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ABSTRACT
Background. Lymph node involvement significantly impacts the survival of gastric
cancer patients and is a crucial factor in determining the appropriate treatment. This
study aimed to evaluate the potential of enhanced computed tomography (CT)-based
radiomics in predicting lymph node metastasis (LNM) and survival in patients with
gastric cancer before surgery.
Methods. Retrospective analysis of clinical data from 192 patients diagnosed with
gastric carcinoma was conducted. The patients were randomly divided into a training
cohort (n= 128) and a validation cohort (n= 64). Radiomic features of CT images were
extracted using the Pyradiomics software platform, and distinctive features were further
selected using a Lasso Cox regression model. Features significantly associated with
LNM were identified through univariate and multivariate analyses and combined with
radiomic scores to create a nomogram model for predicting lymph node involvement
before surgery. The predictive performance of radiomics features, CT-reported lymph
node status, and the nomogram model for LNM were compared in the training and
validation cohorts by plotting receiver operating characteristic (ROC) curves. High-risk
and low-risk groups were identified in both cohorts based on the cut-off value of 0.582
within the radiomics evaluation scheme, and survival rates were compared.
Results. Seven radiomic features were identified and selected, and patients were
stratified into high-risk and low-risk groups using a 0.582 cut-off radiomics score.
Univariate andmultivariate analyses revealed that radiomics features, diabetes mellitus,
Nutrition Risk Screening (NRS) 2002 score, and CT-reported lymph node status were
significant predictors of LNM in patients with gastric cancer. A predictive nomogram
model was developed by combining these predictors with the radiomics score, which
accurately predicted LNM in gastric cancer patients before surgery and outperformed
other models in terms of accuracy and sensitivity. The AUC values for the training and
validation cohorts were 0.82 and 0.722, respectively. The high-risk and low-risk groups
in both the training and validation cohorts showed significant differences in survival
rates.
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Conclusion. The radiomics nomogram, based on contrast-enhanced computed tomog-
raphy (CECT ), is a promising non-invasive tool for preoperatively predicting LNM in
gastric cancer patients and postoperative survival.

Subjects Oncology, Radiology and Medical Imaging
Keywords CT radiomics, Gastric cancer, Lymph node metastasis, Nomogram, Survival analysis

BACKGROUND
Digestive cancer continues to be the primary cause of death globally (Shi et al., 2018;
Ma et al., 2016; Zhang et al., 2021), with gastric cancer ranking as a prevalent malignancy
and the second leading cause of cancer-related mortality worldwide (Bray et al., 2018). The
presence of peri-gastric lymph nodemetastasis (LNM) stands as an independent prognostic
factor for gastric cancer (Bando et al., 2002; Deng et al., 2014), emphasizing its critical role
in developing standardized and effective treatment approaches for this condition.

Currently, the assessment of lymph node status in gastric cancer patients involves
the use of endoscopic ultrasonography (EUS), computed tomography (CT), and magnetic
resonance imaging (MRI). However, these imaging modalities exhibit significant variations
in sensitivity and specificity, leading to suboptimal rates of LNM detection. While several
molecular diagnostic biomarkers for LNM in gastric cancer patients have been identified
(Hiroshi et al., 2009), their practical application is impeded by factors such as high costs and
technical complexities. Presently, CT serves as the primary imaging tool for preoperative
lymph node status evaluation in gastric cancer patients. Nevertheless, with a detection
accuracy of only 60% (Kim, Kim & Ha, 2005; Giganti et al., 2017; Park et al., 2012), there is
a clear need for a more dependable, and precise approach.

