Pollen viability of a widespread plant in response to climate warming: possible local adaptation of populations from different elevations (#87630)

First submission

Guidance from your Editor

Please submit by 7 Aug 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

2 Figure file(s)

1 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Pollen viability of a widespread plant in response to climate warming: possible local adaptation of populations from different elevations

Karolína Hrubá ^{1, 2}, Paolo Biella ³, Jan Klečka ^{Corresp. 1}

Corresponding Author: Jan Klečka Email address: janklecka.eco@gmail.com

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the viability of pollen grains. Pollen viability is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen viability in crops to understand the possible impact of temperature extremes on yield. But little is known about the effects of temperature on pollen viability of wild plant species. To fill this knowledge gap, we selected Lotus corniculatus (Fabaceae), a common species of many European habitats, to test its pollen viability in response to increasing temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland and six highland populations. We observed pollen germination in vitro at 15, 25, 30, and 40°C. While lowland plants had stable germination rate at a wide range of temperatures between 15 and 30°C, with reduced germination rate observed only at the extremely high values (i.e., 40°C), germination rate of highland plants was reduced already when the temperature reached 30°C, temperature commonly exceeded in the lowland during warm summers. This suggest that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination rate significantly differed between lowland and highland populations, with highland populations surprisingly displaying higher germination rate. On the other hand, average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen viability of *L. corniculatus* is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of

¹ Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic

² Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

³ ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy

pollen thermal tolerance. Therefore, expanding the investigation of warming effects on pollen viability and sexual reproduction of wild plants should be a priority, since they may suffer from adverse effects of increasing temperature similarly to crops.

Pollen viability of a widespread plant in response to climate warming: possible local adaptation of populations from different elevations

4 5

1

2

3

Karolína Hrubá^{1,2}, Paolo Biella³ 3, Jan Klečka¹

6 7

- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice,
 Czech Republic
- 10 ² Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice,
- 11 Czech Republic
- 12 ³ ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca,
- 13 Milan, Italy

14

15

- 16 Corresponding Author:
- 17 Jan Klečka¹
- 18 Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31,
- 19 České Budějovice, 37005, Czech Republic
- 20 Email address: jan.klecka@entu.cas.cz

21 22

23

Abstract

25 26

27

28 29

30

31 32

33

34

35

36

37 38

39

40

41 42

43

44 45

46 47

48

49

50

24

One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the viability of pollen grains. Pollen viability is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen viability in crops to understand the possible impact of temperature extremes on yield. But little is known about the effects of temperature on pollen viability of wild plant species. To fill this knowledge gap, we selected *Lotus corniculatus* (Fabaceae), a common species of many European habitats, to test its pollen viability in response to increasing temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland and six highland populations. We observed pollen germination in vitro at 15, 25, 30, and 40°C. While lowland plants had stable germination rate at a wide range of temperatures between 15 and 30°C, with reduced germination rate observed only at the extremely high values (i.e., 40°C), germination rate of highland plants was reduced already when the temperature reached 30°C, temperature commonly exceeded in the lowland during warm summers. This suggest that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination rate significantly differed between lowland and highland populations, with highland populations surprisingly displaying higher germination rate. On the other hand, average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen viability of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermal tolerance. Therefore, expanding the investigation of warming effects on pollen viability and sexual reproduction of wild plants should be a priority, since they may suffer from adverse effects of increasing temperature similarly to crops.

51 52 53

Introduction

54 55 56

57

58 59

60

61 62 Climate change, in particular increasing temperature, represents a major threat to biodiversity and is already leading to changes in the geographic distribution of many species of plants and animals (Lenoir et al., 2008; Biella et al., 2017; Freeman et al., 2018; Fazlioglu, Wan & Chen, 2020). Globally, average air temperature is predicted to increase by as much as 2.4°C–4.8°C by the end of the 21st century in the high-emissions scenario SSP5-8.5 according to the Sixth Assessment Report of the IPCC (Lee et al., 2021). Understanding the effect of increasing temperature on the survival and reproduction of plants and animals and their capacity to adapt is thus an urgent task (Aitken et al., 2008; Alberto et al., 2013).

63 64 65

66

67

68

69

One of the most vulnerable phases in the plant life cycle is sexual reproduction. Successful reproduction in most plant species depends on effective pollination by animals (Ollerton, Winfree & Tarrant, 2011), but also on the viability of pollen grains (He et al., 2017). Different stages of the process of sexual reproduction are temperature-dependent (Hedhly, Hormaza & Herrero, 2009; Zinn, Tunc-Ozdemir & Harper, 2010; Lohani, Singh & Bhalla, 2020), with pollen germination being the stage most sensitive to heat stress (Young, Wilen &

Bonham-Smith, 2004; Zinn, Tunc-Ozdemir & Harper, 2010). That pollen germination and pollen tube growth depend, among other factors, on temperature has been known for a long time (Brink, 1924; Das et al., 2014; Pham, Herrero & Hormaza, 2015; Shi et al., 2018; Hebbar et al., 2018). Optimum temperature allows higher pollen germination success and faster pollen tube growth (Hedhly, Hormaza & Herrero, 2005), but when the temperature exceeds a species-specific optimum, pollen germination rapidly decreases and pollen tube growth stops (Lewis, 1942; Kakani et al., 2005; Zinn, Tunc-Ozdemir & Harper, 2010). Therefore, both germination rate and tube length can provide key information on the effects of thermal stresses on the male fitness and reproduction in plants.

Global warming may thus represent a serious threat to pollen germination and the overall plant reproductive system (Hedhly, Hormaza & Herrero, 2005). Apart from increasing mean temperature, temperature extremes and heat waves are predicted to be more intense, more frequent, and to last longer (IPCC, 2021). However, the susceptibility of key stages of the sexual reproduction of plants to high temperature has been so far studied almost exclusively in crops or other commercially exploited plants (Wang et al., 2019; Bheemanahalli et al., 2019; Lovane et al., 2021; Lohani, Singh & Bhalla, 2022), but not in wild plant species, with the exception of a recent study on a coniferous tree, *Pinus edulis* (Flores-Rentería et al., 2018).

