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Abstract

Background. In recent years, single-cell RNA sequencing technology has stood out and
developed rapidly. Enabling researchers to gain a more comprehensive understanding of the
properties and functions of individual cells. Therefore, the accurate description and classification
of single cell identity has become an important and formidable challenge.

Methods. This study meticulously investigates ten widely adopted algorithms designed for the
identification of cell identities within single-cell RNA sequencing data. This distinguished set of
algorithms encompasses SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, celllD,
scCATCH, SCINA. Leveraging these ten algorithms as a foundation, an R package, christened
"scAnnoX", has been meticulously crafted. Its purpose is to harmoniously integrate these
disparate algorithms for cell identity identification in single-cell RNA sequencing data, providing
a cohesive framework that greatly facilitates comparative analyses among them.

Results. The overarching objective of this endeavor is to empower researchers in their pursuit of
more efficient analyses of single-cell RNA sequencing data. This, in turn, equips them with the
knowledge needed to make informed decisions within the intricate landscape of single-cell
identity identification algorithms. The integrated environment of "scAnnoX" simplifies the
processes of testing, evaluation, and comparison among a variety of algorithms. Interested
parties can access the "scAnnoX" package at https://github.com/XQ-hub/scAnnoX.
Introduction

In the realm of single-cell omics research, the evolution of single-cell sequencing technology has
afforded us a profound insight into the gene expression profiles and functional roles of distinct
cell types within diverse biological organisms (Balzer et al. 2021; Kolodziejczyk et al. 2015;
Rossin et al. 2021; Slovin et al. 2021). Single-cell identity recognition algorithms equip
researchers with the means to accurately ascertain and categorize the identities of individual cells
(Brendel et al. 2022; Kim et al. 2020), contributing to the identification of potential disease
biomarkers or aberrant cell types (Bod et al. 2023; Hickey et al. 2023). This has a paramount
bearing on the early diagnosis and treatment of a range of diseases, including cancer, immune
system disorders, and neurological conditions (Chen et al. 2023; Fu etal. 2021; Wang et al.
2022). Consequently, single-cell identity recognition algorithms occupy a pivotal position in
con-temporary biomedical research. Furthermore, as researchers increasingly focus on this field,
a multitude of algorithms is at their disposal for selection.

Unquestionably, these algorithms autonomously annotate individual cells based on their gene
expression profiles. One approach involves the annotation predicated on marker genes associated
with cell types and the scoring of the presence of these marker genes within cell clusters
(Pasquini et al. 2021). The second method necessitates a reference dataset containing information
about cell types to compute the similarity between the expression profiles of query genes and the
reference dataset. This calculation yields a similarity score between the reference and query
datasets, facilitating the identification of optimal correlations between them. A recent and
noteworthy approach involves the integration of machine learning techniques with single-cell
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identity recognition algorithms. The most frequently employed method within this category is
supervised learning, which entails the training of a classifier using labeled references.
Nonetheless, the selection of the appropriate algorithm, data preprocessing, model tuning, and
related tasks often demand a substantial investment of time and effort. Consequently,
determining the most suitable algorithm for a specific research objective is frequently a
challenging undertaking. Each algorithm possesses distinctive applicability and constraints,
necessitating an in-depth understanding of their intricacies to make informed choices. The
process of narrowing down the selection from among numerous algorithms is labor-intensive and
time-consuming. Thus, comprehending and addressing this challenge is of paramount
importance.

In this context, the present study has developed an R package known as "scAnnoX" that
amalgamates 10 distinct single-cell RNA sequencing data cell identity recognition algorithms
into a unified framework, facilitating comparative analysis. The overarching goal is to assist
researchers in efficiently analyzing scRNA-seq data, offering targeted guidance to make
judicious decisions in the intricate selection of single-cell identity recognition algorithms, and
simplifying the process of testing, evaluating, and comparing various algorithms within an
integrated environment.

