
Selective concentration of iron, titanium,
and zirconium substrate minerals within
Gregory’s diverticulum, an organ unique
to derived sand dollars (Echinoidea:
Scutelliformes)
Louis G. Zachos1 and Alexander Ziegler2

1 Department of Geology and Geological Engineering, University of Mississippi, Oxford,
Mississippi, United States

2 Bonner Institut für Organismische Biologie, Rheinische Friedrich-Wilhelms-Universität, Bonn,
Germany

ABSTRACT
Gregory’s diverticulum, a digestive tract structure unique to a derived group of sand
dollars (Echinoidea: Scutelliformes), is filled with sand grains obtained from the
substrate the animals inhabit. The simple methods of shining a bright light through a
specimen or testing response to a magnet can reveal the presence of a mineral-filled
diverticulum. Heavy minerals with a specific gravity of >2.9 g/cm3 are selectively
concentrated inside the organ, usually at concentrations one order of magnitude, or
more, greater than found in the substrate. Analyses of diverticulum content for
thirteen species from nine genera, using optical mineralogy, powder X-ray
diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy,
as well as micro-computed tomography shows the preference for selection of five
major heavy minerals: magnetite (Fe3O4), hematite (Fe2O3), ilmenite (FeTiO3), rutile
(TiO2), and zircon (ZrSiO4). Minor amounts of heavy or marginally heavy
amphibole, pyroxene and garnet mineral grains may also be incorporated. In general,
the animals exhibit a preference for mineral grains with a specific gravity of >4.0 g/
cm3, although the choice is opportunistic and the actual mix of mineral species
depends on the mineral composition of the substrate. The animals also select for
grain size, with mineral grains generally in the range of 50 to 150 mm, and do not
appear to alter this preference during ontogeny. A comparison of analytical methods
demonstrates that X-ray attenuation measured using micro-computed tomography
is a reliable non-destructive method for heavy mineral quantification when
supported by associated analyses of mineral grains extracted destructively from
specimens or from substrate collected together with the specimens. Commonalities
in the electro-chemical surface properties of the ingested minerals suggest that such
characteristics play an important role in the selection process.
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INTRODUCTION
The distinctive group of echinoids known familiarly as sand dollars is globally distributed
along tropical to temperate coasts, and the flattened morphology is adapted to sandy,
shallow littoral waters exposed to wave and tidal current energy (Smith, 1984). The sand
dollars are divided into the Laganiformes and Scutelliformes, considered to be either sister
(Mongiardino Koch & Thompson, 2021; Mongiardino Koch et al., 2022) or polyphyletic
(Lee et al., 2023) clades. Scutelliformes are often considered to be “true” sand dollars
(Mongiardino Koch et al., 2018). Most extant scutelliform sand dollar species possess a soft
tissue organ derived from the digestive tract known as Gregory’s diverticulum (Gregory,
1905;Mitchell, 1972; Lawrence, 2001; Ziegler & Barr, 2018; Ziegler, 2023). This structure is
a transparent, blindly ending, ramified tube attached to the rectum via a short canal, the
duct connector (Fig. 1). Prior to sexual maturity, the animals fill the diverticulum with
mineral grains picked up from the substrate (Mitchell, 1972; Chia, 1973). During ontogeny,
the mineral grains are usually entirely expelled from a given point on and the diverticulum
then atrophies (Ziegler et al., 2016). The earliest interpretation of this behavior suggested
that the mineral grains have a ballast function, literally acting as a weight belt intended to
render the animals heavier and improve hydrodynamic stability (Chia, 1973). A mineral-
grain-filled diverticulum occurs in (and is restricted to) a well-defined group of
scutelliforms (Linder, Durham & Orr, 1988; Mooi & Chen, 1996; Ziegler et al., 2016). A
number of studies have found that there is a strong preference for the presence of heavy
minerals with a specific gravity greater than 2.9 g/cm3 inside the diverticulum. For
example, Dendraster excentricus and Mellita quinquiesperforata both select for iron oxide
minerals (Chia, 1973, 1985; Borzone, Tavares & Soares, 1997), while Scaphechinus mirabilis
accumulates zircon and ilmenite at much higher concentrations than found in the
substrate (Elkin et al., 2012; Begun et al., 2014). However, one study reported that
Sinaechinocyamus mai selected grains with approximately the same proportion of light to
heavy minerals as found in the substrate (Chen & Chen, 1994). In addition, other studies
have suggested that minerals are degraded in the diverticulum or the intestine instead of
being expelled (Chia, 1985; Elkin et al., 2013). Unfortunately, nearly all previous
mineralogical studies of mineral grains found inside the organ as well as in the substrate
were based on optical methods using a petrographic microscope. In only a single case
(Elkin et al., 2012) the optical identifications were verified using energy dispersive X-ray
spectroscopy (EDS).

In order to provide a comprehensive picture of mineral selection in scutelliform sand
dollars, the primary objective of the present study was to delineate any patterns in the
selection of mineral grains that might occur. In particular, we set out to understand how
the type and proportion of minerals in Gregory’s diverticulum are related to those in the
substrate. In addition, a further objective of the present study was to evaluate the precision
and accuracy of different analytical methods, both destructive and non-destructive, to
identify the ingested minerals.
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Figure 1 Morphological aspects of Gregory’s diverticulum in Echinarachnius parma. (A) Aboral view
of juvenile specimen with transmitted light exposing selected internal structures such as Aristotle’s
lantern (al), stomach (s), rectum (r), and Gregory’s diverticulum (d). (B) Aboral view of juvenile spe-
cimen with aboral half of test (t) dissected away to show internal organs, including intestine (i). (C)
Close-up of connection between intestine and rectum with duct connector (dc) branching off, followed
by the ring duct (rd). Note sediment inside the intestine and mineral grains inside the ring duct. (D) SEM
micrograph of mineral grains (g) inside Gregory’s diverticulum partially dissected open. (E) Close-up of
mineral grains inside the ring duct. Full-size DOI: 10.7717/peerj.17178/fig-1
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MATERIALS AND METHODS
Specimens
Various sources supplied juvenile specimens of extant sand dollars pertaining to thirteen
species from nine scutelliform genera known to possess Gregory’s diverticulum (Table 1).
Field collection in Costa Rica was approved by the National System of Conservation Areas
(SINAC-SE-CUSBSE-PI-R-131-2016) as well as in Mexico by the Comisión Nacional de
Acuacultura y Pesca (PPF/DGOPA-291/17). Species identifications were made based on
the most current taxonomic treatments (Harold & Telford, 1990; Mooi, 1997; Coppard,
Zigler & Lessios, 2013; Coppard, 2016; Coppard & Lessios, 2017). In addition, twenty-four
juvenile Echinarachnius parma specimens collected from Lubec, ME, USA were selected
for detailed mineralogic analysis using petrographic, powder X-ray diffraction (XRD),
scanning electron microscopy (SEM), and EDS methods.

Analysis using a strong light source
The above-mentioned twenty-four juvenile E. parma specimens were first analyzed by
projecting an intense light through each individual to confirm the presence and extent of
mineral grains inside the diverticulum (Fig. 1A). In addition, selected juvenile E. parma
specimens were dissected under a stereomicroscope to expose the organ and its contents
for subsequent photography (Fig. 1B).

Optical mineralogy
Selected specimens of E. parma were crushed, organic material was removed with sodium
hypochlorite, calcite was dissolved with 10% hydrochloric acid, and the remains were
washed in alternating baths of distilled water and ethanol. Diverticulum grains from five
specimens were mounted on glass slides for optical identification of mineral species using a
petrographic microscope.

Grain size measurements
The size of diverticulum grains was measured directly from SEM micrographs. Substrate
samples from Lubec, ME, USA were sieved into size fractions using the sequence of US
Sieves 5/10/18/35/60/120/230/pan, which retain grains in the size ranges of ≥4.0 mm/2.0
mm/1.0 mm/0.5 mm/0.25 mm/0.125 mm/0.062 mm/<0.062 mm, respectively.

X-ray diffraction analysis
Samples for XRD analysis were, depending on species, prepared by crushing 20 to 50 whole
specimens after removing organic tissues with sodium hypochlorite. Carbonate material
from spines and test was either washed from the samples (which left minor quantities of
calcite and, in some cases, aragonite associated with microscopic amounts of sediment
retained on the exterior of the specimens), or completely removed with 10% hydrochloric
acid. The samples were powdered and mounted in holders for analysis following standard
XRD procedures. Bulk samples of substrate sands were dried and powdered without
washing or acid treatment. XRD data were acquired using a D5000 diffractometer
(Siemens AG, München, Germany).
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Table 1 List of scutelliform specimens incorporated into the present study.

