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Figure 5 Time-calibrated phylogeny of spiders with branches colored by reconstructed net diversification rates (A). Rates on branches

are means of the marginal densities of branch-specific rates. Inset histogram shows posterior density of speciation rates. Smaller phylogenies

(B) show the four distinct shift configurations with the highest posterior probability. For each distinct shift configuration, the locations of rate
shifts are shown as red (rate increases) and blue (rate decreases) circles, with circle size proportional to the marginal probability of the shift. The
macroevolutionary cohort analysis (C) displays the pairwise probability that any two species share a common macroevolutionary rate dynamic.
Dashed arrow indicates position of RTA clade on each tree.

the orb web. It shows that the Haplogynae are polyphyletic with Filistatidae as sister to
Hypochilidae and Leptonetidae as sister to Entelegynae. It also suggests a position for two
enigmatic families—Hahniidae and Homalonychidae—and provides an alternate view of
RTA relationships and the contents of Dionycha clade.

Data characteristics and development of spider core orthologs
Transcriptome analyses are unquestionably data rich. Thousands of assembled sequences
emerge from even modest RNA-seq experiments, providing, among other things, a basis
for identifying phylogenetically informative orthologs. This bounty comes with a few

Garrison et al. (2016), PeerJ, DOI 10.7717/peerj.1719 18/35



Peer

©

OO0 @0 0e@eo0o0

0 Brushed sheet

1 Terminal line

2 Irregular ground sheet
4 Orb

5 Cob

6 Stereotypical aerial sheet

7 Webless
8 Trapdoor/burrow

Liphistius malayanus
Liphistius sp.
Antrodiaetus unicolor
Aliatypus coylei
Megahexura fulva
Sphodros rufipes
Microhexura montivaga
Damarchus sp.
Trichopelma laselva
Aphonopelma iviei
Acanthoscurria geniculata
Paratropis sp.

Pionothele n.sp.
Brachythele longitarsus
Hebestatis theveneti
Cyclocosmia truncata
Idiops bersebaensis
Promyrmekiaphila clathrata
Aptostichus atomarius
Aptostichus stephencolberti
Kukulcania hibernalis
Hypochilus pococki
Calponia harrisonfordi
Dysdera crocata
Segestria sp.

Loxosceles deserta
Scytodes thoracica
Diguetia sp.

Pholcus phalangioides
Pholcus phalangioides
Calileptoneta californica
Stegodyphus mimosarum
Theridion sp.
Latrodectus tredecimguttatus
Microdipoena guttata
Ero leonina

Leucauge venusta
Tetragnatha versicolor
Nesticus cooperi

Pimoa sp.

Frontinella communis
Nephila clavipes
Micrathena gracilis
Verrucosa arenata
Neoscona arabesca
Macracantha arcuata
Gasteracantha hasselti
Oecobius navus
Philoponella herediae
Uloborus glomosus
Deinopis longipes
Amaurobius ferox
Callobius sp.
Calymmaria persica
Cicurina vibora
Agelenopsis emertoni
Badumna longinquus
Metaltella simoni
Meraltella simoni AL
Homalonychus theologus
Habronattus signatus
Hibana sp.

Trachelas tranquillus
Sergiolus capulatus
Misumenoides formosipes
Peucetia longipalpis
Anahita punctulata
Dolomedes triton
Schizocosa rovneri
Pisaurina mira

Figure 6 ML ancestral state reconstructions of web type on the time-calibrated phylogeny of spiders.
Circle areas correspond to probability of ancestral states. The arrow points to the origin of the orb web at

the MRCA of Entelegynae excluding Leptonetidae.

