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ABSTRACT
Objectives: To test the hypothesis that ‘live high-base train high-interval train low’
(HiHiLo) altitude training, compared to ‘live low-train high’ (LoHi), yields greater
benefits on performance and physiological adaptations.
Methods: Sixteen young male middle-distance runners (age, 17.0 ± 1.5 y; body mass,
58.8 ± 4.9 kg; body height, 176.3 ± 4.3 cm; training years, 3–5 y; training distance per
week, 30–60 km.wk−1) with a peak oxygen uptake averaging ~65 ml.min−1.kg−1

trained in a normobaric hypoxia chamber (simulated altitude of ~2,500 m,
monitored by heart rate ~170 bpm; thrice weekly) for 3 weeks. During this period,
the HiHiLo group (n = 8) stayed in normobaric hypoxia (at ~2,800 m; 10 h.day−1),
while the LoHi group (n = 8) resided near sea level. Before and immediately after the
intervention, peak oxygen uptake and exercise-induced arterial hypoxemia responses
(incremental cycle test) as well as running performance and time-domain heart rate
variability (5-km time trial) were assessed. Hematological variables were monitored
at baseline and on days 1, 7, 14 and 21 during the intervention.
Results: Peak oxygen uptake and running performance did not differ before and after
the intervention in either group (all P > 0.05). Exercise-induced arterial hypoxemia
responses, measured both at submaximal (240 W) and maximal loads during the
incremental test, and log-transformed root mean square of successive R-R intervals
during the 4-min post-run recovery period, did not change (all P > 0.05). Hematocrit,
mean reticulocyte absolute count and reticulocyte percentage increased above
baseline levels on day 21 of the intervention (all P < 0.001), irrespective of group.
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Conclusions:Well-trained runners undertaking base training at moderate simulated
altitude for 3 weeks, with or without hypoxic residence, showed no performance
improvement, also with unchanged time-domain heart rate variability and
exercise-induced arterial hypoxemia responses.

Subjects Anatomy and Physiology, Kinesiology, Respiratory Medicine, Environmental Health,
Sports Medicine
Keywords Altitude training, Chronic hypoxia, Arterial oxygen saturation, Maximal oxygen uptake,
Heart rate variability, Runners

KEY POINTS OF THE PAPER

1) Undertaking base training at moderate simulated altitude for three weeks, with or
without hypoxic residence, did not confer any performance or physiological benefits
among well-trained young runners.

2) The significant within-athlete variability observed in this study emphasizes the
importance of shifting focus away from seeking universal 'best' answers and towards
exploring individual-specific altitude training solutions.

3) Well-trained runners engaged in base training at moderate simulated altitude for three
weeks, whether with or without hypoxic residence, experienced no improvement in
performance. Additionally, time-domain heart rate variability and exercise-induced
arterial hypoxemia responses remained unchanged.

INTRODUCTION
Since the 1968 Mexico City Olympics, athletes and coaches have routinely incorporated
altitude training into their seasonal plans (Mujika, Sharma & Stellingwerff, 2019). Noticing
the dominance of Eastern African runners, many quickly adopted the classical altitude
training method known as ‘live high-train high’ by travelling to moderate altitude locations
(1,800–2,200 m) such as Colorado Springs, Font Romeu, and St Moritz. The prevailing
paradigm was that a decrease in alveolar oxygen partial pressure with increasing altitude,
due to reduced atmospheric pressure, would trigger heightened erythrocyte production,
leading to increased peak oxygen uptake (V̇O2peak) and eventually improved performance
(Saunders et al., 2013; Płoszczyca, Langfort & Czuba, 2018). While remaining popular, ‘live
high-train high’ interventions have received criticism due to their cost, the inherent decline
in training quality, and logistical problems with such training camps (Álvarez-Herms et al.,
2015).

