
Bayesian estimation of the measurement of interactions in
epidemiological studies
Shaowei Lin Equal first author, 1 , Chanchan Hu Equal first author, 1 , Zhifeng Lin 1 , Zhijian Hu Corresp. 1, 2

1 Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, FuZhou, Fujian, China
2 Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, FuZhou, Fujian, China

Corresponding Author: Zhijian Hu
Email address: huzhijian@fjmu.edu.cn

Background Interaction identification is important in epidemiological studies and can be detected by
including a product term in the model. However, as Rothman noted, a product term in exponential
models may be regarded as multiplicative rather than additive to better reflect biological interactions.
Currently, the additive interaction is largely measured by the relative excess risk due to interaction
(RERI), the attributable proportion due to interaction (AP), and the synergy index (S), and confidence
intervals are developed via frequentist approaches. However, few studies have focused on the same
issue from a Bayesian perspective. The present study aims to provide a Bayesian view of the estimation
and credible intervals of the additive interaction measures.

Methods Bayesian logistic regression was employed, and estimates and credible intervals were
calculated from posterior samples of the RERI, AP and S. Since Bayesian inference depends only on
posterior samples, it is very easy to apply this method to preventive factors. The validity of the proposed
method was verified by comparing the Bayesian method with the delta and bootstrap approaches in
simulation studies with example data.

Results In all the simulation studies, the Bayesian estimates were very close to the corresponding true
values. Due to the skewness of the interaction measures, compared with the confidence intervals of the
delta method, the credible intervals of the Bayesian approach were more balanced and matched the
nominal 95% level. Compared with the bootstrap method, the Bayesian method appeared to be a
competitive alternative and fared better when small sample sizes were used.

Conclusions The proposed Bayesian method is a competitive alternative to other methods. This
approach can assist epidemiologists in detecting additive-scale interactions.
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12 Abstract

13 Background Interaction identification is important in epidemiological studies and can be 

14 detected by including a product term in the model. However, as Rothman noted, a product term 

15 in exponential models may be regarded as multiplicative rather than additive to better reflect 

16 biological interactions. Currently, the additive interaction is largely measured by the relative 

17 excess risk due to interaction (RERI), the attributable proportion due to interaction (AP), and the 

18 synergy index (S), and confidence intervals are developed via frequentist approaches. However, 

19 few studies have focused on the same issue from a Bayesian perspective. The present study aims 

20 to provide a Bayesian view of the estimation and credible intervals of the additive interaction 

21 measures.

22 Methods Bayesian logistic regression was employed, and estimates and credible intervals were 

23 calculated from posterior samples of the RERI, AP and S. Since Bayesian inference depends only 

24 on posterior samples, it is very easy to apply this method to preventive factors. The validity of the 

25 proposed method was verified by comparing the Bayesian method with the delta and bootstrap 

26 approaches in simulation studies with example data.

27 Results In all the simulation studies, the Bayesian estimates were very close to the 

28 corresponding true values. Due to the skewness of the interaction measures, compared with the 

29 confidence intervals of the delta method, the credible intervals of the Bayesian approach were 

30 more balanced and matched the nominal 95% level. Compared with the bootstrap method, the 

31 Bayesian method appeared to be a competitive alternative and fared better when small sample 

32 sizes were used.

33 Conclusions The proposed Bayesian method is a competitive alternative to other methods. This 

34 approach can assist epidemiologists in detecting additive-scale interactions.

35

36 Keywords interaction, additive scale, Bayesian, preventive factor
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39 Interaction occurs when the impact of an independent variable (X) on a dependent variable 

40 (Y) varies at different levels of a moderating variable (Z)(Andersson, Cuervo-Cazurra & Nielsen, 

41 2014). In epidemiology, identifying the interaction between two factors for disease risk is 

42 important(Szklo, 2004) because this interaction is significantly associated with disease prevention 

43 and intervention. For example, from the perspective of public health, the combined effect of 

44 smoking and asbestos on lung cancer surpasses the combination of the individual effects, and a 

45 reduction in either factor would also reduce the risk attributable to the other factor in terms of 

46 developing lung cancer(Ngamwong et al., 2015).

47 Epidemiologists frequently employ exponential models such as logistic regression and Cox 

48 regression to analyze the disease rates and risks(Rothman, Greenland & Lash, 2008). Under an 

49 exponential model, there are two scales of interaction: additive and multiplicative. The latter is 

50 often employed to assess interactions by including a product interaction term in an exponential 

51 model, which implies that the combined effect is larger (or smaller) than the product of the 

52 individual effects. However, Rothman and other authors(Rothman, 1976; Andersson et al., 2005; 

53 VanderWeele & Robins, 2007) have argued that the examination of interactions on an additive 

54 scale makes more sense than that on a multiplicative scale, in which a positive or negative 

55 interaction on an additive scale means that the effect in combination is larger or smaller than the 

56 sum of the individual effects, respectively.

57 Rothman(Rothman, 1986) proposed different measures to estimate interactions on an additive 

58 scale by means of relative risk, such as the relative excess risk due to interaction (RERI), the 

59 attributable proportion due to interaction (AP) and the synergy index (S). Hosmer and 

60 Lemeshow(Hosmer & Lemeshow, 1992) introduced how to use the delta method to calculate a 

61 symmetric confidence interval in a logistic regression model. Furthermore, Knol et al.(Knol et al., 

62 2007) generalized those measures as a departure from additivity in the case of continuous 

63 determinant factors. However, due to the skewness of these measures, methods of asymmetric 

64 confidence intervals, such as the bootstrap percentile confidence interval(Assmann et al., 1996), 

65 variance estimate recovery method(Zou, 2008), and profile likelihood(Richardson & Kaufman, 

PeerJ reviewing PDF | (2023:09:90274:2:1:NEW 31 Jan 2024)

Manuscript to be reviewed



66 2009), have been developed and have produced competitive results (Andersson et al., 2005; Kuss, 

67 Schmidt-Pokrzywniak & Stang, 2010; Nie et al., 2010). In addition to frequentist methods, Chu et 

68 al.(Chu, Nie & Cole, 2011) described the use of the Bayesian method to estimate the RERI in a 

69 linear additive odds ratio model, which hardly worked with the AP and S.

