, and free amino acids the fresh leaf material (0.5 g) 

199 was homogenized in 50 mM potassium phosphate buffer having pH 7.8. The homogenize was centrifuged at 20,000 

200 × g at 4 °C and the supernatant was stored at -20 °C and later on used for the estimation of activities of antioxidant 

201 enzymes and TSP. The activities of CAT and POD were determined using the methods adopted by (Chance & 

202 Maehly, 1955). For the estimation of CAT, the reaction mixture (3 ml) contained 50 mM phosphate buffer (pH 7.8), 

203 59 mM H2O2, and 0.1 ml enzyme extract. The enzyme extract (100 µL) was mixed in the last to start the reaction. 

204 The change in absorbance was recorded at 240 nm for 120 s at intervals of 20 s. For the estimation of POD activity, 

205 the reaction mixture was prepared using 0.1 ml enzyme extract, 40 mM H2O2, 20 mM guaiacol and 50 mM 

206 phosphate buffer (pH 7.8). The change in the absorbance was measured at 470 nm for 120 s at intervals of 20 s.

207 The (Giannopolitis & Ries, 1977) approach was used to measure the activity of SOD. A reaction mixture (1 ml) 

208 including 50 µM NBT (NBT solution prepared in formamide), 13 mM methionine, 1.3 µM riboflavin, 75 nM 

209 EDTA, and 50 mM phosphate buffer (pH 7.8) was prepared using 50 µL of the enzyme extract. The reaction 

210 mixture was then placed within an aluminum foil and exposed to a 20 V bulb for 15 minutes. Before the reaction 

211 mixture was exposed to the light source, riboflavin was added. Every time, a blank sample was made without any 

212 extract added. Using a spectrophotometer, the absorbance of the reaction mixture was determined at 560 nm.

213 Estimation of leaf AsA content

214 According to the method given by (Mukherjee & Choudhuri, 1983) was used for the estimation of leaf AsA content. 

215 Fresh leaf material (0.25 g) was ground in 10 ml of 6% TCA solution. After centrifugation the supernatant (4 ml) 

216 was mixed with 2 ml of 2% dinitrophenyl hydrazine in prepared in 9N H2SO4. One drop of 10% thiourea was added 

217 to the solution. The thiourea solution was prepared by mixing the 2 g of thio-urea with 14 ml ethanol and 5 ml of 

218 distilled water. Incubated the mixture for 15 minutes in a water bath. After that, cooled the solution at room 

219 temperature and 5 ml of 80% H2SO4 added. The absorbance of the solution was read a using spectrophotometer at 

220 530 nm.

221 Estimation of leaf TPC and TFC
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222 Following the approach outlined by (Julkunen-Tiitto, 1985) was used to measure the seedling TPC. Fresh leaf 0.25 g 

223 mixed with 5 ml of 80% acetone and then centrifuged at 10,000 × g for 10 minutes. Then, in a microfuge tube 

224 collected the resultant supernatant and stored at 4 oC. After it, 0.1 ml supernatant mixed with 2 ml distilled water 

225 along with Folin-Ciocalteu�s phenol reagent (1 ml) and shake gently. Then to the above mixture 5 ml of 20% 

226 Na2CO3 was added and the final volume was made up to 10 ml by adding distilled water. The absorbance of the 

227 triturate was recorded at 750 nm by using spectrophotometer. The leaf TFC was determined spectrophotometry 

228 according to (Karadeniz et al., 2005). Using a mortar and pestle, one gram of plant leaf material was taken and 

229 ground in 20 ml of 80% aqueous methanol. The filtrate was then obtained by filtering. Add 0.3 ml of 5% NaNO2 

230 and 3 ml of distilled water to the filtrate (0.5 ml). The solution was allowed to stand at room temperature after 

231 thoroughly mixing. Following that, triturate and 0.6 ml of 10% AlCl3 were combined. 2 ml of 1M NaOH was also 

232 added after 6 minutes. Using distilled water, the solution's volume was kept at 10 ml. The final solution's 

233 absorbance was measured spectrophotometrically at 510 nm 

234 Estimation of TSP

235 For the determination of TSP content, the earlier obtained phosphate buffer solution was used as used earlier for the 

236 estimation of antioxidant enzymes. Supernatant (0.1 ml) was reacted with 2 ml of Bradford reagent and the 

237 absorbance was measured at 595 nm following the method given by (Bradford, 1976). 