Researchers have substantiated the efficacy and stability of this R package through extensive
testing on multiple authentic datasets. The development of this tool is poised to expedite the
analysis of single-cell RNA sequencing data, granting researchers greater convenience and
flexibility in exploring the intricacies of cell types and gene expression. This endeavor holds
profound significance for the progression of the field of single-cell biology and has the potential
to deepen our comprehension of cellular diversity and function.

Materials & Methods

This research endeavor has yielded an R package, denoted as "scAnnoX", designed to
comprehensively amalgamate ten distinct algorithms for single-cell RNA sequencing data cell
identity recognition. These algorithms encompass SingleR (Aran et al. 2019), Seurat (Hao et al.
2023), sciBet (Li et al. 2020), scmap (Kiselev et al. 2018), CHETAH (de Kanter et al. 2019),
scSorter (Guo & Li 2021), sc.type (lanevski et al. 2022), cellID (Cortal et al. 2021), scCATCH
(Shao et al. 2020), SCINA (Zhang et al. 2019). The package further serves the purpose of
facilitating comparative analyses among these algorithms. In each instance, source code
packages were diligently installed, or scripts meticulously sourced from GitHub repositories.
Evaluating the performance of 10 single-cell identity recognition algorithms is a multifaceted
endeavor, necessitating the establishment of clearly defined methodologies and the
implementation of a rigorous set of standardized experimental procedures.

Data Preprocessing

In the initial phase, the p 1 ary undertaking involves the ingestion of raw single-cell RNA
sequencing data, followed by data refinement, feature extraction, and the establishment of a
Seurat object to serve as a repository for this dataset. Subsequently, the application of the
"NormalizeData" function, accessible through the Seurat package, normalizes the data while
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allowing the specification of a normalization method, typically employing logarithmic
normalization. Lastly, the data undergoes Principal Component Analysis (PCA) dimensionality
reduction via the utilization of the "RunPCA" function, also sourced from the Seurat package.
PCA stands as a widely acknowledged dimensionality reduction technique, aimed at curtailing
data dimensionality while capturing salient variations within the dataset. This process aids in
facilitating a more profound comprehension and visualization of the similarities and disparities
between individual cells. Data preprocessing constitutes a pivotal phase in the analysis of single-
cell RNA sequencing data, with the requisite conversion of data into the Seurat format being an
indispensable prerequisite, effectively executed through the implementation of the "scAnnoX"
package.

Algorithm Selection

This study delves into an array of 10 prominent algorithms for identifying cell types within
single-cell RNA sequencing data. These algorithms encompass diverse methodologies and
features. Among these, certain tools rely on the annotation of marker genes associated with
specific cell types, such as scCATCH, scSorter, SCINA and sc.type. Others leverage information
derived from reference cell type datasets, exemplified by SingleR, Scmap and CHETAH.
Further, certain tools are designed to train classifiers utilizing machine learning techniques, as
exemplified by sciBet. The package also includes non-clustered multivariate statistical methods
such as celllD, an automated tool for annotation of cellular heterogeneity based on single-cell
clusters, and the Seurat method tailored for the analysis of single-cell RNA sequencing data.
Algorithm Integration

This task involves integrating and ¢=~*mizing 10 different single-cell RNA sequencing data cell
identity recognition algorithms. Eac % f these algorithms has unique strengths and applications,
so cleverly combining them will provide researchers with a broader range of choices and more
powerful tools. This effort aims to enhance the diversity of data processing, thereby improving
the feasibility of research. To optimize algorithm integration, we need to delve into the
performance and characteristics of these different algorithms and find the best way to integrate
them to ensure they can work together, considering data quality and characteristics.

In the "scAnnoX" package, there is a function called "autoAnnoResult", which is used to
aggregate and summarize the predictions of the 10 different algorithms. After the aggregation,
the frequency (Npreq) of each prediction for the same sample is calculated and expressed as a
ratio to the total number of methods (N,,,;s), yielding the frequency of each prediction. The
result of the "autoAnnoResult" function is the prediction with the highest frequency and is

determined by the formula:
N

pred)
Ntools

This result serves as the final prediction in the "scAnnoX" package, effectively integrating

argmax (p =

multiple algorithms. Through this approach, researchers will be able to analyze and interpret
single-cell RNA sequencing data, providing them with more powerful tools and a wider range of
choices for scientific research more effectively. In summary, by optimizing algorithm
integration, we can better leverage the strengths of different algorithms, improve the efficiency
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and accuracy of data processing, and advance research. This will contribute to strengthening the
analysis of single-cell RNA sequencing data, offering broader possibilities and more insights for
various research endeavors.