Family Species Specimen Locality Test length Method Substrate Reference

Taiwanasteridae Sinaechinocyamus
mai

CASIZ
188797

Tongxiao, Taiwan, 24.49856� N,
120.669374� E

6.5 mm µCT Not available This study

NMNS 2689-
178

Off Dingtoue Sandbar, Taiwan,
23.106660� N, 120.036576� E

7.5 mm µCT Not available This study

Unvouchered Tongxiao, Taiwan, 24.489167�

N, 120.662500� E
2–10.5 mm Optical,

X-ray
Available Chen & Chen

(1994)

Echinarachniidae Echinarachnius
parma

Unvouchered Mowry Beach, Lubec, ME, USA,
44.842678� N, 66.977014� W

1–25 mm EDS, Optical,
XRD

Available This study

Unvouchered Mowry Beach, Lubec, ME, USA,
44.842678� N, 66.977014� W

4 mm µCT Available This study

MCZ Ech-
2613

Off Grand Manan Island,
Canada

10 mm µCT Not available This study

Unvouchered Off New Jersey, USA <10 mm Optical Not available Serafy (1978),
Serafy &
Fell (1985)

Scutellidae Scaphechinus
mirabilis

ZMB Ech
7405

Busan, South Korea, 35.150601�

N, 129.118146� E
21 mm µCT Not available This study

Unvouchered Grotovaya Bay, Peter the Great
Bay, Russia, 42.612401� N,
131.134623� E

Unknown EDS, Optical Available Elkin et al.
(2012)

Unvouchered Grotovaya Bay, Peter the Great
Bay, Russia, 42.612401� N,
131.134623� E

Unknown EDS, Optical Available Elkin et al.
(2013)

Unvouchered Troitsa Bay, Peter the Great Bay,
Russia, 42.671328� N,
131.114655� E

Unknown EDS, Optical Available Begun et al.
(2014)

Dendrasteridae Dendraster
excentricus

CASIZ
094162

Coos Bay, OR, USA, 43.346120�

N, 124.349331� W
6 and 9
mm

µCT Not available This study

Unvouchered Alki Point, Seattle, WA, USA,
47.575999� N, 122.420682� W

5–32 and
70–80
mm

Optical,
X-ray

Available Chia (1973)

Unvouchered Alki Point, Seattle, WA, USA,
47.575999� N,
122.420682� W;
Eastsound, Orcas Island, WA,
USA, 48.694258� N,
122.907648� W;
False Bay, San Juan Island,
WA, USA, 48.491397� N,
123.069311� W

1.5–30 mm Optical,
X-ray

Not available Chia (1985)

Unvouchered Clayton Beach, Bellingham,
WA, USA, 48.640429� N,
122.481884� W

Unknown Optical Not available Mitchell
(1972)

Mellitidae Encope michelini Unvouchered Grayton Beach, FL, USA,
30.327587� N, 86.167302� W

12–16 mm EDS, XRD Available This study

Unvouchered Grayton Beach, FL, USA,
30.327587� N, 86.167302� W

14 mm µCT Available This study

TNSC NPL
4110-4113

Grayton Beach, FL, USA,
30.327587� N, 86.167302� W

9–16 mm µCT Available This study

(Continued)
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Scanning electron microscopy and energy dispersive X-ray
spectroscopy
SEM imagery (Fig. 1D) and EDS data were acquired using a JSM-7200 FLV FE-SEM
instrument (JEOL, Akishima, Japan). Individual mineral grains from one of the optically
analyzed specimens as well as an additional similar specimen were analyzed with EDS for
comparison between optical and XRD results. Samples of diverticulum grains were
prepared from individual specimens and small splits were mounted on stubs with carbon
tape. Some samples were coated with 4–8 nm of platinum, but charging effects were

Table 1 (continued)

Family Species Specimen Locality Test length Method Substrate Reference

Encope micropora MCZ Ech-
2625

Puntarenas, Costa Rica,
9.974683� N, 84.829808� W

36 mm µCT Not available This study

Lanthonia grantii USNM
E47210

Punta Mogote, La Paz, Mexico,
24.174844� N, 110.329893� W

16 mm µCT Not available This study

Lanthonia longifissa Unvouchered Playa Órganos, Paquera,
Costa Rica, 9.813242� N,
84.897241� W

41 mm X-ray, XRD Available This study

Leodia
sexiesperforata

CASIZ
112813

Holetown, Barbados,
13.186605� N, 59.638715� W

5 mm µCT Not available This study

ZMH E6707 Puerto Colombia, Colombia,
10.997493� N, 74.955171� W

8 mm µCT Not available This study

Mellita notabilis Unvouchered Bahia de Banderas, Puerto
Vallarta, Mexico, 20.744539�

N, 105.429570� W

27, 30 mm EDS, XRD Not available This study

Unvouchered Playa Buena Vista, Samara,
Costa Rica, 9.879258� N ,
85.558507� W

32 mm µCT, X-ray Available This study

Mellita
quinquiesperforata

Unvouchered São Sebastião, Brazil,
23.824321� S, 45.396481� W

2 mm µCT Not available This study

Unvouchered Matinhos, Brazil, 25.826879� S,
48.534226� W

1–40 mm Optical Available Borzone,
Tavares &
Soares
(1997)

Mellita tenuis Unvouchered Gulf Shores, AL, USA,
30.244595� N, 87.701098� W

5–25 mm EDS, XRD Not available This study

Unvouchered Gulf Shores, AL, USA,
30.244595� N, 87.701098� W

21 mm µCT Not available This study

CASIZ Unknown 6 mm µCT Not available This study

MCZ Ech-
8000

Marco Beach, FL, USA,
25.932500� N, 81.734029� W

11 mm µCT Not available This study

Mellitella stokesii USNM
E40733

Playa El Tamarindo, Gulf of
Fonseca, El Salvador,
13.193437� N, 87.910424� W

17 mm µCT Not available This study

Note:
CASIZ, California Academy of Sciences Invertebrate Zoology, San Francisco, CA, USA; EDS, energy-dispersive X-ray spectroscopy; MCZ, Museum of Comparative
Zoology, Cambridge, MA, USA; µCT, micro-computed tomography; NMNS, National Museum of Natural Science, Taipei, Taiwan; SEM, scanning electron microscopy;
TNSC, Texas Natural Science Center, Austin, TX, USA; USNM, United States National Museum, Washington, DC, USA; XRD, X-ray powder diffraction; ZMB, Museum
für Naturkunde, Berlin, Germany; ZMH, Zoologisches Museum Hamburg, Hamburg, Germany.
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minimal with grains less than 100 mm in diameter and better results were thus obtained
with uncoated grains.

X-ray imaging
Two-dimensional (2D) X-ray imagery was acquired using a Skyscan 1272 µCT scanning
system (Bruker, Kontich, Belgium) in 2D mode.

Micro-computed tomography
Mineral grains were identified by their X-ray attenuation using mCT at source voltages of
50 to 80 KeV—Ziegler (2012) provides parameters for selected specimens. Attenuation of
X-rays by minerals was previously described (Hanna & Ketcham, 2017), and minerals were
identified using mCT based on the MuCalc software (https://www.ctlab.geo.utexas.edu/
software/mucalctool/). The variety and general abundance of minerals was constrained by
XRD data. MuCalc was used to calculate grain-by-grain mineralogy. Processing of mCT
imagery was automated using MATLAB Version 2023a (The MathWorks, Natick, MA,
USA). All µCT datasets used in the present study have been deposited in the MorphoBank
repository and are available for public download (http://morphobank.org/permalink/?
P4915).

Image processing
Basic image processing was performed using the open source software ImageJ Version
1.52a (https://imagej.net/ij/download.html). In addition, three open source
three-dimensional (3D) imaging software packages were used for reslicing and analysis of
the µCT scans, i.e. SPIERS Version 3.0.1 (https://spiers-software.org/downloads.html),
MorphoGraphX Version 1.1.1280 (https://morphographx.org/software/), and
SlicerMorph Version 1.4 (https://slicermorph.github.io/), all running on a 64-bit Windows
operating system (Microsoft Corp., Redmond, WA, USA).

Data analysis
Data analysis, including statistical calculations and principal component (PC) analysis,
were performed using MATLAB Version 2023a.

Biogeography
Biogeographic data for scutelliform sand dollar species were obtained from the Global
Biodiversity Information Facility (GBIF) database (https://www.gbif.org/).

RESULTS
Optical mineralogy, magnetism, and grain size measurements
Results of the optical mineralogic analysis of five selected juvenile specimens of
Echinarachnius parma are shown in Table 2. Opaque minerals comprise an average of
54.5% of the mineral grains found inside the diverticulum, but cannot be further identified
optically. However, opaque minerals are often moderately to strongly magnetic and XRD
shows that they comprise magnetite, hematite, and ilmenite. In fact, many
diverticulum-bearing sand dollars respond to a strong magnet, a factor directly attributable
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to iron- and titanium-bearing mineral content and also a simple test for the presence of
Gregory’s diverticulum. However, there is no evidence of magnetotaxis, as juveniles
observed in captivity show no preferred orientation with regard to the geomagnetic field
(L. Zachos, 2023, personal observation).

The remaining non-opaque minerals inside the above-mentioned specimens comprise
primarily zircon, hornblende (an amphibole), and augite (a pyroxene), with minor
amounts of other minerals. The light mineral quartz, lithic fragments (comprising in large
part quartz and feldspar), and the light mineral clinochlore (chlorite) account for 0.8%,
3.0%, and 6.6%, respectively, of the total, resulting in an average of 89.6% heavy minerals as
a remainder (Table 2).

Grain size in the diverticulum is generally in the range of 50 to 150 mm (Fig. 2). This size
fraction is very fine to fine sand, which is finer than the fine to medium average grain size
of the substrate that these animals inhabit, i.e., 85–90% from 180 to 350 mm. The major
mineral composition of grain size fractions of sand substrate from Lubec, ME, USA does
not differ substantially from the average composition of bulk samples (Table 3). There is a
smaller proportion of free quartz in larger grain size fractions and a corresponding increase
in proportion of polymineralic lithic fragments.

Powder X-ray diffraction analysis
Mineral identification and estimates of overall composition of grains in both specimen and
substrate samples were determined using XRD. In every case examined in this study, heavy
minerals comprise 70 to >90% of the grains inside the diverticulum, but only 1 to 20% of
grains in the substrate (Table 3). Five minerals comprise the major proportion of the heavy
mineral component found in Gregory’s diverticulum: the iron (Fe) minerals magnetite
(Fe3O4) and hematite (Fe2O3), the titanium (Ti) minerals ilmenite (FeTiO3) and rutile
(TiO2), and the zirconium (Zr) mineral zircon (ZrSiO4). The remaining heavy fraction
comprises primarily amphiboles (e.g., hornblende, Ca2[(Mg,Fe)4Al](Al,Si)7O22(OH)2),
pyroxenes (e.g., augite, (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6), and garnets (e.g., andradite,
Ca3Fe2Si3O12), with other minor components, and corresponds to the results from optical

Table 2 Results of the identification of mineral grains found within Gregory’s diverticulum in juvenile specimens of Echinarachnius parma
using optical petrographic methods.