238 Estimation of H2O2 and MDA contents

239 The levels of MDA represent the extent of lipid peroxidation (membrane damaging) under the conditions of stresses 

240 due to overly produced ROS. Using the approach outlined by (Cakmak & Horst, 1991). Fresh leaf (0.25 g) was 

241 ground in 1% TCA (3 ml) at room temperature. At 5000 × g centrifuged the extract for 15 minutes. Then 1 ml of 

242 supernatant was mixed with 4 ml of 0.5% TBA prepared in 20% TCA solution. Incubate the solution at 95 oC for 50 

243 minutes and the samples were then cooled at room temperature. The absorbance of the supernatant was measure at 

244 532 and 600 nm by using the spectrophotometer. For the estimation of H2O2 content the method proposed by 

245 (Velikova et al., 2000) was used. The supernatant 0.5 ml was mixed with 1M KI, and incubated for 50 minutes at 95 

246 °C, and absorbance was taken at 390 nm after cooling well.

247 Estimation of yield attributes

248 Two plants per replicate were harvested at maturity stage for determination of different yield attributes such as 

249 number of seed per pod, number of pods per plant, hundred grain weight (100 GW) and total grain yield. The pods 

250 were collected manually from the plants and then dried in sunlight. 

251 Statistical Analysis 

252 The data was subjected to ANOVA for statistical analysis to find out the significant differences using CoStat CoHort 

253 software. In the studied attributes between treatments to determine the significant variations, the CoStat Computer 

254 Program (Monterey, CA, 93940 USA, PMB 320, Windows version 6.303) was used. The computer program 

255 XLSTAT (Addinsoft, Paris, France) was used to find out the correlations among the studied attributes. By using R-

256 studio (Version 4.2.2) principal component analysis among studied attributes and heat map to detect the correlation 

257 among studied parameters and treatments with parameters were constructed.
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258 RESULTS

259 Changes in growth attributes and oxidative stress markers

260 The growth of mungbean lines increased significantly when supplied with ALA levels (already screened in pilot 

261 experiment) when applied with different modes under water stress that presents a marked ameliorating responses of 

262 ALA against water stress (Fig. 1 & 2). The SFW, SDW, RFW, RDW, RL and SL significantly decreased with the 

263 imposition of water stress. Application of ALA through different modes showed significant increase in the values of 

264 studied growth parameters in both mungbean lines. Both of the levels i.e 0.1 mM, 0.15 mM of ALA showed non-

265 significant difference with each but significantly higher values compared to non-treated ones. However, the mode of 

266 application of ALA showed significant variable response. All of these growth attributes showed significantly 

267 increased more in plants raised from seeds primed with different levels ALA compared to non-primed ones. Seed 

268 priming with different levels of ALA improved more the SFW, SDW, RFW, RDW, SL and RL as compared to 

269 plants grown with other application modes. However, the foliar application in combination with priming showed 

270 comparatively limited effects. SFW and SDW showed significant increase under foliar application of both levels 

271 only under water stress conditions. Both of the levels of foliar application of ALA significantly increased the RDW 

272 in both mungbean lines while RFW was significantly higher only in line (16004) under both water stress and non-

273 stress conditions. Foliar application of 0.15 mM level significantly increased more the SL and RL of both mungbean 

274 lines under both water stressed and non-stressed condition than other treatments.

275 Imposition of water stress markedly increased the membrane permeability H2O2 levels and MDA content in 

276 both lines of mungbean as compared with plants grown under non-stressed conditions. Moreover, different ALA 

277 concentrations through different modes (0.1 mM, 0.15 mM) when caused marked decreases in membrane 

278 permeability H2O2 levels and MDA content. However, the response of ALA application mode was observed 

279 significantly variable. For different modes of application as well as for different treatments the decrease was 

280 different. As compare to other application the priming mode of application showed higher values (Fig. 2).

