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ABSTRACT
Background. Interaction identification is important in epidemiological studies and can
be detected by including a product term in the model. However, as Rothman noted,
a product term in exponential models may be regarded as multiplicative rather than
additive to better reflect biological interactions. Currently, the additive interaction is
largely measured by the relative excess risk due to interaction (RERI), the attributable
proportion due to interaction (AP), and the synergy index (S), and confidence intervals
are developed via frequentist approaches. However, few studies have focused on the
same issue from a Bayesian perspective. The present study aims to provide a Bayesian
view of the estimation and credible intervals of the additive interaction measures.
Methods. Bayesian logistic regression was employed, and estimates and credible
intervals were calculated from posterior samples of the RERI, AP and S. Since Bayesian
inference depends only on posterior samples, it is very easy to apply this method to
preventive factors. The validity of the proposed method was verified by comparing the
Bayesian method with the delta and bootstrap approaches in simulation studies with
example data.
Results. In all the simulation studies, the Bayesian estimates were very close to the
corresponding true values. Due to the skewness of the interaction measures, compared
with the confidence intervals of the delta method, the credible intervals of the Bayesian
approach were more balanced andmatched the nominal 95% level. Compared with the
bootstrap method, the Bayesian method appeared to be a competitive alternative and
fared better when small sample sizes were used.
Conclusions. The proposedBayesianmethod is a competitive alternative to othermeth-
ods. This approach can assist epidemiologists in detecting additive-scale interactions.

Subjects Mathematical Biology, Epidemiology, Data Mining and Machine Learning
Keywords Interaction, Additive scale, Bayesian, Preventive factor, Epidemiology

INTRODUCTION
Interaction occurs when the impact of an independent variable (X) on a dependent variable
(Y) varies at different levels of a moderating variable (Z) (Andersson, Cuervo-Cazurra &
Nielsen, 2014). In epidemiology, identifying the interaction between two factors for disease
risk is important (Szklo , 2004) because this interaction is significantly associated with
disease prevention and intervention. For example, from the perspective of public health,
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the combined effect of smoking and asbestos on lung cancer surpasses the combination of
the individual effects, and a reduction in either factor would also reduce the risk attributable
to the other factor in terms of developing lung cancer (Ngamwong et al., 2015).

Epidemiologists frequently employ exponential models such as logistic regression and
Cox regression to analyze the disease rates and risks (Rothman, Greenland & Lash, 2008).
Under an exponential model, there are two scales of interaction: additive andmultiplicative.
The latter is often employed to assess interactions by including a product interaction term in
an exponential model, which implies that the combined effect is larger (or smaller) than the
product of the individual effects. However, Rothman and other authors (Rothman, 1976;
Andersson et al., 2005; VanderWeele & Robins, 2007) have argued that the examination of
interactions on an additive scale makes more sense than that on a multiplicative scale,
in which a positive or negative interaction on an additive scale means that the effect in
combination is larger or smaller than the sum of the individual effects, respectively.

Rothman (1986) proposed different measures to estimate interactions on an additive
scale by means of relative risk, such as the relative excess risk due to interaction (RERI),
the attributable proportion due to interaction (AP) and the synergy index (S). Hosmer
& Lemeshow (1992) introduced how to use the delta method to calculate a symmetric
confidence interval in a logistic regression model. Furthermore, Knol et al. (2007)
generalized those measures as a departure from additivity in the case of continuous
determinant factors. However, due to the skewness of these measures, methods of
asymmetric confidence intervals, such as the bootstrap percentile confidence interval
(Assmann et al., 1996), variance estimate recovery method (Zou, 2008), and profile
likelihood (Richardson & Kaufman, 2009), have been developed and have produced
competitive results (Andersson et al., 2005; Kuss, Schmidt-Pokrzywniak & Stang, 2010;
Nie et al., 2010). In addition to frequentist methods, Chu, Nie & Cole (2011) described the
use of the Bayesian method to estimate the RERI in a linear additive odds ratio model,
which hardly worked with the AP and S.

However, for all the methods mentioned above, the estimation of interactions on an
additive scale can be applied only to risk factors rather than to preventive factors (Yang
et al., 2010; Chatterjee, Shi & García-Closas, 2016; Olsson, Barcellos & Alfredsson, 2017).
When either of the two factors at discussion is not a risk factor, both factors should be
considered separately or jointly by choosing the low-risk category as the reference level
(Rothman, Greenland & Lash, 2008; de Mutsert et al., 2009; Knol et al., 2011). However, this
strategy involves applying a logistic model twice. The risk level or combination of factors
are first determined, after which the coefficients of the factors are estimated, with the low
risk level serving as a reference. Notably, the relation of the estimated coefficients between
the two logistic models can be revealed by resetting only the reference level; however, the
calculation of confidence intervals becomes complicated with the troublesome involvement
of covariance matrices.