Moreover, insights about the impact of global warming on plant populations can be gained from studies of local adaptation and acclimation to temperature along environmental, e.g. elevational, gradients (Aitken et al., 2008; Alberto et al., 2013). For example, Flores-Rentería et al., (2018) tested pollen viability of *Pinus edulis* across different elevations, although their prediction that pollen from sites with higher air temperature is more tolerant to high temperature was not confirmed. However, studies of crops provide evidence of intraspecific variation in pollen thermal tolerance by comparing the effects of temperature on pollen viability of different cultivars (Kakani et al., 2005; Walters & Isaacs, 2023). The possibility of local adaptation of pollen viability to temperature thus remains an open question.

To fill this knowledge gap, we tested pollen viability of a common wild plant species, *Lotus corniculatus*, by measuring pollen germination and pollen tube length in response to increasing temperature in 12 populations from two different elevations. We asked the following questions:

- 1. Does the pollen germination success and pollen tube length decrease with increasing temperature? We hypothesised that pollen viability decreases when the temperature reaches 40 °C, because this temperature exceeds the maximum summer temperatures observed in the study region.
- 2. Does pollen from lowland populations have higher germination success and pollen tube length at higher temperatures compared to pollen from highland populations? We hypothesized that pollen of plants from the lowland populations is more viable at higher temperatures because of local adaptation of lowland plants to warmer climate.

Materials & Methods

Study sites

The study was carried out in the southern part of the Czech Republic. We conducted our experiment at six lowland sites (389 – 451 m a.s.l.) in the surroundings of the city of České

Budějovice and six highland sites (841 – 1030 m a.s.l.) in the nearby Šumava Mountains (Table 1.). We obtained publicly available temperature data released by the Czech Hydrometeorological Institute (https://www.chmi.cz/) from the nearest meteorological stations located within several km from the sites at a similar elevation (Table 1). Additional climate data were downloaded from the Worldclim database (https://www.worldclim.org/, Fick & Hijmans, 2017). We selected the average maximum temperature of the warmest months as the most biologically relevant among the climate variables in Worldclim because our sampling was done in the summer when the temperatures reach the maximum values. The temperature values for each site were extracted based on its GPS coordinates using the R package raster (Hijmans, 2021). The differences in maximum temperature between the lowland (mean 23.9°C) and highland sites (mean 19.6°C) were >4°C (Table 1.). This difference in elevation represents a good simulation of global warming, because it corresponds to predictions of future global warming by 2.4°C–4.8°C by the end of the 21st century in the high-emissions scenario SSP5-8.5 according to the Sixth Assessment Report of the IPCC (Lee et al., 2021).

Study species

Our study species is a dicotyledonous forb *Lotus corniculatus* L. (Fabaceae). We selected this species because of its common occurrence across the Czech Republic spanning the entire climatic gradient from the warmest lowlands to the coldest mountain ranges. This species is recorded from each mapping grid cell (approximately 6.0 km × 5.5 km) in the South Bohemia region of the Czech Republic, where our study was done (Chytrý et al., 2021). *L. corniculatus* has a long flowering period (April – August) and is strictly entomogamous; the most frequent pollinators are solitary bees and bumblebees (Chytrý et al., 2021).

Data collection

Before the collection of *L. corniculatus* plants, we prepared 1.5 litres of BK culture medium (Brewbaker & Kwack, 1963) modified for best performance in Fabaceae according to Tushabe & Rosbakh (2021) in the laboratory. We used 50g 10% 1L sucrose, 50 mg boric acid H₃BO₃, 150 mg calcium nitrate Ca(NO₃)₂, 100 mg magnesium sulphate heptahydrate H₁₄MgO₁₁S, 50 mg potassium nitrate KNO₃ for medium preparation. We made up the medium with 500 ml deionized water. We calibrated the medium to pH 5.5. Finally, we autoclaved the medium for 2 hours at 120°C. We did not add agar, thus the medium remained liquid, which allowed us easier manipulation.

We collected the plants during June – July 2022. In each of 12 sites, we collected 20 individuals between 10:00 and 16:00 hours. We selected plants with fresh-looking flowers. Entire plant stems with flowers were cut and immediately placed into plastic zip-lock bags with a piece of wet paper towel and stored in polystyrene cooling boxes at ambient temperature to prevent their wilting during transport to the lab.

The samples were transported and processed in the laboratory during the day of collection. We released the pollen of five flowers using entomological forceps. The pollen was placed to an Eppendorf tube with liquid medium. Afterwards, we put the Eppendorf tubes to incubators with four different temperature levels (15, 25, 30, and 40°C). These temperature levels were designed based on other pollen germination studies (Kakani et al., 2005; Kaushal et al., 2016; Mesihovic et al., 2016; Walters & Isaacs, 2023) and our own pilot experiments to

cover temperatures likely within and above the optimum temperature range. In the lowland parts of the study region, summer temperatures occasionally exceed 30°C, but never reach 40°C according to measurements of the Czech Hydrometeorological Institute (https://www.chmi.cz/). Five samples for each combination of site and temperature level were incubated for 20 hours in the darkness. After the incubation, the samples were placed to the freezer, which allows long-term storage of the samples without damage to the pollen grains (Du et al., 2019). We processed the samples (counting of pollen grains and measurements of pollen tube length) during the autumn of the same year.