caveats. Isoforms, paralogous sequences, and assembly artifacts (chimeric contigs) can

mislead inference of single-copy orthologous genes. The data represent one snapshot—a

specific organism, point in time, and combination of tissues—that can lead to gaps in

downstream supermatrices due to stochastic sampling issues. Large amounts of missing

data, due to missing loci and indels introduced during alignment, can arise post-assembly
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in the ortholog detection and filtering stages of phylogenomic analyses (Bond et al., 2014;
Ferndndez, Hormiga & Giribet, 2014). Lemmon et al. (2009) and a number of other authors
(Roure, Baurain ¢ Philippe, 2013; Dell’Ampio et al., 2014; Xia, 2014) have discussed the
potential negative effects of such missing data in large phylogenomic (transcriptome-
based) datasets. Recent studies argue that the phylogenetic signal from transcriptomes
can conflict with alternative reduced representation approaches like targeted sequence
capture (Jarvis et al., 2014; Brandley et al., 2015; Prum et al., 2015). From vast amounts of
bird genome protein-coding data, Jarvis et al. (2014) concluded that these loci were not
only insufficient (low support values), but also misleading due to convergence and high
levels of incomplete lineage sorting during rapid radiations.

Simulation studies now predict that 10s—100s of loci will resolve most phylogenies,
albeit this is sensitive to factors such as population size or speciation tempos (Krnowles
¢ Kubatko, 20115 Leache ¢ Rannala, 2011; Liu & Yu, 2011). To mitigate the impacts of
paralogy, incomplete lineage sorting, and missing data, we developed a priori a set of spider
core orthologs that comprise a database consisting of over 4,500 genes that are expected
to be recovered from most whole spider RNA extractions and are likely orthologous. We
summarize the annotations for each of the genes in the HaMStR pHMM file in Table S3.

Our approach enhances repeatability, downstream assessment, scalability (taxon
addition), and data quality. Studies that employ pure clustering approaches like OMA
stand-alone (Altenhoff et al., 2013) may produce more data (i.e., more “genes”) on the
front end; however, they present some problems in terms of ease of scalability. Although
adding more genes is one strategy, it is increasingly clear that taxon sampling and data
quality are very important (Lemmon ¢ Lemmon, 2013; Bond et al., 2014).

A modified view of spider evolution and key innovations
Once considered the “crowning achievement of aerial spiders” (Gertsch, 1979), the orb
web and consequent adaptive radiation of araneoid spiders (ecribellate orb weavers and
their relatives) has captured the imagination of spider researchers for over a century. The
evolution of adhesive threads and the vertical orientation of the orb web, positioned to
intercept and retain flying insects, has been long considered a “key innovation” that allowed
spiders to inhabit a new adaptive zone (Bond ¢ Opell, 1998). It is important to note that
several prior authors speculated about orb web adaptive value, such as Levi (1980), Opell
(1979), Opell (1982) and Coddington (1986) although Bond ¢ Opell (1998) quantified the
pattern in a formal phylogenetic framework. Over 25% of all described spider species are
araneoids. Given orb weaver monophyly on quantitative phylogenies (Griswold et al., 1998;
Blackledge et al., 2009), rigorous empirical studies tended to confirm the orb as a prime
cause of spider diversification (Bond ¢ Opell, 1998). Nevertheless, a lack of correlation of
the orb web and species richness has been apparent for some time. Griswold et al. (1998)
noted that over 50% of Araneoidea no longer build recognizable orb webs and suggested
that “the orb web has been an evolutionary base camp rather than a summit.”

Bond et al. (2014) tested two alternative evolutionary scenarios for orb web evolution,
reflecting different analytical results; parsimony implied multiple independent origins,
and maximum likelihood implied one origin and subsequent multiple losses. The current
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study (Fig. 6) favors the latter: the orb evolves at the base of the araneoid + deinopoid +
RTA clade, but is lost at least three times independently. Large amounts of morphological
and behavioral data (albeit often correlated with features essential to the orb) still support
the single origin hypothesis (Coddington, 1986; Coddington, 1991; Scharff ¢ Coddington,
1997; Griswold et al., 1998; Agnarsson, Coddington ¢ Kuntner, 2013). Our results suggest
both that the orb web originated earlier than previously supposed, and that heretofore-
unsuspected clades of spiders descend from orb weavers. In a sense, this ancient origin
hypothesis reconciles the implications of genomic data with the classical evidence for
multiple, homologous, complex, co-adapted character systems.