281 Changes in leaf photosynthetic pigments
282 The plants raised under water stress conditions showed significant decrease in leaf Chl. a, Chl. b of both mungbean 

283 lines as compared to plants grown under non-stress conditions. Line 16003 showed significantly more decrease than 

284 line 16004. Exogenous application of ALA when applied through different modes, significantly increased both Chl. 

285 a and Chl. b contents under both non-stressed and water stressed condition but this increase was more with seed 

286 priming than other treatments. This behavior was noted for both ALA levels. However, foliar application of ALA 

287 showed significant increase only in Chl. b. Chl. a/b ratio and T. Chl. were also recorded to be declined under water 

288 stress. However, ALA when applied as seed priming agent or through other modes, significantly increased both Chl. 

289 a/b and T. Chl. under both non-stressed and water stressed condition in both mungbean lines but more improvement 

290 was found due to seed priming than other treatments (Fig. 3).

291 Changes in osmolytes and non-enzymatic antioxidants 

292 The changes in the levels of osmoprotectants such as proline and GB of both lines of mungbean in response to 

293 exogenous treatment of different concentrations (0.1 mM, 0.15 mM) of (ALA) and under water stress are presented 

294 in (Fig. 4). Imposition of water stress markedly increased the proline and GB in both lines of mungbean as compared 
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295 with plants grown under non stressed conditions. Moreover, different ALA concentrations (0.1 mM, 0.15 mM) when 

296 applied as seed priming agent or as foliar spray caused marked further increases in the studied proline content of 

297 both lines of mungbean as compared with their corresponding untreated ones. The similar results were found for GB 

298 but only when ALA was applied as priming agent and foliar application was found effective only for non-stressed 

299 plants of both lines. Combined application of priming and foliar level did not show any significantly increase in GB 

300 and proline in both lines and under both non stressed and water stressed condition. Combined application of ALA 

301 (0.1 mM, 0.15 mM) as priming and foliar spray significantly increased the GB contents in non-stressed plants of line 

302 16004. 

303 Imposition of water stress caused significant decrease in leaf AsA contents of both mungbean lines relative 

304 to the non-stressed plants as shown in (Fig. 4). Exogenous application of ALA as seed priming or as foliar treatment 

305 with different concentrations (0.1 mM, 0.15 mM) improved the AsA contents of both mungbean lines both under 

306 non-stressed and water stressed conditions compared with those of untreated plants. ALA application as pre-sowing 

307 seed treatment was found more effective approach in increasing the leaf AsA contents in both mungbean lines when 

308 grown under non stress and water stress conditions as compared with foliar application of ALA which showed 

309 significant increase in ascorbic acid content but only in non-stressed plants of line 16003.

310 Subjecting mungbean plants to water deficit stress caused significant decrease TPC of line 16003 relative to 

311 controls plant (Fig. 4). Exogenous application of ALA through different modes with different concentrations (0.1 

312 mM, 0.15 mM) caused significant increase in leaf TPC contents in both lines of mungbean as compared with their 

313 corresponding untreated control plants. It is clear that both of the levels were highly equally effective as priming 

314 agent or when applied as foliar level as it caused the significant increases in TPC under both non stressed and water 

315 stressed plants of mungbean lines. However, the combined application of any level of ALA as seed priming or as 

316 foliar spray did not show any significant change in TPC contents both under non-stressed and water stressed 

317 conditions. 

318 TSP and TFC contents

319 Under water stress conditions mungbean plants showed highly significant decrease in TSP and TFC content as 

320 compared to plants grown under non-stress conditions.  Exogenous application of ALA with different concentrations 

321 (0.1 mM, 0.15 mM) caused significant increases in TSP and TFC content in both lines of mungbean as compared 

322 with their corresponding untreated controls (Fig. 5). However, the extent of increase in TSP and TFC content was 

323 different in different mode of applications. TSP and TFC content showed significant increase in plants raised from 

324 seeds primed with 0.1 mM, 0.15 mM levels of ALA as compared to non-treated ones. The other mode of application 

325 such as foliar application or foliar plus priming application of ALA did not show any significant increase from 

326 corresponding non-treated ones.

