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ABSTRACT
Pulmonary hypertension (PH), a common complication in dogs affected by
degenerative mitral valve disease (DMVD), is a progressive disorder characterized by
increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling.
Phosphorylation of proteins, impacting vascular function and cell proliferation,
might play a role in the development and progression of PH. Unlike gene or protein
studies, phosphoproteomic focuses on active proteins that function as end-target
proteins within signaling cascades. Studying phosphorylated proteins can reveal
active contributors to PH development. Early diagnosis of PH is crucial for effective
management and improved clinical outcomes. This study aimed to identify potential
serum biomarkers for diagnosing PH in dogs affected with DMVD using a
phosphoproteomic approach. Serum samples were collected from healthy control
dogs (n = 28), dogs with DMVD (n = 24), and dogs with DMVD and PH (n = 29).
Phosphoproteins were enriched from the serum samples and analyzed using liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Data analysis was
performed to identify uniquely expressed phosphoproteins in each group and
differentially expressed phosphoproteins among groups. Phosphoproteomic analysis
revealed nine uniquely expressed phosphoproteins in the serum of dogs in the
DMVD+PH group and 15 differentially upregulated phosphoproteins in the DMVD
+PH group compared to the DMVD group. The phosphoproteins previously
implicated in PH and associated with pulmonary arterial remodeling, including small
nuclear ribonucleoprotein G (SNRPG), alpha-2-macroglobulin (A2M), zinc finger
and BTB domain containing 42 (ZBTB42), hemopexin (HPX), serotransferrin (TRF)
and complement C3 (C3), were focused on. Their unique expression and differential
upregulation in the serum of DMVD dogs with PH suggest their potential as
biomarkers for PH diagnosis. In conclusion, this phosphoproteomic study identified

How to cite this article Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S,
Surachetpong S. 2024. Phosphoproteomics analysis of serum from dogs affected with pulmonary hypertension secondary to degenerative
mitral valve disease. PeerJ 12:e17186 DOI 10.7717/peerj.17186

Submitted 13 November 2023
Accepted 11 March 2024
Published 30 April 2024

Corresponding author
Sirilak Surachetpong,
sirilakd27@gmail.com

Academic editor
Korakot Nganvongpanit

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.17186

Copyright
2024 Sakarin et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.17186
mailto:sirilakd27@�gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17186
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


uniquely expressed and differentially upregulated phosphoproteins in the serum of
DMVD dogs with PH. Further studies are warranted to validate the diagnostic utility
of these phosphoproteins.

Subjects Biochemistry, Veterinary Medicine, Zoology
Keywords Phosphoproteomics, Pulmonary hypertension, Degenerative mitral valve disease, Dogs,
Serum, Proteomics, Biomarkers

INTRODUCTION
Pulmonary hypertension (PH), a common complication in dogs affected by degenerative
mitral valve disease (DMVD), has been recognized as an abnormally increased pressure in
the pulmonary arteries (Reinero et al., 2020). DMVD is characterized by progressive
degeneration of the mitral valve, leading to mitral valve regurgitation, enlargement of the
left atrium and ventricle, and subsequent congestive heart failure (CHF) (Borgarelli &
Buchanan, 2012; Kellihan & Stepien, 2010). In DMVD, an initial back transmission of
increased left atrial pressure to pulmonary capillary causes an early stage of PH, which can
be reversible, whereas chronic hypoxia from pulmonary edema can cause pulmonary
arterial remodeling, leading to irreversible PH (Chiavegato et al., 2009; Guazzi & Arena,
2010). Moreover, DMVD dogs with PH have a shorter median survival time compared to
those without PH (Borgarelli et al., 2015).

According to the American College of Veterinary Internal Medicine (ACVIM)
consensus statement guidelines for the diagnosis, classification, treatment, and monitoring
of PH in dogs, the diagnosis of PH is based on clinical signs and echocardiographic
findings (Reinero et al., 2020). The clinical signs suggestive of PH are syncope, respiratory
distress, exercise intolerance, and right-sided heart failure (Reinero et al., 2020).
Echocardiography is primarily used to measure estimated pulmonary arterial pressure
(PAP) and identify echocardiographic signs of PH involving the ventricles, pulmonary
artery, right atrium, and caudal vena cava (Reinero et al., 2020). Although
echocardiography is an acceptable method for diagnosing PH in dogs (Kellihan & Stepien,
2010) it has some limitations, including the need for expensive ultrasound machines and
experienced sonographers. Moreover, pulmonary arterial remodeling, especially vascular
medial thickening, may manifest before the detection of elevated PAP (Delgado et al., 2005;
Liu et al., 2013; Sakarin, Rungsipipat & Surachetpong, 2021). Several studies indicate that
prompt treatment in the early stage of PH can reverse medial thickening of pulmonary
arterial walls (Guazzi & Galiè, 2012; Sakao, Tatsumi & Voelkel, 2010). Due to this concern,
diagnosing PH by measuring increased PAP using echocardiography may be delayed,
potentially lead to irreversible remodeling of the pulmonary arteries. Therefore, there is
still a need for additional diagnostic methods that can detect PH earlier in dogs. The aim is
to discover new approaches beyond echocardiography to enhance diagnostic and
treatment effectiveness. Circulating biomarkers are currently explored for diagnosing PH
in humans (Banaszkiewicz et al., 2022). Despite reported associations, none have gained
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acceptance for PH diagnosis (Banaszkiewicz et al., 2022), and the search for biomarkers
continues.