Radiomics pertains to the extraction of quantitative features from digital medical images
using specialized algorithms aimed at informing clinical decision-making (Park et al., 2012;
Kim et al., 2005). This approach offers a prospective non-invasive method for assessing
tumor heterogeneity by integrating numerous imaging features (Gillies, Kinahan & Hricak,
2016;Aerts et al., 2014;O’Connor et al., 2017). Notably, radiomics is increasingly utilized for
cancer screening, subtype classification, lymph node metastasis (LNM) detection, survival
prognosis, and treatment response evaluation in the pursuit of personalized medicine
(O’Connor et al., 2017; Coroller et al., 2015; Banerjee et al., 2015; Huang et al., 2016; Li et
al., 2016; Jiang et al., 2018; Yoon et al., 2016). While the texture features of CT images have
been linked to survival among gastric cancer patients (Giganti, Tang & Baba, 2019; Fu et
al., 2015; Badgwell et al., 2016), the predictive features for LNM remain largely unexplored.
Rare of the previously reported radiomics models have accurately predicted the presence
or absence of LNM in gastric cancer patients based on CT images, and the relevant studies
were adapted from MRI-based research methods (Van et al., 2017; Sun et al., 2015).

The aim of this study was to identify distinct contrast-enhanced CT (CECT) imaging
characteristics to preoperatively assess lymph node metastasis (LNM) in individuals with
gastric cancer. Subsequently, a radiomics nomogram was developed by integrating imaging
features with clinicopathological traits.
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MATERIALS AND METHODS
Patients
This study involved 192 gastric cancer (GC) patients, comprising 145 males and 47
females, with a mean age of 65.0 ± 10.5 years. The clinical data was obtained from
individuals who underwent gastrectomy at the Department of Gastrointestinal Surgery
at The First Affiliated Hospital of Wenzhou Medical University between November 2014
and December 2016. The study adhered to the ethical standards of the Declaration of
Helsinki and received approval from the First Affiliated Hospital of Wenzhou Medical
University (KY2014-R230). Prior to participation, all patients provided written informed
consent. Inclusion criteria encompassed a histopathological diagnosis of GC, assessment
of LN status in the postoperative pathological report, and the performance of contrast-
enhanced abdominal CT 2 weeks preoperatively. Exclusion criteria comprised patients
who had received neoadjuvant chemotherapy or radiotherapy before surgery, lacked
high-quality contrast-enhanced abdominal CT images due to artifacts, poor expansion, or
imaging manifestations, underwent palliative surgery, or had chronic and heterochronic
malignant tumors. Baseline clinicopathological data, including demographic details, clinical
indicators, and pathological staging data, were sourced from patients’ medical records,
covering factors such as gender, preoperative hemoglobin concentrations, preoperative
serum albumin levels, platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio
(NLR), presence or absence of medical conditions (e.g., hypertension, obesity, and diabetes
mellitus), Charlson Comorbidity Index (CCI), Nutrition Risk Screening 2002 (NRS-
2002) score, CT-reported LN status, tumor size, tumor location, tumor differentiation,
histopathological type, pathological tumor-node-metastasis (TNM) stage, levels of
carcinoembryonic antigen, and carbohydrate antigen 19-9 levels.

Image acquisition, tumor segment isolation, and feature extraction
All participants underwent comprehensive abdominal enhanced CT scanning using a 64-
slice spiral CT apparatus (Siemens; Munich, Germany), with a delineated slice thickness
ranging from 0.75 to 1.25 mm. The portal phase CT scan images were processed using
ITK-SNAP software (version 3.8.0; USA; http://www.itksnap.org/) to semi-automatically
delineate the tumor-affected region. Two radiologists collaboratively demarcated the
tumor area, and their assessment was subsequently authenticated by a third radiologist
with similar expertise. The delineated region of interest (ROI) is presented in Figs. 1A1–
1A3; 1B1–1B2. The original CT image and the demarcated ROI were stored as medical
digital imaging files in the Nearly Raw Raster Data (NRRD) format. For automated
feature extraction, Pyradiomics21, a Python programming environment tool (version
3.7.2; https://python.org/), was utilized. Detailed descriptions of the tumor feature
extraction, parameter calibration, and Z-score standardization processes can be found
in the Supplementary Material for reference and review.