In the day of pollen processing, samples were left to defrost for 15 minutes. We removed three drops (1 drop = 40μ l) of the medium using a pipette. Medium with pollen was retrieved with clipped pipette tips with increased diameter to avoid possible destruction of the germinated pollen tubes. We put these three drops on one slide and covered them by cover slides. We put the slides with the medium under the microscope with a camera. We observed the slides under 160x magnification and took three photos at random locations within each drop; i.e., nine photos per sample in total.

Photos obtained by a camera attached to the microscope were processed in the Fiji distribution of ImageJ software (Schindelin et al., 2012). We counted all pollen grains of each photo and distinguished germinated pollen grains. We calculated germination success rate as the proportion of germinated grains divided by all pollen grains in a sample (pooled numbers from the nine photos per sample). We also measured the pollen tube length of germinated pollen. Pollen tubes were measured only if they were longer than the pollen grain diameter. Burst pollen grains were not counted as germinated pollen.

Data analysis

Data from the experiment were analyzed using a generalized linear mixed model (GLMM) with the glmer function implemented in the lme4 package (Bates et al., 2015) in R version 4.2.2 (R Core Team, 2022). Temperature data from Worldclim for focal sites were extracted in R using the library raster (Hijmans, 2021).

Temperature (a factor with four levels), elevation (a factor with two levels), and their interaction were used as predictors in the analyses. Pollen germination (proportion of pollen grains which germinated per sample) and pollen tube length were used as response variable in two separate models. For pollen germination data, we used binomial distribution. For pollen tube length data, we used gamma distribution with log link function. The site of plant origin was included as a random effect in both cases. We used likelihood ratio tests to evaluate the statistical significance of the predictors. We conducted multiple comparison tests to compare pollen germination and pollen tube length between all combinations of temperature levels, separately for lowland and highland plants, using the function glht in the multcomp library for R

Results

We observed a statistically significant effect of the interaction of the temperature of incubation and the elevation of plant origin on pollen germination ($\chi^2 = 41.82$, P = $4.376*10^{-09}$). Lowland plants had stable germination in the temperature range from 15 to 30°C, followed by a strong reduction at 40°C (Figure 1). While on average between 47.1 and 49.5% of pollen grains

germinated at 15-30°C, pollen germination dropped to 36.0% at 40°C. On the other hand, the germination of pollen from highland plants decreased already as the temperature reached 30°C, from 57.1% at 15°C and 53.3% at 25°C to 45.5% at 30°C and 45.3% at 40°C. In addition, the overall average pollen germination success rate significantly differed between lowland and highland sites; the proportion of pollen grains which germinated was on average 7.6% higher in plants from the highland (z = 2.70, P = 0.0069) (Figure 1).

Analysis of pollen tube lengths also showed a statistically significant effect of the interaction of the temperature of incubation and the elevation of plant origin ($\chi^2 = 17.12$, P = 0.0007), although the differences between lowland and highland sites were less pronounced than in the case of pollen germination (Figure 2). Pollen tube length decreased with increasing temperature in a similar way in lowland and highland populations (Figure 2). The average pollen tube length was slightly shorter, on average by 0.068 mm, in plants from the highland compared to the lowland (t = -3.709, P = 0.0002) (Figure 2.).

Discussion

Until now, the effect of increasing temperature on plant sexual reproduction has been studied mostly in crops because of concerns about the effects of climate change on food production (Kaushal et al., 2016). Previous studies showed that different stages of the process of sexual reproduction of crops are temperature-dependent and can thus be adversely affected by global warming (Hedhly, Hormaza & Herrero, 2009; Zinn, Tunc-Ozdemir & Harper, 2010). However, little attention has been paid to the effects of increasing temperature on sexual reproduction of wild plants. Although species with frequent vegetative reproduction could persist with non-viable pollen, relying on vegetative reproduction leads to the loss of genetic variability and decreases the ability to adapt to unpredictable changes in the environment (Hedhly, Hormaza & Herrero, 2009; Eckert et al., 2010). Sexual reproduction is thus important for the long-term survival of most plant species. Hence, research on the direct effects of increasing temperature on sexual reproduction of wild plants is needed to evaluate the threat posed by global warming for plant diversity.

The effects of high temperature on pollen viability

Pollen viability of *Lotus corniculatus* decreased at high temperature. The pollen germination success rate was reduced at 40°C in the lowland population and also at 30°C in the highland population, compared to lower temperatures. Although very rarely studied in wild plant species, a negative effect of high temperature on pollen germination has been observed in many species of crops (Zinn, Tunc-Ozdemir & Harper, 2010; Kaushal et al., 2016). For example, pollen germination of rice (*Oryza sativa*) significantly decreased when exposed to temperature higher than 32 – 35 °C in a study of (Rang et al., 2011) and 38°C in a study by (Shi et al., 2018). Also, almond (*Prunus dulcis*) had reduced viability at 35 °C, which inhibited pollen germination (Sorkheh et al., 2011), similarly to spring wheat (*Triticum aestivum* L.) exposed to 34°C (Bheemanahalli et al., 2019). Optimum temperature for pollen germination in cotton (*Gossypium hirsutum*) was approximately 30°C with a sharp decrease at higher, as well as lower temperatures (Kakani et al., 2005). Among crops from temperate regions, pollen germination of the northern

254

255256

257

258

259260

261

262263

264

265266

267268

269

270

271272

273

274275

276

277278

279

280

281 282

283

284 285

286

287

288

289 290

291

292

293294

295 296

297

highbush blueberry (*Vaccinium corymbosum*) was reduced at temperatures exceeding 35°C and almost completely prevented at 40° (Walters & Isaacs, 2023).