Proteomics, a technique for extensive protein characterization, has been widely used to
identify potential biomarkers in diseases, including PH (Bhosale et al., 2017; Zhang et al.,
2014). Despite these efforts, the impact on disease diagnosis, progression assessment, and
treatment monitoring remains limited. To address this challenge, a new branch called
phosphoproteomics has emerged, concentrating on the phosphoproteome for biomarker
discovery (Mumby & Brekken, 2005; Urban, 2022). Proteins, essential for life, undergo
post-translational modifications (PTMs) such as phosphorylation, regulating various
cellular processes (Chen & Kashina, 2021).

Phosphoproteins, involved in diverse cellular functions and often activated in diseases,
have potential as disease biomarkers, potentially offering more specific disease stage
information than total proteins (Ghosh et al., 2022; Giorgianni & Beranova-Giorgianni,
2016). Pulmonary arterial remodeling, particularly medial thickening, is a key
characteristic of PH and involves a complex interplay of cellular processes, notably the
proliferation of smooth muscle cells (Guignabert & Dorfmuller, 2013). Protein
phosphorylation plays a crucial role in this process, particularly in regulating signaling
pathways that control smooth muscle cell proliferation, such as mitogen-activated protein
kinase (MAPK) pathway. Phosphorylation of downstream MAP kinase, followed by the
phosphorylation of extracellular signal-regulated kinase (ERK)1/2, facilitates growth
signaling and cell proliferation. Dysregulation of phosphorylation events may promote
medial thickening (Crosswhite & Sun, 2014). Circulating phosphoproteins have been
explored as diagnostic biomarkers in human cancers (Ghosh et al., 2022). In dogs, a sole
study on serum phosphoproteome in Babiosiosis revealed alterations in phosphoproteins
(Galán et al., 2018). However, there has been no study that has examined circulating
phosphoproteins in dogs with PH. This study aimed to assess serum phosphoprotein
expression in healthy dogs, dogs with DMVD, and dogs with DMVD and PH.

MATERIALS AND METHODS
Animals
The study was designed as a prospective cross-sectional controlled study. Blood samples
were collected from client-owned dogs presented as clinical cases at the Small Animal
Hospital, Faculty of Veterinary Science, Chulalongkorn University, Thailand. The owners
provided informed consent before their dogs were enrolled in the study. The study
protocol was approved by the Institutional Animal Care and Use Committee, Faculty of
Veterinary Science, Chulalongkorn University (number 1831099). Dogs included in this
study were elderly small breed dogs with an age older than 7 years and a weight less than
10 kg. All dogs underwent history taking, physical examination, blood pressure
measurement, electrocardiography (ECG), thoracic radiography, echocardiography, and
blood collection on the same day.

Dogs were excluded from this study if they had other cardiovascular diseases other than
DMVD, including dilated cardiomyopathy, myocarditis, valvular endocarditis, mitral
valve dysplasia, mitral valve stenosis or aortic stenosis. Additionally, dogs with pulmonary
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diseases like chronic obstructive airway disorders or pulmonary parenchymal disease as
well as, those with heartworm infestation, blood parasite infection, systemic hypertension,
neoplasia, or systemic diseases such as kidney and liver diseases that may cause PH or
affect serum protein expression (Bell et al., 2010; Çiftci et al., 2021; Escribano et al., 2017;
Kuleš et al., 2014;Munhoz et al., 2012; Naseeb et al., 2008; Niu et al., 2019; Yang et al., 2020;
Zhou et al., 2017). Dogs affected with other causes of PH were also excluded. The sample
size calculation was derived from a previous study by Zhou et al. (2012), which
demonstrated that 12 samples per group were sufficient to detect a two-fold change with a
power of 0.8% for 85% proteins. A total of 81 client-owned dogs were enrolled in this study
and divided using purposive sampling into three groups: the control (n = 28), the DMVD
group (n = 24), and the DMVD with PH (DMVD+PH) group (n = 29), based on the
following criteria (Fig. 1).

The control group consisted of 28 healthy dogs that had no history or clinical signs of
cardiorespiratory disease. Normal heart and lung sounds were detected during the physical
examination. Blood pressure was within the normal limit, and no signs of cardiac

Figure 1 Inclusion and exclusion criteria for sample selection.
Full-size DOI: 10.7717/peerj.17186/fig-1
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arrhythmia were found. To confirm that all dogs enrolled in this group had normal heart
and lung conditions, thoracic radiography and echocardiography were performed.

The DMVD group included 24 dogs diagnosed with DMVD stage C, exhibiting
previous or current signs of CHF as evidenced by clinical signs such as cough, exercise
intolerance, or dyspnea, along with radiographic evidence of pulmonary edema. All dogs
had radiographic evidence of cardiomegaly, with a vertebral heart score (VHS) greater
than 10.5 (Boswood et al., 2016), as well as echocardiographic evidence of mitral valve
thickening and regurgitation, left atrial enlargement with a left atrial to aorta dimension
ratio (LA/Ao) greater than 1.6 and left ventricular enlargement with a normalized left
ventricular internal diameter at the end of diastole (LVIDd) greater than 1.7 (Borgarelli
et al., 2015; Keene et al., 2019).

The DMVD+PH group comprised 29 dogs with an intermediate to high probability of
PH secondary to DMVD stage C. The dogs included to this group were those dogs with PH
secondary to DMVD, who had previously undergone echocardiography and were
diagnosed with PH and dogs with DMVD undergoing regular monitoring
echocardiography every 6 months, who were incidentally discovered to have PH, were
included. The probability of PH was determined based on clinical signs suggestive of PH,
peak tricuspid regurgitation (TR) velocity, and anatomic signs of PH assessed through
history taking, physical examination, and echocardiography. Dogs in this group were
classified as having an intermediate probability of PH if their peak TR velocity was greater
than 3 m/s with 0 or 1 anatomic sign of PH. Alternatively, they were classified as having a
high probability of PH if their peak TR velocity was greater than 3 m/s with ≥2 anatomic
signs of PH, or if their peak TR velocity was greater than 3.4 m/s with ≥1 anatomic sign of
PH (Reinero et al., 2020).