Recent discoveries of large, cribellate orb web-weaving taxa from the late Triassic agree
with our molecular dates. Diverse Mesozoic deinopoids (Selden, Ren ¢ Shih, 2015) are
consistent with the “orb web node” at 213 Ma (Fig. 4 and Table 3). Under this view,
modern uloborids and deinopids are distinct remnants of this diverse group. Selden, Ren ¢
Shih (2015) previously noted that if other extant taxa “emerged from the deinopoid stem
or crown group it would render the whole-group Deinopoidea paraphyletic”’; we discuss
this scenario in detail below.

Contrary to the contemporary paradigm that the evolution of the orb web and adhesive
sticky threads elevated rates of diversification among the araneoid spiders, our BAMM
analysis (Fig. 5) indicates that the highest rates of diversification likely occurred among
the RTA spiders followed by mygalomorphs and then araneoids as a distant third, the
latter driven—in part-by the secondarily non-orb weaving theridiids and linyphiids. These
results imply that other foraging strategies (e.g., cursorial hunting and irregular sheets)
were a more “‘successful” strategy than the orb. Indeed, the point estimate for the RTA
node during the early Cretaceous (138.8 Ma; Fig. 4 and Table 3) precedes the subsequent
diversification of the RTA clade at 125-100 Ma.

This date coincides with the Cretaceous Terrestrial Revolution (KTR). Angiosperms
radiated extensively at 125-90 Ma (Crane & Friis, 1987; Wang, Zhang & Jarzembowski,
2013), as did various plant-dependent insect lineages, including beetles (McKenna et al.,
2009; Mckenna et al., 2015), lepidopterans (Wahlberg, Wheat ¢ Pefia, 2013), ants (Moreau
et al., 2006) and holometabolous insects in general (Misof et al., 2014), although some
insect lineages do not show a pulse (e.g., darkling beetles; Kergoat et al., 2014). Spiders, as
important insect predators, may also have diversified rapidly along with their prey (e.g.,
Penney, Wheater ¢ Selden, 2003; Peialver, 2006; Selden ¢ Penney, 2010). The fossil and
phylogenomic data presented here show that most spider lineages predate the KTR
(Selden & Penney, 2010; Bond et al., 2014). Among these, the RTA clade especially,
but also mygalomorphs and araneoids, diversified in response to the KTR insect
pulse. That aerial web spinners specialized on rapidly radiating clades of flying
insects is hardly surprising. Similarly, if forest litter habitats became more complex
and spurred insect diversification (Moreau et al., 2006) ground-dwelling spiders
may also have diversified at unusual rates. Perhaps the most dramatic change
in insect abundances occurred with the origin and early diversification of social
insects (Holldobler & Wilson, 1990) and beetles (Mckenna et al., 2015). Both groups
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date back to 150-125 Ma and diversified during the KTR (LaPolla, Dlussky ¢ Perrichot,
2013; Ward, 2014; Legendre et al., 2015). A major increase in these insect groups may have
favoured spiders that feed on cursorial prey and thus could help explain the concurrent
increase in diversification in the RTA clade, mygalomorphs, and non-orb weaving araneoids
such as cobweb weavers (Dziki et al., 2015).

Taken together, this new evidence on character evolution, divergence estimates, and
rates of diversification indicates that previous conclusions regarding the timing and rate
of spider evolution were imprecise. Our data support an ancient orb web hypothesis that
is further bolstered by a wealth of fossil data showing that a cribellate deinopoid stem
group likely diversified during the early Mesozoic. Molecular divergence clock estimates
are consistent with the placement of the orb web further down the tree as well as suggesting
that some of the greatest rates of species diversification coincided with the KTR. The latter
suggests that spiders took advantage of increased abundance of cursorial prey.

These findings likely diminish the hypothesis proposed by Bond ¢ Opell (1998) that the
vertically oriented orb web represented a key innovation, particularly in light of the fact that
over half of araneoid species do not build an orb web (e.g. Theridiidae and Linyphiidae;
noted by Griswold et al., 1998; Ferndndez, Hormiga ¢ Giribet, 2014). We already knew that
major orb web-weaving groups are very successful in spite of abandoning the orb (Blackledge
et al., 2009).