Pollen tube length was also reduced with increasing temperature, but in this case, the reduction was more gradual. Previous studies of crops also provide examples of a negative effect of high temperatures on pollen tube growth. For instance, Longan (*Dimocarpus longan*), a subtropical fruit tree, showed decreased pollen tube length at 40 °C (Pham, Herrero & Hormaza, 2015). Hebbar et al. (2018) found out that some cultivars of coconut (*Cocos nucifera*) have shorter pollen tubes at temperatures around 40 °C. Decreasing pollen tube length with increasing temperature was also observed in *Pistacia* spp (Acar & Kakani, 2010), in cotton (*Gossypium hirsutum*) at temperatures above the optimum temperature of 30°C (Kakani et al., 2005), and in the northern highbush blueberry (*Vaccinium corymbosum*) also at temperatures exceeding 30°C (Walters & Isaacs, 2023).

Signs of local adaptation

As hypothesized, we observed differences in the effect of increasing temperature on the pollen germination rate of lowland and highland populations of *L. corniculatus*. While pollen germination was stable at the incubation temperature of 15-30°C in the lowland plants and a reduction of pollen germination was observed only at 40°C, pollen germination of the highland plants was reduced already when the temperature of incubation reached 30°C. We suggest that this is due to local adaptation of the lowland plant populations to higher temperatures. The difference in the elevation of the lowland and highland sites was over 400 m and climate data show that the differences in long-term average temperatures between the lowland and highland sites exceed 4°C (Table 1). Plants in the lowland populations thus experience substantially higher temperatures during their flowering period and this provides selection pressure to adapt to higher temperatures.

Variation of plant traits along environmental gradients, which suggests local adaptation of plant populations to varying conditions has been observed in many species (Aitken et al., 2008; Alberto et al., 2013). A large amount of indirect evidence comes from numerous common garden experiments which showed that various plant traits and different measures of plant performance depend on the population of origin along the environmental gradient. Direct evidence from reciprocal transplant experiments is mixed, i.e. some studies show that plants at their native site had higher fitness than plants from other populations introduced to that site, with plants from larger populations showing stronger evidence for local adaptation (Leimu & Fischer, 2008). A recent meta-analysis of seed and seedling transplant experiments provided a strong overall support for plant adaptation to local climate based on the analysis of seed germination, seedling growth, biomass, and other measures (Lortie & Hierro, 2022). However, the only reciprocal transplant study on *Lotus corniculatus*, we are aware of, found no evidence for adaptation to climate based on comparisons of total biomass and fecundity of plants reciprocally transplanted among three sites (Macel et al., 2007). Despite the large body of research on local adaptation, we are not aware of previous studies of local adaptation of pollen viability of plants to increasing temperature, with the exception of a study of pollen viability of *Pinus edulis* along an elevational gradient (Flores-Rentería et al., 2018). However, that study did not confirm the hypothesis that pollen from plants growing at lower elevations is more viable at higher temperatures.

Based on the design of our experiment, we could not obtain a precise estimate of the optimum and maximum temperature for pollen germination of *L. corniculatus*. However, our choice of temperature levels reflected local climate. Specifically, we observed that pollen germination rate of highland plants was reduced at 30°C compared to 15 and 25°C, while lowland plants had stable pollen germination rate at 15, 25, and 30°C and pollen germination was reduced only at 40°C. Data from nearby meteorological stations show that while maximum daily temperatures in the lowland (ca. 400 m a.s.l.) regularly exceed 30°C, they very rarely do so in the highland (ca. 900 m a.s.l.). For example, in 2022, 30°C was exceeded on 15 days at a station in České Budějovice (elevation 381 m a.s.l.) near the lowland sites, but never at a station in Nicov (elevation 935 m a.s.l.) near the highland sites, where the maximum recorded temperature was 29.0°C. This is reflected in the different effects of increasing temperature on the germination success rate of pollen grains of plants from the highland compared to the lowland populations.

Possible acclimation and confounding factors

A caveat in our interpretation of the differences between the lowland and highland populations is that pollen viability may be affected also by the temperature the plants experienced in the field prior to the collection of pollen; i.e., there may be an effect of acclimation leading to acquired tolerance of high temperature (Sung et al., 2003). Due to acclimation, plants are able to express heat stress-responsive genes (Müller & Rieu, 2016) and also photosynthesize more efficiently in new climate conditions (Yamori, Hikosaka & Way, 2014). A study by Firon et al. (2012) also demonstrated a positive effect of previous exposure of tomato plants to high non-lethal temperature on their pollen viability under subsequent heat stress.

Accounting for the effect of acclimation in plants collected in the field is not trivial. To evaluate whether acclimation might bias our results, we compared temperature data from the meteorological stations near the lowland and highland sites. We specifically looked up the maximum air temperature on the day of sample collection and two days before that and compared the average values at individual sites. The average maximum air temperature during this time period ranged from 22.0 to 25.0°C at the lowland sites and between 20.1 and 26.0°C at the highland sites (Table 1). Plants in the lowland and the highland thus experienced very similar temperatures prior to pollen collection and we argue that the difference in the effect of high temperature on pollen germination in the lowland and highland plans observed in the lab is thus unlikely to be biased by the effect of differences in temperature experienced by the plants in the field.

Apart from the effect of temperature, we observed that the average pollen germination success rate was higher in plants from the highland populations compared to the lowland populations, but the pollen tubes were slightly longer in plants from the lowland populations. We do not have a good explanation for these differences, although we suspect that higher pollen germination in plants from the highland might be related either to differences in general plant condition possibly caused by higher water availability in the mountains (Chytrý, 2017), or by differences in air humidity, which is known to affect pollen viability (Aronne, 1999; Leech, Simpson & Whitehouse, 2002). The negative effect of draught on pollen germination was confirmed in multiple crops, e.g. in maize (*Zea mays* L.) (Bheemanahalli et al., 2022), soybean (*Glycine max*) (Poudel et al., 2023), and rice (*Oryza sativa*) (Rao et al., 2019). Another important factor could be whether the plant is exposed to direct sunshine most of the day or is

located in the shadow (Corbet, 1990), which we did not record. Interestingly, a previous experiment on pollen germination of *Pinus edulis* showed variable pollen germination across an elevation gradient, with the highest pollen germination success rate at intermediate elevations where the plants are in their optimal conditions (Flores-Rentería et al., 2018). Multiple studies demonstrated that different environmental drivers, such as temperature, water, and nutrient availability often have interactive effects on plant vegetative growth, floral traits, and interactions with pollinators (Hoover et al., 2012; Descamps et al., 2018; Akter & Klečka, 2022). Hence, understanding the effects of a broader set of local environmental conditions on pollen viability will certainly be an interesting avenue for future research.