Sample collection and preparation
The procedures might cause slight pain or distress. To minimize pain or distress in
animals, dogs were carefully restrained with experienced veterinary assistants and blood
samples were collected using aseptic techniques performed by licensed veterinarians. Dogs
were returned to their owners after completion of activity. To minimize pre-analytical
variables, a single individual performed all procedures, including sample collection, sample
preparation and sample storage according to the following protocol. Three milliliters of
blood were collected from the cephalic or saphenous vein of dogs that had been fasted at
least 4 h before blood collection to minimize the effect of the meal on serum protein
concentration (Pellis et al., 2012). The blood samples were then divided, with 1 ml used for
complete blood count and blood chemistry analysis and the remaining 2 ml stored in plain
Eppendorf tubes. The samples were allowed to clot at room temperature for 2 h.
Subsequently, serum samples were separated by centrifugation at 3,000 g for 15 min at
4 �C. Any hemolytic and lipemic serum samples were discarded to minimize their effect on
proteomic analysis (Greco et al., 2017;Hsieh et al., 2006; Nikolac, 2014). To prevent protein
damage from freeze-thaw cycles, protein degradation, and dephosphorylation, each serum
sample was aliquoted and mixed with a protease inhibitor (Halt Protease Inhibitor
Cocktail, Thermo Scientific, Waltham, MA, USA) and a phosphatase inhibitor (sodium
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orthovanadate: Na3OV4, Sigma-Aldrich, St. Louis, MO, USA). The samples were then
stored at −20 �C for further proteomic analysis (Fig. 2). All procedures were performed by
one person following an identical protocol and under the same circumstances to reduce
pre-analytical variables that may affect sensitivity, selectivity, reproducibility, and recovery
in obtaining reliable biomarkers (Greco et al., 2017; Luque-Garcia & Neubert, 2007).

Analysis of serum phosphoproteins by LC-MS/MS
The aliquoted frozen serum samples were thawed only one time at room temperature
before analysis. Lowry’s method was used to determine the total protein concentration of
each serum sample. Serum phosphoproteins were enriched by an immobilized metal
affinity column (IMAC) (Pierce, Thermo Scientific, Waltham, MA, USA) according to the
manufacturer’s protocol. Based on a previous study indicating that Gallium ion (Ga3+)
exhibits superior binding specificity for phosphopeptides over nonphosphopeptides
(Machida et al., 2007), an IMAC resin charged with Ga3+ ion was used in this study.
Briefly, each serum sample was prepared to a final concentration of 0.5 mg/ml using Lysis/
Binding/Wash Buffer. Before use, the column was centrifuged at 1,000 g for 1 min at 4 �C
to remove the storage solution. Subsequently, 5 ml of Lysis/Binding/Wash Buffer with
CHAPS was added to the column, which was then centrifuged at 1,000 g for 1 min at 4 �C
to equilibrate resin. The serum sample was then added to the column, inverted several
times to mix, and placed on a platform rocker for 30 min at 4 �C. Next, the column was
placed in a 50 ml conical tube and centrifuged at 1,000 g for 1 min at 4 �C to collect the
flow-through fraction. The resin was washed by adding 5 ml of Lysis/Binding/Wash Buffer

Figure 2 Protocol for sample collection, preparation and phosphoproteomics analysis.
Full-size DOI: 10.7717/peerj.17186/fig-2
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with CHAPS, followed by centrifugation at 1,000 g for 1 min at 4 �C. The washing step was
repeated three times. Finally, the phosphoproteins were eluted from the column by adding
1 ml of elution buffer and incubating at room temperature for 3 min. The column was
placed into a 50 ml conical tube and centrifuged at 1,000 g for 1 min at 4 �C. This elution
step was repeated four times, and the pool fractions were collected for the next step. The
phosphoproteins were incubated with 10 mM dithiothreitol (DTT) at 56 �C for 1 h to
reduce disulfide bonds. Cysteine residues were alkylated with 100 mM iodoacetamide
(IAA) at room temperature in the dark for 1 h, and phosphoproteins were digested with
trypsin (Trypsin, Mass Spec Grade, Promega, Madison, WI, USA) for 3 h at room
temperature. Finally, 1% formic acid (FA) was added to serum samples to stop enzymatic
digestion, and all phosphopeptides were injected into an Ultimate 3000 Nano/Capillary LC
System (Thermo Scientific, Waltham, MA, UK) coupled to a ZenoTOF 7600 mass
spectrometer (produced by SCIEX, Framingham, MA, USA). Phosphopeptides underwent
an enrichment step utilizing a µ-Precolumn (300 µm i.d. × 5mm) packed with C18
PepMap 100 (5 µm, 100 A) (Thermo Scientific, Waltham, MA, USA), and were
subsequently separated on a column (75 mm I.D. × 15 cm) filled with Acclaim PepMap
RSLC C18 (2 mm, 100Å, nanoViper) (Thermo Scientific, Waltham, MA, USA). The C18
column was maintained at a constant temperature of 60 �C within a column oven. Solvent
A and B, containing 0.1% formic acid in water and 0.1% formic acid in 80% acetonitrile
respectively, were introduced into the analytical column. A gradient ranging from 5% to
55% solvent B was utilized to elute the phosphopeptides, while maintaining a constant flow
rate of 0.30 ml/min over a duration of 30 min. Electrospray ionization was performed at 1.6
kV using the CaptiveSpray system, with nitrogen utilized as the drying gas at a flow rate of
approximately 50 l/h. Collision-induced-dissociation (CID) product ion mass spectra were
generated using nitrogen as the collision gas. Mass spectra (MS) and MS/MS spectra were
acquired in positive-ion mode at a frequency of 2 Hz, covering the range of m/z 150–2,200.
The collision energy was tuned to 10 eV in response to the m/z value. For quality control in
analytical steps, three replicates of the same sample were analyzed to monitor the
reproducibility of the results. Additionally, the digestion of bovine serum albumin served
as a quality control sample to assess the performance and reliability of the mass
spectrometry instrument and the entire analytical workflow (Bittremieux et al., 2018;
Li et al., 2024; Vincent et al., 2019) (Fig. 2).