327 Changes in enzymatic antioxidants

328 Under water stress conditions mungbean plants showed highly significant decrease in CAT, SOD and POD activities 

329 as compared to plants grown under non-stress conditions. Exogenous application of ALA with different 

330 concentrations (0.1 mM, 0.15 mM) caused significant increases in enzymatic antioxidant activity in both lines of 

331 mungbean as compared with their corresponding untreated controls (Fig. 6.). However, the extent of increase in 
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332 antioxidants was different in different mode of applications. All the these studied antioxidant enzymes showed 

333 significant increase in plants raised from seeds primed with 0.1 mM, 0.15 mM levels of ALA as compared to non-

334 treated ones. The other mode of application such as foliar application or foliar plus priming application of ALA did 

335 not show any significant increase from corresponding non-treated ones.

336 Changes in yield attributes

337 Data presented in (Fig. 7) shows seed yield and yield attributes such as number of seed per pod, number of pods per 

338 plants, 100 GW and TGY of two lines of mungbean decreased markedly by imposing water stress as compared to 

339 control plants. However, exogenous application of both levels of ALA (0.1 mM, 0.15 mM) applied either by seed 

340 priming or foliar spray caused significant increase in all parameters of yield components under non-stressed as well 

341 as under water stressed condition. On the other hand, combined application (priming +foliar) of any level of ALA 

342 did not show any significant change in this regard. Data show the superiority of line 16004 over line 16003 in yield 

343 and yield components.

344 Heat map

345 Data presented in (Fig. 8 & Fig. 9) regarding heatmap histogram correlation shows not only genotypic responses of 

346 mungbean lines to water deficit stress but also corresponds well the responses of line to exogenously applied 

347 different levels of ALA through different modes. The intensity of color of square in column and lines describes the 

348 intensity of positive and negative relationships among attributes. At x-axis categories in case of genotype line 16003 

349 4, 9 and 14 shows strong negative correlation (dark red colors) with maximum studied attributes except to H2O2, 

350 MDA and proline where a positive correlation was found without treatments and other showed less negative 

351 correlation. However, in case of genotype line 16004 the intensity of negative impacts was less as present in brown 

352 color squares against x-axis attributes with categories 4, 14, 9 at y-axis (Fig. 9). It shows a better performance of line 

353 16004 in comparisons to line 16003. Heatmap histogram based on intensities of colors (blue color) shows that a 

354 strong positive correlation can be observed of catagories 2 (0.1 mM), 3 (0.15 mM), 5 (0.1 mM) and 6 (0.15 mM) as 

355 seed priming treatment under non-stress and stress conditions respectively with studied attributes of both mungbean 

356 lines but comparatively more positive responses were found in genotype line 16004. Catagories 7 and 8 

357 corresponding to foliar treatments of 0.1 mM, 0.15 mM ALA also showed positive influence but were less than the 

358 pre-sowing seed treatment. Foliar spray of ALA 0.1 mM, 0.15 mM under stress and the combined treatments were 

359 not found so positively effective in both mungbean lines and showed an intermediate response as shown by light 

360 green squares in column and lines against the attributes x-axis.

361 DISCUSSION 

362 One of environmental stresses responsible for decrease in plant growth and productivity is deficiency of water for 

363 irrigation. Under deficiency irrigation plant undergo numerous metabolic modifications for their survival in present 

364 investigation, significant decrease in growth and yield was recorded in two lines of mungbean when grown under 

365 water stress.  The results are in harmony with the studies of (Sadak, 2016; Hossain et al., 2020) who reported 

366 adverse impact deficit irrigation on growth of canola, wheat, quinoa, and moringa plants that was associated with 

367 increased lipid peroxidation due to overly produced ROS, reduced cell enlargement due to disturbed water relation 

368 (Shahid et al., 2022). Water stress induced negative impact on plant water relations causes osmotic stress that 
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369 directly effects the, imbibition process necessary for cell expansion leading to cell division responsible for 

370 continuity of growth (Shehzad et al., 2022; Wakchaure et al., 2023). Moreover, water deficit conditions directly 

371 suppress the development of optimal leaf area, which in turn causes decrease in photosynthesis and consequently the 

372 growth and yield (Seleiman et al., 2021) similar is in present investigation. However, this reductions in growth and 