70 However, for all the methods mentioned above, the estimation of interactions on an additive 

71 scale can be applied only to risk factors rather than to preventive factors(Yang et al., 2010; 

72 Chatterjee, Shi & García-Closas, 2016; Olsson, Barcellos & Alfredsson, 2017). When either of the 

73 two factors at discussion is not a risk factor, both factors should be considered separately or jointly 

74 by choosing the low-risk category as the reference level(Rothman, Greenland & Lash, 2008; de 

75 Mutsert et al., 2009; Knol et al., 2011). However, this strategy involves applying a logistic model 

76 twice. The risk level or combination of factors are first determined, after which the coefficients of 

77 the factors are estimated, with the low risk level serving as a reference. Notably, the relation of the 

78 estimated coefficients between the two logistic models can be revealed by resetting only the 

79 reference level; however, the calculation of confidence intervals becomes complicated with the 

80 troublesome involvement of covariance matrices.

81 This article describes how credible intervals of the three measures of interaction on an additive 

82 scale can be evaluated using the Bayesian method. Credible intervals are analogous to the 

83 confidence intervals in frequentist statistics(Bolstad WM, 2016), although they differ on a 

84 philosophical basis(VanderPlas, 2014). The Bayesian method is commonly employed in 

85 epidemiology and other applications(Ashby, 2006; MacLehose et al., 2009; Hamra et al., 2013; 

86 Ahrens & Pigeot, 2014) due to the simplicity of Bayesian inference. Bayesian inference depends 

87 only on posterior samples of the parameters. Once a posterior sample is obtained, a posterior 

88 sample of any function of the parameters can be obtained by applying the corresponding function 

89 to the posterior sample of those parameters. A sample from the posterior distribution of coefficients 

90 of the logistic model can be generated using Markov chain Monte Carlo (MCMC) methods with a 

91 random walk Metropolis algorithm(Bolstad WM, 2016). Once a sample is obtained, regardless of 

92 whether the logistic model includes preventive factors or risk factors, the posterior samples of the 
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93 three measures of interaction on an additive scale can be calculated directly by applying the 

94 corresponding functions. If there are preventive factors, the functions are composed of two parts: 

95 the coefficients corresponding to the new reference (Appendix A) and the measure�s functions. 

96 Thus, the logistic model requires only one execution. Based on the posterior samples, credible 

97 intervals, such as the highest posterior density interval or equal-tailed interval, can easily be 

98 assessed.

99

100 Measures of additive interaction

101 Consider two binary factors, A and B, with values of 0 and 1, where 0 denotes the absence of 

102 a factor and 1 denotes its presence. Four possible combinations exist: A0B0 , A1B0, A0B1 and A1B1. 

103 Suppose the reference group is A0B0, and let RR10, RR01, and RR11 denote the relative risks for 

104 groups A1B0, A0B1 and A1B1, respectively. Rothman(Rothman, Greenland & Lash, 2008) 

105 developed three measures of interaction on an additive scale: the relative excess risk due to 

106 interaction (RERI),

107 ,
11 10 01 1RERI RR RR RR   

108 the attributable proportion due to interaction (AP),

109 ,
11 10 01

11 11

1RR RR RRRERI
AP

RR RR

  
 

110 and the synergy index (S)

111 .
11 11

10 01 10 01

1 1

( 1) ( 1) 2

RR RR
S

RR RR RR RR

 
 

    

112 Note that both the RERI and AP can range from -∞ to + , while S can range from 0 to + . If no ∞ ∞
113 interaction is present on the additive scale, both the RERI and AP will be equal to 0, and S will be 

114 equal to 1; if there is more than additivity, both the RERI and AP will be greater than 0, and S will 

115 be greater than 1; if there is less than additivity, both the RERI and AP will be less than 0, and S 

116 will be less than 1.

117 The RR is readily available in cohort studies. However, in case-control studies, the RR can be 
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118 approximated by the odds ratio (OR) if the prevalence is sufficiently rare (Appendix B). As 

119 suggested by Rothman(Rothman, Greenland & Lash, 2008), the RERI, AP and S can be estimated 

120 via multiple logistic regression with indicator variables created for categories A1B0, A0B1 and 

121 A1B1. Given that

122     (1)0 1 1 0 2 0 1 3 1 1( ) log( ) ( ) ( ) ( )
1

p
logit p I A B I A B I A B X

p
         



123 where  is the corresponding probability of the case given factors A, B and X ( | , , )p P case A B X

124 (X is a vector of the potential confounders) and  is the indicator function; then, ,( )I  1

10OR e


125  and  can be substituted for the RRs in the three measures of interaction. As 2

01OR e
 3

11OR e


126 noted by Hosmer and Lemeshow (Hosmer David W, 2013), the ORs can be represented as 

127 ,  and  based on logistic regression with factors A and B and 1

10OR e
 2

01OR e
 1 2 3

11OR e
   

128 the product of A and B

129 .             (2)
0 1 2 3( )logit p A B AB X        

130 Because both models are saturated, the two estimations are equivalent.

131

132 Methods for calculating confidence intervals

133 The methods used to calculate confidence intervals fall into two categories: symmetric 

134 intervals based on a normal distribution and asymmetric intervals based on quantile estimation. 

135 Let lnS denote S on the log scale and Z denote any one of the three measures RERI, AP or lnS. As 

136 proposed by Hosmer and Lemeshow, the confidence interval of Z is obtained by assuming a normal 

137 distribution for Z. The variance in Z can be estimated using the delta method, which employs the 

138 first-order approximation of a Taylor series(Hosmer & Lemeshow, 1992). Therefore, the 95% 

139 confidence interval of the delta method for Z, which is symmetric about the point estimate, is given 

140 by , where  and  are the point estimate and the variance estimate for Z, � �1.96 ( )Z D Z  �Z � ( )D Z

141 respectively. The confidence intervals for the RERI and AP can be obtained directly, while the 
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142 confidence interval for S can be obtained using an exponential function. Zou suggested a recover 

143 variance estimate of the variance for measures that considers Taylor series expansion using the 

144 multivariate delta method.

145 Another way to estimate confidence intervals is through bootstrapping (Efron, B., & 

146 Tibshirani, R.J., 1994). This technique allows estimation of the sampling distribution of almost 

147 any statistic using random sampling, as do the measures of additive interaction. Let Z denote any 

148 one of the three measures RERI, AP or S. The bootstrap samples are resampled from the original 

149 sample, and then Z can be estimated in each of the bootstrap samples. When obtaining the 

150 distribution of Z, deriving estimates of standard errors and confidence intervals is straightforward. 