The individual non-pooled serum samples were analyzed. For protein identification,
MaxQuant (version 2.2.0.0) was used to submit the MS/MS spectra to the Andromeda
search engine and searched against the Canis lupus familiaris UniProt database (Tyanova,
Temu & Cox, 2016). The significance threshold for protein identification was established
with a p-value < 0.05 and a false discovery rate (FDR) of 1%. The specific parameters for
MaxQuant’s standard configuration encompassed allowing a maximum of two missed
cleavages, setting the main search mass tolerance at 0.6 daltons, utilizing trypsin as the
enzyme for digestion, applying a fixed modification of cysteine through
carbamidomethylation, and incorporating variable modifications for methionine
oxidation and protein N-terminus acetylation. Peptides were considered for identification
and subsequent data analysis if they met the criteria of being at least seven amino acids in
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length and containing at least one unique peptide, as outlined in previous studies
(Cottingham, 2009; Gupta & Pevzner, 2009; Keerapach et al., 2023). The relationship
between differentially expressed phosphoproteins and common cardiovascular drugs was
evaluated using the online-based software Stitch (version 5.0) (Szklarczyk et al., 2016).

Statistical analysis
The computer-based software, SPSS (version 22, IBM, Armonk, NY, USA) was used to
evaluate the statistically significant difference in the data. The data for all dogs were not
subject to blinding. The normality of the data was tested by the Shapiro-Wilk test, and the
normally distributed data were expressed as mean and standard deviation (SD). One-way
analysis of variance (ANOVA) was used to analyze the differences between the control,
DMVD, and DMVD+PH groups, with the Bonferroni test used for post hoc analysis. A
p-value of <0.05 was considered statistically significant. The data of identified serum
phosphoproteins were imported to the online-based software Metaboanalyst (version 5.0)
for statistical analysis. Partial least squares-discriminate analysis (PLS-DA) was employed
to demonstrate the separation between different groups of identified phosphoproteins. An
ANOVA test followed by Tukey’s post hoc test, was performed to identify the differentially
expressed phosphoproteins among the groups. A p-value and false discovery rate (FDR) of
<0.05 was considered statistically significant (Abooshahab et al., 2020; Khan et al., 2019;
Sajid et al., 2023). Using MetaboAnalyst, missing values were replaced with half of the
minimum value in the dataset to facilitate the continuation of the analysis of the specified
phosphoproteins (Wei et al., 2018; Xia et al., 2009).

RESULTS
This study included a total of 81 dogs, composed of 28 healthy control dogs, 24 dogs with
DMVD stage C, and 29 dogs affected with PH secondary to DMVD stage C. All of the
samples were included in the experiment; none were excluded. The normal group
consisted of 11 Shih-Tzus, six Chihuahuas, four Poodles, four Pomeranians, and three
Yorkshire Terriers. The DMVD group comprised seven Poodles, seven Pomeranians, six
Chihuahuas, two Miniature Pinchers, one Shih-Tzu, and one mixed breed. The DMVD
+PH group included eight Poodles, eight Chihuahuas, four Shih-Tzus, three Miniature
Pinchers, two Pomeranians, two mixed breeds, one Jack Russel Terrier and one Schnauzer.
The age of the dogs varied significantly among the groups. The healthy control dogs (9.14
± 2.16 years) were significantly younger than the dogs in the DMVD (11.33 ± 1.97 years)
and DMVD+PH groups (11.97 ± 2.37 years) (p < 0.001). However, the body weight of dogs
did not differ among the groups (p = 0.697). In terms of sex distribution, the control group
had an almost equal number of males (12) and females (16), while the DMVD+PH group
had 13 males and 16 females. The DMVD group had a higher proportion of male dogs (19)
compared to female dogs (five).

According to history taking and physical examination, all dogs in the control group had
no history or evidence of cardiovascular and respiratory disease. However, all dogs in the
DMVD and DMVD+PH groups exhibited clinical signs of CHF, such as cough, exercise
intolerance, and respiratory distress. In the DMVD+PH group, additional clinical signs
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suggestive of PH, such as syncope and ascites, were noted. The standard cardiovascular
drugs prescribed in this study included angiotensin-converting enzyme inhibitors
(ACEIs), furosemide, pimobendan, spironolactone, a combination of amiloride and
hydrochlorothiazide (Moduretic�), and sildenafil. The hematologic and blood chemistry
profiles of all enrolled dogs were within the normal limit. All dogs were negative for the
heartworm antigen test (SNAP4Dx test, IDEXX Laboratories, Inc. Westbrook, Maine,
USA). Electrocardiography revealed no evidence of cardiac arrhythmia in any of the dogs.
Thoracic radiographic findings of dogs in the control group showed normal results, while
dogs in the DMVD and DMVD+PH groups exhibited cardiomegaly with VHS > 10.5, with
or without pulmonary edema, at the time of blood collection. In the DMVD+PH group,
pulmonary artery enlargement and right-sided heart enlargement were observed.
Echocardiography was performed to confirm the cardiac structural changes, and the
results showed that all dogs in the control group had unremarkable cardiac abnormalities.
Dogs in the DMVD and DMVD+PH groups exhibited left atrial and left ventricular
enlargement. In the DMVD+PH group, all dogs had TR velocity greater than 3 m/s and
were classified into intermediate (n = 7) and high probability of PH (n = 22) based on TR
velocity and several anatomic signs of PH (Table 1).