Other popular altitude training approaches include ‘live high-train low’ and ‘live
low-train high’ (as known as LoHi), or a combination of both (Millet et al., 2010).
An updated nomenclature for altitude training methods, describing opportunities to
combine different modalities, has been proposed by Girard, Brocherie & Millet (2017). A
promising mixed-method regimen, that may allow for better maintenance of training
intensity in reference to ‘live high-train low’, is known as ‘live high-base train high-interval
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train low’ (HiHiLo). As originally described by Chapman, Stray-Gundersen & Levine
(1998), this paradigm requires athletes to reside and perform low-intensity training at
moderate altitude (~2,500 m) for several weeks, while high-intensity (interval) training is
conducted at lower elevations (~1,250 m). In elite runners, a 3% increase in V̇O2peak,
accompanied by improvement of several hematological variables (e.g., hemoglobin mass
and hematocrit), resulted in faster (−5.8 s) 3-km running time after a 4-week HiHiLo
protocol (Stray-Gundersen, Chapman & Levine, 2001). Contrastingly, a 3-week HiHiLo
intervention did not improve aerobic capacity estimated by V̇O2peak despite significantly
higher values of hematological variables in elite biathletes (Czuba et al., 2014). More
substantial evidence is required to support the effectiveness of the HiHiLo intervention, as
athletes and coaches may be hesitant to adopt this altitude training protocol without
stronger confirmation of its benefits.

Screening responses, such as exercise-induced arterial hypoxemia (EIAH), may provide
an indication to the degree to which the athlete responds to training or competition, either
in normoxia or hypoxia (Chapman et al., 2011). Individuals demonstrating an arterial
oxygen saturation (SpO2) less than 92% during sea-level exercise, already on the shoulder
of the oxyhemoglobin dissociation curve, likely experience larger declines in V̇O2peak at
altitude compared with those who maintain SpO2 at higher levels (Chapman, 2013).
Outside hematological markers, fewer studies have determined whether or not chronic
hypoxia improves EIAH and/or heart rate variability (HRV) measurements, and
conflicting results have often been reported; for instance, an increase (Povea et al., 2005) or
not (Bernardi et al., 2001) in the low frequency component of HRV. In a group of ten elite
triathletes, those who exhibited greater performance gains in 800-m swim time trials at sea
level also demonstrated a shift towards greater vagal predominance. This change was
observed on both the first and last day of a 20-day ‘live high-train low’ altitude training
camp at 1,650 m (Hamlin et al., 2011). Additionally, Marshall et al. (2008) found that
90-min intermittent hypoxia at a clamped SpO2 of 80% for ten consecutive days, compared
to a placebo control, reduces EIAH severity at exhaustion during an incremental exercise
from 91% before to 94% after the treatment. While intermittent hypoxia (at rest) may
induce some positive physiological adaptations at the muscle tissue level, no direct (i.e.,
same participants) comparison exists of the effects of HiHiLo and LoHi on EIAH at both
submaximal and maximal exercise intensities and HRV indices.

The aim of this study was to determine the effects of 3-week simulated ‘live high-base
train high-interval train low’ (HiHiLo) altitude training, compared to ‘live low-train high’
(LoHi), on changes in physical performance, selected hematological variables, as well as
EIAH and HRV at sea level immediately after returning from the camp.

METHODS
Participants
A convenience sample of sixteen lowland male middle-distance runners, all from the same
local club, was recruited for the study. Participants were classified as ‘Trained/
Developmental’ (Tier 2) using established criteria (McKay et al., 2022), taking ~6-d
training per week and one session each day, which were composed of running from 5,000
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to 10,000 m generally. All participants were near sea-level residents and had not travelled
to altitude (>1,500 m) or engaged in simulated altitude exposure in the 6 months prior to
the study. They provided written informed consent following a detailed explanation of all
experimental procedures and possible risks. The study was approved by the Sport Science
Experimental Ethics Committee for Human Subjects of Beijing Sport University
(Reference No. 2022012H).

Study design
The experimental design comprised the following phases: a pre-intervention period (pre-
tests) at sea level, during which physical performance (5-km time trial and V̇O2peak) and
baseline testing (BL) for hematological parameters was conducted; a 3-week period
(Intervention) when participants were randomly assigned to a ‘live high-base train
high-interval train low’ (HiHiLo; n = 8) or a ‘live low-train high’ (LoHi; n = 8) according to
their fitness level; and a post-intervention period (post-tests) for physical performance
assessment (Table 1). Performance tests were conducted on two consecutive days
immediately after the intervention, in an invariant order (i.e., randomized across
participants but held constant for each individual at each time point within ±2 h), under
similar temperate conditions. All participants were familiar with testing procedures as part
of their regular physical performance assessment. Although not recorded, particular
attention was paid to food intake, hydration, and sleep habits during the experiment,
ensuring that participants from all groups received similar diets and adhered to consistent
bedtime schedules. In all cases, participants were asked to replicate their last meals, while
avoiding alcohol and caffeine intakes during the 24 h preceding each test scheduled in the
same time slot. Tap water was provided ad libitum. Participants were vigorously
encouraged during all efforts (Yan et al., 2021).