151 There are several methods for constructing confidence intervals from the bootstrap distribution.

152 The first of these methods is the normal bootstrap method. The method assumes that Z follows 

153 a normal distribution. The variance  is estimated from the bootstrap samples, and the � ( )D Z

154 confidence interval is calculated as  Alternatively, the quantile method is the � �1.96 ( )Z D Z 

155 most popular method for constructing confidence intervals. Let  denote the  percentile of the *Z


156 bootstrap-estimated distribution for Z. Efron and Tibshirani (Efron, B., & Tibshirani, R.J., 1994) 

157 used percentiles of the bootstrap distribution to estimate the  confidence interval for Z as 1 

158 (percentile bootstrap, PB)

159 .* *

/2 1 /2( , )Z Z 

160 Davison and Hinkley (A. C. Davison, 1997) proceeded in a similar way, but a different formula 

161 was used to construct the confidence interval for Z, as (basic bootstrap, BB)

162 .
* *

1 /2 /2
� �(2 , 2 )Z Z Z Z  

163

164 Bayesian estimation of the additive measure

165 Given a model, there are three steps involved in Bayesian analysis(Bolstad WM, 2016): (1) 

166 determining the marginal likelihood of the data, (2) specifying prior probabilities for the 

167 parameters, and (3) applying Bayes' theorem to predictor variables and the outcome variable via 
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168 Bayesian modeling.

169 Let Y denote the binary outcome variable. Consider the logistic regression of the form

170 ( )Y Bernoulli p:

171 where  is a Bernoulli distribution and  satisfies Eq. (1) or Eq. (2). The likelihood ( )Bernoulli  p

172 for the logistic regression is

173
1( | ) ( ; ) (1 ( ; ))

Y Y

i

p x h x h x    

174 where  is a parameter (such as  in Eq. (1)) and  is the 
0 1 2 3( , , , , )     

( )

1
( ; )

1 logit p
h x

e
 



175 predicted probability that Y is 1.

176 The prior probability is an unconditional probability that is assigned before any data are 

177 accounted for. There are three main categories of prior distributions: informative priors, weakly 

178 informative priors and noninformative priors. When a family of conjugate priors exists, the 

179 conjugate priors are chosen for computational efficiency. However, there is no conjugate prior for 

180 the likelihood function in logistic regression. When Bayesian inference is performed analytically, 

181 this makes the posterior distribution difficult to calculate except in very low dimensions. However, 

182 software such as OpenBUGS(Lunn et al., 2009), JAGS(Plummer, 2003) and Stan(Carpenter et al., 

183 2017) allows these posteriors to be computed via simulation; hence, a lack of conjugacy is not a 

184 concern. This paper employs noninformative or weakly informative priors  for all model ( )p 

185 parameters.

186 According to Bayes' theorem, the joint posterior distribution of the model parameters is 

187 proportional to the product of the likelihood and priors,

188 .
1( | ) ( ) ( | ) ( ) ( ; ) (1 ( ; ))

Y Y

i

p x p p x p h x h x         

189 This equation is too complex to solve analytically; therefore, Monte Carlo methods are often used 

190 to summarize the posterior distribution. A combination of Monte Carlo and Markov chain can 

191 result in effective sampling and evaluation. Thus, this posterior computation can be accomplished 

192 easily using Markov chain Monte Carlo (MCMC) methods with a random walk Metropolis 

193 algorithm. Since RERI, AP and S are functions of , the values of the three measures of interaction 
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194 can be calculated directly when a sample is generated from the posterior distribution .( | )p x

195 The uncertainties of the RERI, AP and S can be summarized by giving a range of values on 

196 the posterior probability distribution that includes 95% of the probability, , which is 2.5 97.5( , )P P

197 called a 95% credibility interval (calculated based on an equal-tailed interval). Similarly, in a 

198 Bayesian credibility interval, the null hypothesis is rejected if the credibility interval does not 

199 encompass the parameters of the null hypothesis. For example, there is an interaction if the 

200 credibility interval of an RERI does not contain 0. Notably, the confidence interval captures the 

201 uncertainty about the interval obtained (whether it contains the true value or not), and it cannot be 

202 interpreted as a probabilistic statement about the true parameter value. However, the credible 

203 interval captures the current uncertainty in the location of the parameter value and thus can be 

204 interpreted as a probabilistic statement about the parameter.

205

206 Preventive factors

207 Measures of interaction were developed for risk factors, so it is not appropriate to use them directly 

208 when a preventive factor exists. The recoded method, which can be seen as a choice of reference 

209 category, is used to address this issue(Knol et al., 2011). The use of the recoded method and the 

210 use of an updated model is a cumbersome and tedious process. In fact, when the reference category 

211 changes, the new logistic regression coefficients  are completely dependent on 
0 1 2 3( , , , )        

212 the original logistic coefficients , as resetting the reference category is equivalent 
0 1 2 3( , , , )    

213 to subtracting the new reference category coefficient from  (Hosmer David W, 2013). The 

214 relationships between and  for the three interaction measures are shown in Appendix A. In the   

215 Bayesian approach, the three measures of interaction are calculated directly by setting the 

216 reference category as that whose coefficient is the smallest (set  in the dummy coding 0 0 

217 scheme). Thus, it is not necessary to update the model, and the uncertainty of the parameters will 

218 be obtained from the posterior sample. The R(R Development Core Team, 2023, https://www.r-

219 project.org/) function for computing new coefficients based on the lowest risk category as a 

PeerJ reviewing PDF | (2023:09:90274:2:1:NEW 31 Jan 2024)

Manuscript to be reviewed



220 reference category is provided in Appendix C.

221

222 Simulation study setting

223 To assess the performance of Bayesian estimation of the additive measure, simulation studies 

224 were conducted to compare the results of confidence interval estimation by these methods. 

225 Regardless of the effect measure used, OR, RR, or hazard ratio, the evaluation process was similar, 

226 so a case‒control design was employed. The values of ,  and  were set as in the study 
01OR 10OR 11OR

227 by Assmann (Assmann et al., 1996), where 20 scenarios (2  2  5 ) are described 
01OR  10OR  11OR

228 in Table 1. These scenarios include situations with strong synergy, weak synergy, no interaction, 

229 weak antagonism or strong antagonism.