Experimental Validation

Datasets originating from diverse organizational sources and various data platforms were
partitioned into test and reference sets in a 6:4 ratio. The test set served the purpose of evaluating
the algorithm's performance, while the reference set was employed for model training or served
as a performance benchmark. Leveraging the scAnnoX package, we conducted data annotation
and validation, leveraging a suite of functions for assessing the precision and consistency of
single-cell RNA sequencing data. We scrutinized the alignment of their predictions on the test
set against the ground truth labels within the reference set. Diverse performance metrics were
employed to gauge the accuracy and reliability of the algorithm, facilitating the selection of the
most appropriate algorithm to fulfill research requirements. This method assists in determining
which algorithm excels in the validation of multi-source data.

Performance Assessment

Performance metrics serve as meooorement standards employed to appraise the efficacy of
models, algorithms, or systems v.....in the context of specific tasks. In this context, we present a
pivotal performance metric, accuracy. Accuracy stands as a ubiquitous metric utilized to assess
the effectiveness of classification models or algorithms. It gauges the ratio of correctly predicted
samples by the model in relation to the overall sample count. The formula for calculating
accuracy is succinctly expressed as follows:

Npred:ActureAnno

N
where Npred=actureanno signifies the count of samples for which the model's or algorithm's

acc =

predictions align with the authentic labels, while N denotes the aggregate sample count.

Root Mean Square Error of Prediction Performance

The root mean square error (RMSE) is a statistical metric that quantifies the disparity between
predicted and actual values. It is calculated as the square root of the mean of the squared
differences between predicted and actual values, divided by the total number of observations.
RMSE is particularly sensitive to atypical data points, often referred to as outliers, making it a
valuable tool for assessing the overall accuracy and robustness of predictive models. The formula
for RMSE is defined as follows:

n
1
RMSE = NZ(true(- — pred;)?
=1

In this equation, N denotes the total number of experiments conducted, n signifies the count of
predicted samples, true; represents the true value for the sample, and pred; is indicative of the
predicted value for the same sample.

Results

R Package Development for Single-cell RNA Sequencing Data Annotation
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Utilizing the R programming language, we have successfully engineered an R package called
"scAnnoX". This meticulously crafted package integrates a comprehensive suite of 10 distinct
annotation algorithms, as previously elucidated. Each of these algorithms exhibits unique
applicability and inherent limitations. To facilitate users in selecting the most appropriate
algorithm tailored to their specific research needs, we have thoughtfully designed comprehensive
user instructions for scAnnoX. These user-friendly instructions ensure effortless accessibility and
operation of all the integrated annotation algorithms. Furthermore, we have painstakingly
finetuned and optimized this R package to guarantee not only its stability but also its efficiency.
Our implementation adheres to the highest standards of programming practices, ensuring the
long-term maintainability and extensibility of the package. This equips scAnnoX to seamlessly
adapt to evolving requirements and readily accommodate the integration of new annotation
algorithms. The specific architecture of the scAnnoX package is shown in Figure 1.

In summation, the scAnnoX package offers users the capability to effortlessly harness the power
of 10 diverse annotation algorithms, empowering them to attain their data analysis objectives
without the need for arduous investments of time and effort. The development of this R package
is rooted in the objective of streamlining and enhancing data analysis processes, ultimately
fostering greater convenience and efficiency.