This article describes how credible intervals of the three measures of interaction on
an additive scale can be evaluated using the Bayesian method. Credible intervals are
analogous to the in frequentist statistics (Bolstad & Curran, 2016), although they differ
on a philosophical basis (VanderPlas, 2014). The Bayesian method is commonly employed
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in epidemiology and other applications (Ashby, 2006; MacLehose et al., 2009; Hamra et al.,
2013; Ahrens & Pigeot, 2014) due to the simplicity of Bayesian inference. Bayesian inference
depends only on posterior samples of the parameters. Once a posterior sample is obtained,
a posterior sample of any function of the parameters can be obtained by applying the
corresponding function to the posterior sample of those parameters. A sample from the
posterior distribution of coefficients of the logistic model can be generated using Markov
chainMonteCarlo (MCMC)methodswith a randomwalkMetropolis algorithm (Bolstad &
Curran, 2016). Once a sample is obtained, regardless of whether the logistic model includes
preventive factors or risk factors, the posterior samples of the three measures of interaction
on an additive scale can be calculated directly by applying the corresponding functions.
If there are preventive factors, the functions are composed of two parts: the coefficients
corresponding to the new reference (Appendix S1A) and the measure’s functions. Thus,
the logistic model requires only one execution. Based on the posterior samples, credible
intervals, such as the highest posterior density interval or equal-tailed interval, can easily
be assessed.

Measures of additive interaction
Consider two binary factors, A and B, with values of 0 and 1, where 0 denotes the absence
of a factor and 1 denotes its presence. Four possible combinations exist: A0B0, A1B0, A0B1

and A1B1. Suppose the reference group is A0B0, and let RR10, RR01, and RR11 denote the
relative risks for groups A1B0, A0B1 and A1B1, respectively. Rothman, Greenland & Lash
(2008) developed three measures of interaction on an additive scale: the relative excess risk
due to interaction (RERI),

RERI =RR11−RR10−RR01+1,

the attributable proportion due to interaction (AP),

AP =
RERI
RR11

=
RR11−RR10−RR01+1

RR11
,

and the synergy index (S)

S=
RR11−1

(RR10−1)+ (RR01−1)
=

RR11−1
RR10+RR01−2

.

Note that both the RERI and AP can range from -∞ to +∞, while S can range from 0 to
+∞. If no interaction is present on the additive scale, both the RERI and AP will be equal
to 0, and S will be equal to 1; if there is more than additivity, both the RERI and AP will be
greater than 0, and S will be greater than 1; if there is less than additivity, both the RERI
and AP will be less than 0, and S will be less than 1.

The RR is readily available in cohort studies. However, in case-control studies, the RR
can be approximated by the odds ratio (OR) if the prevalence is sufficiently rare (Appendix
S1B). As suggested by Rothman, Greenland & Lash (2008), the RERI, AP and S can be
estimated via multiple logistic regression with indicator variables created for categories
A1B0, A0B1 and A 1B1. Given that

logit (p)= log(
p

1−p
)=β0+β1I (A1B0)+β2I (A0B1)+β3I (A1B1)+Xγ (1)

Lin et al. (2024), PeerJ, DOI 10.7717/peerj.17128 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.17128#supp-1
http://dx.doi.org/10.7717/peerj.17128#supp-1
http://dx.doi.org/10.7717/peerj.17128#supp-1
http://dx.doi.org/10.7717/peerj.17128


where p= P(case|A,B,X) is the corresponding probability of the case given factors A,
B and X (X is a vector of the potential confounders) and I (·) is the indicator function;
then, OR10= eβ1 , OR01= eβ2 and OR11= eβ3 can be substituted for the RRs in the three
measures of interaction. As noted by Hosmer Jr, Lemeshow & Sturdivant (2013), the ORs
can be represented as OR10 = eη1 , OR01 = eη2 and OR11 = eη1+η2+η3 based on logistic
regression with factors A and B and the product of A and B

logit (p)= η0+η1A+η2B+η3AB+Xγ . (2)

Because both models are saturated, the two estimations are equivalent.

Methods for calculating confidence intervals
The methods used to calculate confidence intervals fall into two categories: symmetric
intervals based on a normal distribution and asymmetric intervals based on quantile
estimation. Let lnS denote S on the log scale and Z denote any one of the three measures
RERI, AP or lnS. As proposed by Hosmer and Lemeshow, the confidence interval of Z is
obtained by assuming a normal distribution for Z. The variance in Z can be estimated using
the delta method, which employs the first-order approximation of a Taylor series (Hosmer
& Lemeshow, 1992). Therefore, the 95% confidence interval of the delta method for Z,
which is symmetric about the point estimate, is given by Ẑ±1.96×

√
D̂(Z ), where Ẑ and

D̂(Z ) are the point estimate and the variance estimate for Z, respectively. The confidence
intervals for the RERI and AP can be obtained directly, while the confidence interval for
S can be obtained using an exponential function. Zou (2008) suggested a recover variance
estimate of the variance for measures that considers Taylor series expansion using the
multivariate delta method.

Another way to estimate confidence intervals is through bootstrapping (Efron &
Tibshirani, 1994). This technique allows estimation of the sampling distribution of almost
any statistic using random sampling, as do the measures of additive interaction. Let Z
denote any one of the three measures RERI, AP or S. The bootstrap samples are resampled
from the original sample, and then Z can be estimated in each of the bootstrap samples.
When obtaining the distribution of Z, deriving estimates of standard errors and confidence
intervals is straightforward. There are several methods for constructing confidence intervals
from the bootstrap distribution.