230 In each scenario, the sample size was set to n=600, and the factor exposure rate was fixed, in 

231 which the proportions of subjects exposed to factor A alone, factor B alone, and both factors A 

232 and B were 0.1, 0.2 and 0.1, respectively. In addition to the parameters mentioned above, two 

233 additional parameters were considered: the proportion of the case number relative to the sample 

234 size, which changes from to , i.e., the number of cases is reduced from 300 to 
1 1/ 2p  2 1/ 3p 

235 200; and the other is where there are potential confounders X and the coefficient of the variable is 

236 set to  when containing a confounding variable.0.5 

237 Three simulation studies were designed to evaluate the effects of the methods: balanced design 

238 ( ), unbalanced design ( ) and balanced design with a confounding variable. For 1 1/ 2p  2 1/ 3p 

239 each combination of parameters in each study, 1000 replicates were performed. Bayesian 

240 estimation was compared with the delta method and bootstrap method. As suggested by Assmann, 

241 due to the skewed distribution of the three measures of interaction, the percentile bootstrap was 

242 suitable. Thus, only the percentile bootstrap was performed in the simulation studies. The bootstrap 

243 sampling, with 1000 resamples, was performed separately within cases and controls. Therefore, 

244 the number of cases and controls in the bootstrap samples were identical to those in the original 

245 sample. Therefore, for each sample, point estimates of the interaction measures were calculated, 
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246 as were 95% confidence intervals for the delta method and percentile bootstrap method and 95% 

247 credible intervals for the Bayesian method.

248 The posterior distributions of the parameters were estimated via the MCMC method with a 

249 random walk Metropolis algorithm, which can be performed easily via the R package 

250 MCMCpack(Martin, Quinn & Park, 2011). Specifically, the Markov chain was run for a total of 

251 20000 iterations with 10000 burn-in iterations. To monitor convergence, multiple chains with 

252 different initial values were constructed, and trace plots were examined visually. The convergence 

253 of Markov chains was further assessed using the standard convergence statistic. Because an 

254 improper prior distribution may lead to inaccurate posterior estimates, proper but diffuse prior 

255 distributions with weak information for the parameters were employed(Spiegelhalter, 1995). 

256 Alternatively, noninformative priors, such as the Jeffreys prior or uniform prior with proper 

257 bounds, may also be used(Bolstad WM, 2016). Specifically, in all the simulation studies, the prior 

258 distributions of the parameters were set to a normal distribution with a large variance,

259

2

0 1 2 3 4( , , , ) ~ (0,10 )N I    

260
2~ (0,10 )N

261 where  is the identity matrix of size 4, which is a  square matrix with ones on the main 4I
4 4

262 diagonal and zeros elsewhere.

263 Three criteria were used to evaluate the extent to which the empirical coverage of the 

264 confidence interval matched the nominal 95% level. The first was the rank of the deviation from 

265 the nominal level, which was obtained by ranking the absolute value of the difference between the 

266 coverage rate and 95%. The second was the percentage of times that the interval covered the true 

267 value, which fell within the range of 93.6-96.4% (due to the 1000 samples). The third was the 

268 percentage of missed data in either direction. The left miscoverage rate was the proportion of times 

269 the lower limits were larger than the true value, while the right miscoverage rate was the proportion 

270 of times the upper limits were less than the true value. A balanced miscoverage indicated that the 

271 confidence interval was neither too wide nor too narrow. From the usual sample-size formula for 
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272 estimating proportions, if the true coverage rate for a particular type of confidence interval (or 

273 credible interval) was 95%, then the probability of obtaining coverage between 92.5% and 97.5% 

274 would be approximately 0.95. Thus, an advertised 95% confidence interval (or credible interval) 

275 should miss approximately 2.5% from each side; i.e., the left/right miscoverage rates should be 

276 2.5%.

277

278 Results of the simulation study

279 With respect to the balanced design with 300 cases and controls, for each scenario and each 

280 method, there were 1000 point estimates of the interaction measures with considerable variation. 

281 However, for each interaction measure, the mean and median of the point estimates were very 

282 close to the corresponding true values. For instance, in scenario A1, the true value of the RERI 

283 was 12. The 1000-point estimates of delta for the RERI ranged from -2.83 to 32.91; the mean and 

284 median values were 13.21 and 11.95, respectively, and the standard deviation was 7.62.

285 The sampling distributions of those point estimates, estimated from the same datasets, were 

286 almost the same among the three methods. This was consistent with expectations. Figure 1 shows 

287 the sampling distribution of each interaction measure in scenarios A1, A3 and A5, corresponding 

288 to strong synergy, no interaction, and strong antagonism, respectively. The RERI seemed to follow 

289 a normal distribution with a mean of 0 when there was no interaction but a mildly right-skewed 

290 distribution when there was synergy and a mildly left-skewed distribution when there was 

291 antagonism. For AP, the distributions were skewed to the left in all scenarios except for 

292 antagonism. For S, the distributions were skewed to the right in every scenario.

293 Table 2 summarizes the coverage performance of the three estimation methods for the RERI. 

294 Due to the skewed distribution, when using the median as the estimate, all the values were close 

295 to the true value of the RERI. For the delta, bootstrap, and Bayesian intervals, the average ranks 

296 of the deviation were 2.75, 1.50 and 1.65, respectively. This shows that, over a wide range of 

297 scenarios, the bootstrap method most often yields a coverage rate closest to 95%, followed by the 

298 Bayesian method. Notably, the rank would be equal to 3 if the coverage rate was the farthest from 
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299 95% in every scenario, which indicates that the delta intervals least accurately match the nominal 

300 value of 95%.

301 For delta intervals, the coverage rate fit into the target range of 93.6-96.4% in 4 of the 20 

302 scenarios. Clearly, the coverage rate tended to be low when there was synergy and high when there 

303 was antagonism. In particular, in scenarios with synergy, delta intervals covered the true value of 

304 the RERI by lying too far to the right, which resulted in low right miscoverage and high left 

305 miscoverage. However, in scenarios with antagonism, the delta intervals may be too wide, 

306 resulting in a high coverage rate and low miscoverage. In contrast, the Bayesian coverage was 

307 within the target range in 18 of the 20 scenarios. Furthermore, the left/right miscoverages were 

308 approximately 2.5%, which indicates that the Bayesian intervals were more evenly balanced. The 

309 bootstrap intervals were similar to those of the Bayesian method.

310 Table 3 summarizes the coverage performance of the three estimation methods for AP. For 

311 the delta, bootstrap, and Bayesian intervals, the average ranks of the deviation were 3, 1.45 and 

312 1.4, respectively. The coverage for delta intervals was in the target range for only 2 of the 20 

313 scenarios, while that for the bootstrap and Bayesian intervals was in the target range for 19 of the 

314 20 scenarios. For the delta interval, the miscoverage was lop-sided, with high right miscoverage. 