Phosphoprotein identification by LC-MS/MS
After enriching serum phosphoproteins, we identified a total of 1,467 phosphoproteins as
illustrated in the heat map (Fig. 3). This study analyzed individual non-pooled serum
samples. A total of 1,074 phosphoproteins were identified within distinct groups, with 236
exclusives to two groups, while 157 were present in all three groups. It should be noted that
1,074 phosphoproteins identified in a specific group may not be uniformly found in every
dog within that group, resulting in missing values represented as a grey area in the
heatmap. Utilizing partial least squares discriminant analysis (PLS-DA), we observed
moderate separation between the identified phosphoproteins in the DMVD+PH group
and those in the control and DMVD groups, whereas there was an overlapped between the
control and DMVD groups (Fig. 4). An ANOVA test with subsequent Tukey’s post hoc
analysis, revealed significant differences (p < 0.05) in 42 out of 1,467 identified
phosphoproteins among the control, DMVD and DMVD+PH groups (Fig. 5). Further
investigation using the online-based software Stitch (version 5.0) examined the interaction
between the differentially expressed phosphoproteins and common cardiovascular drugs.
This analysis identified four phosphoproteins including albumin, haptoglobin,
hemoglobin subunit beta and anionic trypsinogen correlated with commonly used
cardiovascular drugs, including enalapril, benazepril, ramipril, furosemide, pimobendan,
spironolactone, a combination of amiloride and hydrochlorothiazide (Moduretic�), and
sildenafil (Fig. 6). However, the software did not identify the remaining 38
phosphoproteins. Among the 42 differentially expressed phosphoproteins, nine were
uniquely expressed in the DMVD+PH group, 31 were upregulated, and two were
downregulated compared to the control and DMVD groups. Notably, 15 out of 31
upregulated phosphoproteins in the DMVD+PH group exhibited fold changes greater
than two compared to the DMVD group. For further explanation of potential associations
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Table 1 Clinical data of dogs in the control, degenerative mitral valve disease (DMVD) and degenerative mitral valve disease with pulmonary
hypertension (DMVD+PH) groups.

Parameters Control (n = 28) DMVD (n = 24) DMVD+PH (n =29) p-value

Sex (male/female) 12/16 19/5 13/16

Clinical signs

Cough – 24/24 29/29

Exercise intolerance – 18/24 23/29

Respiratory distress – 6/24 8/29

Syncope – – 5/29

Ascites – – 7/29

Heart sound

Normal 28/28 – –

Systolic heart murmur – 24/24 29/29

Heart rate (bpm) 129.43 ± 16.87 133.63 ± 27.04 137.10 ± 25.05 0.462

Lung sound

Normal 28/28 13/24 6/29

Increased – 13/24 18/29

Crackle – 2/24 5/29

Blood pressure (mmHg) 144.00 ± 18.36 138.33 ± 20.25 134.24 ± 19.31 0.166

Electrocardiography

Respiratory sinus arrythmia 28/28 23/24 21/29

Sinus rhythm – 1/24 8/29

Thoracic radiography

Vertebral heart score 9.54 ± 0.77 11.67 ± 0.87a 12.21 ± 0.96a <0.001

Pulmonary edema – 6/24 10/29

Pulmonary artery enlargement – – 9/29

Right-sided heart enlargement – – 9/29

Echocardiography

Mitral valve regurgitation – 24/24 29/29

LA/Ao 1.15 ± 0.16 2.00 ± 0.41a 2.17 ± 0.60a <0.001

LVIDd 1.22 ± 0.13 1.81 ± 0.26a 1.72 ± 0.43a <0.001

Peak TR velocity (m/s) – – 3.86 ± 0.63

Right ventricular systolic pressure (mmHg) – – 61.13 ± 21.51

Blood profiles

RBC (x106 cell/mL) 6.88 ± 0.84 6.96 ± 0.78b 6.17 ± 1.14a,c 0.005

WBC (x103cell/uL) 8.86 ± 3.26 9.75 ± 2.47b 12.60 ± 3.96a,c <0.001

Platelet (x103cell/mL) 310.36 ± 90.56 332.88 ± 94.21 363.90 ± 101.11 0.111

ALT (IU/L) 42.29 ± 16.44 67.13 ± 38.15a 63.65 ± 42.78a 0.019

ALP (IU/L) 57.21 ± 40.46 109.29 ± 84.79a 116.62 ± 93.60a 0.009

Creatinine (mg/dL) 0.89 ± 0.12 0.96 ± 0.23 0.99 ± 0.20 0.112

BUN (mg/dL) 17.45 ± 6.60 33.06 ± 15.62a 38.49 ± 19.59a <0.001

Notes:
Data are reported as mean ± standard deviation (SD).
The significant difference was assessed by one-way ANOVA at p < 0.05.
a Significant difference at p < 0.05 compared with the control group.
b,c Significant difference at p < 0.05 comparing between the DMVD and DMVD+PH groups.
LA/Ao, Left atrium to aorta ratio; LVIDd, Left ventricular internal diameter at end diastole; TR, Tricuspid regurgitation; RBC, Red blood cells; WBC, White blood cells;
ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; BUN, Blood urea nitrogen.
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Figure 3 Heat map of all identified phosphoproteins in the control group, degenerative mitral valve disease (DMVD) group and degenerative
mitral valve disease with pulmonary hypertension (DMVD+PH) group.A total of 1,467 phosphoproteins were identified with different expression
levels among groups. Samples are in columns and identified phosphoproteins are in rows. The color indicated phosphoproteins intensity that change
from very low (light grey) to extremely high (black). The color scale on the right depicts the range of expression values.