Specimen Test
length
(mm)

Quartz
(light)

Lithic
fragments
(light)

Clinochlore
(light)

Garnet
(heavy)

Kyanite
(heavy)

Hornblende
(heavy)

Augite
(heavy)

Zircon
(heavy)

Opaque
(heavy)

Light
minerals

Heavy
minerals

EA004 4.3 6 10 18 4 10 59 103 46 380 5.3% 94.7%

EA007 5 4 10 56 5 26 110 115 190 323 8.3% 91.7%

EA014 5.3 1 9 33 2 7 75 66 42 470 6.1% 93.9%

EA002 8.6 7 45 34 14 18 10 21 49 175 23.1% 76.9%

EA022 19.4 10 26 81 9 13 24 25 138 486 14.4% 85.6%

Sum 28 100 222 34 74 278 330 465 1,834 – –

Percentage 0.8% 3.0% 6.6% 1.0% 2.2% 8.3% 9.8% 13.8% 54.5% 10.4% 89.6%

Note:
All specimens collected at Lubec, ME, USA. Light minerals comprise quartz, lithic fragments, and clinochlore. Heavy minerals comprise garnet, kyanite, hornblende,
augite, zircon, and opaques (ilmenite as well as magnetite). Values are mineral grain counts and percent of total.
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Figure 2 Size distributions of diverticular grains in four scutelliform species. (A) Echinarachnius
parma, (B) Encope michelini, (C) Mellita tenuis, and (D) Mellita notabilis. Measurements were collated
from SEM micrographs of grain splits from individual specimens. SD, standard deviation.

Full-size DOI: 10.7717/peerj.17178/fig-2

Table 3 Results of X-ray powder diffraction analysis of the mineral content of Gregory’s diverticulum and available substrate for selected
juvenile scutelliform specimens in comparison with previously published data.

Species Source Reference Light
minerals
(wt %)

Heavy
minerals
(wt %)

Magnetite
(wt %)

Hematite
(wt %)

Ilmenite
(wt %)

Rutile
(wt %)

Zircon
(wt %)

Other
heavies
(wt %)

Sinaechinocyamus
mai

Diverticulum Chen & Chen (1994) 88.41 11.59 0 11.59 0 0 0 0

Substrate 90.07 9.93 0 9.93 0 0 0 0

Echinarachnius
parma

Diverticulum This study 27.1 72.9 0 0 32.9 0 19.9 20.1

Substrate 97.4 2.6 0 0 0 0 0 2.6

Scaphechinus
mirabilis

Diverticulum Elkin et al. (2012) 0 100 0 0 15 0 85 0

Substrate 88.98 11.02 0 0 0.08 0 0.02 10.92

Diverticulum Begun et al. (2014) 11.4 88.6 0 0 76.2 0 9.3 3.1

Substrate 81.9 18.1 0 0 6.9 0 0.01 11.2

(Continued)
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mineralogy (Table 2). However, the exact mix of minerals varies for the different species
recovered from different substrates, and the corresponding XRD patterns can be complex.

Scanning electron microscopy and electron-dispersive spectroscopy
analysis
While XRD analysis was here used on samples comprising thousands of mineral grains,
SEM and EDS were used to focus on individual grains. The elemental composition of a
given sand grain can be simple to complex, and direct correspondence between this grain
and a particular mineral species is often impossible when crystallographic information is
lacking. However, general patterns emerged from the data when studied using PC analysis
to simplify the dataset (Table S1). The first three PCs accounted for 87% of the sample
variance. The first (PC 1) was strongly correlated with silicon vs titanium and iron content,
the second (PC 2) strongly correlated with iron vs titanium (Fig. 3A), and the third (PC 3)
strongly correlated with aluminum vs zirconium (Fig. 3B). The elemental data plotted in
the PC space define clusters assignable to broad mineral groups and are consistent with the
results obtained from other analytical methods. Point distribution along the first principal
axis discriminates the iron and titanium oxides from other oxide, carbonate, and silicate
minerals, and distribution along the second principal axis discriminates among magnetite/
hematite, ilmenite, and rutile. Point distribution along the third principal axis
discriminates zircon and quartz from other silicate minerals. Only two rare earth elements
(REE), i.e., Ytterbium (Yb) and Neodymium (Nd) were detected in the samples analyzed,
but neither were found at greater than a small fraction of a percent.

Table 3 (continued)

Species Source Reference Light
minerals
(wt %)

Heavy
minerals
(wt %)

Magnetite
(wt %)

Hematite
(wt %)

Ilmenite
(wt %)

Rutile
(wt %)

Zircon
(wt %)

Other
heavies
(wt %)

Dendraster
excentricus

Diverticulum Chia (1973) 22 78 78 0 0 0 0 0

Substrate 90 10 9.8 0.2 0 0 0 0

Encope michelini Diverticulum This study 20.0 80.0 0 0 40.0 0 40.0 0

Substrate 100.0 0 0 0 0 0 0 0

Lanthonia longifissa Diverticulum This study 23.1 76.9 20.6 18.0 20.4 0 0 18.0

Substrate 77.2 22.8 0 0 0 0 0 22.78

Mellita
quinquiesperforata

Diverticulum Borzone, Tavares &
Soares (1997)

55–61 45-39 19–23 0 0 0 0 17–25

Substrate 63 37 4 0 0 0 0 33

Mellita notabilis Diverticulum This study 9.6 90.4 13.5 13.5 19.6 0 43.8 0

Diverticulum 15.2 84.8 59.4 3.5 19.9 0 2.1 0

Substrate 86.8 13.2 0 0 0 0 0 13.2

Mellita tenuis Diverticulum This study 23.0 77.0 0 0 0 16.3 60.7 0

Note:
All values are percent of total weight. Heavy minerals are individually tabulated and sum to the percentage of heavy minerals. Published data based on optical methods
shown for comparison.
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Micro-computed tomography analysis
Use of mCT has the advantage of permitting identification of grain mineralogy and, by
automated counting of the individual grains, estimation of the proportion of different
minerals. The analyzed mineral composition from Gregory’s diverticulum found in twelve
scutelliform species conforms, in general, with results derived from optical, XRD, and EDS
analyses (Table 4). Because of similarity in X-ray attenuation, magnetite and hematite

Figure 3 Principal component cross-plots showing point clusters associated with minerals or
mineral classes. Data are from EDS analysis of mineral grains. Subplots show principal component
(PC) loadings in terms of major cations. (A) PC 1 vs PC 2. PC 1 loadings emphasize iron and titanium vs
silicon, with heavier minerals in the negative range. PC 2 loadings emphasize iron vs titanium, differ-
entiating the primary metal oxide minerals. (B) PC 1 vs PC 3. PC 3 loadings emphasize zirconium vs
aluminum, with heavier minerals in the negative range. Full-size DOI: 10.7717/peerj.17178/fig-3
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Table 4 Results of micro-computed tomography analysis of the mineral content of Gregory’s diverticulum in selected juvenile scutelliform
specimens.

Specimen Quartz
(grain %)

Calcite
(grain %)

Hornblende
(grain %)

Garnet
(grain %)

Magnetite
& Hematite
(grain %)

Ilmenite
(grain %)

Rutile
(grain %)

Zircon
(grain %)

Heavy
Minerals
(grain %)

Sinaechinocyamus mai
CASIZ 118797, 6.5 mm

1.55 0.00 0.62 0.00 24.84 4.04 1.55 67.39 98.44

Sinaechinocyamus mai
NMNS 2689-178, 7.5 mm

0.16 0.00 0.00 0.00 0.00 0.00 0.00 99.84 99.84

Echinarachnius parma
Unvouchered, 4 mm,
virtual section 200

1.56 0.39 0.00 0.39 38.13 54.86 0.00 4.67 98.05

Echinarachnius parma
Unvouchered, 4 mm,
virtual section 225

0.00 0.00 0.00 13.09 41.36 41.01 0.00 4.54 100.00

Echinarachnius parma
Unvouchered, 4 mm,
virtual section 250

1.89 0.17 0.00 2.06 53.17 36.02 0.00 6.69 97.94

Echinarachnius parma
Unvouchered, 4 mm,
virtual section 275

2.27 0.00 1.76 2.52 61.96 22.17 0.00 8.31 97.73

Echinarachnius parma
MCZ Ech-2613, 10 mm

0.00 0.27 1.57 5.57 33.41 23.75 0.00 35.43 99.73

Scaphechinus mirabilis
ZMB Ech 7405, 21 mm

0.04 0.31 0.19 0.00 64.08 24.43 2.75 8.20 99.65

Dendraster excentricus
CASIZ 094162, 6 mm

0.72 0.72 1.56 0.00 39.95 17.70 2.39 36.96 98.56

Dendraster excentricus
CASIZ 094162, 9 mm

2.24 3.16 8.68 0.00 12.76 26.58 30.66 15.92 94.60

Encope michelini
TNSC NPL 4110, 9 mm

3.99 3.26 5.8 0.00 54.35 17.39 9.42 5.8 92.76

Encope michelini
TNSC NPL 4111, 9 mm

0.00 12.56 18.36 0.00 34.78 15.94 14.98 3.38 87.44

Encope michelini
TNSC NPL 4112, 13 mm

0.00 19.17 19.17 0.00 20.83 18.33 21.67 0.83 80.83

Encope michelini
Unvouchered, 14 mm

20.95 10.60 10.35 0.00 17.30 12.90 7.32 20.58 68.45

Encope michelini
TNSC NPL 4113, 16 mm

2.15 10.75 13.98 0.00 31.18 13.98 22.58 5.38 87.1

Encope micropora
MCZ Ech-2625, 36 mm

0.13 0.11 0.15 0.00 79.86 8.20 0.65 10.89 99.75

Lanthonia grantii
USNM E47210, 16 mm

0.00 0.05 4.07 0.00 63.73 14.11 6.51 11.53 99.95

Leodia sexiesperforata
CASIZ 112813, 5 mm

4.27 3.35 1.98 0.00 52.13 11.59 4.88 21.8 92.38

Leodia sexiesperforata
ZMH E6707, 8 mm

5.30 0.66 2.65 0.00 48.34 26.49 13.91 2.65 94.04

Mellita notabilis
Unvouchered, 32 mm

0.01 0.00 0.28 0.00 65.12 29.21 5.13 0.25 99.99
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cannot be differentiated and are thus here combined. Regardless of the species or its origin,
the proportion of heavy minerals exceeded 68%, with ilmenite, magnetite/hematite, rutile,
and zircon making up the largest proportion of the heavy mineral fraction (Table 4).
Analyses of individual specimens as well as multiple virtual mCT sections through the same
specimen of E. parma (Table 4) demonstrate variation in the proportions of different
minerals, but the mix of heavy minerals in all cases exceeded 90% of the total grains for this
species.