315 It tended to achieve an excessively high lower confidence limit, which would probably lead to 

316 false positive results. The Bayesian interval had better coverage, but the miscoverage appeared to 

317 be slightly unbalanced, as in the case of the bootstrap interval. Nevertheless, from a practical 

318 standpoint, this miscoverage is reasonable.

319 Table 4 summarizes the coverage performance of the three estimation methods for S. For the 

320 delta, bootstrap, and Bayesian intervals, the average ranks of the deviation were 2.35, 1.60 and 

321 1.85, respectively, and the numbers of points within the target range were 15, 19 and 18, 

322 respectively. Notably, the imbalance in miscoverage was slightly alleviated for the three estimation 

323 methods.

324 Further simulation results with imbalanced designs or confounding variables are reported in 

325 the supplementary material (Table S1-S6) for the interaction measures RERI, AP and S. In general, 
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326 the performances of both studies exhibited similar statistical behavior as that of the balanced 

327 design. Specifically, for AP, the coverage rates of the delta interval were especially low, and the 

328 worst coverage rate was as low as 87.6%. However, the coverage rates of the bootstrap and 

329 Bayesian intervals were mostly slightly less than 95%. In addition, the bootstrap and Bayesian 

330 intervals achieved balanced miscoverage, but the delta interval did not. In summary, the 

331 simulations demonstrate that, for three interaction measures, the bootstrap and Bayesian methods 

332 performed satisfactorily, while the delta method did not. The difference between the bootstrap and 

333 Bayesian methods was minimal and can be considered negligible.

334

335 Example

336 This example came from a case‒control study among male veterans younger than 60 years 

337 concerning smoking and alcohol use in relation to oral cancer(Rothman & Keller, 1972). The data 

338 are presented in Table 5. Several authors have used various methods to calculate confidence 

339 intervals (CIs) for the RERI. Specifically, based on Hosmer and Lemeshow�s delta 

340 method(Hosmer & Lemeshow, 1992), the point estimate of the RERI was 3.74, and the asymptotic 

341 95% confidence interval was (-1.85 to 9.33). Based on Zou�s variance estimates recovery method 

342 (MOVER)(Zou, 2008), the 95% confidence interval was (-11.41 to 21.84). Based on Richardson 

343 and Kaufman�s profile likelihood method(Richardson & Kaufman, 2009), the 95% confidence 

344 interval was (-3.29 to 17.21). The 95% confidence interval of the percentile bootstrap method 

345 proposed by Assmann et al was (-10.77 to 1.6×107)(Assmann et al., 1996), which was too wide 

346 due to the sparse cells in some bootstrapped samples. In addition, Chu et al.(Chu, Nie & Cole, 

347 2011) proposed a Bayesian method for linear additive odds ratio models and reported that the 

348 posterior medians of the RERI with 95% high probability density and credible intervals were 3.00 

349 (-2.27 to 8.90), 4.05 (-2.54 to 12.65) and 4.75 (-2.63 to 15.60), corresponding to different prior 

350 distributions.

351 For the data at hand, using the proposed Bayesian method, the point estimates with 95% 

352 credible intervals for REIR, AP and S are shown in Table 6, along with the confidence intervals 
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353 of the delta and bootstrap methods. The three interaction measures of all methods suggested 

354 synergy, but the 95% intervals were broad and not significant. For the RERI, the Bayesian method 

355 provided a reasonable 95% credible interval (-3.93 to 19.59). For AP, owing to the left-skewed 

356 distribution, the Bayesian interval was positioned further left than the delta interval was. However, 

357 for S, owing to the right-skewed distribution, the Bayesian interval was positioned further right 

358 than the delta interval was. Figure 2 shows the distributions of interactions in this example. 

359 Furthermore, the features that appeared in the simulation studies seemed to be maintained.

360 Notably, the overall performance of the bootstrap method was comparable to that of the 

361 Bayesian method in all the simulation studies. However, in this example, regardless of the three 

362 interaction measures, the intervals in the Bayesian method were narrower than those in the 

363 bootstrap method, which may indicate that there is less variance in the Bayesian method. Notably, 

364 the upper limits of the intervals obtained via the bootstrap method were greater than those obtained 

365 via the Bayesian method, especially for the RERI. This indicates that the percentile bootstrap may 

366 perform poorly when data with a small sample size exist in some groups, but the proposed 

367 Bayesian approach is free from this predicament.

368

369 Discussion

370 It is very important to assess whether an additive interaction exists between two factors during 

371 the interpretation of epidemiologic data4 because this information is relevant to disease prevention 

372 and intervention. In general, in addition to hypothesis tests, confidence intervals are used in the 

373 assessment of statistical interactions(Greenland et al., 2016). There are many methods for 

374 constructing confidence intervals for RERI, such as the delta method(Hosmer & Lemeshow, 

375 1992), bootstrap method(Assmann et al., 1996), variance estimate recovery approach(Zou, 2008), 

376 and profile likelihood approach(Richardson & Kaufman, 2009), based on the theories of 

377 classical frequentists. However, due to the complexity of the formulas, there is little information 

378 available for AP or S. An alternative method is the Bayesian approach, which uses a credible 

379 interval rather than a confidence interval. Chu et al.(Chu, Nie & Cole, 2011) proposed a Bayesian 
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380 method for linear additive odds ratio models to construct the credible interval of the RERI but not 

381 that of the AP or S. This article proposes a Bayesian method to estimate all the additive interaction 

382 measures, RERI, AP and S, along with their 95% credible intervals. In contrast to Chu�s method, 

383 in which the posterior distribution is a step function, this method does not require inequality 

384 constraints on the parameters, which may expand the sample space of the parameter and lead to 

385 higher efficiency when MCMC is applied.

386 The simulation studies show that the distributions of the additive interaction measures are 

387 skewed, especially those of AP and S. Therefore, the delta method, whose Wald-type confidence 

388 interval is symmetric, performs poorly in terms of the empirical coverage of the confidence interval 

389 or the percentage of times missed in either direction. By recovering the variances, the method 

390 proposed by Zou may alleviate this situation. However, as Wald-type confidence intervals are 

391 based on asymptotic variance, they may be misleading in nonmultiplicative models(Moolgavkar 

392 & Venzon, 1987).