Full-size DOI: 10.7717/peerj.17186/fig-3
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with PH, we focused on three uniquely expressed phosphoproteins and three upregulated
phosphoproteins in the DMVD+PH group: small nuclear ribonucleoprotein G (SNRPG),
alpha-2-macroglobulin (A2M), zinc finger and BTB domain containing 42 (ZBTB42),
hemopexin (HPX), serotransferrin (TRF) and complement C3 (C3) (Fig. 7). The intensity
of these identified phosphoproteins showed no correlation with body weight and PAP (p >
0.05). However, HPX (r = 0.262, p = 0.018) and TRF (r = 0.252, p = 0.023) showed weak
correlation with age.

DISCUSSION
This study aimed to explore the serum phosphoproteome in healthy control dogs, dogs
with DMVD, and dogs with DMVD and PH. The key finding of this study was that
utilizing phosphoproteins enrichment followed by LC-MS/MS could serve as a method to
identify potential phosphoproteins that might act as biomarkers for diagnosing PH in dogs
with DMVD. Three uniquely expressed phosphoproteins in the DMVD+PH group:
SNRPG, A2M and ZBTB42 and three up-regulated phosphoproteins in the DMVD+PH
group: HPX, TRF and C3 were chosen to explain their relationship with PH in dogs. A
weak correlation between age and the intensity of HPX and TRF was found, suggesting
that these phosphoproteins might not be good candidates for biomarkers of PH in dogs
with DMVD. Due to its association with vascular remodeling, as indicated in the literature

Figure 4 Partial least squares-discriminant analysis (PLS-DA) of all identified phosphoproteins
clustered by groups including the control group, degenerative mitral valve disease (DMVD) group
and degenerative mitral valve disease with pulmonary hypertension (DMVD+). Colored dots
represent individual samples and colored areas represent 95% confidence interval.

Full-size DOI: 10.7717/peerj.17186/fig-4
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review, A2M might be a potential biomarker of PH in dogs affected with DMVD. The
investigation into phosphorylation changes in serum not only yields potential biomarkers
but may also offer insights into specific signaling pathways associated with PH. Therefore,
the discovery of these phosphorylation profiles has the potential not only to enhance
diagnostic capabilities but also to guide the way for novel therapeutic targets in the future.

Changes in phosphoproteins have been reported in lung tissues and pulmonary arterial
smooth muscle cells (PASMCs) of human patients with PH compared to control patients
(Luo et al., 2022; Sitapara et al., 2021). However, no research has been conducted on serum
phosphoproteome in PH, either in human patients or dogs. To the best of the author’s
knowledge, this study represents the first attempt to identify phosphoproteome in the
serum of dogs affected by PH secondary to DMVD.

The identification of phosphoproteins as disease biomarkers can be challenging due to
their low abundance compared to nonphosphorylated proteins. Therefore, the
enrichment of phosphoproteins before analysis is a crucial step (Zhou et al., 2009). Various
methods can be employed for phosphoproteins enrichment, including
immunoprecipitation using phospho-specific antibodies, titanium dioxide (TiO2)
chromatography, or immobilized metal ion affinity chromatography (IMAC) (Delom &
Chevet, 2006; Fíla & Honys, 2012; Zhou et al., 2009). Immunoprecipitation is typically used
to target specific phosphorylated amino acids, making it less suitable for large-scale studies.

Figure 5 Analysis of variance (ANOVA) plot of significantly identified phosphoproteins in comparison among the control group,
degenerative mitral valve disease (DMVD) group and degenerative mitral valve disease with pulmonary hypertension (DMVD+PH) group.
An ANOVA test revealed 42 out of 1,467 identified phosphoproteins exhibited significant differences among the control, DMVD and DMVD
+PH groups. The x-axis represents the phosphoprotein peaks, identified by their mass-to-charge ratio (m/z) and retention time (rt). The y-axis
represents the -log10 of the raw p-value associated with each peak. Colored dot represents significantly expressed phosphoproteins with p < 0.05
while the grey dot represents phosphoproteins without statistical significance. Full-size DOI: 10.7717/peerj.17186/fig-5
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TiO2 chromatography has limitations related to the physical properties of TiO2 and
requires the optimization of TiO2 -to-peptide ratio. On the other hand, IMAC is widely
used for phosphoprotein enrichment as it is commercially available and involves fewer
preparation steps (Delom & Chevet, 2006; Fíla & Honys, 2012; Jaros et al., 2012). Several
phosphoproteomics studies in serum have successfully employed IMAC as the
phosphoprotein enrichment method before proteomic analysis (Felix et al., 2011; Jaros
et al., 2012). In the present study, IMAC was utilized for phosphoprotein enrichment
before conducting LC-MS/MS analysis to identify phosphoproteins in serum samples. The
results revealed that 1,467 phosphoproteins were detected in the serum samples of dogs in
the control, DMVD, and DMVD+PH groups.

Phosphoproteomics is a subset of proteomics that specifically focuses on the
identification of phosphorylated proteins, which play a crucial role in various cellular
processes occurring during disease stages. Studying phosphoproteins in serum may
provide biomarkers that are associated with pathological conditions and more specific than
total proteins.