The first of these methods is the normal bootstrap method. The method assumes that Z
follows a normal distribution. The variance D̂(Z ) is estimated from the bootstrap samples,
and the confidence interval is calculated as Ẑ ±1.96×

√
D̂(Z ) Alternatively, the quantile

method is the most popular method for constructing confidence intervals. Let Z∗α denote
the α percentile of the bootstrap-estimated distribution for Z. Efron & Tibshirani (1994)
used percentiles of the bootstrap distribution to estimate the 1−α confidence interval for
Z as (percentile bootstrap, PB)

(Z∗α/2,Z
∗

1−α/2).

Davison & Hinkley (1997) proceeded in a similar way, but a different formula was used to
construct the confidence interval for Z, as (basic bootstrap, BB)

(2Ẑ−Z∗1−α/2,2Ẑ−Z
∗

α/2).
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Bayesian estimation of the additive measure
Given amodel, there are three steps involved in Bayesian analysis (Bolstad & Curran, 2016):
(1) determining the marginal likelihood of the data, (2) specifying prior probabilities for
the parameters, and (3) applying Bayes’ theorem to predictor variables and the outcome
variable via Bayesian modeling.

Let Y denote the binary outcome variable. Consider the logistic regression of the form

Y :Bernoulli(p)

where Bernoulli(·) is a Bernoulli distribution and p satisfies Eq. (1) or Eq. (2). The likelihood
for the logistic regression is

p(x|θ)=
∏
i

h(x;θ)Y (1−h(x;θ))1−Y

where θ is a parameter (such as θ = (β0,β1,β2,β3,γ ) in Eq. (1)) and h(x;θ)= 1
1+e−logit (p) is

the predicted probability that Y is 1.
The prior probability is an unconditional probability that is assigned before any data

are accounted for. There are three main categories of prior distributions: informative
priors, weakly informative priors and noninformative priors. When a family of conjugate
priors exists, the conjugate priors are chosen for computational efficiency. However, there
is no conjugate prior for the likelihood function in logistic regression. When Bayesian
inference is performed analytically, this makes the posterior distribution difficult to
calculate except in very low dimensions. However, software such as OpenBUGS (Lunn et
al., 2009), JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017) allows these posteriors
to be computed via simulation; hence, a lack of conjugacy is not a concern. This article
employs noninformative or weakly informative priors p(θ) for all model parameters.

According to Bayes’ theorem, the joint posterior distribution of the model parameters
is proportional to the product of the likelihood and priors,

p(θ |x)∝ p(θ) ·p(x|θ)= p(θ)
∏
i

h(x;θ)Y (1−h(x;θ))1−Y .

This equation is too complex to solve analytically; therefore, Monte Carlo methods
are often used to summarize the posterior distribution. A combination of Monte Carlo
and Markov chain can result in effective sampling and evaluation. Thus, this posterior
computation can be accomplished easily using Markov chain Monte Carlo (MCMC)
methods with a random walk Metropolis algorithm. Since RERI, AP and S are functions of
θ , the values of the three measures of interaction can be calculated directly when a sample
is generated from the posterior distribution p(θ |x).

The uncertainties of the RERI, AP and S can be summarized by giving a range of values
on the posterior probability distribution that includes 95% of the probability, (P2.5,P97.5),
which is called a 95% credibility interval (calculated based on an equal-tailed interval).
Similarly, in a Bayesian credibility interval, the null hypothesis is rejected if the credibility
interval does not encompass the parameters of the null hypothesis. For example, there is an
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interaction if the credibility interval of an RERI does not contain 0. Notably, the confidence
interval captures the uncertainty about the interval obtained (whether it contains the true
value or not), and it cannot be interpreted as a probabilistic statement about the true
parameter value. However, the credible interval captures the current uncertainty in the
location of the parameter value and thus can be interpreted as a probabilistic statement
about the parameter.

Preventive factors
Measures of interaction were developed for risk factors, so it is not appropriate to use them
directly when a preventive factor exists. The recoded method, which can be seen as a choice
of reference category, is used to address this issue (Knol et al., 2011). The use of the recoded
method and the use of an updatedmodel is a cumbersome and tedious process. In fact, when
the reference category changes, the new logistic regression coefficients θ ′= (β ′0,β

′

1,β
′

2,β
′

3)
are completely dependent on the original logistic coefficients θ = (β0,β1,β2,β3), as resetting
the reference category is equivalent to subtracting the new reference category coefficient
from θ (Hosmer Jr, Lemeshow & Sturdivant, 2013). The relationships between θ ′and θ for
the three interaction measures are shown in Appendix S1A. In the Bayesian approach, the
three measures of interaction are calculated directly by setting the reference category as that
whose coefficient is the smallest (set β0= 0 in the dummy coding scheme). Thus, it is not
necessary to update the model, and the uncertainty of the parameters will be obtained from
the posterior sample. The R (R Core Team, 2023) function for computing new coefficients
based on the lowest risk category as a reference category is provided in Appendix S1C.

SIMULATION STUDY SETTING
To assess the performance of Bayesian estimation of the additive measure, simulation
studies were conducted to compare the results of confidence interval estimation by these
methods. Regardless of the effect measure used, OR, RR, or hazard ratio, the evaluation
process was similar, so a case-control design was employed. The values of OR01, OR10 and
OR11 were set as in the study by Assmann et al. (1996), where 20 scenarios (2 OR01× 2
OR10× 5 OR11) are described in Table 1. These scenarios include situations with strong
synergy, weak synergy, no interaction, weak antagonism or strong antagonism.