Conclusions

Our experiment with pollen germination in lowland and highland populations of *Lotus corniculatus*, which were tested across four temperature levels, provides evidence that pollen germination is more sensitive to high temperatures in highland plants compared to lowland plants. This is likely the result of local adaptation to higher temperatures in lowland populations. In addition, we found a negative effect of increasing temperature on pollen tube length, which may further prevent fertilization at high temperatures. We conclude that more research on the temperature-dependence of pollen viability of wild plants is needed to understand the impact of climate change on plant reproduction. Our data show that increasing temperature may hamper sexual reproduction of wild plants, similarly to crops, but differences among populations suggest potential for adaptation.

Acknowledgements

We would like to thank Jenna Walters for discussions about pollen germination, Dagmar Hucková and Davide Panzeri for their help with the preparation of culture medium. We are thankful to Pavel Duda, who helped in the field. We would also like to thank Nicola Tommasi and Zdeněk Faltýnek Fric for useful comments about data analyses. Last but not least, we are grateful to Eva Kaštovská and Petr Čapek for providing their incubators for the experiment.

References

- Acar I, Kakani VG. 2010. The effects of temperature on in vitro pollen germination and pollen tube growth of *Pistacia* spp. *Scientia Horticulturae* 125:569–572. DOI: 10.1016/j.scienta.2010.04.040.
- Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. *Evolutionary Applications* 1:95–111. DOI: 10.1111/j.1752-4571.2007.00013.x.
- Akter A, Klečka J. 2022. Water stress and nitrogen supply affect floral traits and pollination of
 the white mustard, *Sinapis alba* (Brassicaceae). *PeerJ* 10:e13009. DOI:
 10.7717/peerj.13009.

- Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F,
 Lenormand T, Yeaman S, Whetten R, Savolainen O. 2013. Potential for evolutionary
 responses to climate change evidence from tree populations. *Global Change Biology* 19:1645–1661. DOI: 10.1111/gcb.12181.
- Aronne G. 1999. Effects of relative humidity and temperature stress on pollen viability of *Cistus* incanus and *Myrtus communis. Grana* 38:364–367. DOI: 10.1080/00173130050136154.
- Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4.
 Journal of Statistical Software 67:1–48. DOI: 10.18637/jss.v067.i01.
- Bheemanahalli R, Ramamoorthy P, Poudel S, Samiappan S, Wijewardane N, Reddy KR. 2022. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize *Zea mays* L.). *Plant Direct* 6. DOI: 10.1002/pld3.434.
- Bheemanahalli R, Sunoj VSJ, Saripalli G, Prasad PVV, Balyan HS, Gupta PK, Grant N, Gill KS,
 Jagadish SVK. 2019. Quantifying the impact of heat stress on pollen germination, seed
 set, and grain filling in spring wheat. *Crop Science* 59:684–696. DOI:
 10.2135/cropsci2018.05.0292.
- Biella P, Bogliani G, Cornalba M, Manino A, Neumayer J, Porporato M, Rasmont P, Milanesi P.
 2017. Distribution patterns of the cold adapted bumblebee *Bombus alpinus* in the Alps
 and hints of an uphill shift (Insecta: Hymenoptera: Apidae). *Journal of Insect Conservation* 21:357–366. DOI: 10.1007/s10841-017-9983-1.
- Brewbaker JL, Kwack BH. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. *American Journal of Botany* 50:859–865. DOI: 10.1002/j.1537-2197.1963.tb06564.x.
- Brink RA. 1924. The physiology of pollen I. The requirements for growth. *American Journal of Botany* 11:218–228. DOI: 10.1002/j.1537-2197.1924.tb05773.x.
- Chytrý M. 2017. Physical geography of the Czech Republic. In: Chytrý M, Danihelka J, Kaplan
 Z, Pyšek P eds. *Flora and Vegetation of the Czech Republic*. Cham: Springer
 International Publishing, 1–23. DOI: 10.1007/978-3-319-63181-3_1.
- Chytrý M, Danihelka J, Kaplan Z, Wild J, Holubová D, Novotný P, Řezníčková M, Rohn M,
 Dřevojan P, Grulich V, Klimešová J, Lepš J, Lososová Z, Pergl J, Sádlo J, Šmarda P,
 Štěpánková P, Tichý L, Axmanová I, Bartušková A, Blažek P, Chrtek J, Fischer FM, Guo
 W-Y, Herben T, Janovský Z, Konečná M, Kühn I, Moravcová L, Petřík P, Pierce S,
 Prach K, Prokešová H, Štech M, Těšitel J, Těšitelová T, Večeřa M, Zelený D, Pyšek P.
- 422 2021. Pladias Database of the Czech flora and vegetation. *Preslia* 93:1–87. DOI:

423 10.23855/preslia.2021.001.

- 424 Corbet SA. 1990. Pollination and the weather. *Israel Journal of Botany* 39:1–2:13–30. DOI:
 425 10.1080/0021213X.1990.10677131.
- Das S, Krishnan P, Nayak M, Ramakrishnan B. 2014. High temperature stress effects on pollens of rice (*Oryza sativa* L.) genotypes. *Environmental and Experimental Botany* 101:36–46.

 DOI: 10.1016/j.envexpbot.2014.01.004.