DISCUSSION
Methodological approach
The identification and description of the mineral grains retained in Gregory’s diverticulum
can be accomplished using a variety of methods and while each of these generates similar
results, they are not equivalent in either application or interpretation. The most precise
measurements involve analysis of individual grains, which themselves may be mono- or
polymineralic. However, these methods (optical, XRD, SEM and EDS) require removal of
grains from the specimen and are therefore inherently destructive. In contrast,
non-destructive methods such as X-ray or mCT rely on an attenuation proxy that does not
directly indicate the mineralogy of a mineral grain. However, given sufficiently large
sample sizes, the results of the destructive methods can be combined with
non-destructively obtained data to develop a general method for estimating the type,
variation, and relative abundance of the various minerals across multiple species.
Our research objective with regard to methodology was therefore two-fold: 1) choose
species for which large numbers of specimens are available for destructive as well as
non-destructive analysis, and then 2) extend these results to those species for which only a
limited number of specimens is available or which could not be sacrificed using destructive
methods.

The relatively common sand dollar species Echinarachnius parma was here selected to
represent the model species. Hundreds of juvenile specimens with a test length <20 mm,

Table 4 (continued)

Specimen Quartz
(grain %)

Calcite
(grain %)

Hornblende
(grain %)

Garnet
(grain %)

Magnetite
& Hematite
(grain %)

Ilmenite
(grain %)

Rutile
(grain %)

Zircon
(grain %)

Heavy
Minerals
(grain %)

Mellita quinquiesperforata
Unvouchered, 2 mm

0.97 0.00 0.48 0.00 33.82 59.90 4.83 0.00 99.03

Mellita tenuis
CASIZ, 6 mm

0.88 0.44 5.31 0.00 50.88 11.06 4.42 26.99 98.66

Mellita tenuis
Unvouchered, 21 mm

0.47 0.57 0.00 0.00 10.41 4.45 0.47 83.63 98.96

Mellitella stokesii
USNM E40733, 17 mm

0.59 0.79 1.58 0.00 6.01 75.76 15.27 0.00 98.62

Note:
Mineral content of representative specimens with specimen ID and test length. Data include mineral content from separate µCT. virtual sections, approximately 225 µm
apart, from a single specimen of Echinarachnius parma with 4 mm test length from Lubec, ME, USA. All values are in percent of total grains. See Table 1 for additional
information on each specimen.
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collected from the Bay of Fundy at Lubec, ME, USA, were available for both destructive
and non-destructive analyses. Two simple tests can be used to determine whether or not a
specimen contains heavy minerals. 1) The specimens of E. parma from Lubec, ME, USA
contain enough iron and titaniumminerals to be susceptible to a magnet, and this was also
the case with several other species tested. 2) Additionally, a strong light source can be
focused through a specimen to reveal a silhouette of the mineral-filled diverticulum
(Fig. 1A). The specimen can then be dissected (or crushed) and a quick estimate of the
relative proportion of light to heavy minerals can be made by separating the opaque grains
from the transparent grains (Figs. 1B, 1C and 1E). In case of E. parma, many of the
remaining mineral grains are often zircon, which can be recognized by the distinctive
prismatic euhedral shape of the grains and by the strong orange-yellow fluorescence when
illuminated with short wavelength (254 nm) ultraviolet (UV) light. Identification of
individual grains using a petrographic microscope is restricted to the non-opaque fraction
of the total grain content and limited by the time-consuming nature of the process.
Nonetheless, its primary utility is in identification of the relatively common amphiboles,
pyroxenes, and garnets as well as some of the other minor fractions of mineral grains.
In turn, XRD is useful for its definitive identification and quantitative measures of the
major mineral fractions derived from the diverticulum grains. However, a major drawback
is the amount of material needed for a valid analysis, usually requiring the extraction of
grains from 20 to 50 specimens. The XRD patterns with a mix of mineralogy exhibiting
overlapping diffraction peaks complicate strict quantitative measures of composition, but
are invaluable for the qualitative interpretation of the overall mineralogy and relative
abundance of the individual mineral species. Unfortunately, combined SEM/EDS analysis
suffers from one of the same drawbacks as the petrographic method, i.e., the
time-consuming focus on individual grains, although the process is more automated and is
not restricted by grain opacity. The elemental data derived from the EDS are invaluable
and can usually be used to identify either the mineralogy of the sampled grain or at least
the major mineral group to which it belongs.

Minerals attenuate X-rays in accordance with their elemental composition and crystal
structure, and therefore attenuation can be employed as a proxy for mineralogy. Simple 2D
X-ray imaging is an efficient non-destructive method to display the grain-filled
diverticulum in a specimen, but is of limited value in grain identification. However, mCT
imaging is an effective method for non-destructively quantifying the mineral content of a
specimen in 3D. In the present study, a single virtual horizontal section was selected from
each mCT 16-bit image stack, for which a pixel value of 0 indicates no attenuation and a
pixel value of 65,535 (i.e., 216−1) indicates 100% attenuation. This virtual section was
processed to calculate the local intensity maxima, which approximate the dense centers of
the grains (Fig. 4). The resolution of the maxima is dependent on the pixel resolution of the
image (i.e., on the isotropic voxel resolution of the µCT scan). Low-resolution images only
resolve a generalized density map that approximates grain centers, each representing a
single local intensity maximum. The relative attenuation, as measured by image intensity,
was scaled between the known absolute attenuation value for calcite and zircon. If no
zircon was present or if the image gain was too high and the zircon signal was saturated,
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then magnetite, the mineral with the next highest attenuation coefficient, was used as
reference. This scaling resulted in the 16-bit image intensity values that could be expected
for each of the analyzed minerals. Low-intensity peaks representative of the calcite skeleton
were removed with a high-pass filter and the remaining mean intensities were compared
with the expected values generated from the software MuCalc to estimate both the identity
and relative volume percent of each mineral (see Figs. S1 and S2 for exemplary X-ray
images and extracted intensity distributions). Workable solutions were also derived from
8-bit images upsampled to 16-bit, but here the significant loss of spectral resolution is
undesirable, particularly in case of low pixel resolution.

However, one difficulty with mineral determination from mCT imagery is the thickness
variation in free mineral grains. The relationship between total absorption and the

Figure 4 Examples of automatic grain sampling virtual sections of a micro-computed tomography
dataset of Echinarachnius parma. (A) Montage showing on the left a filtered image of mineral grains
inside Gregory’s diverticulum and on the right an overlay of sampling points that mark local maxima of
pixel values—these approximate the points of maximum X-ray attenuation for individual grains. (B)
Perspective rendering of a selected mCT virtual section, where the pixel values are extruded as height
above the background. The calcite of the test can be readily distinguished from the heavy minerals inside
Gregory’s diverticulum. Full-size DOI: 10.7717/peerj.17178/fig-4
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coefficient of attenuation can be represented by the Lambert-Beer Law (Hanna &
Ketcham, 2017):

I
I0
¼ e �lxð Þ

where I is the final X-ray intensity, I0 is the initial X-ray intensity, µ is the linear attenuation
coefficient, and x is the path length through the grain. The maximum reduction in X-ray
intensity is at the center of the grain, but a distribution of intensities across a grain will
have a peak related to the average thickness. The virtual sections in a mCT image sequence
have a constant thickness, but measured intensity values are dependent on X-ray
transmission through a sample in 3D and are susceptible to beam-hardening effects.
The probability density functions used to model the intensity peaks are broadened and
skewed around the means by these non-linear effects, adding uncertainty to quantitative
interpretation.

Nonetheless, the advantages of the approach developed for the present study include the
non-destructive nature of the analysis, calculation of mineral distributions directly from
grain populations of individual specimens, and the ability to automate the analysis
computationally. One example for the usefulness of the approach introduced here is the
case of the previously mentioned species Sinaechinocyamus mai—data on diverticulum
grains obtained using optical mineralogy suggested approximately the same proportion of
light to heavy minerals as found in the substrate (Chen & Chen, 1994). Instead, our
calibrated and standardized µCT data strongly suggest the presence of ca. 25% magnetite
and 67% zircon in the first and almost 100% zircon in the second specimen analyzed
(Fig. S2F and Table 4). Unfortunately, while X-ray attenuation is directly related to the
density of a mineral, it is often equivocal with regard to actual mineral identification.
Where the X-ray attenuation of minerals is similar, such as for almandine and rutile or for
magnetite and hematite, accurate mineral identification relies on knowledge of the
expected mineral population of the substrate. In many cases, this information is available
from local or regional mineralogical studies of nearshore sediments, or can be inferred
from the geologic character of the source rocks.