373 yield attributes of mungbean plants due to water stress was less that were supplied with ALA through different 

374 modes and comparatively better in plants grown from seeds treated with ALA than foliar or combined application. It 

375 shows a clear role of ALA in plant stress tolerance due to involvement in different physiological and biochemical 

376 activities. Earlier studies revealed the promotive role of ALA on growth attributes of plants grown under stress 

377 (Youssef et al., 2021) who reported that ALA act as a growth regulator and reported as a protector against abiotic 

378 stress (Ramadan et al., 2022).  Moreover, it is reported earlier that exogenous application of ALA promoted root 

379 system in canola seedlings grown under stress (Javeed et al., 2021) that was found helpful in promoting the plant 

380 shoot system and growth attributes associated with increased uptake of nutrients and water leading to modulation in 

381 physiological process such as (Ramadan et al., 2022) photosynthesis and increased antioxidant activities (Youssef et 

382 al., 2021).  Depicts earlier findings in present experiment it was found that ALA acts as a potential modulator of 

383 plant growth under stress in a mode of application-dependent manner, where seed priming mode of application 

384 found superior one as compared to the foliar or foliar plus priming treatment, for better growth and yield.

385 Moreover, ALA improved yield has already been reported earlier was (Xiao et al., 2018; Elkelish et al., 

386 2021) alpha lipoic acid induced application as potential antioxidant reported is to accelerate the growth of plants 

387 associated with cell enlargement, cell division due to maintenance in membrane integrity and reduced ion linkage 

388 (Muscolo et al., 2014; Hassan et al., 2021). In plants photosynthetic pigments such as chlorophylls are indispensable 

389 to maintain optimum photosynthetic efficiency in plant by harvesting sun light (Tabassum et al., 2016). Under water 

390 stress conditions, leaf chlorophylls contents disturbs seriously but plant species specific (Zargar et al., 2017; Shin et 

391 al., 2021) and water stress intensity specific (Zargar, 2017; Wang et al., 2016; Hussain et al., 2018; Tahir et al., 

392 2019; Ma et al., 2022) as well as in mungbean cultivars. (Uddin et al., 2021) that corresponds well to present 

393 findings. Its results in stomatal closure leading to one relation in gas exchange attributes in associated with reduced 

394 leaf area (Zargar et al., 2017; Liang et al., 2020). Another factor responsible for decrease in photosynthetic 

395 pigments might be the reduced transcription of cab gene family responsible for the biosynthesis of chlorophyll 

396 molecules due to decreased de novo synthesis of said pigments and further the destruction of the pigment protein 

397 complexes (Paim et al., 2020) chloroplast lipids also contribute in declining the Chl. a, Chl. b and carotenoids 

398 contents (Liang et al., 2020; Uddin et al., 2021). 

399  In the present study, exposure of mungbean plants to water deficit conditions noticeably altered the leaf 

400 chlorophyll contents. It was found that the Chl. a, Chl. b, Chl. a/b ratio and T. Chl. contents were signiûcantly 

401 decreased in the water-stressed mungbean plants compared to the well-watered counterparts that could be attributed 

402 to the disturbed activity of chlorophyllase (Ali et al., 2018) as well as oxidative damages (Ali et al., 2018; Hassan et 

403 al., 2020). However, as another hand, plants exogenously supplied with ALA showed less reduction in 

404 photosynthetic pigments including Chl. a, Chl. b, and Chl. a/b ratio and T. Chl. under water stressed conditions that 

405 shows the antistress roles of ALA. 
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406 Similar ameliorations in stress induced damages to pigments by exogenously-applied ALA has previously 

407 been reported, where ALA induced improvement in Chl. a, Chl. b and T. Chl. contents under stressful condition 

408 associated with reduced lipid peroxidation by stimulating the antioxidant systems in wheat and maize (Sezgin et al., 

409 2019; Elkelish et al., 2021; Ramadan et al., 2022). This indicates the species-specific role of ALA. Moreover, 

410 (Yousaf et al., 2021) reported that ALA application maintains the ultra-structure of chloroplasts for preserving the 

411 chlorophyll that proves the promoting role of ALA in photosynthesis under water stress (Youssef et al., 2021).