In each scenario, the sample size was set to n= 600, and the factor exposure rate was
fixed, in which the proportions of subjects exposed to factor A alone, factor B alone, and
both factors A and B were 0.1, 0.2 and 0.1, respectively. In addition to the parameters
mentioned above, two additional parameters were considered: the proportion of the case
number relative to the sample size, which changes from p1 = 1/2 to p2 = 1/3, i.e., the
number of cases is reduced from 300 to 200; and the other is where there are potential
confounders X and the coefficient of the variable is set to γ = 0.5 when containing a
confounding variable.

Three simulation studies were designed to evaluate the effects of the methods: balanced
design (p1= 1/2), unbalanced design (p2= 1/3) and balanced design with a confounding
variable. For each combination of parameters in each study, 1,000 replicates were
performed. Bayesian estimation was compared with the delta method and bootstrap
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Table 1 The ORs setting for simulation.

Scenario OR01 OR10 OR11 RERI AP S

A1 4.0 5.0 20.000 12.00 0.60 2.71
A2 4.0 5.0 12.000 4.00 0.33 1.57
A3 4.0 5.0 8.000 0.00 0.00 1.00
A4 4.0 5.0 6.000 −2.00 −0.33 0.71
A5 4.0 5.0 4.000 −4.00 −1.00 0.43
B1 2.0 5.0 15.000 9.00 0.60 2.80
B2 2.0 5.0 9.000 3.00 0.33 1.60
B3 2.0 5.0 6.000 0.00 0.00 1.00
B4 2.0 5.0 4.500 −1.50 −0.33 0.70
B5 2.0 5.0 3.000 −3.00 −1.00 0.40
C1 4.0 2.5 13.750 8.25 0.60 2.83
C2 4.0 2.5 8.250 2.75 0.33 1.61
C3 4.0 2.5 5.500 0.00 0.00 1.00
C4 4.0 2.5 4.125 −1.38 −0.33 0.69
C5 4.0 2.5 2.750 −2.75 −1.00 0.39
D1 2.0 2.5 8.750 5.25 0.60 3.10
D2 2.0 2.5 5.250 1.75 0.33 1.70
D3 2.0 2.5 3.500 0.00 0.00 1.00
D4 2.0 2.5 2.625 −0.88 −0.33 0.65
D5 2.0 2.5 1.750 −1.75 −1.00 0.30

method. As suggested by Assmann et al. (1996) due to the skewed distribution of the three
measures of interaction, the percentile bootstrap was suitable. Thus, only the percentile
bootstrap was performed in the simulation studies. The bootstrap sampling, with 1,000
resamples, was performed separately within cases and controls. Therefore, the number of
cases and controls in the bootstrap samples were identical to those in the original sample.
Therefore, for each sample, point estimates of the interaction measures were calculated, as
were 95% confidence intervals for the delta method and percentile bootstrap method and
95% credible intervals for the Bayesian method.

The posterior distributions of the parameters were estimated via the MCMC method
with a randomwalkMetropolis algorithm, which can be performed easily via the R package
MCMCpack (Martin, Quinn & Park, 2011). Specifically, the Markov chain was run for a
total of 20,000 iterations with 10,000 burn-in iterations. To monitor convergence, multiple
chains with different initial values were constructed, and trace plots were examined visually.
The convergence of Markov chains was further assessed using the standard convergence
statistic. Because an improper prior distributionmay lead to inaccurate posterior estimates,
proper but diffuse prior distributions with weak information for the parameters were
employed (Spiegelhalter & Richardson, 1995). Alternatively, noninformative priors, such
as the Jeffreys prior or uniform prior with proper bounds, may also be used (Bolstad &
Curran, 2016). Specifically, in all the simulation studies, the prior distributions of the
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parameters were set to a normal distribution with a large variance,

θ = (β0,β1,β2,β3)∼N (0,102I4)

γ ∼N (0,102)

where I4 is the identity matrix of size 4, which is a 4×4 square matrix with ones on the
main diagonal and zeros elsewhere.

Three criteria were used to evaluate the extent to which the empirical coverage of the
confidence interval matched the nominal 95% level. The first was the rank of the deviation
from the nominal level, which was obtained by ranking the absolute value of the difference
between the coverage rate and 95%. The second was the percentage of times that the
interval covered the true value, which fell within the range of 93.6–96.4% (due to the
1,000 samples). The third was the percentage of missed data in either direction. The left
miscoverage rate was the proportion of times the lower limits were larger than the true
value, while the right miscoverage rate was the proportion of times the upper limits were
less than the true value. A balanced miscoverage indicated that the confidence interval
was neither too wide nor too narrow. From the usual sample-size formula for estimating
proportions, if the true coverage rate for a particular type of confidence interval (or credible
interval) was 95%, then the probability of obtaining coverage between 92.5% and 97.5%
would be approximately 0.95. Thus, an advertised 95% confidence interval (or credible
interval) should miss approximately 2.5% from each side; i.e., the left/right miscoverage
rates should be 2.5%.

RESULTS OF THE SIMULATION STUDY
With respect to the balanced design with 300 cases and controls, for each scenario and each
method, there were 1,000 point estimates of the interaction measures with considerable
variation. However, for each interaction measure, the mean and median of the point
estimates were very close to the corresponding true values. For instance, in scenario A1,
the true value of the RERI was 12. The 1,000-point estimates of delta for the RERI ranged
from −2.83 to 32.91; the mean and median values were 13.21 and 11.95, respectively, and
the standard deviation was 7.62.