- Descamps C, Quinet M, Baijot A, Jacquemart A-L. 2018. Temperature and water stress affect
- plant–pollinator interactions in *Borago officinalis* (Boraginaceae). *Ecology and Evolution* 8:3443–3456. DOI: 10.1002/ece3.3914.
- Du G, Xu J, Gao C, Lu J, Li Q, Du J, Lv M, Sun X. 2019. Effect of low storage temperature on pollen viability of fifteen herbaceous peonies. *Biotechnology Reports* 21:e00309. DOI:
- 434 10.1016/j.btre.2019.e00309.
- Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou P-O, Goodwillie C, Johnston MO,
- 436 Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marín M, Winn AA. 2010. Plant
- mating systems in a changing world. *Trends in Ecology & Evolution* 25:35–43. DOI:
- 438 10.1016/j.tree.2009.06.013.
- 439 Fazlioglu F, Wan JSH, Chen L. 2020. Latitudinal shifts in mangrove species worldwide:
- evidence from historical occurrence records. *Hydrobiologia* 847:4111–4123. DOI:
- 441 10.1007/s10750-020-04403-x.
- 442 Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for
- global land areas. *International Journal of Climatology* 37:4302–4315. DOI:
- 444 10.1002/joc.5086.
- Firon N, Pressman E, Meir S, Khoury R, Altahan L. 2012. Ethylene is involved in maintaining
- tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB PLANTS
- 447 2012:pls024. DOI: 10.1093/aobpla/pls024.
- 448 Flores-Rentería L, Whipple AV, Benally GJ, Patterson A, Canyon B, Gehring CA. 2018. Higher
- temperature at lower elevation sites fails to promote acclimation or adaptation to heat
- stress during pollen germination. *Frontiers in Plant Science* 9:536. DOI:
- 451 10.3389/fpls.2018.00536.
- 452 Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL. 2018. Expanding, shifting and
- shrinking: The impact of global warming on species' elevational distributions. *Global*
- 454 *Ecology and Biogeography* 27:1268–1276. DOI: 10.1111/geb.12774.
- He G, Hu F, Ming J, Liu C, Yuan S. 2017. Pollen viability and stigma receptivity in *Lilium*
- during anthesis. *Euphytica* 213:231. DOI: 10.1007/s10681-017-2019-9.
- 457 Hebbar KB, Rose HM, Nair AR, Kannan S, Niral V, Arivalagan M, Gupta A, Samsudeen K,
- Chandran KP, Chowdappa P, Vara Prasad PV. 2018. Differences in in vitro pollen
- germination and pollen tube growth of coconut (*Cocos nucifera* L.) cultivars in response
- to high temperature stress. *Environmental and Experimental Botany* 153:35–44. DOI:
- 461 10.1016/j.envexpbot.2018.04.014.
- 462 Hedhly A, Hormaza JI, Herrero M. 2005. The effect of temperature on pollen germination,
- pollen tube growth, and stigmatic receptivity in peach. *Plant Biology* 7:476–483. DOI:
- 464 10.1055/s-2005-865850.
- Hedhly A, Hormaza JI, Herrero M. 2009. Global warming and sexual plant reproduction. *Trends*
- 466 *in Plant Science* 14:30–36. DOI: 10.1016/j.tplants.2008.11.001.
- 467 Hijmans RJ. 2021. raster: Geographic data analysis and modeling. URL: http://CRAN.R-
- 468 project.org/package=raster.

- Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP, Tylianakis JM. 2012. Warming,
 CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. *Ecology Letters* 15:227–234. DOI: 10.1111/j.1461-0248.2011.01729.x.
- 472 IPCC. 2021. Climate Change 2021: The physical science basis. Contribution of Working Group I
 473 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
- 474 Cambridge: Cambridge University Press. DOI: 10.1017/9781009157896.
- Kakani VG, Reddy KR, Koti S, Wallace TP, Prasad PVV, Reddy VR, Zhao D. 2005. Differences
 in in vitro pollen germination and pollen tube growth of cotton cultivars in response to
 high temperature. *Annals of Botany* 96:59–67. DOI: 10.1093/aob/mci149.
- Kaushal N, Bhandari K, Siddique KHM, Nayyar H. 2016. Food crops face rising temperatures:
 An overview of responses, adaptive mechanisms, and approaches to improve heat
 tolerance. *Cogent Food & Agriculture* 2. DOI: 10.1080/23311932.2015.1134380.
- Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, Dunne JP, Engelbrecht F, Fischer E, Fyfe JC, Jones
 C, Maycock A, Mutemi J, Ndiaye O, Panickal S, Zhou T, Milinski S, Yun K-S, Armour
 K, Bellouin N, Bethke I, Byrne MP, Cassou C, Chen D, Cherchi A, Christensen HM,
- Connors SL, Di Luca A, Drijfhout SS, Fletcher CG, Forster P, Garcia-Serrano J, Gillett NP, Kaufmann DS, Keller DP, Kravitz B, Li H, Liang Y, MacDougall AH, Malinina E,
- Menary M, Merryfield WJ, Min S-K, Nicholls ZRJ, Notz D, Pearson B, Priestley MDK,
- Quaas J, Ribes A, Ruane AC, Sallee J-B, Sanchez-Gomez E, Seneviratne SI, Slangen
- 488 ABA, Smith C, Stuecker MF, Swaminathan R, Thorne PW, Tokarska KB, Toohey M,
- Turner A, Volpi D, Xiao C, Zappa G. 2021. Future global climate: scenario-based projections and near-term information. In: Masson-Delmotte V, Zhai P, Pirani A,
- Connors SL, Pean C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M,
- Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R,
- Zhou B eds. Climate Change 2021: The Physical Science Basis. Contribution of Working
- 494 *Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate*495 *Change.* Genf, Switzerland: IPCC, 1–195.
- Leech L, Simpson DW, Whitehouse AB. 2002. Effect of temperature and relative humidity on
 pollen germination in four strawberry cultivars. *Acta Horticulturae*:261–263. DOI:
 10.17660/ActaHortic.2002.567.53.
- Leimu R, Fischer M. 2008. A meta-analysis of local adaptation in plants. *PLOS ONE* 3:e4010.
 DOI: 10.1371/journal.pone.0004010.
- Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. *Science* 320:1768–1771. DOI: 10.1126/science.1156831.
- Lewis D. 1942. The physiology of incompatibility in plants I. The effect of temperature.
 Proceedings of the Royal Society of London. Series B Biological Sciences 131:13–26.
 DOI: 10.1098/rspb.1942.0015.
- Lohani N, Singh MB, Bhalla PL. 2020. High temperature susceptibility of sexual reproduction in crop plants. *Journal of Experimental Botany* 71:555–568. DOI: 10.1093/jxb/erz426.