412 Due to sulfur-containing biomolecules ALA considered as very effective antioxidants to protect the plants 

413 when grown under abiotic stresses (Gorcek & Erdal, 2015). It was found that exogenous application of ALA 

414 stimulates not only the PS- II but also regulate the gene expression of Rubisco and PEP carboxylase like certain 

415 carbon ûxation enzymes in maize seedlings when grown under water stress conditions with a concurrent down-

416 regulation in the chlorophyllase gene (Chlase) and increase N uptake, essential for the biosynthesis of chlorophyll 

417 (Sezgin et al., 2019; Sadak et al., 2020). These findings can be correlated well with present results where exogenous 

418 application of ALA in any mode found effective in reducing adverse impact of water stress on leaf photosynthetic 

419 pigments.

420 Several evidences demonstrate that increased uptake of water and osmotic potential under osmotic stress 

421 (salinity or water stress) in plants is usually associated with accumulation of considerable concentrations of variety 

422 of organic molecules that improve plant water relations by performing role as osmo-regulators and to avoid 

423 disintegration of protein working as crops (Majumdar et al., 2016; Alnusairi et al., 2021; Ibrahim et al., 2021; 

424 Nahhas et al., 2021; Shao et al., 2021; Irshad et al., 2022).  Accumulation of proline maintains the integrity of 

425 membrane decreasing lipid oxidation through scavenging free radicals (Shinde et al., 2016) and act as a signaling 

426 compound by regulating the function of mitochondria and controls the proliferation of cell by activating particular 

427 antistress genes (Meena et al., 2019). In present study imposition of water stress caused a marked increase in leaf 

428 proline and GB accumulation in both mungbean lines showing their osmoregulation potential.

429 In current study exogenously-applied ALA further increased the accumulation of proline and GB in 

430 mungbean plants of both lines under water stress, that are in agreement with former reports on different crop plants 

431 (Mohammad-khani & Heidari, 2008; Terzi et al., 2018; Sezgin et al., 2019; Elkelish et al., 2021; Youssef et al., 

432 2021) where they reported the role of ALA in plant water relation through osmotic adjustment. Opposite to our 

433 findings a reduction in leaf proline content were recorded in ALA treated stressed wheat plants (Ramadan et al., 

434 2022). 

435 Regarding ROS production known as oxidative stress is a common phenomenon under the water stress. 

436 The ROS accumulation such as H2O2 leads to significant lipid peroxidation (Ali & Ashraf, 2011; Shehzad et al., 

437 2022). In the present study water stress significantly increased leaf H2O2 content but the exogenously-applied ALA 

438 in any mode significantly decreased its level that is in agreement to previous studies (Youssef et al., 2021; Ramadan 

439 et al., 2022) where ALA application reduced the lipid peroxidation by playing anti-stress role. However, the 

440 interaction between increased ROS levels and ALA remains unknown under water stress, as limited literature is 

441 available regarding this treatment. To scavenge the overly produced ROS, plants have developed antioxidant 

442 defense mechanism compounds responsive for the reduction of lipid peroxidation but strongly cultivar /species 
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443 specific and is measured in terms of MDA content (Ali & Ashraf, 2011; Ali et al., 2016; Shehzad et al., 2022). In 

444 present study MDA content increased significantly in both mungbean lines under water stress but ALA application 

445 lowered the MDA levels as reported in stressed sorghum (Youssef et al., 2021) and wheat (Ramadan et al., 2022).  

446 Our results revealed that water stress induced the substantial damage to cell membrane as depicted by increased 

447 H2O2 levels in both mungbean. However, ALA-induced decline in MDA and H2O2 is an indicative of better 

448 antioxidant system in the treated plants as reported of in wheat and yeast (Gorcek & Erdal, 2015). Exogenous 

449 application of ALA restored the decreased levels of other antioxidants and reduced the damaging impact of 

450 oxidative stress in vivo under different physiological conditions (Moini et al., 2002), proving its role in protecting 

451 from stress induced lipid peroxidation (Terzi et al., 2018). ALA acts in the recycling of other oxidized radical 

452 scavengers such as AsA and GSH (Navari-Izzo et al., 2002). Thus, considered as a potential candidate of 

453 antioxidants, having the ability to mitigate the oxidative damages induced by abiotic stresses (Terzi et al., 2018). 