The sampling distributions of those point estimates, estimated from the same datasets,
were almost the same among the three methods. This was consistent with expectations.
Figure 1 shows the sampling distribution of each interaction measure in scenarios A1,
A3 and A5, corresponding to strong synergy, no interaction, and strong antagonism,
respectively. The RERI seemed to follow a normal distribution with a mean of 0 when there
was no interaction but a mildly right-skewed distribution when there was synergy and
a mildly left-skewed distribution when there was antagonism. For AP, the distributions
were skewed to the left in all scenarios except for antagonism. For S, the distributions were
skewed to the right in every scenario.

Table 2 summarizes the coverage performance of the three estimation methods for the
RERI. Due to the skewed distribution, when using the median as the estimate, all the values
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Figure 1 Sampling distributions of interaction measures, which were estimated from the scenarios A1
(top), A3 (middle) and A5 (bottom) in the balanced design simulation study. The lines reveal the median
of the distribution which were very close to the true value of RERI, AP and S, respectively.

Full-size DOI: 10.7717/peerj.17128/fig-1

were close to the true value of the RERI. For the delta, bootstrap, and Bayesian intervals,
the average ranks of the deviation were 2.75, 1.50 and 1.65, respectively. This shows that,
over a wide range of scenarios, the bootstrap method most often yields a coverage rate
closest to 95%, followed by the Bayesian method. Notably, the rank would be equal to 3
if the coverage rate was the farthest from 95% in every scenario, which indicates that the
delta intervals least accurately match the nominal value of 95%.

For delta intervals, the coverage rate fit into the target range of 93.6–96.4% in 4 of
the 20 scenarios. Clearly, the coverage rate tended to be low when there was synergy and
high when there was antagonism. In particular, in scenarios with synergy, delta intervals
covered the true value of the RERI by lying too far to the right, which resulted in low
right miscoverage and high left miscoverage. However, in scenarios with antagonism, the
delta intervals may be too wide, resulting in a high coverage rate and low miscoverage.
In contrast, the Bayesian coverage was within the target range in 18 of the 20 scenarios.
Furthermore, the left/right miscoverages were approximately 2.5%, which indicates that
the Bayesian intervals were more evenly balanced. The bootstrap intervals were similar to
those of the Bayesian method.

Table 3 summarizes the coverage performance of the three estimation methods for AP.
For the delta, bootstrap, and Bayesian intervals, the average ranks of the deviation were
3, 1.45 and 1.4, respectively. The coverage for delta intervals was in the target range for
only two of the 20 scenarios, while that for the bootstrap and Bayesian intervals was in
the target range for 19 of the 20 scenarios. For the delta interval, the miscoverage was
lop-sided, with high right miscoverage. It tended to achieve an excessively high lower
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Table 2 Coverage properties of the 95% two-sided confidence/credible intervals for RERI in balanced design study.

Delta Bootstrap Bayesian

RERI Estimate Left Cover Right Estimate Left Cover Right Estimate Left Cover Right

12.00 11.95 7.3 92.7 0.0 12.30 1.3 94.4 4.3 12.93 2.1 93.8 4.1
4.00 3.82 5.2 94.8 0.0 3.78 2.1 95.3 2.6 4.07 2.8 94.8 2.4
0.00 −0.17 3.2 96.8 0.0 −0.24 2.9 94.8 2.3 −0.13 3.1 94.9 2.0
−2.00 −2.11 1.7 98.2 0.1 −2.17 3.1 94.8 2.1 −2.15 3.6 94.6 1.8
−4.00 −4.11 0.7 97.9 1.4 −4.18 3.3 94.7 2.0 −4.22 3.4 94.5 2.1
9.00 9.03 8.8 91.2 0.0 9.21 2.9 92.5 4.6 9.63 3.3 92.8 3.9
3.00 2.81 6.4 93.6 0.0 2.83 2.8 94.4 2.8 2.94 3.5 94.3 2.2
0.00 −0.09 3.4 96.6 0.0 −0.10 3.4 94.1 2.5 −0.08 3.8 94.1 2.1
−1.50 −1.52 1.4 98.4 0.2 −1.55 3.4 94.7 1.9 −1.56 3.0 95.0 2.0
−3.00 −3.03 0.7 97.2 2.1 −3.05 3.7 94.0 2.3 −3.11 4.0 93.7 2.3
8.25 8.44 7.5 92.5 0.0 8.48 1.7 94.0 4.3 8.94 2.4 93.8 3.8
2.75 2.70 4.6 95.4 0.0 2.67 2.4 95.0 2.6 2.82 3.5 94.3 2.2
0.00 −0.06 1.7 98.3 0.0 −0.09 2.7 95.3 2.0 −0.07 3.6 94.3 2.1
−1.38 −1.35 0.5 99.1 0.4 −1.39 2.7 95.4 1.9 −1.38 3.2 94.7 2.1
−2.75 −2.80 0.4 96.9 2.7 −2.85 3.3 94.8 1.9 −2.88 3.5 94.1 2.4
5.25 5.13 7.5 92.5 0.0 5.17 2.7 94.4 2.9 5.37 3.6 93.9 2.5
1.75 1.70 6.2 93.8 0.0 1.66 3.6 93.5 2.9 1.70 4.6 92.9 2.5
0.00 −0.04 3.1 96.9 0.0 −0.06 3.1 95.2 1.7 −0.06 3.4 95.1 1.5
−0.88 −0.87 1.9 97.9 0.2 −0.89 3.8 94.6 1.6 −0.91 3.7 94.7 1.6
−1.75 −1.80 0.9 96.7 2.4 −1.83 4.4 93.8 1.8 −1.84 4.7 93.9 1.4

confidence limit, which would probably lead to false positive results. The Bayesian interval
had better coverage, but the miscoverage appeared to be slightly unbalanced, as in the case
of the bootstrap interval. Nevertheless, from a practical standpoint, this miscoverage is
reasonable.