Mineral selection
Our results demonstrate that five minerals account for most of the heavy mineral fraction
of the scutelliform species analyzed, i.e., magnetite (Fe3O4), hematite (Fe2O3), ilmenite
(FeTiO3), rutile (TiO2), and zircon (ZrSiO4). Minor heavy minerals include various
amphiboles, pyroxenes, and garnets generally at concentrations too small to identify
reliably. Derived sand dollars with Gregory’s diverticulum significantly concentrate heavy
minerals when compared to the composition of the substrate. A two-sample t-test using
the data provided in Table 3 rejected the null hypothesis that the mean ratios of light to
heavy minerals between the mineral grains of diverticulum and substrate are drawn from
the same population, with a p-value < 0.05. However, the particular mix of mineralogy for
any given species appears to be more a function of the heavy mineral composition of the
substrate than any particular mineral selectivity on the part of the animal. For example,
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specimens of Mellita notabilis collected from Bahia de Banderas, Mexico contain more
zircon than specimens of M. notabilis collected from Playa Buena Vista, Costa Rica
(Table 3). A similar variability was documented for Scaphechinus mirabilis (Elkin et al.,
2012; Begun et al., 2014; Elkin, 2019). In turn, different specimens of E. parma from Lubec,
ME, USA contain the same minerals, but in varying percentages (Tables 2 and 4). Exactly
how the animals differentiate heavy from light minerals that are both present in the
substrate is not known, but there are two likely methods: (1) direct sensing of the specific
gravity (or heft) of a mineral grain or (2) sensing of an electrochemical surface character of
the mineral grain–so, essentially by touch or by taste. The mystery surrounding the
mechanism whereby these animals select and retain heavy minerals is deepened by the
consideration that some agglutinated foraminifera also select and retain heavy minerals in
their cytoplasm or even test (Makled & Langer, 2010; Sabbatini et al., 2016; Garrison,
2019). These single-celled organisms select primarily the heavy minerals zircon, rutile, and
ilmenite with a mean grain size of about 100 mm, although Waśkowska (2014) described a
fossil species that preferentially selected tourmaline with a grain size of 39 to 69 mm
(predominantly dravite, with a specific gravity of 3.0–3.2 g/cm3).

Minerals vary considerably in wettability (Ozcan, 1992), contact angle (Drzymała, 2007;
Tang et al., 2018), magnetic susceptibility (Rosenblum & Brownfield, 2000), and zeta
potential (Erdemoğlu & Sarikaya, 2006; Quast, 2006; Kursun, 2010; Nduwa-Mushidi, 2016;
Nduwa-Mushidi & Anderson, 2017; Ruan et al., 2018). Taken together, these physical
properties could indicate commonalities among the primary minerals found inside
Gregory’s diverticulum (Table 5), which in turn could play a role in selectivity. However,
while it has previously been hypothesized that sand dollars select minerals based on REE
content, particularly in zircon mineral grains (Panichev, 2015), REE content of the

Table 5 Physical properties of primary light and heavy minerals found inside Gregory’s diverticulum.

Mineral Density
(g/cm3)

Chemical
formula

Magnetism Conductivity X-ray linear attenuation m
coefficient (60 KeVcm−1)

Wetability Contact
angle (�)

Zeta Potential
(at pH 8) (mV)

Albite 2.62 NaAlSi3O8 Diamagnetic Non-conductive 0.2453 Hydrophilic 0.01 −31.384

Quartz 2.65 SiO2 Diamagnetic Non-conductive 0.2513 Hydrophilic 0.01 −60.007

Rutile 4.23 TiO2 Diamagnetic Conductive 0.5363 Hydrophilic 0.01 −28.825

Zircon 4.6-4.7 ZrSiO4 Nonmagnetic Non-conductive 1.9803 Hydrophilic 0.01 −31.375

Ilmenite 4.70–4.79 FeTiO3 Paramagnetic Conductive 0.7463 Hydrophobic 14.01 −28.255

Magnetite 5.15 Fe3O4 Ferromagnetic Conductive 0.9253 Hydrophobic 34.168 −35.142

Hematite 5.26 Fe2O3 Ferromagnetic Conductive 0.9003 Hydrophobic 32.678 −26.716

Notes:
Source of data for X-ray attenuation coefficients, contact angles, and zeta potential values are given in footnotes. Contact angle is distilled water-air interface and zeta
potential is the electrical potential across the mineral-water interface at pH 8 of seawater, adjusted in distilled water with KOH. These values will vary with solute
concentration of the liquid, liquid temperature, and pH and do not represent conditions in the scutelliform main digestive tract or in Gregory’s diverticulum.
1 Drzymała (2007).
2 Erdemoğlu & Sarikaya (2006).
3 Hanna & Ketcham (2017).
4 Kursun (2010).
5 Nduwa-Mushidi (2016).
6 Quast (2006).
7 Ruan et al. (2018).
8 Tang et al. (2018).

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 17/27

http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


minerals analyzed here was found to be insignificant, although our EDS analyses are
incomplete with regard to the full range of species retaining heavy minerals.

Some size selectivity for grains obtained from the substrate is observed, with a clear
preference for grains in the 50 to 150 mm range (Fig. 2). Observations on living E. parma
demonstrate that, for the smallest juveniles (1 to 5 mm test length), the diameter of the
periproct (i.e., the anal opening through the test) limits the ability to pass grains larger than
150 mm out of the rectum. Interestingly, the size of diverticulum grains does not change as
the animal grows, whereas the diameter of the periproct increases with age and size. Thus,
while the upper limit of grain size appears to be constrained by the diameter of the
periproct and the maximum opening of the teeth in the smallest juveniles, it may also be
constrained by the diameter of the duct connector throughout ontogeny (Fig. 1C). If the
limiting factor is indeed the duct connector then this would imply that grain selection
occurs internally and is likely a passive process, whereas grain selection before ingestion
implies active selection by the tube feet and/or spines. For example, stereomicroscopic
studies on living E. parma demonstrate that heavy mineral grains can be selected by tube
feet on the oral surface of the animal, then transported to the ambulacral grooves and
finally—with the aid of the spines—into the peristome (i.e. the oral opening) as shown in
Video S1. The buccal tube feet, in conjunction with the oral spines, actively select and
incorporate (Video S2) or reject and discard (Video S3) mineral grains, supporting the
hypothesis that selection of heavy minerals occurs before the grains are ingested (Chia,
1985). However, the precise means by which the tube feet and spines distinguish between
individual mineral grains remains unknown at this point.

The mean grain size of the substrate is larger than that of the diverticulum grains and is
85 to 90% in the range of 180 to 350 mm, or fine to medium sand. This is in agreement with
previous studies on substrate preference of E. parma (Stanley & James, 1971; Serafy, 1978;
Harold & Telford, 1982; Serafy & Fell, 1985), although Brown (1983) reported a preference
for coarse sand. Mellita tenuis shows a similar preference for fine to medium substrate
grain size (Pomory, Robbins & Lares, 1995), as do Leodia sexiesperforata, Mellita
quinquiesperforata, and Encope michelini (Weihe & Gray, 1968; Telford & Mooi, 1986;
Hilber & Lawrence, 2009). While it has previously been claimed that L. sexiesperforata
inhabits only biogenic carbonate substrates (Telford & Mooi, 1986), a strict preference for
biogenic sands has not been verified (Mooi & Peterson, 2000). While we did not have access
to substrate samples for the L. sexiesperforata specimens analyzed in this study, the
bioclastic beach sands on the western side of Barbados, where one specimen was collected
(Table 1), can contain up to 10% combined quartz and heavy mineral components
(Limonta et al., 2015).

The observation that the concentration of light minerals (primarily quartz and feldspar)
can range from 0% to 25% of diverticulum grains and that also minor amounts of other
minerals may occur provides evidence that sometimes the animals simply pick up what is
readily available in the substrate. Sedimentologic studies distinguish shallow-water coastal
provinces characterized by specific heavy mineral suites. In the western hemisphere, these
studies are limited in scope to the Atlantic coast of North America (Van Gosen & Ellefsen,
2018), dominated by ilmenite and zircon; the Gulf of Mexico (Davis, 2017), dominated by
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rutile and zircon; and the Pacific coast of Mexico (Carranza-Edwards et al., 2009, 2019),
dominated by magnetite and zircon. Heavy minerals in the Okhotsk Sea are
predominantly hornblende, hypersthene, and epidote, with only minor amounts of
ilmenite, magnetite, and zircon (Wang et al., 2021). In the southern Sea of Japan, shore
sediments are predominantly hypersthene and hornblende, with only minor amounts of
zircon (Yokota et al., 1990). Heavy minerals in the lower reaches of rivers in western
Taiwan are predominantly zircon and garnet (Deng et al., 2016; Garzanti et al., 2023). In
addition, while the overall heavy mineral concentration of the substrate can be determined
and compared with the concentration inside the diverticulum, it is also possible that the
animals selected mineral grains from a naturally concentrated source. For example, heavy
minerals in littoral sands are usually deposited in thin layers or “stringers” with much
higher concentration than the overall deposit (Van Gosen & Ellefsen, 2018).