The CT images were processed using ITK-SNAP (version 3.8.0; http://www.itksnap.org/).
The delineation of the gastric tumor region was performed by a skilled general surgeon
and subsequently assessed and confirmed by a radiologist. An outlined depiction of the
patient-specific ROI is shown in Fig. 1 (subsection A1–A3; B1–B3). The original CT images
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Figure 1 Work flow of tumor segmentation and feature extraction. (A1–3): Axial AP enhanced CT
showing the tumor (white arrow); (B1–2): Horizontal AP enhanced CT showing the tumor (white arrow);
(B3) 3D ITK-SNAP reconstructions of the tumor generated using the 3D Slicer AP, antero-posterior; CT,
computed tomography.

Full-size DOI: 10.7717/peerj.17111/fig-1

and the defined ROI were saved as medical digital imaging files in the NRRD format.
Pyradiomics21 in a Python environment (version 3.7.2; available at https://python.org/) was
employed for automated feature extraction. Specifics regarding adjustment parameters for
feature extraction from the gastric tumor area and the Z -score standardization processes
can be found in the Supplemental Information.

Screening of valuable characteristics and establishment of the
diagnostic model
The participants were randomly divided into training and validation sets in a 2:1 ratio
to ensure robust and generalizable results. This division was performed meticulously and
impartially to minimize selection bias, enhancing both the internal and external validity
of the study while reducing the risk of systematic differences between the cohorts, thus
fortifying the reliability and reproducibility of the results. Random assignment of patients to
these sets also strengthened the methodological rigor employed in this research, increasing
the credibility of the results.

The outcome variable in the Lasso Cox regression model was the presence or absence of
lymph node metastasis (LNM) in gastric cancer patients. The feature selection process
employed a robust and systematic approach to identify the most relevant imaging
characteristics for the predictive model, including an analysis of all patient cohorts to
ensure data validity. Within the training set, feature selection was conducted via Lasso-Cox
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regression analysis to identify discriminative imaging features. Comprehensive analysis of
all 833 characteristics was scrutinized via Lasso Cox regression, facilitating the selection
of significant features further assessed by logistic regression. Subsequently, the validation
subset was used to ascertain the accuracy of the established radiomics-based diagnostic
model, addressing concerns about overfitting due to the large number of features in relation
to the sample size through cross-validation.

In the cross-validation process, we employed a 10-fold cross-validation technique to
assess the robustness and generalizability of the developed radiomics-based nomogram
model. Specifically, we utilized a k-value of 10 to partition the dataset into 10 subsets,
ensuring that each subset was used as both a training and validation set. By iteratively
training the model on k-1 folds and validating on the remaining fold, we obtained an
average performance measure, thereby mitigating the impact of overfitting and yielding
reliable estimates of the model’s predictive capability across different subsets of the data.

To bolster the model’s robustness and mitigate potential overfitting pitfalls, and
demonstrate a commitment to methodological rigor and data integrity, following the
radiomics diagnosis, univariate andmultivariate analyses were performed on the diagnostic
factors, and receiver operating characteristic (ROC) curves were generated and analyzed
to facilitate a comparative assessment of distinct diagnostic models.

Statistical methods
To ensure the even distribution of continuous parameters, the Kolmogorov–Smirnov test
was employed. Normal distribution is presented as means ±standard deviations, whereas
non-normally distributed data are represented by medians accompanied by interquartile
ranges. Logistic regression analysis to assess the radiomic features was conducted using
the ‘‘glmnet’’ package of R software. Intergroup differences in continuous variables were
assessed using the Wilcoxon rank sum test, while for categorical variables, the chi-squared
test or Fisher’s exact test was employed.

A visual nomogram model was constructed using data from univariate analyses via
multivariate logistic regression analysis. The univariate analysis aimed at identifying
individual factors significantly correlated with the presence or absence of LNM in GC
patients and factors independently influencing LNM. In contrast, the multivariate analysis
determined the combined influence of multiple factors on LNM presence or absence,
elucidating the independent and collective impact of various variables and their interplay
and interdependencies with LNM. This comprehensive analysis of variable selection for
the nomogram entailed rigorous univariate and multivariate analyses to identify the most
significant predictors of lymph node metastasis (LNM) in GC patients.