Usage of the scAnnoX Package

The utilization of the scAnnoX package involves the organization and transformation of raw data
to comply with the requirements of the Seurat data format. This ensures that the dataset's
columns include gene expression values and cell identity information. The data undergo
preprocessing steps such as standardization and dimension reduction. Subsequently, the testing
dataset is annotated using the "autoAnnoTools" function provided within the package. The
essential parameters for the "autoAnnoTools" function include the pre-processed testing dataset,
the name of the single-cell annotation tool (method), and the type of single-cell annotation tool
(strategy). Optional parameters encompass the reference dataset, reference cell types, and marker
gene information, with their default values set to NULL. The available values for the method
parameter correspond to 10 different single-cell identity recognition algorithms, namely:
SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, celllD, scCATCH, SCINA. The
strategy for single-cell annotation tools can be classified into two types: marker-based or
reference-based. We consider scSorter, sc.type, celllD, scCATCH, SCINA as marker-based tools
(see Materials and Methods).

The necessity of optional parameters depends on the value of the method. If the method is a
marker-based algorithm, marker gene information needs to be provided. If the method is
reference-based, both the reference dataset and reference cell types need to be provided.

The output of the "autoAnnoTools" function is the annotation results of the chosen single-cell
identity recognition algorithm for the samples within the testing dataset. These annotation results
assist in determining the single-cell identity of each sample. Usage examples of the scAnnoX
package can be found at https://github.com/XQ-hub/scAnnoX/vignettes/example.R, with the
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code and output results provided therein. This exemplar serves as a valuable reference for
understanding the practical implementation of the package in your research.

Annotation for Accuracy Assessment of Internal Datasets

To substantiate and compare the precision of ten annotation tools, datasets emanating from
diverse tissue origins and distinct data acquisition platforms were partitioned into experimental
test sets and reference sets, maintaining a 6:4 ratio. Comprehensive scrutiny was undertaken to
rigorously assess the efficacy of these computational algorithms within the confines of the given
datasets. In this study, we conducted a comprehensive evaluation of algorithmic performance
using the scAnnoX software package on four distinct single-cell omics datasets. Specifically, our
analysis centered around the human islet cells dataset by Xin Y et al. (Xin et al. 2016), where the
scSorter and SCINA algorithms exhibited exceptional capabilities, achieving outstanding
classification accuracy of 99.69% (Figure. 2A). Furthermore, we extended our assessment to
include the human liver tissue dataset by Camp JG et al. (Camp et al. 2017) and the human brain
transcriptome dataset by Darmanis S et al. (Darmanis et al. 2015), where the sciBet algorithm
demonstrated remarkable performance with classification accuracies of 98.43% and 87.83%,
respectively (Figures. 2B, C). In the case of the human liver tissue dataset, the sc.type algorithm
also achieved a classification accuracy comparable to sciBet. Of particular significance was the
performance of the SingleR algorithm, which achieved an impressive accuracy of 88.89% in
classifying cell types within the human brain transcriptome dataset and an exceptional accuracy
0f 96.17% in the adult mouse cortical cell dataset by Tasic B et al. (Figure. 2D) (Tasic et al.
2016). In contrast, the performance of the celllD was comparatively subdued, demonstrating an
accuracy of 61.78% in the human liver tissue dataset and a mere 12.91% accuracy in the human
pancreatic islet cell tissue dataset. Furthermore, it is noteworthy that the performance of scmap
and scCATCH, while competitive in certain contexts, exhibits considerable variability and
susceptibility to the characteristics of diverse datasets.

Based on the evaluations, we utilized integrated results obtained through the built-in
functionalities of autoAnnoTools within the scAnnoX software package. As exemplified with
human islet cells and human liver tissue datasets, we conducted two-dimensional visualizations
of original cell types, scAnnoX package predicted cell types, and those predicted by one of the
algorithms (Figures. 2E, F). The Uniform Manifold Approximation and Projection (UMAP)
visualization demonstrated remarkable stability and robust performance within the integrated
results.