393 Compared with those of the delta method, the Bayesian credible intervals proposed here and 

394 the bootstrap confidence intervals, which do not rely on asymptotic approximations, are more 

395 likely to catch on each side of the true value, and their coverage is close to the nominal level of 

396 95%. The bootstrap confidence intervals, as proposed by Assmann et al., are preferred in practice 

397 (Töpper et al., 2018). However, the bootstrap method has several limitations. DiCiccio and 

398 Efron(DiCiccio & Efron) cautioned that a bootstrap sample may depend on a distribution with 

399 difficult computations in nonmultiplicative models. In addition, as observed in the example, the 

400 confidence interval could come to nothing when the sample is insufficient(Chernick, 1999). 

401 However, Bayesian credible intervals have minimal impact and work well.

402 Some authors(Rothman, Greenland & Lash, 2008; Knol et al., 2011) have noted that additive 

403 measures are suitable only for risk factors. If there is a preventive factor, it should be recoded to a 

404 risk factor before calculating these measures. To determine where it is a preventive factor and how 

405 to recode it, the logistic regression model needs to be applied at least twice. When this strategy is 

406 applied to the bootstrap method, each bootstrap sample needs to be recoded separately rather than 
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407 used for the bootstrap samples. This approach significantly increases the calculation time. 

408 However, in the Bayesian framework, once a sample of the posterior distribution is obtained, one 

409 can apply this sample to any function(Bolstad WM, 2016). Therefore, the posterior distributions 

410 of the additive measures can be estimated when the coefficients  are obtained 
0 1 2 3( , , , )    

411 by the Bayesian method. This makes the model presented here highly flexible. As shown in 

412 Appendix A, the additive measures are computed directly after parameter transformation, but the 

413 computation time can be ignored. Moreover, one can adjust the confounding variable X in various 

414 forms in logistic regression, such as the linear or spline function of X.

415 The frequentist and Bayesian methods appear to be superficially opposite, but they can be 

416 considered complementary in practice(Chu, Nie & Cole, 2011). When using a weak prior 

417 distribution in Bayesian methods, the inference is often consistent with that of frequentists. 

418 However, the Bayesian method is attractive because proper prior distributions can be determined 

419 from past information, such as subject-matter knowledge or previous experiments(Bolstad WM, 

420 2016). Furthermore, the credible interval is constructed directly from the highest probability 

421 density of the posterior samples, and it can capture the uncertainty of the parameter values without 

422 having to rely on asymptotic approximations. This approach can often yield better results, 

423 especially for small samples, as shown in the example. In addition, Bayesian methods have a range 

424 of other advantages, including convenient application to other indicators related to interactions 

425 (e.g., PRISM(Lee, 2013; Lin & Lee, 2016), CPWs(Lee & Wu, 2023)) and the ability to explore 

426 disease attribution to multiple exposures and their interactions.

427 In this paper, a Bayesian method for the estimation of additive measures is proposed. By 

428 rearranging the posterior sample, it works for both risk factors and preventive factors. The 

429 simulation studies and example results show that the Bayesian method is a competitive alternative 

430 to other methods.

431

432 Appendix A

433 Computation of the additive measure in the logistic model based on the new reference 
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434 category

435 Considering factors A and B jointly, four potential categories exist: A0B0 , A1B0, A0B1 and 

436 A1B1. To simplify the description, using the overparameterized dummy coding scheme, the 

437 coefficients are , ,  and  in logistic regression. When using A0B0 as the reference 
0 1 2 3

438 category (  in the dummy coding scheme), the ORs can be rewritten as , 
0 0  0 0

00OR e
 

439 ,  and . The three measures of interaction can be 1 0

10OR e
  2 0

01OR e
  3 0

11OR e
 

440 equivalently written as follows

441 ,0 3 01 2

11 10 01 00 ( )RERI OR OR OR OR e e e e e
           

442 ,0 3 0 3 0 3 3 01 2 1 2( ) / ( )AP e e e e e e e e e e e
                     

443 .
3 0

01 2 2

e e
S

e e e

 

 




 

444 When choosing the category with the lowest risk when both factors are considered jointly as the 

445 reference category, for example, group A1B0, the coefficients s of the four categories can be  

446 expressed as , ,  and . Then, the ORs can be 
0 0 1     1 1 1     2 2 1     3 3 1    

447 expressed as , ,  and . The three measures of 0 1

00OR e
   1 1

10OR e
   2 1

01OR e
   3 1

11OR e
  

448 interaction can be computed by rearranging the ORs, which have the form of

449 ,3 01 1 2

01 00 11 10 ( )RERI OR OR OR OR e e e e e
               

450 ,3 02 1 2

01/ ( )AP RERI OR e e e e e
         

451 .
2 1

3 0 12

e e
S

e e e

 

  




 

452 Similar results occur when the reference category is set as group A0B1or A1B1. When the reference 

453 category is A0B1, the three measures of interaction have the form of

454 ,3 02 1 2

10 11 00 01 ( )RERI OR OR OR OR e e e e e
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455 ,3 01 1 2

10/ ( )AP RERI OR e e e e e
         

456 .
1 2

3 0 22

e e
S

e e e

 

  




 

457 When the reference category is A1B1, the three measures of interaction have the form of

458 ,3 3 01 2

00 01 10 11 ( )RERI OR OR OR OR e e e e e
              

459 ,0 3 01 2

00/ ( )AP RERI OR e e e e e
        

460 .
0 3

31 2 2

e e
S

e e e

 

 




 

461

462 Appendix B

463 RR can be expressed as a function of both the OR and the intercept b0.

464 If there are independent variable X and dependent variable Y in the logistic regression, then 

465 we have:

466 ;0 1log  ( 1)it P Y b b X  

467 The probability of an event occurring in the control group (X=0) is:

468 ;
0

0
0 ( 1| 0)

1

b

b

e
P P Y X

e
   



469 The probability of an event occurring in the treatment group (X=1) is:

470 ;
0 1

0 1
1 ( 1| 1)

1

b b

b b

e
P P Y X

e



   


471 The OR can be expressed as:

472 ;
0 1

1

0

1 1

0 0

/ (1 )

/ (1 )

b b
b

b

P P e
OR e

P P e


  



473 The RR can be expressed as: 

474 .
0 01

0 1 0

1

0 0 0

(1 ) (1 )

1 1 1

b bb

b b b

P e e OR e OR
RR

P e OR e P P OR
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475 Appendix C

476 R function for computing new coefficients based on the lowest risk category as reference 

477 category 

478 newCoefficents <-  function(coefficients){       # coefficients: the original coefficients    

479 if(length(coefficients)!=4) stop("the length of coefficients must be equate to 4")

480 minloc <- which.min(coefficients)

481 loc <- 1:4

482 if(minloc==2) loc<-c(2,1,4,3)

483 if(minloc==3) loc<-c(3,4,1,2)

484 if(minloc==4) loc<-c(4,3,2,1)

485 new.coef<- coefficients[loc]

486 new.coef<- new.coef � new.coef[1]

487 return(new.coef)

488 }

489
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Figure 1
Figure 1. Sampling distributions of interaction measures, which were estimated from the
scenarios A1 (top), A3 (middle) and A5 (bottom) in the balanced design simulation
study.