The univariate regression analysis revealed several factors significantly correlating with
the presence or absence of LNM, including radiomics evaluation, presence of diabetes
mellitus, Nutrition Risk Screening (NRS) 2002 score, preoperative hemoglobin level,
platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), CT-reported lymph
node status, and tumor size (p< 0.05). These findings demonstrate that LNM prediction
depends on multiple factors, including both radiomic features and clinical parameters.
Subsequent multivariate regression analysis further refined the variable selection process,
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revealing that radiomics evaluation, NRS-2002 score, CT-reported lymph node status, and
diabetes mellitus exhibited a significant correlation with the presence or absence of LNM
in GC patients (p< 0.01).

The inclusion of these variables for nomogram model construction reflects a robust
approach to using radiomic and clinical attributes for predicting LNM, thereby enhancing
the model’s accuracy for preoperative assessment.

The efficacy and accuracy of the finalized model were assessed using the ROC curve,
with statistical significance set at p< 0.05. The reported p-values in the statistical analyses
and evaluations were considered two-tailed. These analytical processes were carried out
using R software (version 3.6.0; http://www.R-project.org) and the IBM Statistical Package
for the Social Sciences Statistics (version 22.0, IBM Corp., Armonk, NY, USA).

RESULTS
Clinical characteristics
The demographic and clinical characteristics of all patients are presented in Table 1.
The mean age of the cohort was 65 ± 10.5 years, and there was no significant difference
between the training cohort (65.2 ± 10.4 years) and the validation cohort (64.6 ± 10.7
years) (p= 0.716). Additionally, the two cohorts exhibited similarity in terms of BMI,
hemoglobin levels, albumin levels, PLR, NLR, sex distribution, hypertension, diabetes,
Charlson Comorbidity Index (CCI), and various pathological and tumor characteristics.
These findings indicate that the training and validation cohorts werewell-matched, allowing
for subsequent analyses and model development.

Construction and evaluation of radiomics-based nomogram
Construction of the radiomics model
Seven radiomics features were selected in the training cohort using lasso Cox regression
based on lambda.min,, including riginal_shape_Maximum2DDiameterSlice, origi-
nal_shape_SurfaceVolumeRatio, wavelet.LHL_glcm_ClusterShade, wavelet.LHL_ngtdm_
Strength, wavelet.LHH_ngtdm_Strength, wavelet.LLL_firstorder_10Percentile, and
wavelet.LLL_firstorder_Median (Figs. 2A–2B). The diagnostic performance of the radiomic
features for LNMwas evaluated by plotting an ROC curve, and the AUCwas 0.76, indicating
substantial accuracy. Based on the maximum Youden index of the training cohort, the
radiomic score of 0.582 was determined as the cut-off, and the patients were stratified
into the high-risk and low-risk categories (Figs. 3A–3B). Univariate regression analysis
showed that the radiomics score, radiomics features, diabetes mellitus, NRS-2002 score,
preoperative hemoglobin level, PLR, NLR, CT-reported LN status, and tumor size were
significantly correlated with LNM (P<0.05). Furthermore, the radiomics features, NRS-
2002 score, CT-reported LN status, and diabetesmellitus were identified as the independent
predictors of LMN as per multivariate regression analysis (P < 0.01; Table 2), and were
combined into a nomogram model to predict LNM within the abdominal cavity of gastric
cancer patients (Fig. 4A).
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Table 1 Comprehensive demographic particulars and clinical attributes of both the training and vali-
dation cohorts.

Variable Total Training cohort Validation cohort P-value*

Count 192 128 64
Age, y 65.0± 10.5 65.2± 10.4 64.6± 10.7 0.716
BMI, kg/m2 22.7± 3.1 22.6± 2.9 22.9± 3.4 0.516
Hemoglobin, g/L 119.1± 22.5 117.3± 23.5 122.6± 20.0 0.123
Albumin, g/L 37.6± 4.4 37.4± 4.8 38.1± 3.6 0.31
PLR 169.5± 104.5 175.5± 113.2 157.5± 83.9 0.263
NLR 2.6± 1.7 2.7± 1.8 2.5± 1.5 0.416
Sex 0.553