Spider systematics

Although our results show that many classical ideas in spider systematics require revision
(e.g., mygalomorph families, Haplogynae, paleocribellates, higher araneoids, and RTA +
dionychan lineages), they also robustly support many classical taxonomic concepts.

Mygalomorphae relationships

Since Raven (1985), Mygalomorphae (Table 1, Node 4) has continuously represented

a challenge to spider systematics. As discussed by Hedin ¢ Bond (2006) and Bond et al.
(2012), nearly half the families are probably non-monophyletic. While our sampling here
and previously (Bond et al., 2014) is far greater than any other published phylogenomic
study (e.g., Ferndndez, Hormiga ¢ Giribet (2014) included just one theraphosid), taxon
sampling remains insufficient to address major issues aside from deeper level phylogenetic
problems. However, the data (Fig. 2) support Euctenizidae as a monophyletic family,
but not Nemesiidae. As indicated in Bond et al. (2014), the once controversial Atypoidina
(Node 5) consistently has strong statistical support in all analyses. Alternatively, the
placement of paratropidids, ctenizids, and idiopids remains questionable and warrants
further sampling.

Haplogynae relationships

The traditional view of spider classification (Coddington, 2005) places Paleocribellatae
and Austrochiloidea (Table 1) as sister groups to all the remaining Araneomorphae
taxa—Haplogynae and Entelegynae; the latter terms are used primarily herein as clade
names rather than specific reference to genitalic condition. Our current tree (Fig. 2) is
congruent with Bond et al. (2014) in placing Paleocribellatae (Table 1, Hypochilus; Fig. 1,
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Node 9) as sister to Haplogynae. Filistatidae (Kukulcania), which is placed as sister to
the ecribellate haplogynes (Synspermiata lineage as proposed in Michalik ¢ Ramirez,
2014), pairs with Hypochilus as in Bond et al. (2014). This arrangement suggests that
characters formerly considered “primitive”” to araneomorphs, for example, mobile leg
three cribellate silk carding, might instead be a synapomorphy for the new hypochilid-
filistatid clade. Remaining haplogyne relationships are somewhat congruent with previously
published analyses (Ramirez, 2000; Michalik ¢ Ramirez, 2014). However, one of the more
intriguing results is the placement of the morphologically intermediate “haplogyne”
(Table 1) Calileptoneta (Leptonetidae) as sister to Entelegynae, suggesting that leptonetids
may represent intermediate genitalic forms between haplogyne and the relatively more
complex entelegyne condition (Ledford ¢ Griswold, 2010). As outlined by Ledford ¢
Griswold (2010), a number of previous analyses (Platnick et al., 1991; Ramirez, 20005
Griswold et al., 2005) discussed the “rampant” homoplasy required to place leptonetids
(sister to Telemidae) among haplogynes and suggest two possible scenarios—leptonetids
are proto-entelegynes, or they are the sister group to the remaining Haplogynae. Our
phylogenomic analyses support the former hypothesis favored by Ledford ¢ Griswold
(2010), and puts the discovery of the cribellate Archoleptoneta into better phylogenetic
context. Additionally, these results provide further support for the concept of Synspermiata
as proposed by Michalik ¢ Ramirez (2014) and represent a robust phylogenetic framework
for understanding the evolution of entelegyne genitalia.