454 This positive role of ALA in improvement of antioxidative defense mechanism is associated with the improved 

455 osmotic adjustment, water relation less damage to photosynthetic pigments as a result better growth under water 

456 stress.

457 Under stresses AsA plays crucial roles in plants that are plant species specific (Naz et al., 2022; Alizadeh et 

458 al., 2023). In present study, water stress significantly decreased the leaf AsA contents however, exogenously-applied 

459 ALA in ant mode improved its content in both lines of mungbean best being more in case of seed priming. 

460 Previously similar rise in AsA content was noted in ALA treated plants of wheat under osmotic stress (Ramadan et 

461 al., 2022) hence providing a close link between the attenuation of the oxidative damage and exogenous application 

462 of ALA mediated by non-enzymatic antioxidants.

463 Moreover, being strong antioxidants, TPC and TFC their accumulation along with other secondary 

464 metabolites mitigates the oxidative damages (Wang et al., 2016; Ahmad et al., 2019; Li et al., 2019; Yadav et al., 

465 2021). In present study water stress caused significant reduction TPC and TFC in both mungbean lines that are 

466 similar as reported earlier (Krol et al.,2014; Ali et al., 2018; Kumar et al., 2023) where significant reductions in TPC 

467 and TFC where the phenolic compounds are being involved in plant tolerance to stresses (Ferreyra et al., 2012; 

468 Saeed et al., 2023). In present study exogenously applied ALA significantly reduced the adverse impacts of water 

469 stress on leaf TPC in both lines of mungbean. The similar findings were recorded in wheat under water stress 

470 (Elkelish et al., 2021) and osmotic stress (Ramadan et al., 2022). This improvement in polyphenolics content is 

471 positively associated with their better growth, better photosynthesis pigmentation and reduced lipid peroxidation that 

472 shows the stress tolerance role of exogenously applied ALA in both mungbean lines when applied through different 

473 modes being better as seed treatment.

474 In present study activities of antioxidant enzymes such as CAT, SOD and POD decreased under stress in 

475 both mungbean lines but reports depict that up or down regulation activities of antioxidant enzymes or plant 

476 genotypes specific and stress type specific (Wang et al., 2012; Rai et al., 2021; Youssef et al., 2021; Bashir et al., 

477 2023; Urmi et al., 2023). In present study exogenously-applied different levels of ALA through different modes 

478 found effective in altering the CAT, SOD and POD activities in favor of better antioxidative defence mechanism. In 

479 earlier study it was reported that exogenous application of ALA elevated the antioxidant enzymatic activities such as 
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480 SOD, CAT. MDHAR, GPX and GR under osmotic stress than to seedlings of maize not exposed to ALA (Terzi et 

481 al., 2018) and in water stressed Triticum aestivum plants (Elkelish et al., 2021) that was associated with their stress 

482 tolerance in term of better growth due to better oxidative stress performance. From the present findings as well as 

483 the previous studies it is confined that ALA applied improved antioxidative mechanism by upregulation enzyme 

484 activities is specific to type of stress, ALA level and plant species (Huang et al., 2019; Elkelish et al., 2021; Hassan 

485 et al., 2021; Youssef et al., 2021).

486 It is further advocated that ALA contributes to instigate cellular redox management and ROS scavenging 

487 activities (Turk et al., 2018; Terzi et al., 2018; Perveen et al., 2019). Further investigations are needed to explore the 

488 mechanism of ALA in signaling pathway in the modification of antioxidative enzymes at organelles level in 

489 response to water stress conditions.

490 From the findings of present study it can be concluded that water stress tolerance induction in mungbean 

491 line by exogenous use of ALA  through different modes in term of better growth and yield is associated with better 

492 maintenance of plant water relations through osmotic adjustment, improvement in antioxidative defense mechanism 

493 with reduced lipid peroxidation and reduced membrane leakage, maintenance of better photosynthetic pigments in 

494 relation with reduced lipid peroxidation and better antioxidative defense mechanism. However, variable limited 

495 reports in literature pointed out its specie and dose dependent behavior. Therefore, similar studies on other crops are 

496 needed in future to find out its exact stress tolerance mechanism. Additionally, there is lack of information about 

497 pathways modulation associated with ALA induced stress tolerance. Therefore, such studies should be the future 

498 focus. Thus, comprehensive molecular level studies in relation with biochemical mechanisms are needed to uncover 

499 role of ALA in plants grown under water stress conditions. 