Female 47 (24.5%) 33 (25.8%) 14 (21.9%)
Male 145 (75.5%) 95 (74.2%) 50 (78.1%)

Hypertension 55 (28.6%) 40 (31.2%) 15 (23.4%) 0.259
Diabetes 22 (11.5%) 17 (13.3%) 5 (7.8%) 0.262
Charlson Comorbidity Index 0.26

0 95 (49.5%) 58 (45.3%) 37 (57.8%)
1–2 87 (45.3%) 63 (49.2%) 24 (37.5%)
3–6 10 (5.2%) 7 (5.5%) 3 (4.7%)

NRS-2002 0.29
1–2 118 (61.5%) 75 (58.6%) 43 (67.2%)
3–4 59 (30.7%) 44 (34.4%) 15 (23.4%)
5–6 15 (7.8%) 9 (7.0%) 6 (9.4%)

CT-reported LN status 83 (43.2%) 50 (39.1%) 33 (51.6%) 0.099
Tumor size 0.915

<3 cm 68 (35.4%) 45 (35.2%) 23 (35.9%)
≥3 cm 124 (64.6%) 83 (64.8%) 41 (64.1%)

Tumor location 0.844
Cardia 29 (15.1%) 18 (14.1%) 11 (17.2%)
Body 44 (22.9%) 30 (23.4%) 14 (21.9%)
Antrum 119 (62.0%) 80 (62.5%) 39 (60.9%)

Differentiation 0.599
Well differentiated 136 (70.8%) 93 (72.7%) 43 (67.2%)
Poorly differentiated 27 (14.1%) 18 (14.1%) 9 (14.1%)
Signet-ring cell 29 (15.1%) 17 (13.3%) 12 (18.8%)

Pathological type 0.423
Non-ulcer type 22 (11.5%) 13 (10.2%) 9 (14.1%)
Ulcerative type 170 (88.5%) 115 (89.8%) 55 (85.9%)

pT stage 0.973
I 33 (17.2%) 22 (17.2%) 11 (17.2%)
II 19 (9.9%) 13 (10.2%) 6 (9.4%)
IV 36 (18.8%) 25 (19.5%) 11 (17.2%)
V 104 (54.2%) 68 (53.1%) 36 (56.2%)

(continued on next page)
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Table 1 (continued)

Variable Total Training cohort Validation cohort P-value*

pN stage 0.708
0 71 (37.0%) 49 (38.3%) 22 (34.4%)
1 39 (20.3%) 28 (21.9%) 11 (17.2%)
2 35 (18.2%) 22 (17.2%) 13 (20.3%)
3 47 (24.5%) 29 (22.7%) 18 (28.1%)

pTNM stage 0.883
I 46 (24.0%) 32 (25.0%) 14 (21.9%)
II 39 (20.3%) 26 (20.3%) 13 (20.3%)
IV 107 (55.7%) 70 (54.7%) 37 (57.8%)

Notes.
Data shown in the table: mean± standard deviation; N (%); Wilcoxon rank sum test for continuous variables; chi-squared
test for count data.
*P < 0.05 was statistically significant.
BMI, body mass index; CT, computed tomography; LN, lymph node; NLR, neutrophil-lymphocyte ratio; NRS-2002, Nu-
trition Risk Screening 2002; PLR, platelet-lymphocyte ratio.

Clinical evaluation of the radiomics-based nomogram
The AUC values of the nomogram in the training and validation cohorts were 0.82 and
0.722, respectively, while those for the radiomics features were 0.717 and 0.686, and
for CT-reported lymph node status were 0.663 and 0.65 (Figs. 4B–4C). Therefore, our
radiomics nomogram exhibited good discriminatory performance, comparable to that of
radiomics features, and superior relative to conventional CT scans.