Araneoidea relationships

Our reconstruction of araneoid relationships departs dramatically from the traditional
classification scheme and a number of recently published molecular systematic studies (e.g.,
Blackledge et al., 2009; Dimitrov et al., 2012). Theridiidae (cobweb spiders) is sister to
the remaining araneoids as opposed to occupying a more derived position within that
clade. Comparisons to Dimitrov et al. (2012) should be viewed with caution: that analysis
contained a large suite of taxa not included here, and many results of that analysis had
only weak support. Nevertheless, our phylogenomic data agree in supporting the close
relationship between Mysmenidae, Mimetidae, and Tetragnathidae. We also retain the
more inclusive linyphioids as close relatives of Araneidae + Nephilidae as in Dimitrov
et al. (2012). Unlike that study, we recover nesticids sister to linyphioids (Pimoidae plus
Linyphiidae) rather than theridiids: Theridioid (Theridiidae and Nesticidae) diphyly is a
surprising result, which has already been shown with standard markers by Agnarsson,
Coddington & Kuntner (2013). Theridioids have strikingly similar spinning organs

and tarsus IV comb for throwing silk, but are otherwise genitalically distinct. Clearly
relationships among the derived araneoids require more intensive sampling, especially of
missing families (Theridiosomatidae, Malkaridae, Anapidae, etc.) to adequately resolve
their phylogeny.

Deinopoidea relationships

The addition of nearly 30 terminals to the Bond et al. (2014) dataset corroborates the non-
monophyly of the classically defined Orbiculariae, although the orb and its behavioral,
morphological, and structural constituents may be homologous. Deinopoidea, with these

Garrison et al. (2016), PeerJ, DOI 10.7717/peerj.1719 23/35


https://peerj.com
http://dx.doi.org/10.7717/peerj.1719

Peer

data, is polyphyletic (see also Dimitrov et al., 2012). Instead, a new clade, Uloboridae +
Oecobiidae, is sister to Deinopidae + the RTA clade. Bootstrap support was consistently low
for the node dividing these two groupings in all analyses except matrix 6 (Fig. 2), which omits
the eresid exemplar Stegodyphus and matrix 8, the ASTRAL analysis. The placement of the
two eresoid taxa (Table 1), Stegodyphus and Oecobius continues to present difficulties here
as in previous published phylogenomic studies (Miller et al., 2010). Ferndndez, Hormiga ¢
Giribet (2014) found alternative placements for Oecobius (their only eresoid) whereas Bond
et al. (2014) typically recovered Stegodyphus as the sister group to all entelegynes (recovered
here as the sister group to araneoids) and Oecobius as a member of a clade comprising
uloborid and deinopid exemplars, but with notably lower support. Disparities between the
two analyses may be attributed to differences in taxon sampling, which, as noted above,
was far greater in Bond et al. (2014). On the other hand, increased taxon sampling across
the tree diminished node support in some places. However, it is worth noting that support
was very strong in the ASTRAL species tree analysis, suggesting that while there may be
some conflict among individual data partitions there is an overwhelming amount of signal
in the data for a Deinopoidea + RTA relationship. This trend was noted by Bond et al.
(2014) who found that only 2.4% of all bootstrap replicates recovered a monophyletic
Orbiculariae. Based on these data and the putative rapid diversification that occurred
once the orb web was abandoned, it is clear that resolving relationships at this point in
spider evolutionary history remains a challenge. Finally, Bond et al. (2014) and Agnarsson,
Coddington ¢ Kuntner (2013) recovered an unexpected relationship between eresoid taxa
and deinopoids that consistently rendered the Deinopoidea paraphyletic or polyphyletic if
Oecobius was included in the analysis. Our results, here including an additional uloborid
exemplar, still confirm Deinopoidea polyphyly. Perhaps careful examination of Oecobius
web morphology and spinning behavior will provide independent corroboration of this

molecular signal.

RTA and Dionycha relationships

Although all of our analyses recover a monophyletic RTA clade, relationships among its
members reflect some departure from the traditional view of RTA phylogeny but are largely
consistent with a more recent morphology-based study. We recover a clade that comprises a
mix of agelenoids (Agelenidae, Desidae, and Amphinectidae) as a sister group to Dictynidae
+ Hahniidae and Amaurobiidae. The taxonomic composition of Dictynidae, Hahniidae
and Amaurobiidae, as well as their phylogenetic placement, remains problematic and in
a state of flux (Coddington, 2005; Spagna, Crews ¢ Gillespie, 2010; Miller et al., 2010). The
typical hahniines have been difficult to place due to their long branches (Spagna & Gillespie,
2008; Miller et al., 2010). Calymmaria, has been moved into “Cybaeidae s.l.” by Spagna,
Crews & Gillespie (2010), suggesting that the relationships among hahniids, cybaeids, and
dictynids need further scrutiny.