- Lohani N, Singh MB, Bhalla PL. 2022. Short-term heat stress during flowering results in a
 decline in canola seed productivity. *Journal of Agronomy and Crop Science* 208:486–
 496. DOI: 10.1111/jac.12534.
- Lortie CJ, Hierro JL. 2022. A synthesis of local adaptation to climate through reciprocal common gardens. *Journal of Ecology* 110:1015–1021. DOI: 10.1111/1365-2745.13664.
- Lovane M, Cirillo A, Izzo LG, Di Vaio C, Aronne G. 2021. High temperature and humidity
 affect pollen viability and longevity in *Olea europaea* L. *Agronomy* 12:1. DOI:
 10.3390/agronomy12010001.
- Macel M, Lawson CS, Mortimer SR, Šmilauerova M, Bischoff A, Crémieux L, Doležal J,
 Edwards AR, Lanta V, Bezemer TM, Van Der Putten WH, Igual JM, Rodriguez Barrueco C, Müller-Schärer H, Steinger T. 2007. Climate vs. soil factors in local
 adaptation of two common plant species. *Ecology* 88:424–433. DOI: 10.1890/0012 9658(2007)88[424:CVSFIL]2.0.CO;2.
- Mesihovic A, Iannacone R, Firon N, Fragkostefanakis S. 2016. Heat stress regimes for the
 investigation of pollen thermotolerance in crop plants. *Plant Reproduction* 29:93–105.
 DOI: 10.1007/s00497-016-0281-y.
- Müller F, Rieu I. 2016. Acclimation to high temperature during pollen development. *Plant Reproduction* 29:107–118. DOI: 10.1007/s00497-016-0282-x.
- Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals?
 Oikos 120:321–326. DOI: 10.1111/j.1600-0706.2010.18644.x.
- Pham VT, Herrero M, Hormaza JI. 2015. Effect of temperature on pollen germination and pollen tube growth in longan (*Dimocarpus longan* Lour.). *Scientia Horticulturae* 197:470–475.

 DOI: 10.1016/j.scienta.2015.10.007.
- Poudel S, Vennam RR, Shrestha A, Reddy KR, Wijewardane NK, Reddy KN, Bheemanahalli R.
 2023. Resilience of soybean cultivars to drought stress during flowering and early-seed
 setting stages. *Scientific Reports* 13:1277. DOI: 10.1038/s41598-023-28354-0.
- R Core Team. 2022. R: A language and environment for statistical computing.
- Rang ZW, Jagadish SVK, Zhou QM, Craufurd PQ, Heuer S. 2011. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. *Environmental and Experimental Botany* 70:58–65. DOI: 10.1016/j.envexpbot.2010.08.009.
- Rao G, Ashraf U, Kong L, Mo Z, Xiao L, Zhong K, Rasul F, Tang X. 2019. Low soil temperature and drought stress conditions at flowering stage affect physiology and pollen traits of rice. *Journal of Integrative Agriculture* 18:1859–1870. DOI: 10.1016/S2095-3119(18)62067-2.
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
 Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K,
 Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image
 analysis. *Nature Methods* 9:676–682. DOI: 10.1038/nmeth.2019.
- 547 Shi W, Li X, Schmidt RC, Struik PC, Yin X, Jagadish SVK. 2018. Pollen germination and *in* vivo fertilization in response to high-temperature during flowering in hybrid and inbred