The lines reveal the median of the distribution which were very close to the true value of
RERI, AP and S respectively.
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Figure 2
Figure 2. distributions of interaction in Oral cancer example.

The distributions for Delta were based on the normal distribution (RERI and AP) or lognormal
distribution (S) with estimated mean and standard error, respectively.
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Table 1(on next page)

The ORs setting for simulation.
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1 Table 1.  The ORs setting for simulation

scenario 01OR 10OR 11OR RERI AP S

A1 4.0 5.0 20.000 12.00  0.60 2.71

A2 4.0 5.0 12.000  4.00  0.33 1.57

A3 4.0 5.0  8.000  0.00  0.00 1.00

A4 4.0 5.0  6.000 -2.00 -0.33 0.71

A5 4.0 5.0  4.000 -4.00 -1.00 0.43

B1 2.0 5.0 15.000  9.00  0.60 2.80

B2 2.0 5.0  9.000  3.00  0.33 1.60

B3 2.0 5.0  6.000  0.00  0.00 1.00

B4 2.0 5.0  4.500 -1.50 -0.33 0.70

B5 2.0 5.0  3.000 -3.00 -1.00 0.40

C1 4.0 2.5 13.750  8.25  0.60 2.83

C2 4.0 2.5  8.250  2.75  0.33 1.61

C3 4.0 2.5  5.500  0.00  0.00 1.00

C4 4.0 2.5  4.125 -1.38 -0.33 0.69

C5 4.0 2.5  2.750 -2.75 -1.00 0.39

D1 2.0 2.5  8.750  5.25  0.60 3.10

D2 2.0 2.5  5.250  1.75  0.33 1.70

D3 2.0 2.5  3.500  0.00  0.00 1.00

D4 2.0 2.5  2.625 -0.88 -0.33 0.65

D5 2.0 2.5  1.750 -1.75 -1.00 0.30

2

3
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Table 2(on next page)

Table 2. Coverage properties of the 95% two-sided confidence intervals for RERI in
balanced design study.
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1 Table 2. Coverage properties of the 95% two-sided confidence/credible intervals for RERI in balanced 

2 design study

　 Delta 　 Bootstrap 　 Bayesian

RERI Estimate Left Cover Right 　 Estimate Left Cover Right 　 Estimate Left Cover Right

12.00 11.95 7.3 92.7 0.0 12.30 1.3 94.4 4.3 12.93 2.1 93.8 4.1

 4.00  3.82 5.2 94.8 0.0  3.78 2.1 95.3 2.6  4.07 2.8 94.8 2.4

 0.00 -0.17 3.2 96.8 0.0 -0.24 2.9 94.8 2.3 -0.13 3.1 94.9 2.0

-2.00 -2.11 1.7 98.2 0.1 -2.17 3.1 94.8 2.1 -2.15 3.6 94.6 1.8

-4.00 -4.11 0.7 97.9 1.4 -4.18 3.3 94.7 2.0 -4.22 3.4 94.5 2.1

 9.00  9.03 8.8 91.2 0.0  9.21 2.9 92.5 4.6  9.63 3.3 92.8 3.9

 3.00  2.81 6.4 93.6 0.0  2.83 2.8 94.4 2.8  2.94 3.5 94.3 2.2

 0.00 -0.09 3.4 96.6 0.0 -0.10 3.4 94.1 2.5 -0.08 3.8 94.1 2.1

-1.50 -1.52 1.4 98.4 0.2 -1.55 3.4 94.7 1.9 -1.56 3.0 95.0 2.0

-3.00 -3.03 0.7 97.2 2.1 -3.05 3.7 94.0 2.3 -3.11 4.0 93.7 2.3

 8.25  8.44 7.5 92.5 0.0  8.48 1.7 94.0 4.3  8.94 2.4 93.8 3.8

 2.75  2.70 4.6 95.4 0.0  2.67 2.4 95.0 2.6  2.82 3.5 94.3 2.2

 0.00 -0.06 1.7 98.3 0.0 -0.09 2.7 95.3 2.0 -0.07 3.6 94.3 2.1

-1.38 -1.35 0.5 99.1 0.4 -1.39 2.7 95.4 1.9 -1.38 3.2 94.7 2.1

-2.75 -2.80 0.4 96.9 2.7 -2.85 3.3 94.8 1.9 -2.88 3.5 94.1 2.4

 5.25  5.13 7.5 92.5 0.0  5.17 2.7 94.4 2.9  5.37 3.6 93.9 2.5

 1.75  1.70 6.2 93.8 0.0  1.66 3.6 93.5 2.9  1.70 4.6 92.9 2.5

 0.00 -0.04 3.1 96.9 0.0 -0.06 3.1 95.2 1.7 -0.06 3.4 95.1 1.5

-0.88 -0.87 1.9 97.9 0.2 -0.89 3.8 94.6 1.6 -0.91 3.7 94.7 1.6

-1.75 -1.80 0.9 96.7 2.4 　 -1.83 4.4 93.8 1.8 　 -1.84 4.7 93.9 1.4

3
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Table 3(on next page)

Table 3. Coverage properties of the 95% two-sided confidence intervals for AP in
balanced design study.
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1 Table 3� Coverage properties of the 95% two-sided confidence intervals for AP in balanced design 

2 study

　 Delta 　 Bootstrap 　 Bayesian

AA Estimate Left Cover Right 　 Estimate Left Cover Right 　 Estimate Left Cover Right