Amaurobiids have also been hard to place, though this is in part because Amaurobiidae
are a moving target. The term Amaurobiids needs to be clarified, as most of nine subfamilies
discussed in Lehtinen (1967) are now placed elsewhere. We use Callobius, from the type
subfamily of the family. Our amaurobiid placement, basal to an agelenoid and dictynoid
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grouping corroborates previous findings (Miller et al., 2010; Spagna, Crews & Gillespie,
2010). Dictynids on the other hand were considered one of the unresolved sister groups
to amaurobioids, zodarioids, and dionychans (Spagna, Crews & Gillespie, 2010). Here the
placement of our dictynid exemplar Cicurina is more precise: sister group to the hahniid
Calymmaria (as in Miller et al., 2010).

We also recover Homalonychidae (representing Zodarioidea) as the sister group to
dionychans and lycosoids, once again, mirroring the results of Agnarsson, Coddington
& Kuntner (2013). Previously Zodarioidea was placed closer to the base of the RTA
clade (Miller et al., 2010). Dionychans here include salticids, anyphaenids, corinnids,
and gnaphosids whereas crab spiders (Thomisidae) nest with the lycosoids containing
a paraphyletic Pisauridae. Placement of Thomisidae within Lycosoidea goes back at
least to Homann (1971) and was formally established by Bayer ¢~ Schonhofer (2013) and the
total evidence analysis of Polotow, Carmichael ¢ Griswold (2015). Although Ramirez (2014)
placed Thomisidae outside of Lycosoidea, in one of his slightly suboptimal results thomisids
were included in Lycosoidea. The relationships we recover among dionychan and lycosoid
taxa are largely congruent with those inferred by Ramirez (2014) in a massive morphological
study of Dionycha and RTA exemplars. Given the general incongruence among previous
morphological and molecular spider systematic studies, it will be interesting to see
how Ramirez (2014) phylogeny and familial-level reevaluations compare as phylogenomic
studies expand. Raven (1985) was a landmark study for mygalomorphs; perhaps Ramirez
(2014) may serve in the same capacity for one of the most diverse branches on the spider
tree of life.

CONCLUSIONS

Following Coddington ¢~ Levi (1991), higher-level spider classification underwent a
series of challenges from quantitative studies of morphology, producing provocative
but weakly-supported hypotheses (Griswold et al., 1998; Griswold et al., 2005). Total
evidence studies, for example, Wood, Griswold ¢ Gillespie (2012a); Wood et al. (2012b)
for Palpimanoidea, Polotow, Carmichael ¢ Griswold (2015) for Lycosoidea, and Bond et al.
(2012) for Mygalomorphae appear to have settled some local arrangements, but much of
the backbone of the spider tree of life remains an open question only to be solved through
increased taxon sampling. Phylogenomics has already brought data-rich, convincing
solutions to long standing controversies, for example, phylogeny of the orb web (Bond et
al., 2014; Ferndndez, Hormiga & Giribet, 2014). Phylogenomics portends a new and exciting
period for spider evolutionary biology. Recent advances in digital imaging, proteomics, silk
biology and major fossil discoveries mean that our understanding of spider evolution will
likely accelerate by leaps and bounds in the coming years. The tempo and mode of spider
evolution is likely different than previously thought. At this point it seems reasonably
clear that the orb web evolved earlier phylogenetically than previously thought, only to be
subsequently lost at least three times independently during the Cretaceous. While the orb
web has certainly been successful, a likely dramatic increase in the abundances of cursorial
insects during the KTR also impacted the success of other foraging strategies, including
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webless hunting. Our results and those of others like Ramirez (2014) show that spider
systematics still remains a work in progress with many questions yet unanswered.
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