Table 4 summarizes the coverage performance of the three estimation methods for S.
For the delta, bootstrap, and Bayesian intervals, the average ranks of the deviation were
2.35, 1.60 and 1.85, respectively, and the numbers of points within the target range were
15, 19 and 18, respectively. Notably, the imbalance in miscoverage was slightly alleviated
for the three estimation methods.

Further simulation results with imbalanced designs or confounding variables are
reported in the supplementary material (Tables S1–S6) for the interaction measures RERI,
AP and S. In general, the performances of both studies exhibited similar statistical behavior
as that of the balanced design. Specifically, for AP, the coverage rates of the delta interval
were especially low, and the worst coverage rate was as low as 87.6%. However, the coverage
rates of the bootstrap and Bayesian intervals were mostly slightly less than 95%. In addition,
the bootstrap and Bayesian intervals achieved balanced miscoverage, but the delta interval
did not. In summary, the simulations demonstrate that, for three interaction measures,
the bootstrap and Bayesian methods performed satisfactorily, while the delta method did

Lin et al. (2024), PeerJ, DOI 10.7717/peerj.17128 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.17128#supp-2
http://dx.doi.org/10.7717/peerj.17128#supp-2
http://dx.doi.org/10.7717/peerj.17128


Table 3 Coverage properties of the 95% two-sided confidence intervals for AP in balanced design study.

Delta Bootstrap Bayesian

AP Estimate Left Cover Right Estimate Left Cover Right Estimate Left Cover Right

0.60 0.60 0.0 92.2 7.8 0.60 1.5 94.5 4.0 0.61 2.7 93.7 3.6
0.33 0.33 0.2 93.2 6.6 0.32 2.2 95.3 2.5 0.34 2.7 95 2.3
0.00 −0.02 0.6 93.3 6.1 −0.03 2.9 94.8 2.3 −0.02 3.1 94.9 2.0
−0.33 −0.37 0.6 93.7 5.7 −0.38 3.1 94.8 2.1 −0.37 3.3 94.8 1.9
−1.00 −1.04 0.3 93.1 6.6 −1.08 3.0 94.7 2.3 −1.06 3.4 94.5 2.1
0.60 0.60 0.6 91.8 7.6 0.61 3.0 93.2 3.8 0.62 3.5 93.2 3.3
0.33 0.33 0.7 92.5 6.8 0.32 3.1 94.1 2.8 0.33 3.4 94.4 2.2
0.00 −0.01 0.6 93.5 5.9 −0.02 3.4 94.1 2.5 −0.01 3.8 94.1 2.1
−0.33 −0.34 0.4 92.5 7.1 −0.36 3.1 95.0 1.9 −0.35 3.1 94.8 2.1
−1.00 −1.03 0.1 92.4 7.5 −1.04 3.7 93.6 2.7 −1.05 3.4 94.0 2.6
0.60 0.60 0.1 91.5 8.4 0.61 1.8 94.6 3.6 0.62 2.8 93.9 3.3
0.33 0.34 0.1 93.8 6.1 0.33 2.4 95.0 2.6 0.34 3.0 94.4 2.6
0.00 −0.01 0.2 92.7 7.1 −0.02 2.8 95.2 2.0 −0.01 3.6 94.3 2.1
−0.33 −0.34 0.2 92.7 7.1 −0.35 2.9 95.6 1.5 −0.35 3.0 95.3 1.7
−1.00 −1.00 0.0 93.1 6.9 −1.04 3.2 95.0 1.8 −1.05 3.3 94.8 1.9
0.60 0.60 1.0 92.4 6.6 0.60 3.2 94.9 1.9 0.60 3.8 94.2 2.0
0.33 0.33 0.8 92.4 6.8 0.33 3.5 94.1 2.4 0.32 3.8 94.2 2.0
0.00 −0.01 1.1 91.3 7.6 −0.02 3.1 95.2 1.7 −0.02 3.4 95.1 1.5
−0.33 −0.33 0.8 91.3 7.9 −0.35 3.1 95.5 1.4 −0.34 3.3 95.1 1.6
−1.00 −1.01 1.0 90.3 8.7 −1.04 3.7 94.1 2.2 −1.02 3.2 94.8 2.0

not. The difference between the bootstrap and Bayesian methods was minimal and can be
considered negligible.