Precision Assessment of Cross-Platform Datasets

The diversity of scRNA-seq techniques offers a valuable opportunity for cross-platform
validation of datasets derived from the same biological tissue. To substantiate this assertion, we
conducted a precision assessment experiment on cross-platform datasets using two independent
and well-sequenced datasets originating from different sequencing platforms. The primary
objective of this study was to evaluate the performance of the scAnnoX package
comprehensively and systematically. Two distinct sets of datasets were subjected to validation in
this experiment, one sourced from pancreatic tissue, as reported by Xin Y et al and Lawlor N et
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al (Lawlor et al. 2017), and the other from thymic tissue, as reported by Yasumizu Y et al
(Yasumizu et al. 2022) and Park JE et al (Park et al. 2020). Each set of datasets, obtained from
different platforms, underwent random subsampling, designating one dataset as the reference
dataset and the other as the test dataset. We compared the annotation accuracy of ten annotation
algorithms embedded within the scAnnoX package and subsequently derived an integrated
annotation accuracy metric.

In the context of a cross-platform pancreatic tissue dataset, we utilized the dataset curated by Xin
Y etal. as a reference training set and Lawlor N et al.'s dataset as the testing set, focusing on four
common cell types shared between the two datasets (Figures. 3A, B). Our objective was to
evaluate the performance of various computational tools in identifying and annotating the cell
types in the test dataset. The results of this validation exercise clearly demonstrate the robustness
of most tools in accurately characterizing and annotating the test dataset. Specifically, SingleR,
sciBet, scSorter, and SCINA exhibited a remarkable predictive accuracy of 99%, while Seurat
achieved an accuracy of 96.59%. It is noteworthy that SingleR displayed suboptimal
performance in the identification of pancreatic polypeptide-secreting cells (PP) and delta cell
types, whereas Seurat exhibited shortcomings in recognizing delta cell types (Figure. 3C).
Further analysis revealed that the challenges in distinguishing these cell types can be attributed to
their relatively low cell counts, especially the scarcity of pancreatic polypeptide secreting cells
within the islet (Figure. 3A). Notably, scAnnoX, leveraging integrated annotations, emerged as
the top performing result with an impressive accuracy of 99.69%. This exceptional performance
is most striking in its perfect prediction accuracy of 100% for alpha, beta, and delta cell types,
surpassing the performance of other algorithms (Figure. 3C).

In the context of a multi-platform thymic tissue dataset, we assessed the reference dataset by
Park JE et al., using it as the baseline for validation against the dataset pro-vided by Yasumizu Y
et al. Given the high heterogeneity in cell types and the limited sample sizes within certain cell
type categories, we performed a comprehensive re-classification and aggregation of cell types
within the dataset. Specifically, we have amalgamated subtypes such as mTEC(I), mTEC(II),
mTEC(III), and mTEC(IV) into a unified category referred to as "mTEC" while consolidating
subtypes including DC1, DC2, and aDC into a category denoted as "DC". Subsequently, we
determined the predictive accuracy for each cell type (Figure. 4A). Following the data
preprocessing steps, we proceeded to evaluate the annotation performance of various
computational algorithms. It is imperative to note that due to the intricate nature of cell types and
the potential confounding effects of batch processing, the validation results were not entirely
satisfactory. The accuracy of most intrinsic methods tended to con-verge within the range of
45% to 66% (Figure. 4B). Notably, scAnnoX, after integration, achieved an accuracy of 67.2%.
However, it is worth mentioning that the misclassification of cell types predominantly centered
around the fine-grained subtyping of B cells and T cells (Figures. 4C, D).

This investigation underscores the complexities inherent in single-cell omics data analysis,
particularly in the context of intricate cell type distinctions, and highlights the significance of
algorithmic enhancements to bolster the accuracy of cell type annotations.
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Stability Assessment of Annotations for scAnnoX

In the context of the experiments, we have successfully achieved a high predictive accuracy for
the integrated results. Furthermore, we conducted a comprehensive analysis to assess the
robustness and reliability of these integrated findings.