Table 1 Physical performance assessment parameters.

Baseline characteristics

HiHiLo (n = 8) LoHi (n = 8)

Age (years) 16.9 ± 1.5 17.0 ± 1.5

Body mass (kg) 58.8 ± 5.5 58.7 ± 4.3

Height (cm) 177.5 ± 3.7 175.1 ± 4.9

5,000-m time (min) 17.3 ± 1.0 17.4 ± 2.4

V̇O2peak (ml.kg−1.min−1) 64.4 ± 6.1 66.6 ± 6.6

V̇O2 of 240 W (ml.kg−1.min−1) 53.3 ± 9.9 56.5 ± 7.3

Time point when EIAH (min) 13.3 ± 3.6 13.9 ± 3.0

Workload when EIAH (W) 228.8 ± 27.5 234.4 ± 32.0

SpO2 of 240 W (%) 91.1 ± 3.9 93.6 ± 2.8

Minimal SpO2 (%) 89.9 ± 2.9 90.6 ± 3.1

Note:
V̇O2peak, peak oxygen uptake; EIAH, exercise-induced arterial hypoxemia; SpO2, arterial oxygen saturation.
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Altitude exposure
During Intervention, HiHiLo participants resided 10 h per day in normobaric hypoxic
bedrooms, equipped with an automatic controlled centralized hypoxia system (Lowoxygen
systems; GmbH, Nussdorf-Traunstein, Germany), with a room temperature of ~24 �C
(Yan et al., 2021). The carbon dioxide level was maintained under 3,000 ppm, and
regularly tested using a sensor every 10 min. The system ventilated the room air, diluted
the air with 99% nitrogen, and circulated the room air six times per hour. It automatically
adjusted the flows of nitrogen and fresh air to control the oxygen concentration at the
pre-set value of ~2,800 m (FiO2 14.8%). LoHi participants also resided 10 h per day at sea
level in the same bedrooms, but without turning on the hypoxic system. All participants
were blinded to the actual hypoxic level.

Both groups followed the same daytime training program, involving 3 weekly 60-min
exercise routines. The exercise intensity was monitored by maintaining a heart rate of
~170 bpm or ensuring SpO2 remained below 92%. The training was conducted at a
simulated altitude of ~2,500 m (FiO2 15.4%). The exercise protocol included a general
5-min warm-up, followed by a 30-min cycling (Ergomedic 828E; Monark, Vansbro,
Sweden) and 30-min running on the treadmill (h/p/ cosmos Mercury 4.0; h/p/cosmos
sports & medical gmbh, Nussdorf-Traunstein, Germany). All training sessions were
overseen by the main coach of the running club. Participants were instructed not to engage
in any other forms of structured training during the duration of the study.

Incremental test
A graded exercise test protocol was performed on a cycle ergometer (Ergomedic 839E;
Monark, Vansbro, Sweden) to determine V̇O2peak. The test started with cycling at 120 W,
with increments of +30 W every 3 min until exhaustion. Gas exchange parameters were
measured using a mix chamber metabolic cart system (Max-I; Physio-Dyne Instrument,
Quogue, NY, USA). The flow, oxygen and carbon dioxide sensors were calibrated each day
before testing following manufacturer’s instruction. The gas samples were averaged every
15 s, and the highest values for V̇O2 over 15 s was regarded as V̇O2peak. Four criteria were
used to determine maximal efforts: (1) a plateau or levelling off in V̇O2, defined as an
increase of less than 1.5 ml.min−1.kg−1 despite progressive increases in exercise intensity;
(2) a final respiratory exchange ratio of 1.1 or above; (3) a final heart rate above 95% of the
age-related maximum; (4) volitional exhaustion. EIAH was determined when arterial
oxygen saturation (measured at fingertips) (3100; Nonin Medical INC, Plymouth, MN,
USA) decreased by 4% from the resting level (Dempsey et al., 2006; Yan et al., 2021).