 0.60  0.60 0.0 92.2 7.8  0.60 1.5 94.5 4.0  0.61 2.7 93.7 3.6

 0.33  0.33 0.2 93.2 6.6  0.32 2.2 95.3 2.5  0.34 2.7 95 2.3

 0.00 -0.02 0.6 93.3 6.1 -0.03 2.9 94.8 2.3 -0.02 3.1 94.9 2.0

-0.33 -0.37 0.6 93.7 5.7 -0.38 3.1 94.8 2.1 -0.37 3.3 94.8 1.9

-1.00 -1.04 0.3 93.1 6.6 -1.08 3.0 94.7 2.3 -1.06 3.4 94.5 2.1

 0.60  0.60 0.6 91.8 7.6  0.61 3.0 93.2 3.8  0.62 3.5 93.2 3.3

 0.33  0.33 0.7 92.5 6.8  0.32 3.1 94.1 2.8  0.33 3.4 94.4 2.2

 0.00 -0.01 0.6 93.5 5.9 -0.02 3.4 94.1 2.5 -0.01 3.8 94.1 2.1

-0.33 -0.34 0.4 92.5 7.1 -0.36 3.1 95.0 1.9 -0.35 3.1 94.8 2.1

-1.00 -1.03 0.1 92.4 7.5 -1.04 3.7 93.6 2.7 -1.05 3.4 94.0 2.6

 0.60  0.60 0.1 91.5 8.4  0.61 1.8 94.6 3.6  0.62 2.8 93.9 3.3

 0.33  0.34 0.1 93.8 6.1  0.33 2.4 95.0 2.6  0.34 3.0 94.4 2.6

 0.00 -0.01 0.2 92.7 7.1 -0.02 2.8 95.2 2.0 -0.01 3.6 94.3 2.1

-0.33 -0.34 0.2 92.7 7.1 -0.35 2.9 95.6 1.5 -0.35 3.0 95.3 1.7

-1.00 -1.00 0.0 93.1 6.9 -1.04 3.2 95.0 1.8 -1.05 3.3 94.8 1.9

 0.60  0.60 1.0 92.4 6.6  0.60 3.2 94.9 1.9  0.60 3.8 94.2 2.0

 0.33  0.33 0.8 92.4 6.8  0.33 3.5 94.1 2.4  0.32 3.8 94.2 2.0

 0.00 -0.01 1.1 91.3 7.6 -0.02 3.1 95.2 1.7 -0.02 3.4 95.1 1.5

-0.33 -0.33 0.8 91.3 7.9 -0.35 3.1 95.5 1.4 -0.34 3.3 95.1 1.6

-1.00 -1.01 1.0 90.3 8.7 　 -1.04 3.7 94.1 2.2 　 -1.02 3.2 94.8 2.0
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Table 4(on next page)

Table 4. Coverage properties of the 95% two-sided confidence intervals for S in
balanced design study.
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1

2 Table 4� Coverage properties of the 95% two-sided confidence intervals for S in balanced design study

　 Delta 　 Bootstrap 　 Bayesian

� Estimate Left Cover Right 　 Estimate Left Cover Right 　 Estimate Left Cover Right

2.71 2.70 3.1 96.8 0.1 2.73 1.5 94.7 3.8 2.84 2.6 93.5 3.9

1.57 1.56 2.8 95.8 1.4 1.56 2.3 95.2 2.5 1.59 2.5 95.2 2.3

1.00 0.98 3.0 95.8 1.2 0.97 2.9 94.8 2.3 0.98 3.1 94.9 2.0

0.71 0.70 2.6 95.8 1.6 0.69 3.2 94.7 2.1 0.69 3.4 94.7 1.9

0.43 0.42 2.1 95.5 2.4 0.41 3.1 94.5 2.4 0.42 3.5 94.4 2.1

2.80 2.84 3.8 95.8 0.4 2.89 3.0 93.1 3.9 2.93 3.7 93.0 3.3

1.60 1.57 3.6 95.1 1.3 1.58 3.2 93.9 2.9 1.59 3.4 94.3 2.3

1.00 0.98 3.3 94.8 1.9 0.97 3.4 94.1 2.5 0.99 3.8 94.1 2.1

0.70 0.69 2.1 96.1 1.8 0.68 2.9 95.2 1.9 0.69 3.2 94.7 2.1

0.40 0.39 1.0 96.2 2.8 0.38 3.4 94.1 2.5 0.39 2.9 94.5 2.6

2.83 2.90 3.3 95.6 1.1 2.97 2.0 94.8 3.2 3.04 2.8 94.1 3.1

1.61 1.61 2.8 95.9 1.3 1.62 2.3 95 2.7 1.63 2.9 94.6 2.5

1.00 0.98 2.5 95.8 1.7 0.98 2.8 95.2 2.0 0.99 3.6 94.3 2.1

0.69 0.69 1.9 96.6 1.5 0.68 2.8 95.6 1.6 0.69 3.0 95.3 1.7

0.39 0.39 0.7 97.2 2.1 0.38 2.8 95.6 1.6 0.38 3.3 95.0 1.7

3.10 3.11 4.6 94.6 0.8 3.15 2.9 95.6 1.5 3.15 3.9 94.5 1.6

1.70 1.68 3.5 95.2 1.3 1.70 3.5 94.6 1.9 1.68 3.7 94.5 1.8

1.00 0.98 2.4 96.4 1.2 0.97 3.1 95.4 1.5 0.98 3.4 95.1 1.5

0.65 0.65 0.7 97.8 1.5 0.64 2.9 95.4 1.7 0.64 2.9 95.6 1.5

0.30 0.29 0.0 96.7 3.3 　 0.28 2.7 95.2 2.1 　 0.29 1.9 95.5 2.6
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Table 5. Distribution of exposures among cases and controls in the Oral cancer
examplea

a data were from the example presented by Rothman and Keller
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1 Table 5. Distribution of exposures among cases and controls in the Oral cancer examplea

Neither Smoking only Alcohol only Smoking and Alcohol

Cases 3 8 6 225

Controls 20 18 12 166

2 a data were from the example presented by Rothman and Keller

3

4
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Table 6. Point estimates with 95% confidence limits for interaction effects in Oral cancer
example
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2 Table 6. Point estimates with 95% confidence limits for interaction effects in Oral cancer example

Delta Bootstrap Bayesian

RERI 3.74 (-1.84 to 9.32) 3.51 (-4.86 to 5.78×106) 3.68 (-3.93 to 19.59)

AP 0.41 (-0.07 to 0.90) 0.38 (-0.32 to 0.83) 0.38 (-0.34 to  0.72)

S 1.87 ( 0.65 to 5.42) 1.69 (0.66 to 11.24) 1.71 ( 0.72 to  5.78)

3
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