We conducted a comprehensive integration and synthesis of all the experiments, generating
integrated predictions for each one. By leveraging the built-in functionalities of the scAnnoX
software package, we obtained integration results for each experiment. In comparison to various
algorithms, scAnnoX consistently exhibited outstanding predictive performance, maintaining a
consistently high level of accuracy, as depicted in Figure 5A and 5B. To further assess the
robustness and flexibility of scAnnoX's integrated results, we calculated the root mean square
error be-tween predictive performance and actual cell types (Figure. 5C). This evaluation
unequivocally demonstrates the stability and resilience of the integration results provided by the
scAnnoX software package. Additionally, our study underscores the significant capability of
integration results in mitigating the adverse effects of data sparsity and batch effects relative to
single algorithms. This enhanced robustness and exceptional performance further underscore the
stability and reliability of our approach.

Comparative Analysis of Computational Runtime

Building upon experiments validating our in-house dataset, our study undertook a comprehensive
analysis that unveiled profound disparities among ten distinct single-cell identity recognition
algorithms concerning their computational execution times. This investigation underscores the
significance of our work in shedding light on the temporal dynamics of these algorithms, a
crucial dimension in the ever-evolving landscape of single-cell omics research.

In the pancreatic islet cell dataset, we grappled with an extensive volume of data, encompassing
38,008 genes and 1,809 samples. Notably, sc.type and the SCINA method exhibited exceptional
efficiency in this regard, completing the analysis within 0.30 and 0.55 seconds, respectively
(Figure. 6A). In fact, they boasted the shortest processing times among the ten algorithms we
evaluated, an achievement that merits strong emphasis. Conversely, scSorter and celllD
necessitated relatively longer durations to fulfill the task. In the liver and brain tissue datasets,
featuring 465 and 466 samples respectively and approximately twenty thousand genes, sc.type
and SCINA continued to deliver outstanding performance, with execution times remaining under
0.6 seconds, and even dipping to 0.3 seconds in the case of the hepatic tissue dataset (Figures.
6B, C). In the mouse cortical cell dataset, encompassing 1,600 and 1,809 samples, and harboring
complex cell types, sc.type still managed to provide predictions within 0.5 seconds, while
scCATCH reached 221.75 seconds (Figure. 6D). In summation of the time assessments from
these experiments, it is evident that sc.type and SCINA consistently exhibit highly favorable
performance, whereas scSorter and celllD require relatively longer durations to complete their
tasks. scCATCH demonstrates an increase in runtime when faced with datasets featuring
complex cell types.

The experimental analysis results regarding the running times of various algorithms across
different datasets reveal a noteworthy trend: a substantial increase in sample size or data
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complexity corresponds to an increment in time consumption. To be more specific about the
runtime implications, certain algorithms exhibit substantial variations, while others remain
relatively stable.

Initially, our observations demonstrate a significant augmentation in the running times of the
CelllD, sciBet, scmap, Seurat, and SingleR algorithms in response to enlarged sample sizes. This
phenomenon is attributed to their necessity to process an in-creased number of data points and
undertake more computationally demanding tasks. On the contrary, the scCATCH algorithm
displays an atypical behavior as sample sizes expand. In the comparative analysis between the
human islet cell tissue dataset and the human liver tissue dataset, the running time of scCATCH
decreases with the enlargement of sample size. In contrast, certain algorithms, such as sc.type
and SCINA, appear to be less influenced by variations in sample size. This observation
underscores the superior stability and efficiency of these algorithms in handling extensive
datasets.

In summation, these findings illuminate the varying performances of distinct algorithms when
confronted with different sample sizes. Researchers should be mindful of the sample size's
influence when choosing an algorithm, ensuring it aligns with the research requirements and can
execute the analysis within a reasonable timeframe.

Discussion

With the advanc-=-nts in single-cell RNA sequencing technologies, a plethora of single-cell
annotation algor_:!:11s has emerged. Given the distinct data formats, applicability, and limitations
associated with each algorithm, researchers face the intricate task of selecting an appropriate
algorithm. This necessitates a profound understanding of the algorithmic structure embedded
within the source code. Subsequently, data preprocessing, model fine-tuning, and other
operations tailored to the input-output formats of each algorithm become imperative, demanding
substantial investments of time and effort.