Figure 6 Network of protein-cardiovascular drugs interaction analyzed by Stitch, version 5.0. Four
phosphoproteins including albumin (ALB), haptoglobin (HP), hemoglobin subunit beta (LOC480784)
and anionic trypsinogen (ENSCAFG00000014481) correlated with commonly used cardiovascular drugs,
including enalapril, benazepril, ramipril, furosemide, pimobendan, spironolactone, a combination of
amiloride and hydrochlorothiazide (Moduretic�), and sildenafil. The differentially expressed phos-
phoproteins showed a correlation with cardiovascular drugs. The strength of the associations at the
functional level was evaluated by edge confidence scores. The strong relationships with high edge con-
fidence scores (>0.700) are presented as thick lines. Abbreviations: ACE, angiotensin-converting enzyme;
ALB, albumin; AR, androgen receptor; ENSCAFG00000014481, anionic trypsinogen; HBA, hemoglobin
A; HP, haptoglobin; LOC480784, hemoglobin subunit beta; NR3C2, mineralocorticoid receptor; PDE5A,
phosphodiesterase 5; ENS REN, renin. Full-size DOI: 10.7717/peerj.17186/fig-6
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This present study focused on identifying uniquely expressed phosphoproteins and
upregulated phosphoproteins in the DMVD+PH group. The findings of the study
indicated a significant number of phosphoproteins that were exclusively expressed in each
group. The selection of potential candidate phosphoproteins took into account their
p-value and their association with the disease (Nakayasu et al., 2021; Paulovich et al., 2008;

Figure 7 Boxplot of the focused uniquely expressed phosphoproteins (top row) and upregulated phosphoproteins (bottom row) in the
degenerative mitral valve disease with pulmonary hypertension (DMVD+PH) group that have p-value < 0.05 and fold changes >2 when
comparin. The focused phosphoproteins such as, small nuclear ribonucleoprotein G (A), Alpha-2-macroglobulin (B), Zinc finger and BTB
domain containing 42 (C), were exclusively detected in the serum of dogs affected with PH secondary to DMVD. On the other hand, Hemopexin
(D), Serotransferrin (E) and Complement C3 (F) were identified in the serum of DMVD dogs both with and without PH, but their level was
significantly upregulated in those with PH. The y-axis represents normalized peak intensity of phosphoproteins obtained in LC-MS/MS analysis.
The box ranges from the 25th to 75th percentiles, with whiskers extending to 1.5 times the interquartile range, and horizontal lines inside each box
representing the 50th percentile or median. Black dots indicate individual data points, while yellow dot in a boxplot indicates the mean of the data.

Full-size DOI: 10.7717/peerj.17186/fig-7
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Schelli, Zhong & Zhu, 2017). Based on these criteria, three uniquely expressed
phosphoproteins and three upregulated phosphoproteins were chosen for further
investigation in the DMVD+PH group: small nuclear ribonucleoprotein G (SNRPG),
alpha-2-macroglobulin (A2M), zinc finger and BTB domain containing 42 (ZBTB42),
hemopexin (HPX), serotransferrin (TRF) and complement C3 (C3).

According to the proteins functional analysis and pathway search by PANTHER,
unfortunately, all focused phosphoproteins were unclassified by PANTHER. Therefore, we
reviewed the association of these proteins with PH in previous studies.

Small nuclear ribonucleoprotein G (SNRPG) is a component of the spliceosome,
responsible for pre-mRNA splicing to produce mature mRNA, which can be translated
into proteins (Mabonga & Kappo, 2019). Dysregulation of RNA splicing can lead to
abnormal expression and function of proteins involved in various cellular processes,
including vascular function and remodeling (Fei et al., 2016). Currently, there is no
available information about the role of SNRPG in PH. Therefore, further research is
necessary to understand the specific role of SNRPG in the pathogenesis of PH.

Alpha-2-macroglobulin (A2M) is a large protein found in biological fluids. It is
primarily produced by the liver, but it can also be produced by other cells such as
macrophages and fibroblasts (Lagrange et al., 2022). A2M plays a significant role in
inflammation and infections. It inhibits proteinases released by activated leukocytes or
proteinases secreted by invading microorganisms, making it a key player in protecting
tissues from damage and preventing excessive inflammation (Vandooren & Itoh, 2021).
Due to chronic inflammation associated with vascular dysfunction, the interplay of A2M
with this process has been studied. It has been reported that A2M plays a role in vascular
smooth muscle cell contraction (Nassar et al., 2002). Circulating A2M can be used as a
biomarker for cerebral small vessel disease in ischemic stroke patients (Nezu et al., 2013)
and is associated with endothelial dysfunction in patients with chronic stroke or
cardiovascular risk factors (Shimomura et al., 2018). However, the association of A2M and
PH has not been reported. Recently, A2M was found to be present in platelets and platelet
activation may increase plasma level of A2M (Huang et al., 2021). In both PH human
patients and PH-induced animal models, platelet activation has been noted and is known
to play a role in pulmonary vascular remodeling (Hu et al., 2010; Varol, Uysal & Ozaydin,
2011; Zanjani, 2012). Very little is known about platelet activation in PH dogs. A study
presented at the 2022 ACVIM Forum showed that platelets were hyperactive in dogs with
DMVD and PH (Duler, 2022). Further investigation is needed to explore the connection
between A2M, platelet activation and PH.