Athletic performance
Running performance was evaluated through a 5-km time trial performed on a 400-m
outdoor synthetic track at sea level. The starts were individualized in a time-trial format to
mitigate group or pacing effects. All trials were completed between 4 and 6 pm.
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Hematological parameters
Venous blood samples were collected by venous punctures pre-intervention at BL and on
days 1, 7, 14, and, 21 during Intervention. All samples (5 ml) were drawn by trained
phlebotomists from an antecubital forearm vein into an EDTA vacutainer, with the
participants in the sitting position, between 7 and 9 am under fasting condition.
Hematological parameters measured included red blood cell count (RBC), hemoglobin
concentration (Hb), hematocrit (Hct) (KX-21N; SYSMEX, Hyogo, Japan) and
reticulocytes (ADVIA-120; BAYER, Tokyo, Japan).

Heart rate variability
Heart rate, and time-domain HRV indexes (the average R-R interval duration in a
measurement (mean RR interval) and root mean square of the successive differences
RMSSD) were taken (Polar RS800CX; Polar Electro Oy, Kempele, Finland) during the
5-km time trial (run) and every minute during the ensuing 4-min recovery period (+1, +2,
+3, and +4 min post-run) in a standing position. Data were processed, stored, and
downloaded using Polar ProTrainer-5TM professional training software. Because all HRV
indexes were not normally distributed (Kolmogorov-Smirnov test), LnRMSSD was
calculated as the natural logarithm of root mean square of the successive differences
(Shaffer & Ginsberg, 2017).

Statistical analysis
Values are expressed as mean ± SD. Two-way repeated-measures ANOVAs (camp (BL vs.
days 1, 7, 14 and/or 21) or time (pre- vs. post-tests) × group (HiHiLo vs. LoHi)) were used
to compare incremental test and athletic performance, or haematological data. Three-way
repeated-measures ANOVAs (time (pre- vs. post-tests) × group (HiHiLo vs. LoHi) ×
exercise (run vs. +1, +2, +3 and +4 min post-run)) were used to compare HRV data.
Normal distribution of the residuals was tested using the Kolmogorov–Smirnov test.
To assess assumptions of variance, Mauchly’s test of sphericity was performed using all
ANOVA results. A Greenhouse–Geisser correction was applied to adjust the degree of
freedom if an assumption was violated, while post hoc test pairwise-comparisons with a
Bonferroni-adjusted P values were performed if a significant main effect was observed.
Partial eta-squared (η2, with η2 ≥ 0.06 representing a moderate effect and η2 ≥ 0.14 a large
effect) values were calculated. All statistical calculations were performed using SPSS
statistical software V.27.0 (IBM Corp., Armonk, NY, USA). Statistical significance was set
at P < 0.05 (Girard, Mariotti-Nesurini & Malatesta, 2022).

RESULTS
Performance and exercise capacity
From pre- to post-tests, the 5-km running time did not change significantly for both
HiHiLo (1,038 ± 55 vs. 1,017 ± 42 s; −2.1 ± 1.2%) and LoHi (1,052 ± 144 vs. 1,037 ± 119 s;
−1.4 ± 2.5%) (Fig. 1A). There were no significant time (all P > 0.107) or group (all P >
0.269) main effects, and no significant time × group interaction (all P > 0.353) for all
variables derived from the incremental test (Figs. 1B to 1F).
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Figure 1 Performance measures obtained before (pre-tests) and after (post-tests) ‘live high-base
train high-interval train low’ (HiHiLo) and ‘live low-train high’ (LoHi) altitude training. Values
are mean ± SD. ANOVA main effects of time, group and interaction are stated along with partial-eta
squared into brackets. Full-size DOI: 10.7717/peerj.17166/fig-1
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Blood parameters
Table 2 lists all hematological parameters. Mean (i.e., pooled values for the two groups)
reticulocyte absolute count (Day 1: +31.4 ± 7.2%, Day 7: +47.4 ± 11.1%, Day 14: +24.3 ±
7.8% and Day 21: +32.6 ± 12.5%) and reticulocyte percentage (Day 1: +30.3 ± 7.4%, Day 7:
+46.5 ± 10.6%, Day 14: +24.3 ± 9.0% and Day 21: +33.1 ± 14.2%) increased above BL levels
during the intervention (all P < 0.001), irrespective of group. Overall, low fluorescence
reticulocyte percentage and medium fluorescence reticulocyte percentage were
significantly higher (+1.9 ± 0.7%, P = 0.027) and lower (−19.5 ± 7.6%, P = 0.045) at Day 21
in reference to Day 1.