500 CONCLUSIONS

501 Data shows that against water stress, ALA has many protective aspects to enhance plant growth and yield through 

502 improvement in pigmentation, enzymatic and non-enzymatic antioxidative mechanisms with reduction in oxidative 

503 damage and improved water relation. Among different modes of ALA treatment growth and yield of water stressed 

504 mungbean plants was superior ones the grown from seeds treated with ALA than foliar and combined treatment. 

505 Thus, it can be recommended that ALA as seed priming is more promising in combating the adverse effect of water 

506 stress, which will be surely be helpful for the farmers to get better mungbean production under deficit irrigation or in 

507 rainfed condition.
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Figure 1
SFW, SDW, RFW, RDW of diûerentially drought tolerant mungbean genotypes fertigated
with diûerent levels of ALA through diûerent modes when grown under normal irrigation
and reduced irrigation.
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Figure 2
SL, RL, H2O2, MDA of diûerentially drought tolerant mungbean genotypes fertigated with
diûerent levels of ALA through diûerent modes when grown under normal irrigation and
reduced irrigation.
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Figure 3
Chl. a, Chl. b, Chl. a/b, T. Chl of diûerentially drought tolerant mungbean genotypes
fertigated with diûerent levels of ALA through diûerent modes when grown under
normal irrigation and reduced irrigation
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Figure 4
Glycine betaine, AsA, proline, TPC of diûerentially drought tolerant mungbean
genotypes fertigated with diûerent levels of ALA through diûerent modes when grown
under normal irrigation and reduced irrigation.
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Figure 5
TSP, TFC of diûerentially drought tolerant mungbean genotypes fertigated with diûerent
levels of ALA through diûerent modes when grown under normal irrigation and reduced
irrigation.
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Figure 6
Activities of CAT, SOD and POD of diûerentially drought tolerant mungbean genotypes
fertigated with diûerent levels of ALA through diûerent modes when grown under
normal irrigation and reduced irrigation.
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Figure 7
Number of seeds per pod, number of pods per plant, 100GW, TGY of diûerentially
drought tolerant mungbean genotypes fertigated with diûerent levels of ALA through
diûerent modes when grown under normal irrigation and reduced irrigation.
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Figure 8
Heatmap histogram correlation between diûerent studied attributes of mung bean line
(16003) fertigated with diûerent levels of lipoic acid

Priming [(Control 0 mM (1), 0.1 mM (2), 0.15 mM (3), Stress 0 mM (4), 0.1 mM (5), 0.15 mM
(6)], Foliar [Control 0.1 mM (7), 0,15 mM (8), Stress (0 mM (9), 0.1 mM (10), 0.15 mM (11)]
and Priming+ Foliar [Control 0.1 mM (12), 0.15 mM (13), Stress 0 mM (14), 0.1 mM (15), 0.15
mM (16)] when grown under normal irrigation and reduced irrigation.

PeerJ reviewing PDF | (2023:10:92451:1:1:NEW 13 Jan 2024)

Manuscript to be reviewed



PeerJ reviewing PDF | (2023:10:92451:1:1:NEW 13 Jan 2024)

Manuscript to be reviewed



Figure 9
Heatmap histogram correlation between diûerent studied attributes of mung bean line
(16004) fertigated with diûerent levels of lipoic acid

Priming [(Control 0 mM (1), 0.1 mM (2), 0.15 mM (3), Stress 0 mM (4), 0.1 mM (5), 0.15 mM
(6)], Foliar [Control 0.1 mM (7), 0,15 mM (8), Stress (0 mM (9), 0.1 mM (10), 0.15 mM (11)]
and Priming+ Foliar [Control 0.1 mM (12), 0.15 mM (13), Stress 0 mM (14), 0.1 mM (15), 0.15
mM (16)] when grown under normal irrigation and reduced irrigation.
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