The radiomics score is associated with the overall survival
Both cohorts’ patients were divided into high-risk and low-risk groups according to the
radiomics score, and their overall survival was compared using the Kaplan–Meier method.
The lasso Cox regression model indicated a significant association between the radiomics
score and overall survival in both the training cohort (P = 0.001, hazard ratio (HR)= 3.75,
95% confidence interval (CI) = 1.805–7.791) and the validation cohort (P = 0.013, HR =
3.670, 95% CI = 1.225–10.995), thereby allowing for the prediction of survival in gastric
cancer patients (Figs. 5A–5B).

DISCUSSION
We selected seven radiomic features from the abdominal CECT images of gas-
tric cancer patients, including original_shape_Maximum2DDiameterSlice, origi-
nal_shape_SurfaceVolumeRatio, wavelet.LHL_glcm_ClusterShade, wavelet.LHL_ngtdm_
Strength, wavelet.LHH_ngtdm_Strength, wavelet.LLL_firstorder_10Percentile, and
wavelet.LLL_firstorder_Median, for the preoperative prediction of LNM. Previous research
has illustrated the association of certain radiomic features with tumor heterogeneity,
microenvironment characteristics, and treatment response, all crucial to cancer progression
and metastasis. While the specific biological significance of these features was not directly
addressed in this study, it is pivotal to elucidate their potential biological and pathological
relevance concerning LNM in gastric cancer.
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Figure 2 Lasso regularization plots for variable selection. The model featuring the most minimal
lambda value was chosen (lambda= 0.081, Log (lambda)=−2.507), and seven attributes, identified from
the lasso analysis, were integrated into the ensuing logistic regression to formulate the radiomics score.

Full-size DOI: 10.7717/peerj.17111/fig-2

CT-based radiomics provides a non-invasive and personalized approach for predicting
the risk of LNM in gastric cancer patients, distinguishing itself from other diagnostic
methods. Despite the well-established prognostic utility of radiomics features, the
generalization of these models across different centers is constrained by variations in
CT sources and critical characteristics observed in various studies. Our approach involves
the development of a universal diagnostic model for LNM using open-source software,
contrasting with closed diagnostic systems employed by other researchers. This universal
model can be replicated by other centers, making it more suitable for wider hospital
populations.

An increasing number of treatment guidelines advocate preoperative neoadjuvant
chemotherapies for gastric cancer patients, given that, compared with surgery alone, the
addition of neoadjuvant chemotherapy confers a survival advantage without increasing
postoperative morbidity and mortality (Schwarz, 2015; Newton et al., 2015). LNM serves
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Figure 3 Receiver operating characteristic curves of the radiomics model in the training and valida-
tion cohort.

Full-size DOI: 10.7717/peerj.17111/fig-3

as a critical determinant of therapeutic interventions for gastric cancer (Dong et al., 2016;
Wu et al., 2011), and preoperative neoadjuvant therapy is routinely recommended for
patients with LNM, since it has been demonstrated to downstage the lymph node status
and increase the likelihood of achieving R0 resection (Schuhmacher et al., 2010; Mocellin,
Marchet & Nitti, 2011; Cardoso et al., 2012). Therefore, the construction of predictive
models for the preoperative identification and discrimination of LNM is imperative to
establish personalized treatment regimens. Although endoscopic ultrasonography (EUS)
is beneficial for local staging of GC, accurately defining the T stage, it demonstrates poor
reliability in predicting the presence or absence of LNM (Philippe et al., 2012). Likewise,
while thin-section CT plays a critical role in preoperative lymph node staging, (Liu et
al., 2020), the accuracies of both EUS and CT for the preoperative prediction of LNM
remain unsatisfactory at 64% and 61–64%, respectively (Wang et al., 2020; Li et al., 2018).
A predictive accuracy of 62% was also computed with routine CT scanning.