There were no significant time (P = 0.069 and P = 0.070) or group (P = 0.931 and
P = 0.825) main effects, and no significant time × group interaction (P = 0.358 and
P = 0.421) for red blood cells (Fig. 2A) and hemoglobin (Fig. 2B). Hematocrit increased
significantly from BL to Day 21 (+4.0 ± 2.3%, P = 0.006), irrespectively of group (Fig. 2C).

Heart rate variability
Compared to during the run, heart rate decreased progressively each minute during the
4-min post-run recovery period (Fig. 3A), while mean RR intervals lengthened (Fig. 3B).
No changed occurred for LnRMSSD (Fig. 3C).

DISCUSSION
Performance and exercise capacity
Neither group demonstrated significant improvement in V̇O2peak or 5-km running time
post-intervention. Contrastingly, Robertson et al. (2010) reported that 3 weeks of HiHiLo
(at ~2,200 m, 4 d.wk−1) led to substantial (~5%) V̇O2peak gains in middle-distance runners
with comparable aerobic fitness level, and a smaller improvement in 3-km running time.
These authors further reported that a LoHi group had ~2% increase in V̇O2peak, yet with no

Table 2 Changes of hematological parameters before and 1st 7th 14th, and 21st day during intervention.

HiHiLo (n = 8) LoHi (n = 8) P (Interaction,
Time, Group)

Baseline 1st d 7th d 14th d 21st d Baseline 1st d 7th d 14th d 21st d

RBC 4.9 ± 0.3 – 4.8 ± 0.6 4.9 ± 0.3 5.1 ± 0.3 4.9 ± 0.3 – 5.1 ± 0.2 4.8 ± 0.3 5.0 ± 0.4 0.240, 0.163, 0.931

HB 153.6 ± 8.9 – 148.5 ± 16.4 152.9 ± 8.4 157.6 ± 9.8 151.5 ± 6.6 – 155.3 ± 7.4 147.6 ± 7.2 155.1 ± 10.5 0.421, 0.070, 0.825

HCT (%) 41 ± 3 – 40 ± 5 40 ± 2 42 ± 3 40 ± 2 – 41 ± 2 39 ± 2 42 ± 3 0.300, 0.066, 0.805

Retic# 0.05 ± 0.01 0.07 ± 0.01* 0.08 ± 0.02* 0.06 ± 0.01* 0.07 ± 0.01* 0.05 ± 0.01 0.06 ± 0.02* 0.07 ± 0.01* 0.06 ± 0.02* 0.06 ± 0.02* 0.413; 0.000; 0.104

Retic% 1.13 ± 0.16 1.52 ± 0.17* 1.70 ± 0.29* 1.41 ± 0.15* 1.51 ± 0.23* 1.03 ± 0.28 1.28 ± 0.43* 1.40 ± 0.27* 1.24 ± 0.41* 1.30 ± 0.45* 0.757; 0.000; 0.106

L-Retic% 92.2 ± 2.1 91.0 ± 1.2 92.1 ± 2.2 90.5 ± 1.7 92.6 ± 2.6 92.3 ± 3.4 91.5 ± 3.1 92.8 ± 1.9 93.2 ± 3.5 93.4 ± 2.5 0.283; 0.100; 0.357

M-Retic% 7.15 ± 2.09 8.32 ± 1.88 7.18 ± 2.10 8.83 ± 1.54# 6.94 ± 2.58 6.78 ± 3.08 7.70 ± 3.01 6.50 ± 2.05# 5.86 ± 3.32# 5.86 ± 2.47 0.377; 0.045; 0.263

H-Retic% 0.67 ± 0.37 0.64 ± 0.25 0.75 ± 0.33 0.68 ± 0.33 0.43 ± 0.11 0.98 ± 0.51 0.81 ± 0.26 0.68 ± 0.29 0.93 ± 0.51 0.77 ± 0.45 0.448; 0.371; 0.064

CHr 37.9 ± 1.3 37.8 ± 1.2 37.6 ± 1.2 37.3 ± 1.3 37.2 ± 1.8 36.6 ± 1.1 37.0 ± 1.0 37.0 ± 0.7 36.8 ± 0.9 36.9 ± 0.9 0.579; 0.718; 0.172