Zinc finger and BTB domain containing 42 (ZBTB42) belongs to the zinc finger protein
family and functions a transcriptional factor that binds to target DNA sequences and
regulate transcription. It is highly expressed in human and mouse skeletal muscle,
localizing in the nucleus of skeletal muscle fibers, and plays a role in skeletal muscle
development (Devaney et al., 2011). Modifications in a variety of transcriptional factors
have been identified as important regulators in PH and associated with pulmonary
vascular remodeling (Yang et al., 2023). However, the role of ZBTB42 in pathogenesis of
PH has not been explored.
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Hemopexin (HPX) is glycoprotein found in the blood and helps maintain the balance of
heme levels in the bloodstream and acts as an antioxidant to protect injured tissues from
oxidative damage (Tolosano & Altruda, 2002). Its synthesis is stimulated following
inflammation (Liang et al., 2009) or when heme concentration is high (Garland et al.,
2016). Hemolysis and cell-free hemoglobin have reportedly been linked to the pathology of
PH (Meegan et al., 2023; Rafikova et al., 2018). Red blood cell lysis in PH might be caused
by the remodeling of the pulmonary microvascular system. In PH human patients,
circulating cell-free hemoglobin was increased compared to the healthy controls and was
associated with pulmonary vascular resistance and PAP. Additionally, HPX levels were
also elevated in PH patients, suggesting mechanisms that may provide protection from the
harmful effect of cell-free hemoglobin (Meegan et al., 2023).

Serotransferrin (TRF), also known as serum transferrin, is a glycoprotein found in the
blood that plays a crucial role in iron metabolism. It binds to iron in circulation and
facilitates its transport into cells. Additionally, TRF regulates hepcidin, a peptide hormone
produced in the liver responsible for controlling the distribution of iron throughout the
body (Gkouvatsos, Papanikolaou & Pantopoulos, 2012). While no direct association of TRF
with PH has been reported, iron deficiency and hepcidin, regulated by TRF, are directly
implicated in the development of PH (Quatredeniers et al., 2021). Intracellular iron
deficiency in pulmonary arterial smooth muscle cells (PASMCs) can induce pulmonary
vasoconstriction, ultimately leading to PH and right heart failure in mice (Lakhal-Littleton
et al., 2019). Hepcidin contributed to pulmonary vascular remodeling by enhancing
human PASMCs proliferation (Ramakrishnan et al., 2018). In PH human patients,
reduced serum iron, elevated TRF and hepcidin levels were observed (Rhodes et al., 2011;
Robinson et al., 2014).

Complement component 3 (C3) is a protein in the innate immune system that plays a
role in the complement cascade, a series of reactions that act as the first line of defense to
eliminate pathogens and injurious stimuli (Markiewski & Lambris, 2007). C3 has been
suggested to be involved in the pathogenesis of PH, as its expression was found to be
increased in the lungs of patients with idiopathic pulmonary arterial hypertension (IPAH)
and hypoxia-induced PH mice. Additionally, the loss of C3 attenuated pulmonary arterial
remodeling in hypoxia-induced PHmice (Bauer et al., 2011). Moreover, circulating C3 has
been implicated as a diagnostic biomarker in IPAH (Abdul-Salam et al., 2006; Zhang et al.,
2009).

Among the selected phosphoproteins including SNRPG, A2M, ZBTB42, HPX, TRF and
C3, only A2M and TRF have been studied in relation to vascular remodeling. The
intensity of none of these phosphoproteins correlated with estimated PAP accessed by
echocardiography. The intensity of TRF weakly correlated with age, whereas A2M did not,
suggesting that A2Mmight be a possible candidate for diagnosing PH in dogs affected with
DMVD. Nevertheless, the specific role of this phosphoprotein in PH has not been
reported. Further research is necessary to understand the specific role of A2M in the
pathogenesis of PH.
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Limitations
Several limitations in this study should be acknowledged. Firstly, it was challenging to
completely control for various factors such as age, sex, breed, and previous treatment with
cardiovascular drugs, which could potentially influence the expression of serum
phosphoproteins. Dogs with varying ages, sexes, and breeds exhibit physiological
differences that may influence serum phosphoprotein expression. While age has been
reported to impact the total protein concentrations, sex and breed generally do not, but
specific protein levels may be influenced. In humans, A2M and TRF levels vary with age
and sex (Han et al., 2014; Higgins, Chan & Adeli, 2017; Tungtrongchitr et al., 2003);
however, our study demonstrated that only the intensity of phosphoTRF correlated with
age. According to the effect of cardiovascular drugs, the online-based software Stitch
(version 5.0) revealed no association between the drugs and the focused phosphoproteins.
Secondly, the unequal distribution of each group results from a limited time to collect
samples. Proteomic analysis needs all samples processed simultaneously, requiring
collection from all groups before the experiment. Prolonged storage risks sample
deterioration. Therefore, we need to collect samples as equitably as possible among all
groups. Thirdly, the phosphoproteomic techniques utilized in this study require expensive
equipment and skilled scientists, making their routine use in veterinary clinical practice
currently unfeasible. Despite these practical limitations, this study offers valuable insights
into phosphoproteomic research in veterinary medicine. The findings of this study can
serve as a foundation for future research endeavors aimed at developing a novel diagnostic
method for PH in dogs with DMVD.

CONCLUSIONS
In conclusion, this study aimed to identify unique and upregulated serum
phosphoproteins expressed in the DMVD+PH group using phosphoproteins enrichment
followed by LC-MS/MS. The results demonstrate the potential of this technique for
identifying phosphoproteins biomarkers for diagnosing of PH secondary to DMVD in
dogs. Among the uniquely expressed and differentially upregulated phosphoproteins,
alpha-2-macroglobulin (A2M) might be a potential candidate for diagnosing PH in dogs
affected with DMVD based on their p-value and the evidence suggested to be associated
with the pathogenesis of pulmonary arterial remodeling. The findings of this study can
serve as a foundation for future research endeavors aimed at developing a novel diagnostic
method for PH in dogs with DMVD.
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