PeerJ

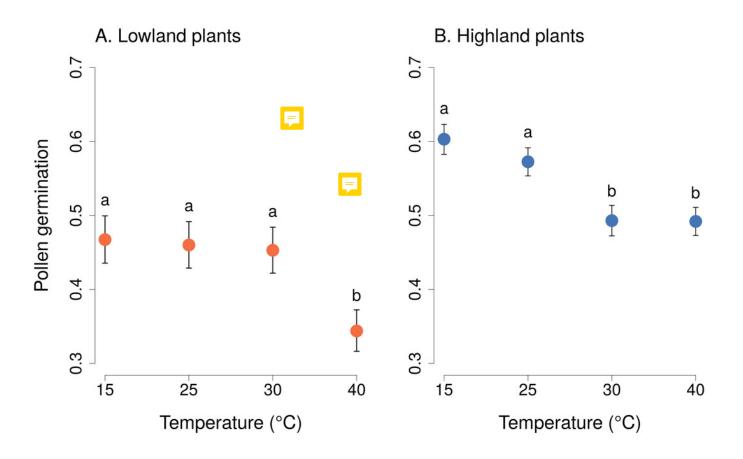
549	rice: Rice pollen & in vivo fertilization under heat. Plant, Cell & Environment 41:1287–
550	1297. DOI: 10.1111/pce.13146.
551	Sorkheh K, Shiran B, Rouhi V, Khodambashi M, Wolukau JN, Ercisli S. 2011. Response of in
552	vitro pollen germination and pollen tube growth of almond (Prunus dulcis Mill.) to
553	temperature, polyamines and polyamine synthesis inhibitor. Biochemical Systematics and
554	Ecology 39:749–757. DOI: 10.1016/j.bse.2011.06.015.
555	Sung D-Y, Kaplan F, Lee K-J, Guy CL. 2003. Acquired tolerance to temperature extremes.
556	Trends in Plant Science 8:179–187. DOI: 10.1016/S1360-1385(03)00047-5.
557	Tushabe D, Rosbakh S. 2021. A compendium of in vitro germination media for pollen research.
558	Frontiers in Plant Science 12.
559	Walters J, Isaacs R. 2023. Pollen germination and tube growth in northern highbush blueberry
560	are inhibited by extreme heat. <i>HortScience</i> 58:635–642. DOI:
561	10.21273/HORTSCI17075-23.
562	Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. 2019. Flowering dynamics,
563	pollen, and pistil contribution to grain yield in response to high temperature during maize
564	flowering. Environmental and Experimental Botany 158:80–88. DOI:
565	10.1016/j.envexpbot.2018.11.007.
566	Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis in C3, C4, and
567	CAM plants: temperature acclimation and temperature adaptation. <i>Photosynthesis</i>
568	Research 119:101–117. DOI: 10.1007/s11120-013-9874-6.
569	Young LW, Wilen RW, Bonham-Smith PC. 2004. High temperature stress of <i>Brassica napus</i>
570	during flowering reduces micro- and megagametophyte fertility, induces fruit abortion,
571	and disrupts seed production. <i>Journal of Experimental Botany</i> 55:485–495. DOI:
572	10.1093/jxb/erh038.
573	Zinn KE, Tunc-Ozdemir M, Harper JF. 2010. Temperature stress and plant sexual reproduction:
574	uncovering the weakest links. <i>Journal of Experimental Botany</i> 61:1959–1968. DOI:
575	10.1093/jxb/erq053.
576	

Table 1(on next page)

The list of study sites in the lowland and the highland with temperature detail.

 T_{max} warmest month represents the average highest air temperature of the warmest month at the study sites according to Worldclim, T_{max} three days prior represents the average of the highest temperature in the day of collection and two days before the collection. The elevation and GPS coordinates of the centre of each site are also provided.

Table 1. The list of study sites in the lowland and the highland with temperature details.


 T_{max} warmest month represents the average highest air temperature of the warmest month at the study sites according to Worldclim, T_{max} three days prior represents the average of the highest temperature in the day of collection and two days before the collection. The elevation and GPS coordinates of the centre of each site are also provided.

Site ID	Site name	Elevation (m a.s.l.)	T _{max} warmest month (°C)	T _{max} 3 days prior (°C)	GPS coordinates
Lowland 1	Břehov	408	24.1	22.0	49.0193356N, 14.3288503E
Lowland 2	Haklovy Dvory	389	24.0	22.0	48.9990081N, 14.3891314E
Lowland 3	Křenovice	398	24.0	22.0	48.9899975N, 14.3616067E
Lowland 4	Branišov	406	23.9	25.0	48.9782317N, 14.4154694E
Lowland 5	Třebín	414	23.8	25.0	48.9665339N, 14.3844175E
Lowland 6	Kvítkovice	451	23.6	25.0	48.9584728N, 14.3290661E
Highland 1	Strážný CHKO	940	19.1	20.1	48.9290808N, 13.7092800E
Highland 2	Strážný	841	19.6	20.8	48.9174489N, 13.7183381E
Highland 3	Křišť anov	930	19.6	22.5	48.9078519N, 14.0228328E
Highland 4	Koryto	870	20.1	22.5	48.9315508N, 13.9978347E
Highland 5	Arnoštov	890	19.9	22.5	48.9061311N, 14.0014181E
Highland 6	Sněžná	1030	19.0	26.0	48.8961061N, 13.9393994E

Figure 1

Pollen germination of plants from the lowland and the highland at four temperature levels.

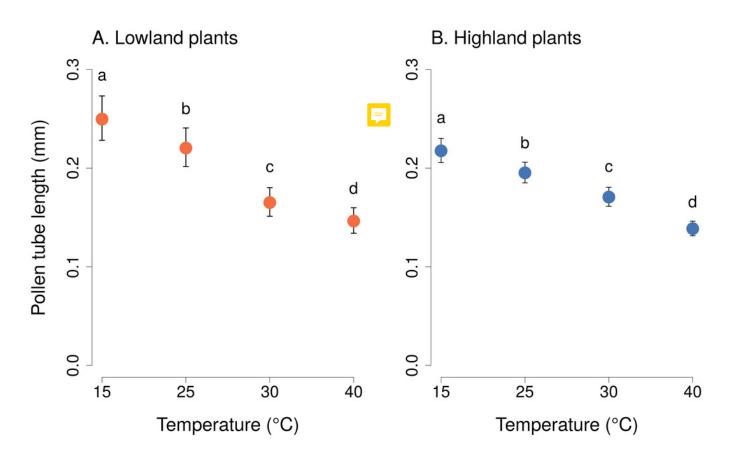

Mean values and SE estimated by a generalised linear mixed effects model are plotted. The fixed effect of temperature is displayed. Pollen germination is expressed as the proportion of pollen grains which germinated. The letters above the points show results of multiple comparison tests between all combinations of temperature levels, calculated separately for data on lowland and highland plants. Differences in pollen germination at temperature levels marked by a different letter were statistically significant (p<0.001 in all cases).

Figure 2

Pollen tube length of plants from the lowland and the highland at four temperature levels.

Mean values and SE estimated by a generalised linear mixed effects model are plotted. The fixed effect of temperature is displayed. The letters above the points show results of multiple comparison tests between all combinations of temperature levels, calculated separately for data on lowland and highland plants. Differences in pollen tube length at temperature levels marked by a different letter were statistically significant (p<0.001 in all cases).