CHm 35.7 ± 0.7 35.4 ± 0.7*# 35.5 ± 0.7*# 35.3 ± 0.7# 35.4 ± 0.8# 33.6 ± 1.2 33.6 ± 1.1# 33.7 ± 1.3# 33.5 ± 1.1# 33.7 ± 1.1# 0.673; 0.006; 0.002

Notes:
HiHiLo, live high-base train high-interval train low; LoHi, live low-train high; RBC, red blood cell; HB, hemoglobin; HCT, hematocrit; Retic#, Reticulocyte absolute count;
Retic%, Reticulocyte percentage; L-Retic%, low fluorescence reticulocyte percentage; M-Retic%, medium fluorescent reticulocyte percentage; H-Retic%, high fluorescence
reticulocyte percentage; CHr, cellular hemoglobin in reticulocytes; CHm, percentagecellular hemoglobin in mature red blood cells.
* Significantly different from pre-intervention.
# Significant difference between groups.
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Figure 2 Changes in red blood cells (A), hemoglobin (B) and hematocrit (C) for ‘live high-base train
high-interval train low’ (HiHiLo) and ‘live low-train high’ (LoHi) groups. Values are mean ± SD. Data
were collected at baseline (BL) and days 7, 14 and 21 into a 3-wks training camp. Participants were
randomly allocated to either a ‘live high-base train high-interval train low’ (HiHiLo, n = 8) or ‘live
low-train high’ (LoHi, n = 8) group. ANOVA main effects of time, group and interaction are stated along
with partial-eta squared into brackets. An asterisk (�) indicates significant difference from BL
(P < 0.05). Full-size DOI: 10.7717/peerj.17166/fig-2
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Figure 3 Heart rate (A), mean RR interval (B) and LnRMSSD (C) during a 5-km running time trial
and the 4-min post-run recovery period. Participants were randomly allocated to either a ‘live high-base
train high-interval train low’ (HiHiLo, n = 8) or ‘live low-train high’ (LoHi, n = 8) group. ANOVA main
effects of time, group, exercise and interactions between these factors are stated along with partial-eta
squared into brackets. Full-size DOI: 10.7717/peerj.17166/fig-3
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corresponding improvement in time trial performance. However, other researchers failed
to report improvement in V̇O2peak and/or time trial performance immediately
post-intervention using HiHiLo (Czuba et al., 2014; Rodriguez et al., 2015) and LoHi
(Bonetti & Hopkins, 2009) interventions. Discrepancies may arise from differences in daily
hypoxic exposure, severity and/or nature of the stimulus characterizing the ‘altitude dose’,
and training background of tested individuals. Using a method for calculating the total
hypoxic dose (Garvican-Lewis, Sharpe & Gore, 2016), which considers both the total time
under hypoxia and the level of hypoxia (i.e., the kilometer hours, calculated as
km.h = (elevation above sea level/1,000) × hours of exposure), the hypoxic dose received by
the altitude training group in this study (~610 km.h) was relatively similar to doses
implemented by others (e.g., 500–950 km.h; Robertson et al., 2010; Saugy et al., 2014;
Brocherie et al., 2015). Although attractive, a metric based on the magnitude of the
stimulus (i.e., SpO2 as a reflection of the physiological demand), as opposed to altitude
elevation (i.e., as an external load index), should perhaps be considered by practitioners
(Millet, Brocherie & Girard, 2016). In this context, the SpO2 to FiO2 ratio could be used to
assess an individual’s response to hypoxia, offering a practical method to categorize
athletes physiologically and customize FiO2 levels accordingly during altitude training
camps (Soo et al., 2020).

Individual variability
Even when athletes underwent identical HiHiLo or LoHi procedures, with the same coach
and similar training programs, equivocal results were observed in our study. Some
individuals improved their sea level 5-km running time and/or aerobic capacity, while
others experienced no change, and some even declined. This considerable within-athlete
variability suggests a shift from seeking universal ‘best’ answers to exploring
individual-specific altitude training solutions. Our study highlights that some athletes
benefited from relatively moderate hypoxic doses, while others did not, prompting
questions about determining the minimum effective dose for each athlete to achieve
meaningful gains (Hauser et al., 2017). Due to the lack of pre-screening for iron status in
athletes, we cannot exclude the possibility that hematological adaptations, and
consequently performance benefits, resulting from altitude camps were compromised by
insufficient iron availability (Burtscher et al., 2018). Another issue is that even individual
athletes do not always respond similarly when embarking on the same altitude camp,
reinforcing the importance of contextual variables affecting an athlete’s response to each
altitude training camp. For instance, in the study by Nummela et al. (2021), among the
fifteen endurance athletes who participated in altitude training interventions (1,350–
2,500 m) at least twice, 27% consistently had positive total hemoglobin mass responses,
13% showed only negative responses, and 60% exhibited both positive and negative
responses.