Against this backdrop, this study establishes a comprehensive framework tailored to
accommodate ten prominent single-cell annotation algorithms: SingleR, Seurat, sciBet, scmap,
CHETAH, scSorter, sc.type, celllD, scCATCH, and SCINA. Within this framework, these
algorithms share a standardized data input and output schema. Consequently, researchers can
streamline their efforts by conducting a singular round of data preprocessing in adherence to the
framework's specified input format. This unified approach facilitates the validation of diverse
algorithmic methodologies, significantly alleviating the preparatory workload and time
investment for researchers.

This innovative framework not only enhances the efficiency of algorithm selection but also
provides a unified platform for the scientific community to benchmark and compare the
performance of various single-cell annotation tools. The integration of these algorithms within a
standardized framework contributes to a more streamlined and reproducible approach in the
realm of single-cell omics research.

In this study, leveraging the devised framework, we have developed an R package termed
"scAnnoX". This package seamlessly integrates ten distinct single-cell RNA sequencing data cell

10
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identity recognition algorithms into the established framework, facilitating comparative analyses.
Additionally, within scAnnoX, a function named "autoAnnoResult" has been implemented. This
function serves the purpose of generating the integrated predictions of scAnnoX, which,
following validation across diverse datasets, attests to the commendable robust performance of
the integrated predictions achieved by scAnnoX.

Researchers, utilizing the scAnnoX package, have the flexibility to select and validate one or
more algorithms embedded within the package, enabling comparative analyses across diverse
algorithms. Tailoring their investigations to align with specific research objectives, the
researchers conducted extensive downstream analyses in this study. Specifically, we validated
and compared the runtime performance of ten algorithms, elucidating variations in their
execution times. Furthermore, the investigation unveiled temporal fluctuations in algorithmic
performance across distinct datasets, facilitating an understanding of the differential impacts of
various datasets on algorithmic behavior. This experimental evidence contributes to the
assessment of algorithmic robustness and resilience.

The overarching objective of this study is to facilitate the effective analysis of single-cell RNA
sequencing data, providing targeted guidance to researchers for making informed decisions
within the intricate landscape of single-cell identity recognition algorithms. The research aims to
streamline the processes of testing, evaluation, and comparison, offering valuable insights to the
scientific community. This work endeavors to empower researchers with the tools needed to
navigate the complexities of algorithm selection, ultimately contributing to the simplification of
the testing, assessment, and comparative analysis processes in the realm of single-cell RNA
sequencing data analysis.

Conclusions

Our study, grounded in the field of single-cell omics, has resulted in the development of an R
package named "scAnnoX" by integrating ten distinct single-cell RNA sequencing data
identification algorithms, including SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type,
celllD, scCATCH, and SCINA. The primary objective of this software package is to provide a
unified framework that alleviates the dilemma faced by researchers when selecting the most
suitable single-cell RNA sequencing data identification algorithm for their specific research
methods, objectives, and datasets. scAnnoX reduces the time and effort required for data
preprocessing and model optimization.

The development of the "scAnnoX" package was driven by a need to gain a deeper
understanding of the intricacies of each algorithm and to synthesize a common input schema
applicable to all single-cell RNA sequencing data identification algorithms. This allows
researchers to obtain experimental results from these ten algorithms by using only the
"scAnnoX" package and further improve predictive accuracy through the "autoAnnoResult"
function. As a result, researchers can significantly reduce the preparatory workload.

Employing the "scAnnoX" software package, our study conducted a comparative assessment of
the accuracy and runtime performance of ten algorithms across diverse datasets. This assessment
encompassed both internal validation experiments and cross-platform validation experiments.

1
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The results underscore the pivotal role of "scAnnoX" in providing researchers with a vital
decision-making tool, enabling them to make informed selections based on their research
objectives. These experimental findings not only validate the significance of algorithm
integration and comparison but also offer robust support for researchers to make prudent
algorithm choices in specific research scenarios.

Moreover, this research underscores the critical importance of performance evaluations,
encompassing accuracy and runtime, in the realm of single-cell RNA sequencing data analysis.
This provides a potent tool for analyzing single-cell RNA sequencing data and holds the
potential to drive substantial advancements in biomedical research.
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