EXAMPLE
This example came from a case-control study among male veterans younger than 60
years concerning smoking and alcohol use in relation to oral cancer (Rothman & Keller,
1972). The data are presented in Table 5. Several authors have used various methods
to calculate confidence intervals (CIs) for the RERI. Specifically, based on Hosmer and
Lemeshow’s delta method (Hosmer & Lemeshow, 1992), the point estimate of the RERI
was 3.74, and the asymptotic 95% confidence interval was (−1.85 to 9.33). Based on Zou’s
variance estimates recovery method (MOVER) (Zou, 2008), the 95% confidence interval
was (−11.41 to 21.84). Based on Richardson and Kaufman’s profile likelihood method
(Richardson & Kaufman, 2009), the 95% confidence interval was (−3.29 to 17.21). The
95% confidence interval of the percentile bootstrap method proposed by Assmann et al.
(1996) was (−10.77 to 1.6 × 107), which was too wide due to the sparse cells in some
bootstrapped samples. In addition, Chu, Nie & Cole (2011) proposed a Bayesian method
for linear additive odds ratio models and reported that the posterior medians of the RERI
with 95% high probability density and credible intervals were 3.00 (−2.27 to 8.90), 4.05
(−2.54 to 12.65) and 4.75 (−2.63 to 15.60), corresponding to different prior distributions.
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Table 4 Coverage properties of the 95% two-sided confidence intervals for S in balanced design study.

Delta Bootstrap Bayesian

S Estimate Left Cover Right Estimate Left Cover Right Estimate Left Cover Right

2.71 2.70 3.1 96.8 0.1 2.73 1.5 94.7 3.8 2.84 2.6 93.5 3.9
1.57 1.56 2.8 95.8 1.4 1.56 2.3 95.2 2.5 1.59 2.5 95.2 2.3
1.00 0.98 3.0 95.8 1.2 0.97 2.9 94.8 2.3 0.98 3.1 94.9 2.0
0.71 0.70 2.6 95.8 1.6 0.69 3.2 94.7 2.1 0.69 3.4 94.7 1.9
0.43 0.42 2.1 95.5 2.4 0.41 3.1 94.5 2.4 0.42 3.5 94.4 2.1
2.80 2.84 3.8 95.8 0.4 2.89 3.0 93.1 3.9 2.93 3.7 93.0 3.3
1.60 1.57 3.6 95.1 1.3 1.58 3.2 93.9 2.9 1.59 3.4 94.3 2.3
1.00 0.98 3.3 94.8 1.9 0.97 3.4 94.1 2.5 0.99 3.8 94.1 2.1
0.70 0.69 2.1 96.1 1.8 0.68 2.9 95.2 1.9 0.69 3.2 94.7 2.1
0.40 0.39 1.0 96.2 2.8 0.38 3.4 94.1 2.5 0.39 2.9 94.5 2.6
2.83 2.90 3.3 95.6 1.1 2.97 2.0 94.8 3.2 3.04 2.8 94.1 3.1
1.61 1.61 2.8 95.9 1.3 1.62 2.3 95 2.7 1.63 2.9 94.6 2.5
1.00 0.98 2.5 95.8 1.7 0.98 2.8 95.2 2.0 0.99 3.6 94.3 2.1
0.69 0.69 1.9 96.6 1.5 0.68 2.8 95.6 1.6 0.69 3.0 95.3 1.7
0.39 0.39 0.7 97.2 2.1 0.38 2.8 95.6 1.6 0.38 3.3 95.0 1.7
3.10 3.11 4.6 94.6 0.8 3.15 2.9 95.6 1.5 3.15 3.9 94.5 1.6
1.70 1.68 3.5 95.2 1.3 1.70 3.5 94.6 1.9 1.68 3.7 94.5 1.8
1.00 0.98 2.4 96.4 1.2 0.97 3.1 95.4 1.5 0.98 3.4 95.1 1.5
0.65 0.65 0.7 97.8 1.5 0.64 2.9 95.4 1.7 0.64 2.9 95.6 1.5
0.30 0.29 0.0 96.7 3.3 0.28 2.7 95.2 2.1 0.29 1.9 95.5 2.6

Table 5 Distribution of exposures among cases and controls in the oral cancer examplea.

Neither Smoking
only

Alcohol
only

Smoking
and alcohol

Cases 3 8 6 225
Controls 20 18 12 166

Notes.
adata were from the example presented by Rothman and Keller.

For the data at hand, using the proposed Bayesian method, the point estimates with
95% credible intervals for REIR, AP and S are shown in Table 6, along with the confidence
intervals of the delta and bootstrap methods. The three interaction measures of all methods
suggested synergy, but the 95% intervals were broad and not significant. For the RERI,
the Bayesian method provided a reasonable 95% credible interval (−3.93 to 19.59). For
AP, owing to the left-skewed distribution, the Bayesian interval was positioned further left
than the delta interval was. However, for S, owing to the right-skewed distribution, the
Bayesian interval was positioned further right than the delta interval was. Figure 2 shows
the distributions of interactions in this example. Furthermore, the features that appeared
in the simulation studies seemed to be maintained.

Notably, the overall performance of the bootstrap method was comparable to that of the
Bayesian method in all the simulation studies. However, in this example, regardless of the
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Table 6 Point estimates with 95% confidence limits for interaction effects in oral cancer example.

Delta Bootstrap Bayesian

RERI 3.74 (−1.84 to 9.32) 3.51 (−4.86 to 5.78×106) 3.68 (−3.93 to 19.59)
AP 0.41 (−0.07 to 0.90) 0.38 (−0.32 to 0.83) 0.38 (−0.34 to 0.72)
S 1.87 (0.65 to 5.42) 1.69 (0.66 to 11.24) 1.71 (0.72 to 5.78)

Figure 2 Distributions of interaction in oral cancer example. The distributions for Delta were based on
the normal distribution (RERI and AP) or lognormal distribution (S) with estimated mean and standard
error, respectively.