While our study only assessed performance immediately after the camp, it is important
to acknowledge the limitation of not conducting a post-intervention assessment in the
weeks following altitude training. Postponing the evaluation to several weeks after an
altitude camp may reveal performance gains in athletes who initially did not respond or
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enhance gains in others (McLean et al., 2013). In support, larger 3-km performance
enhancements after an 18-d ‘live high-train low’ altitude camp occurred for athletes
training using a natural compared to an artificial hypoxic stimulus 3 weeks after return to
sea level, while performance was not elevated above baseline levels immediately after the
camp (Saugy et al., 2014). In future studies, individualization of the ‘altitude dose’ would be
required to reduce inter-individual variability both during (i.e., training load management)
and after (i.e., timing the return to competition) the intervention, which could be aided by
EIAH and/or HRV monitoring.

Exercise-induced arterial hypoxemia
During the incremental test, SpO2 values measured both at a fixed submaximal intensity of
240 W and near exhaustion remained unchanged from pre- to post-intervention in either
group. Although the use of pulse oximetry to study EIAH has been questioned (Durand &
Raberin, 2021), this method has demonstrated high precision, reproducibility, and validity
for oxygen saturation above 75% when compared to oxygen saturation measured from
arterial blood gases during exercise in normoxia (Mollard et al., 2010). In our group of
well-trained runners with a V̇O2peak averaging ~65 ml.min−1.kg−1, the magnitude of EIAH
could be classified as ‘moderate’ according Dempsey &Wagner (1999), with lowest average
SpO2 values ranging 93–88%. Reportedly, two-third of male athletes (n = 79) with a
V̇O2peak > 68 ml.min−1.kg−1 displayed EIAH during a progressive-grade treadmill exercise
test to exhaustion (Constantini et al., 2017). While unchanged EIAH responses occurred
when participants were tested near sea level, it cannot be ruled out that improved SpO2

responses would have occurred under hypoxic conditions. In support, Ventura et al. (2003)
reported a ~3% significant increase in SpO2 after 6 weeks of high-intensity endurance
training in hypoxia, but not normoxia, during the post-training incremental test at 3,200 m
despite no changes occurring during the same test performed under sea-level conditions.

Heart rate variability
Although time-domain indices of HRV response to acute hypoxia exposure have been
largely studied (Wille et al., 2012), little is known about adaptations arising from an
altitude camp. In our study, cardiac autonomic activity in response to a 5-km time trial, as
inferred from the amount of variability in measurements of the inter-beat interval
(LnRMSSD), remained unchanged from pre- to post-tests in both groups (also probably
due to our small sample size). This suggests that either HiHiLo or LoHi had no effect on
the activity of the parasympathetic system (Kleiger, Stein & Bigger, 2005). Because
LnRMSSD is not very sensitive to respiratory variations (Hill et al., 2009), the fact that
unchanged values occurred in the 4-min post-exercise period (with also progressively
lower heart rates and longer RR intervals) was not surprising. Perhaps HRVmetrics can be
used as a diagnostic value for fatigue monitoring during the course of an altitude camp
rather than a measure of physiological adaptation from pre-to-post the intervention.
In adolescent runners participating in a 2-week altitude training camp, a superior increase
in V̇O2peak and subsequent race performance were observed using HRV-guided compared
to conventional training methods (Bahenský & Grosicki, 2021). Future studies evaluating
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training responsiveness should also compare short-duration time-domain HRV indices (i.
e., RMSSD) to more time-intensive cardiac autonomic responses to the shifting of body
positions captured using HRV frequency-domain parameters.