The rise of high-throughput data has driven a shift toward precision medicine in cancer
diagnostics and treatment, triggering the rapid evolution of alternative approaches such as
radiomics, owing to the limitations of traditional imaging techniques. Introduced in 2012,
the concept of radiomics has been widely and effectively employed in clinical research
(Fukagawa et al., 2018). For instance, Jiang et al. (2018) was able to identify 15 CT image
texture features significantly correlated with preoperative LNM in gastric cancer patients,
serving as independent predictors of the pN stage. In our study, we focused on seven
imaging features from a total of 833, selected based on their significant correlation with
LNM at the smallest lambda value. While our resulting model exhibits greater simplicity,
it necessitates further investigation. Additionally, in the MRI domain, Liu et al. analyzed
radiomics features and discovered a significant correlation between the whole-lesion
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Table 2 Univariate andmultivariate analyses of LNM in patients with gastric cancer.

Variable LN- LN+ P-value

Univariate Multivariate

Count 48 80

Radiomics score −0.2± 1.5 1.0± 0.9 <0.001

Radiomics evaluation <0.001* 0.001a

High risk 34 (70.8%) 22 (27.5%)
Low risk 14 (29.2%) 58 (72.5%)

BMI, kg/m2 23.2± 3.0 22.2± 2.8 0.085
Age, y 0.138

<70 35 (72.9%) 48 (60.0%)
≥70 13 (27.1%) 32 (40.0%)

Sex 0.498
Female 14 (29.2%) 19 (23.8%)
Male 34 (70.8%) 61 (76.2%)

Diabetes 1 (2.1%) 16 (20.0%) 0.004* 0.069a

Hypertension 13 (27.1%) 27 (33.8%) 0.431
Charlson Comorbidity Index 0.63

0 24 (50.0%) 34 (42.5%)
1–2 21 (43.8%) 42 (52.5%)
3–6 3 (6.2%) 4 (5.0%)

NRS-2002 0.026* 0.049a

1–2 35 (72.9%) 40 (50.0%)
3–4 12 (25.0%) 32 (40.0%)
5–6 1 (2.1%) 8 (10.0%)

Hemoglobin 0.005*

≥100 g/L 43 (89.6%) 54 (67.5%)
<100 g/L 5 (10.4%) 26 (32.5%)

Preoperative albumin 0.067
≥35 g/L 38 (79.2%) 51 (63.7%)
<35 g/L 10 (20.8%) 29 (36.2%)

PLR 0.023*

<124.9 22 (45.8%) 21 (26.2%)
≥124.9 26 (54.2%) 59 (73.8%)

NLR 0.026*

<2.63 39 (81.2%) 50 (62.5%)
≥2.63 9 (18.8%) 30 (37.5%)

CT-reported LN status <0.001* 0.009a

Negative 39 (81.2%) 39 (48.8%)
Positive 9 (18.8%) 41 (51.2%)

Tumor size 0.002*

<3 cm 25 (52.1%) 20 (25.0%)
≥3 cm 23 (47.9%) 60 (75.0%)

(continued on next page)
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Table 2 (continued)

Variable LN- LN+ P-value

Univariate Multivariate

Tumor location 0.277
Cardia 6 (12.5%) 12 (15.0%)
Body 15 (31.2%) 15 (18.8%)
Antrum 27 (56.2%) 53 (66.2%)

Differentiation 0.248
Well differentiated 31 (64.6%) 62 (77.5%)
Poorly differentiated 8 (16.7%) 10 (12.5%)
Signet-ring cell 9 (18.8%) 8 (10.0%)

Pathological type 0.199
Non-ulcer type 7 (14.6%) 6 (7.5%)
Ulcerative type 41 (85.4%) 74 (92.5%)

Notes.
Data shown in the table: mean± standard deviation; N (%); Wilcoxon rank sum test and chi-squared test for univariate analy-
sis.
*P < 0.05 was statistically significant and included in multivariate logistic regression (forward: wald).
aVariables finally in the model (radiomics evaluation, NRS-2002, CT-reported LN status, and diabetes).
BMI, body mass index; CT, computed tomography; LN, lymph node; LNM, lymph node metastasis; NLR, neutrophil-
lymphocyte ratio; NRS-2002, Nutrition Risk Screening 2002; PLR, platelet-lymphocyte ratio.

apparent diffusion coefficient histogram and LNM, demonstrating a high predictive
accuracy of 82.3% (Mocellin, Marchet & Nitti, 2011).