Full-size DOI: 10.7717/peerj.17128/fig-2

three interaction measures, the intervals in the Bayesian method were narrower than those
in the bootstrap method, which may indicate that there is less variance in the Bayesian
method. Notably, the upper limits of the intervals obtained via the bootstrap method were
greater than those obtained via the Bayesian method, especially for the RERI. This indicates
that the percentile bootstrap may perform poorly when data with a small sample size exist
in some groups, but the proposed Bayesian approach is free from this predicament.

DISCUSSION
It is very important to assess whether an additive interaction exists between two factors
during the interpretation of epidemiologic data because this information is relevant to
disease prevention and intervention. In general, in addition to hypothesis tests, confidence
intervals are used in the assessment of statistical interactions (Greenland et al., 2016). There
are many methods for constructing confidence intervals for RERI, such as the delta method
(Hosmer & Lemeshow, 1992), bootstrap method (Assmann et al., 1996), variance estimate
recovery approach (Zou, 2008), and profile likelihood approach (Richardson & Kaufman,
2009), based on the theories of classical frequentists. However, due to the complexity of
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the formulas, there is little information available for AP or S. An alternative method is the
Bayesian approach, which uses a credible interval rather than a confidence interval. Chu,
Nie & Cole (2011) proposed a Bayesian method for linear additive odds ratio models to
construct the credible interval of the RERI but not that of the AP or S. This article proposes
a Bayesian method to estimate all the additive interaction measures, RERI, AP and S, along
with their 95% credible intervals. In contrast to the method of Chu, Nie & Cole (2011), in
which the posterior distribution is a step function, this method does not require inequality
constraints on the parameters, which may expand the sample space of the parameter and
lead to higher efficiency when MCMC is applied.

The simulation studies show that the distributions of the additive interaction measures
are skewed, especially those of AP and S. Therefore, the delta method, whose Wald-type
confidence interval is symmetric, performs poorly in terms of the empirical coverage of the
confidence interval or the percentage of times missed in either direction. By recovering the
variances, the method proposed by Zou (2008) may alleviate this situation. However, as
Wald-type confidence intervals are based on asymptotic variance, they may be misleading
in nonmultiplicative models (Moolgavkar & Venzon, 1987).

Compared with those of the delta method, the Bayesian credible intervals proposed here
and the bootstrap confidence intervals, which do not rely on asymptotic approximations,
are more likely to catch on each side of the true value, and their coverage is close to the
nominal level of 95%. The bootstrap confidence intervals, as proposed by Assmann et al.,
are preferred in practice (Töpper et al., 2018). However, the bootstrap method has several
limitations. DiCiccio & Efron (1996) cautioned that a bootstrap sample may depend on
a distribution with difficult computations in nonmultiplicative models. In addition, as
observed in the example, the confidence interval could come to nothing when the sample
is insufficient (Chernick, 1999). However, Bayesian credible intervals have minimal impact
and work well.

Some authors (Rothman, Greenland & Lash, 2008; Knol et al., 2011) have noted that
additive measures are suitable only for risk factors. If there is a preventive factor, it should
be recoded to a risk factor before calculating these measures. To determine where it is a
preventive factor and how to recode it, the logistic regression model needs to be applied at
least twice. When this strategy is applied to the bootstrap method, each bootstrap sample
needs to be recoded separately rather than used for the bootstrap samples. This approach
significantly increases the calculation time. However, in the Bayesian framework, once a
sample of the posterior distribution is obtained, one can apply this sample to any function
(Bolstad & Curran, 2016). Therefore, the posterior distributions of the additive measures
can be estimated when the coefficients θ = (β0,β1,β2,β3) are obtained by the Bayesian
method. This makes the model presented here highly flexible. As shown in Appendix
S1A, the additive measures are computed directly after parameter transformation, but the
computation time can be ignored. Moreover, one can adjust the confounding variable X
in various forms in logistic regression, such as the linear or spline function of X.

The frequentist and Bayesian methods appear to be superficially opposite, but they can
be considered complementary in practice (Chu, Nie & Cole, 2011). When using a weak
prior distribution in Bayesian methods, the inference is often consistent with that of
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frequentists. However, the Bayesian method is attractive because proper prior distributions
can be determined from past information, such as subject-matter knowledge or previous
experiments (Bolstad & Curran, 2016). Furthermore, the credible interval is constructed
directly from the highest probability density of the posterior samples, and it can capture the
uncertainty of the parameter values without having to rely on asymptotic approximations.
This approach can often yield better results, especially for small samples, as shown in
the example. In addition, Bayesian methods have a range of other advantages, including
convenient application to other indicators related to interactions (e.g., PRISM (Lee, 2013;
Lin & Lee, 2016), CPWs (Lee & Wu, 2023) and the ability to explore disease attribution to
multiple exposures and their interactions.

In this article, a Bayesian method for the estimation of additive measures is proposed.
By rearranging the posterior sample, it works for both risk factors and preventive factors.
The simulation studies and example results show that the Bayesian method is a competitive
alternative to other methods.
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