Phylogeography
The diverticulum-bearing scutelliforms are restricted to the eastern and western coasts
of North and South America as well as the northeastern coast of Asia (Fig. 5). The
Astriclypeidae, a scutelliform taxon hypothesized to be sister to all other extant

Figure 5 Geographic distribution of representatives from all nine extant scutelliform genera.
Occurrence data coordinates downloaded from open-source Global Biodiversity Information Network
(https://www.gbif.org) with the following links. Sinaechinocyamus: GBIF.org (24 May 2019) GBIF
Occurrence Download https://doi.org/10.15468/dl.hurvee; Scaphechinus: GBIF.org (24 May 2019) GBIF
Occurrence Download https://doi.org/10.15468/dl.kky6kn; Echinarachnius: GBIF.org (04 March 2021)
GBIF Occurrence Download https://doi.org/10.15468/dl.zam5tz; Dendraster: GBIF.org (24 May
2019) GBIF Occurrence Download https://doi.org/10.15468/dl.scpqbt; Encope: GBIF.org (04 March
2021) GBIF Occurrence Download https://doi.org/10.15468/dl.btrwe6; Lanthonia: GBIF.org (24 May
2019) GBIF Occurrence Download https://doi.org/10.15468/dl.mz33pi; Mellita: GBIF.org (04 March
2021) GBIF Occurrence Download https://doi.org/10.15468/dl.3s8sg2; Leodia: GBIF.org (04 March
2021) GBIF Occurrence Download https://doi.org/10.15468/dl.u4x7m5; Mellitella: GBIF.org (24 May
2019) GBIF Occurrence Download https://doi.org/10.15468/dl.futtrn. Made with Natural Earth. Free
vector and raster map data @ naturalearthdata.com. Full-size DOI: 10.7717/peerj.17178/fig-5

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 19/27

https://www.gbif.org
https://doi.org/10.15468/dl.hurvee
https://doi.org/10.15468/dl.kky6kn
https://doi.org/10.15468/dl.zam5tz
https://doi.org/10.15468/dl.scpqbt
https://doi.org/10.15468/dl.btrwe6
https://doi.org/10.15468/dl.mz33pi
https://doi.org/10.15468/dl.3s8sg2
https://doi.org/10.15468/dl.u4x7m5
https://doi.org/10.15468/dl.futtrn
https://naturalearthdata.com
http://dx.doi.org/10.7717/peerj.17178/fig-5
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


scutelliforms (Lee et al., 2023) is not found in these regions (Ghiold & Hoffman, 1986) and
lacks Gregory’s diverticulum (Ziegler et al., 2016). The oldest fossil records of scutelliform
echinoids (Eoscutellidae and Protoscutellidae) occur in North America, and it has long
been proposed that this clade originated there (Stefanini, 1924). Strictly European fossil
scutelliform genera (Scutella, Parascutella, Remondella, Scutulum, Samlandaster) were
distinguished by Durham (1955), and no evidence of Gregory’s diverticulum has been
reported for any of these. Such lack of evidence is supported by a recent study of juvenile
specimens from several protoscutellid species from Eocene deposits of eastern North
America that has failed to produce definitive evidence for the presence of a mineral-filled
diverticulum (Zachos & Ziegler, 2021). To date, the oldest proven occurrence of a
mineral-filled diverticulum is therefore that of Kewia marquamensis (Echinarachniidae)
from the late Oligocene of Oregon (Linder, 1986; Linder, Durham & Orr, 1988), suggesting
that the lineage of scutelliforms with the organ evolved in western North America in the
middle to late Paleogene.

CONCLUSIONS
Scutelliform sand dollars that possess Gregory’s diverticulum fill this internal organ with
mineral grains in the very fine to fine sand size range. In every case, the proportion of
heavy to light minerals greatly exceeds that of the substrate which the animal inhabits, with
heavy mineral content ranging from ∼70 to >90% of the mineral grains retained. Minerals
containing iron (magnetite and hematite), titanium (ilmenite and rutile), and zirconium
(zircon) represent the major portion of heavy minerals found inside the organ.

Several different methods can be used to analyse the mineral content of
Gregory’s diverticulum. Magnetite and ilmenite grains often make a specimen magnetic, a
simple test for the presence of the organ. Other non-destructive methods include using a
strong light source or X-ray imaging. Destructive methods such as optical mineralogy,
XRD or SEM/EDS require extraction of the mineral grains through dissection or
crushing, but lead to precise mineral or elemental identification. The non-destructive
process using mCT proposed here can be employed to closely estimate light to heavy
mineral proportions and generate a reliably accurate estimation of actual mineral species
composition.

The intra- and inter-species variation in heavy mineral content leads to the conclusion
that the selection of a particular mineral grain is opportunistic, in the sense of exploiting
chances offered by immediate circumstances. Any mineral grain of the proper size is
acceptable to the animal as long as it has a high specific gravity, with a strong preference for
density exceeding 4 g/cm3. The apparent correlation of heavy mineral composition of the
substrate and the choice of heavy minerals in the diverticulum further supports the
contention of opportunism. The restriction of minor component grains to densities
between 2.9 to 4.0 g/cm3, rejecting nearly all lighter minerals such as quartz and calcite,
suggests that grain choice is based on the weight of the grains, but does not rule out other
selection mechanisms. The upper limit on grain size appears to be constrained by the
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diameter of the periproct and peristome. The size of diverticulum grains does not increase
with the size of the animal, which could be the result of size selectivity of grains during
consumption or could also be caused by the limiting diameter of the duct connector.
The selectivity for density observed in all analyzed species is further evidence that
Gregory’s diverticulum does indeed serve as a weight belt and may have an adaptive value
for the hydrodynamic stability of juveniles in a high-energy fluid regime (Chia, 1973),
although there is no observational or experimental evidence to support this (Chen & Chen,
1994). Whether or not this is the only adaptive value for a grain-filled diverticulum is still
undetermined (Lawrence, 2001).

The presence of Gregory’s diverticulum appears to be phylogenetically informative, and
the fossil record suggests that the common ancestor of all diverticulum-bearing
scutelliforms evolved during the late Paleogene and, considering the current biogeography,
likely originated in the northeastern Pacific along the western coast of North America. This
clade could have then dispersed along the coast southward to South America and into the
Caribbean (prior to the closure of the Isthmus of Panama) as well as north- and then later
westward to Asia and possibly also eastward through boreal waters along the northwestern
Atlantic coast (Ghiold & Hoffman, 1986).

There is no definitively known mechanism whereby these organisms can select heavy
over light mineral grains, nor why they have a preference for iron-, titanium-, and
zirconium-bearing mineral grains—other than the fact that these are among the heaviest of
heavy minerals. Likewise, there is no clear reason as to why grains are stored in the
diverticulum in juveniles, but in most (although not all) species expelled as the organism
matures, followed by atrophy of the diverticulum tissue. However, there seems to be little
question that these animals have developed the behaviour of actively selecting mineral
grains with not only high specific gravity, but also specific composition and size, leading to
the conjecture that the behaviour preceded the development of the diverticulum itself.
The apparent persistence of this trait since the Oligocene and its ubiquitous expression
within a clearly delineated clade of derived sand dollars across tropical to boreal
environments is evidence that it is highly adaptive, yet it remains as of yet unclear exactly
what the adaptive advantage might be.

ACKNOWLEDGEMENTS
We would like to thank Thomas Bartolomaeus and Thorsten Geisler-Wierwille for
hospitality and use of facilities; Harald Euler and Hans Henning Friedrich for their help in
conducting XRD analyses; Vijayasankar Raman for help in conducting EDS analyses;
Jennifer Gifford for help with optical mineralogy; Jennifer W. Trimble for help with µCT
scanning; Janik Bollé for carrying out dissections and SEM; and Juan José Alvarado
Barrientos, Francisco A. Solís Marín as well as Alvaro E. Migotto for help with specimen
collection. We are grateful to the curators of the museum collections accessed for this
study. We also thank Anna G. Kral, Stuart R. Stock, and Andreas Ziegler for helpful
discussions and comments on the manuscript.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 21/27

http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
SEM analyses presented in this work were conducted at the Microscopy and Imaging
Center (SEM Core) of the University of Mississippi. This facility was supported by grant
1726880, National Science Foundation. µCT scanning obtained from the Bonner Institut
für Organismische Biologie at Rheinische Friedrich-Wilhelms-Universität was supported
by DFG grant INST 217/849-1FUGG. µCT scans obtained from the High-Resolution X-
ray Computed Tomography Facility at The University of Texas at Austin were supported
by the NSF Division of Earth Science Instrumentation and Facilities Program (NSF EAR-
1762458) and NASA (80NSSC23K0199). There was no additional external funding
received for this study. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
University of Mississippi.
National Science Foundation: 1726880.
DFG: INST 217/849-1FUGG.
NSF Division of Earth Science Instrumentation and Facilities Program: NSF EAR-
1762458.
NASA: 80NSSC23K0199.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Louis G. Zachos conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Alexander Ziegler conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Field collection was approved by the National System of Conservation Areas (Costa
Rica; SINAC-SE-CUSBSE-PI-R-131-2016) as well as the Comision Nacional de
Acuacultura y Pesca (Mexico; PPF/DGOPA-291/17).

Data Availability
The following information was supplied regarding data availability:

The data is available at MorphoBank: http://dx.doi.org/10.7934/P4915.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 22/27

http://dx.doi.org/10.7934/P4915
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.17178#supplemental-information.

REFERENCES
Begun AA, Elkin YN, Maximov SO, Belogurova LS, Artyukov AA. 2014. Structure of feeding for

Echinarachnius parma and Scaphechinus mirabilis (Echinoidea, Clypeasteroida) in the Troitsa
Bay, Japan Sea. Izvestia TINRO 178(3):199–205 DOI 10.26428/1606-9919-2014-178-199-205.

Borzone CA, Tavares YAG, Soares CR. 1997. Morphological adaptation of Mellita
quinquiesperforata (Clypeasteroid, Mellitidae) to explore environments with high
hydrodynamism. Iheringia, Zoology Series 82:33–42 [In Portuguese].