Hematological parameters
We found moderate improvement in hematological parameters, with no difference
between the two groups. Minimal changes in blood parameters for LoHi are in line with
previous studies (Czuba et al., 2011) and would likely support non-enhanced
erythropoiesis after this form of altitude training. The lack of clear change for all blood
parameters in response to HiHiLo was unexpected, as several altitude training studies
using a comparable approach (Czuba et al., 2014; Stray-Gundersen, Chapman & Levine,
2001), but not all (Chapman, Stray-Gundersen & Levine, 1998), have reported positive
hematological adaptations. As discussed above, the ‘altitude dose’ (i.e., elevation, duration
and daily exposure) may have not been sufficient to invoke robust HIF-1a-related
downstream adaptations. Perhaps short daily (<10–12 h), or at the camp level (<200 h),
hypoxic exposure time could be compensated by an increased level of hypoxia (i.e.,
simulated altitude ≥3,500 m (at least during day time), which may maximize
haematological responses). Regardless, the absence of meaningful improvements in
hematological parameters is not surprising, given that V̇O2peak was not improved with
either HiHiLo or LoHi.

Limitations and additional considerations
Several methodological and logistical limitations must be emphasized. The lack of a
significant performance improvement, coupled with unchanged time-domain HRV and
EIAH responses in our study, may be partly attributed to the relatively small sample size of
sixteen participants. One challenge for research-embedded altitude training camps, as
conducted here, is therefore to recruit a sufficiently large number of participants without
compromising the validity of findings. While we did not perform an a priori sample size
calculation, estimating an appropriate sample size for altitude training studies poses
challenges as it involves determining the main parameter of interest while considering
expected power and effect size. Relying on a single metric may not fully characterize the
multi-faceted approach to monitoring athletes in altitude training camp environments
(Saw, Halson & Mujika, 2018). No control group (i.e., without altitude exposure while
sleeping and training) was used, which makes our performance results harder to interpret.
Because training load could not be quantified, whether in the lead-in period or during the
actual training camp, the effect of the training per se could not be evaluated. However,
groups were closely matched in terms of performance levels after pre-tests, while all
runners also followed the same training program designed by the head coach with the
exception of altitude exposure at night. Importantly, nutritional-hydrational status of the
athletes during blood tests, well-being during training sessions and sleep quality were not
monitored, while total hemoglobin mass could not be measured. Additionally, in this
runner cohort, training sessions included a cycling component, and the incremental test
was conducted on a cycle ergometer, potentially influencing V̇O2peak determination. These
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experimental choices, driven by coach recommendations, aimed to reduce the total
amount of running during the altitude training camp (i.e., intensified training period),
ensure safety during exhaustive testing, and create a controlled environment for SpO2

measurement. Finally, other forms of ‘live high-train low and high’ routines could be
considered owing to the absence of performance improvement reported here. For instance,
utilizing normobaric hypoxic residence for 14 days in combination with repeated
maximal-intensity hypoxic exercise conferred a repeated-sprint ability advantage in team
sports (Brocherie et al., 2015), along with upregulated skeletal muscle molecular
adaptations (Brocherie et al., 2018), compared to ‘live high-train low’ or ‘live low-train low’
groups.

CONCLUSION
Well-trained runners undertaking base training at moderate simulated altitude for 3 weeks
with simulated residence had no physical performance gains compared with no simulated
residence, and there were no changes in time-domain HRV and EIAH responses.

Contribution to the field statement
Athletes are regularly using different altitude training modalities to obtain physiological
adaptations and performance benefits. Historically, altitude training emerged in the 1960s
and was limited to the ‘live high-train high’method for athletes looking for increasing their
convective oxygen transport capacity. Other popular altitude training approaches include
‘live high-train low’ and ‘live low-train high’, or a combination of both. A promising
mixed-method regimen, that may allow for better maintenance of training intensity in
reference to ‘live high-train low’, is known as ‘live high-base train high-interval train low’.
The aim of this study was to determine the effect of 3-week simulated ‘live high-base train
high-interval train low’ altitude training, compared to ‘live low-train high’, on changes in
physical performance, selected hematological variables as well as heart rate variability and
exercise-induced arterial hypoxemia responses immediately after return from the camp.
Peak oxygen uptake and running performance along with physiological indices did not
differ from pre- to post-tests in either group. In conclusion, well-trained runners
undertaking base training at moderate simulated altitude for 3 weeks with or without
hypoxic residence had no performance improvement, also with unchanged time-domain
heart rate variability and exercise-induced arterial hypoxemia responses.
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