Brown CL. 1983. Substrate preference and test morphology of a sand dollar (Echinarachnius
parma) population in the Gulf of Maine. Bios 54:246–254.

Carranza-Edwards A, Kasper-Zubillaga JJ, Martínez-Serrano RG, Cabrera-Ramírez M,
Rosales HL, Alatorre MMA, Márquez-García AZ, Lozano-Santa CR. 2019. Provenance
inferred through modern beach sands from the Gulf of Tehuantepec.Mexico Geological Journal
54(1):552–563 DOI 10.1002/gj.3205.

Carranza-Edwards A, Kasper-Zubillaga JJ, Rosales-Hoz L, Morales-de la Garza EA, Lozano-
Santa Cruz R. 2009. Beach sand composition and provenance in a sector of the southwestern
Mexican Pacific. Revista Mexicana de Ciencias Geológicas 26:433–447.

Chen CP, Chen BY. 1994. Diverticulum sand in a miniature sand dollar Sinaechinocyamus mai
(Echinodermata: Echinoidea). Marine Biology 119(4):605–609 DOI 10.1007/bf00354324.

Chia F-S. 1973. Sand dollar: a weight belt for the juvenile. Science 181:73–74
DOI 10.1126/science.181.4094.73.

Chia F-S. 1985. Selection, storage and elimination of heavy sand particles by the juvenile sand
dollar, Dendraster excentricus (Eschscholtz). In: Keegan BF, O’Connor DS, eds. Echinodermata.
Proceedings of the Fifth International Echinoderm Conference. Rotterdam: Balkema, 215–221.

Coppard SE. 2016. A new genus of mellitid sand dollar (Echinoidea: Mellitidae) from the eastern
Pacific coast of the Americas. Zootaxa 4111(2):158–166 DOI 10.11646/zootaxa.4111.2.4.

Coppard SE, Lessios HA. 2017. Phylogeography of the sand dollar genus Encope: implications
regarding the Central American Isthmus and rates of molecular evolution. Scientific Reports
7(1):11520 DOI 10.1038/s41598-017-11875-w.

Coppard SE, Zigler KS, Lessios HA. 2013. Phylogeography of the sand dollar genus Mellita:
cryptic speciation along the coasts of the Americas. Molecular Phylogenetics and Evolution
69(3):1033–1042 DOI 10.1016/j.ympev.2013.05.028.

Davis RA. 2017. Sediments of the Gulf of Mexico. In: Ward CH, ed. Habitats and Biota of the Gulf
of Mexico: Before the Deepwater Horizon Oil Spill: Volume 1: Water Quality, Sediments, Sediment
Contaminants, Oil and Gas Seeps, Coastal Habitats, Offshore Plankton and Benthos, and
Shellfish. New York, NY: Springer New York, 165–215.

Deng K, Yang SY, Wang Z, Li C, Bi L, Chang Y-P, Liu JT. 2016. Detrital heavy mineral
assemblages in the river sediments from Taiwan and its implications for sediment provenance.
Acta Sedimentologica Sinica 34:531–542 DOI 10.14027/j.cnki.cjxb.2016.03.011.

Drzymała J. 2007.Mineral processing: foundations of theory and practice of minerallurgy. Wrocław:
Oficyna Wydawnicza Politechniki Wrocławskiej, 508.

Durham JW. 1955. Classification of clypeasteroid echinoids. University of California Publications
in Geological Sciences 31:73–198.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 23/27

http://dx.doi.org/10.7717/peerj.17178#supplemental-information
http://dx.doi.org/10.7717/peerj.17178#supplemental-information
http://dx.doi.org/10.26428/1606-9919-2014-178-199-205
http://dx.doi.org/10.1002/gj.3205
http://dx.doi.org/10.1007/bf00354324
http://dx.doi.org/10.1126/science.181.4094.73
http://dx.doi.org/10.11646/zootaxa.4111.2.4
http://dx.doi.org/10.1038/s41598-017-11875-w
http://dx.doi.org/10.1016/j.ympev.2013.05.028
http://dx.doi.org/10.14027/j.cnki.cjxb.2016.03.011
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


Elkin YN. 2019. Biological leaching of non-ferrous metals under the seabed. In: Conference of
Pacific Congress on Marine Science and Technology (PACON-2019), July 16–19, 2019, [abstract],
Vol. 26: Vladivostok, Russia, 93.

Elkin YN, Maksimov SO, Safronov PP, Zvereva VP, Artyukov AA. 2012. Selective accumulation
of zircons and ilmenites in diverticula of the sea urchin Scaphechinus mirabilis (Agazzis, 1863).
Doklady Biological Sciences 446(1):297–299 DOI 10.1134/S0012496612050031.

Elkin YN, Safronov PP, Artyukov AA, Karabtsov AA. 2013.Destruction of seabed minerals in the
intestine of the sand dollar Scaphechinus mirabilis A. Agassiz, 1863 (Echinodea: Scutellidae).
Doklady Biological Sciences 453(1):371–374 DOI 10.1134/S0012496613060112.

Erdemoğlu M, Sarikaya M. 2006. Effects of heavy metals and oxalate on the zeta potential of
magnetite. Journal of Colloid and Interface Science 300(2):795–804
DOI 10.1016/j.jcis.2006.04.004.

Garrison TF. 2019. The microscopic mineral collector of the sea: Agglutinella kaminskii n. sp., a
new benthic foraminifer from the Arabian Gulf. Micropaleontology 65(4):277–283
DOI 10.47894/mpal.65.4.01.

Garzanti E, Nayak K, Padoan M, Vezzoli G, Resentini A, Castelltort S, Lin AT, Babonneau N,
Ratzov G, Hsu S, Huang K. 2023. Fast-eroding Taiwan and transfer of orogenic sediment to
forearc basins and trenches in the Philippine and South China seas. Earth-Science Reviews
244(1–2):104523 DOI 10.1016/j.earscirev.2023.104523.

Ghiold J, Hoffman A. 1986. Biogeography and biogeographic history of clypeasteroid echinoids.
Journal of Biogeography 13:183–206 DOI 10.2307/2844920.

Gregory ER. 1905. An unnoticed organ of the sand-dollar, Echinarachnius parma. Science 21:270.

Hanna RD, Ketcham RA. 2017. X-ray computed tomography of planetary materials: a primer and
review of recent studies. Geochemistry 77(4):547–572 DOI 10.1016/j.chemer.2017.01.006.

Harold AS, Telford M. 1982. Substrate preference and distribution of the northern sand dollar,
Echinarachnius parma (Lamarck). In: Lawrence JM, ed. Echinoderms. Proceedings of the
International Conference. Tampa Bay. Rotterdam: Balkema, 243–250.

Harold AS, Telford M. 1990. Systematics, phylogeny and biogeography of the genus Mellita
(Echinoidea: Clypeasteroida). Journal of Natural History 24(4):987–1026
DOI 10.1080/00222939000770621.

Hilber SE, Lawrence JM. 2009. Analysis of sediment and gut contents of the sand dollars Mellita
tenuis, Encope michelini, and Encope aberrans off the central Florida Gulf Coast. Gulf of Mexico
Science 27(1):74–81 DOI 10.18785/goms.2701.08.

Kursun I. 2010. Determination of flocculation and adsorption-desorption characteristics of
Na-feldspar concentrate in the presence of different polymers. Physicochemical Problems of
Mineral Processing 44:127–142.

Lawrence JM. 2001. Function of eponymous structures in echinoderms: a review. Canadian
Journal of Zoology 79:1251–1264.

Lee H, Lee K-S, Hsu C-H, Lee C-W, Li C-E, Wang J-K, Tseng CC, Chen W-J, Horng C-C,
Ford CT, Kroh A, Bronstein O, Tanaka H, Oji T, Lin J-P, Janies D. 2023. Phylogeny, ancestral
ranges and reclassification of sand dollars. Scientific Reports 13(1):10199
DOI 10.1038/s41598-023-36848-0.

Limonta M, Garzanti E, Resentini A, Andò S, Boni M, Bechstädt T. 2015. Multicyclic sediment
transfer along and across convergent plate boundaries (Barbados, Lesser Antilles). Basin
Research 27(6):696–713 DOI 10.1111/bre.12095.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 24/27

http://dx.doi.org/10.1134/S0012496612050031
http://dx.doi.org/10.1134/S0012496613060112
http://dx.doi.org/10.1016/j.jcis.2006.04.004
http://dx.doi.org/10.47894/mpal.65.4.01
http://dx.doi.org/10.1016/j.earscirev.2023.104523
http://dx.doi.org/10.2307/2844920
http://dx.doi.org/10.1016/j.chemer.2017.01.006
http://dx.doi.org/10.1080/00222939000770621
http://dx.doi.org/10.18785/goms.2701.08
http://dx.doi.org/10.1038/s41598-023-36848-0
http://dx.doi.org/10.1111/bre.12095
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


Linder RA. 1986. Mid-tertiary echinoids and Oligocene shallow marine environments in the
Oregon central western Cascades. Master of Science Thesis, University of Oregon.

Linder RA, Durham JW, Orr WN. 1988. New late Oligocene echinoids from the central western
Cascades of Oregon. Journal of Paleontology 62(6):945–958 DOI 10.1017/S0022336000030201.

Makled WA, Langer MR. 2010. Preferential selection of titanium-bearing minerals in agglutinated
Foraminifera: ilmenite (FeTiO3) in Textularia hauerii d’Orbigny from the Bazaruto Archipelago,
Mozambique. Revue de Micropaléontologie 53(3):163–173 DOI 10.1016/j.revmic.2009.11.001.

Mitchell BP. 1972. Rediscovery of Gregory’s diverticulum in the scutellid sand dollars. Master of
Education Thesis, Western Washington State College.

Mongiardino Koch N, Coppard SE, Lessios HA, Briggs DEG, Mooi R, Rouse GW. 2018. A
phylogenomic resolution of the sea urchin tree of life. BMC Evolutionary Biology 18(1):189
DOI 10.1186/s12862-018-1300-4.

Mongiardino Koch N, Thompson J. 2021. A total-evidence dated phylogeny of echinoids and the
evolution of body size across adaptive landscape. Systematic Biology 70(3):421–439
DOI 10.1093/sysbio/syaa069.

Mongiardino Koch N, Thompson J, Hiley AS, McCowin MF, Armstrong AF, Coppard SE,
Aguilera F, Bronstein O, Kroh A, Mooi R, Rouse GW. 2022. Phylogenomic analyses of
echinoid diversification prompt a re-evaluation of their fossil record. eLife 11:e72460
DOI 10.7554/eLife.72460.

Mooi R. 1997. Sand dollars of the genus Dendraster (Echinoidea: Clypeasteroida): Phylogenetic
systematics, heterochrony, and distribution of extant species. Bulletin of Marine Science
61:343–375.

Mooi R, Chen C-P. 1996.Weight belts, diverticula, and the phylogeny of the sand dollars. Bulletin
of Marine Science 58:186–195.

Mooi R, Peterson D. 2000. A new species of Leodia (Clypeasteroida: Echinoidea) from the
Neogene of Venezuela and its importance in the phylogeny of mellitid sand dollars. Journal of
Paleontology 74(6):1083–1092 DOI 10.1017/s0022336000017637.

Nduwa-Mushidi J. 2016. Surface chemistry and flotation behavior of monazite, apatite, ilmenite,
quartz, rutile, and zircon using octanohydroxamic acid collector. Ph.D. Dissertation, Colorado
School of Mines.

Nduwa-Mushidi J, Anderson CG. 2017. Surface chemistry and flotation behaviors of monazite-
apatite–ilmenite-quartz–rutile-zircon with octanohydroxamic acid. Journal of Sustainable
Metallurgy 3(1):62–72 DOI 10.1007/s40831-016-0114-0.

Ozcan O. 1992. Classification of minerals according to their critical surface tension of wetting
values. International Journal of Mineral Processing 34(3):191–204
DOI 10.1016/0301-7516(92)90073-6.

Panichev AM. 2015. Rare earth elements: review of medical and biological properties and their
abundance in the rock materials and mineralized spring waters in the context of animal and
human geophagia reasons evaluation. Achievements in the Life Sciences 9(2):95–103
DOI 10.1016/j.als.2015.12.001.

Pomory CM, Robbins BD, Lares MT. 1995. Sediment grain size preference by the sand dollar
Mellita tenuis Clark, 1940 (Echinodermata: Echinoidea): a laboratory study. Bulletin of Marine
Science 56:778–783.

Quast K. 2006. Flotation of hematite using C6-C18 saturated fatty acids. Minerals Engineering
19(6–8):582–597 DOI 10.1016/j.mineng.2005.09.010.

Rosenblum S, Brownfield IK. 2000. Magnetic susceptibilities of minerals. U.S. Geological Survey
Open-File Report 99–529, 37 DOI 10.3133/ofr99529.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 25/27

http://dx.doi.org/10.1017/S0022336000030201
http://dx.doi.org/10.1016/j.revmic.2009.11.001
http://dx.doi.org/10.1186/s12862-018-1300-4
http://dx.doi.org/10.1093/sysbio/syaa069
http://dx.doi.org/10.7554/eLife.72460
http://dx.doi.org/10.1017/s0022336000017637
http://dx.doi.org/10.1007/s40831-016-0114-0
http://dx.doi.org/10.1016/0301-7516(92)90073-6
http://dx.doi.org/10.1016/j.als.2015.12.001
http://dx.doi.org/10.1016/j.mineng.2005.09.010
http://dx.doi.org/10.3133/ofr99529
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


Ruan Y, Zhang Z, Luo H, Xiao C, Zhou F, Chi R. 2018. Effects of metal ions on the flotation of
apatite, dolomite and quartz. Minerals 8(4):141 DOI 10.3390/min8040141.

Sabbatini A, Negri A, Bartolini A, Morigi C, Boudouma O, Dinelli E, Florindo F, Galeazzi R,
Holzmann M, Lurcock PC, Massaccesi L, Pawlowski J, Rocchi S. 2016. Selective zircon
accumulation in a new benthic foraminifer, Psammophaga zirconia, sp. nov. Geobiology
14(4):404–416 DOI 10.1111/gbi.12179.

Serafy DK. 1978. Age, growth, reproduction and sediment preference in the northern sand dollar,
Echinarachnius parma, on the middle Atlantic shelf (Echinodermata; Echinoidea). American
Zoologist 18:664 [abstract].

Serafy DK, Fell FJ. 1985. Marine Flora and Fauna of the Northeastern United States.
Echinodermata: Echinoidea. NOAA Technical Report NMFS 33. Washington, DC. 27 p.
Available at http://hdl.handle.net/1834/20578.

Smith A. 1984. Echinoid palaeobiology. London: George Allen & Unwin, 190.

Stanley DJ, James NP. 1971. Distribution of Echinarachnius parma (Lamarck) and associated
fauna on Sable Island Bank, southeast Canada. Smithsonian Contributions to the Earth Sciences
6:24 DOI 10.5479/si.00810274.6.1.

Stefanini G. 1924. Relations between American and European Tertiary echinoid faunas. Bulletin of
the Geological Society of America 35(4):827–846 DOI 10.1130/gsab-35-827.

Tang K, Xuewei LV, Wu S, Xuan S, Huang X, Bai C. 2018.Measurement for contact angle of iron
ore particles and water. ISIJ International 58(3):379–400
DOI 10.2355/isijinternational.ISIJINT-2017-424.

Telford M, Mooi R. 1986. Resource partitioning by sand dollars in carbonate and siliceous
sediments: evidence from podial and particle dimensions. Biological Bulletin 171(1):197–207
DOI 10.2307/1541917.

Van Gosen BS, Ellefsen KJ. 2018. Titanium mineral resources in heavy-mineral sands in the
Atlantic coastal plain of the southeastern United States. USGS Scientific Investigations Report
2018-5045 1–32 DOI 10.3133/sir20185045.

Wang K, Shi X, Zou J, Liu Y, Yao Z, Gorbarenko SA. 2021. Spatial distribution and provenance of
detrital minerals of surface sediment in the Okhotsk Sea. Frontiers in Earth Science 9:14
DOI 10.3389/feart.2021.636850.

Waśkowska A. 2014. Selective agglutination of tourmaline grains by foraminifera in deep-water
flysch environment (Eocene Hieroglyphic beds, Silesian Nappe, Polish Outer Carpathians).
Geological Quarterly 58(2):337–352 DOI 10.7306/gq.1154.

Weihe SC, Gray IE. 1968. Observations on the biology of the sand dollar Mellita
quinquiesperforata (Leske). Journal of the Elisha Mitchell Scientific Society 84:315–327.

Yokota M, Okada H, Arita M, Ikehara K, Moritani T. 1990. Distribution of heavy minerals in the
bottom sediments of the southern Sea of Japan, off the Shimane Peninsula, Southwest Japan.
Science Reports, Department of Geology, Kyushu University 10:59–86 DOI 10.15017/4495587.

Zachos LG, Ziegler A. 2021. Did protoscutellid sand dollar echinoids possess Gregory’s
diverticulum? Geological Society of America Abstracts with Programs 53:1 [abstract].
DOI 10.1130/abs/2021SE-362251.

Ziegler A. 2012. Broad application of non-invasive imaging techniques to echinoids and other
echinoderm taxa. Zoosymposia 7(1):53–70 DOI 10.11646/zoosymposia.7.1.6.

Ziegler A. 2023. The sea urchin intestine: 450 million years of evolution in the service of digestion.
In: Boos K, Reich M, eds. Echinodermata 2023. Braunschweig: State Natural History Museum,
33–36 [In German].

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 26/27

http://dx.doi.org/10.3390/min8040141
http://dx.doi.org/10.1111/gbi.12179
http://hdl.handle.net/1834/20578
http://dx.doi.org/10.5479/si.00810274.6.1
http://dx.doi.org/10.1130/gsab-35-827
http://dx.doi.org/10.2355/isijinternational.ISIJINT-2017-424
http://dx.doi.org/10.2307/1541917
http://dx.doi.org/10.3133/sir20185045
http://dx.doi.org/10.3389/feart.2021.636850
http://dx.doi.org/10.7306/gq.1154
http://dx.doi.org/10.15017/4495587
http://dx.doi.org/10.1130/abs/2021SE-362251
http://dx.doi.org/10.11646/zoosymposia.7.1.6
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/


Ziegler A, Barr DJ. 2018. The historical and biographical context of Gregory’s diverticulum, an
unusual organ in sand dollars. Breviora 559(1):1–18 DOI 10.3099/mcz47.1.

Ziegler A, Lenihan J, Zachos LG, Faber C, Mooi R. 2016. Comparative morphology and
phylogenetic significance of Gregory’s diverticulum in sand dollars (Echinoidea:
Clypeasteroida). Organisms Diversity & Evolution 16(1):141–166
DOI 10.1007/s13127-015-0231-9.

Zachos and Ziegler (2024), PeerJ, DOI 10.7717/peerj.17178 27/27

http://dx.doi.org/10.3099/mcz47.1
http://dx.doi.org/10.1007/s13127-015-0231-9
http://dx.doi.org/10.7717/peerj.17178
https://peerj.com/

	Selective concentration of iron, titanium, and zirconium substrate minerals within Gregory’s diverticulum, an organ unique to derived sand dollars (Echinoidea: Scutelliformes) ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