Wang et al. (2020) established a CT-based radiomics model for preoperatively predicting
LNM in gastric cancer, demonstrating substantial discriminatory power (Cardoso et al.,
2012). We employed contrast-enhanced CT (CECT) as the foundation for our radiomics
models, given its widespread use for preoperative lymph node status evaluation, along
with its greater convenience and reliability compared to MRI. CECT showed superior
diagnostic ability for LNM compared to routine CT, with AUC values of 0.844 and 0.837
for the training and validation cohorts, respectively. Similarly, radiomics features exhibited
enhanced discriminatory ability for LNM compared to routine CT, achieving an accuracy
of 80–84%. This aligns with Wang et al.’s (2020) findings, showcasing the potential of
radiomics features to enrich image interpretations and complement routine CT scans for
evaluating the lymph node status in gastric cancer patients.

In our study, we integrated the radiomics scores with clinically significant parameters
related to LNM, culminating in a nomogram model designed for rapid, convenient, and
reliable lymph node analysis to guide personalized treatment.Wang et al. (2020) developed
a predictive nomogram based on routine CT scans, achieving AUC values of 0.886 in
the training cohort and 0.881 in the test cohort, with an 84% accuracy in both (Cardoso
et al., 2012). Additionally, Li et al. (2018) developed a nomogram using intra-tumoral
iodine concentration and the Borrmann classification to predict LNM preoperatively,
achieving AUC values of 0.76 and 0.793, and corresponding accuracy rates of 0.7 and
0.757 in training and validation cohorts, respectively (Cardoso et al., 2012; Philippe et al.,
2012). Our CECT-based radiomics nomogram model surpassed CECT evaluation and
radiomics features in LNM prediction, attaining high AUC values of 0.82 and 0.722
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Figure 4 Enhanced CT-based radiomics nomogram and comparative receiver operating characteris-
tic (ROC) curves. (A) Enhanced computed tomography (CT)-based radiomics nomogram for the predic-
tion of lymph node (LN) metastasis in patients with gastric cancer; (B–C) Comparison of ROC curves of
three diagnostic variables (radiomics evaluation, CT-reported LN status, and the nomogram) in the train-
ing and validation cohort.

Full-size DOI: 10.7717/peerj.17111/fig-4

in the training and validation cohorts, respectively. Stratifying patients based on the
radiomics scores into high-risk and low-risk groups revealed significant differences in
overall survival in both cohorts, highlighting the potential of our novel nomogram model
to predict the prognosis of gastric cancer patients. (Liu et al., 2020; Wang et al., 2020)
Radiomics, with its straightforward yet robust visual analysis and routine imaging tools,
enables the extraction of parameters that conventional diagnostic methods might overlook.
Additionally, a nomogram based on radiomics features can aid clinicians in identifying
suitable candidates for neoadjuvant therapy, particularly considering the impact of LNM
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Figure 5 Kaplan–Meier curves’ overall survival plots. Comparison of overall survival in the training and
validation cohort based on imaging and histology scores: training cohort (P 0.001, hazard ratio (HR)=
3.750, 95% confidence interval (CI) [1.805–7.791]) and validation cohort (P 0.013, HR= 3.670, 95% CI
[1.225–10.995]).

Full-size DOI: 10.7717/peerj.17111/fig-5

on treatment decisions. Overall, our radiomics evaluation system and nomogram model
displayed excellent performance in discerning LNM in gastric cancer patients.

This study has several limitations that warrant consideration. Firstly, the retrospective
design and single-center cohort constrain the generalizability of our model, necessitating
validation in multicenter cohorts. Secondly, our findings were not externally validated,
highlighting the need for future studies with external cohorts. Furthermore, we only
categorized patients based on LNM status without examining the potential influence of
specific stages of metastasis (N1 to N3b) or the anatomical sites of metastasis within the
16 designated locations. Lastly, we acknowledge the inherent limitations associated with
the small sample size in the current study, which may impact the generalizability and
robustness of the findings. As such, future studies involving larger, multicenter cohorts are
essential to validate the predictive performance of the radiomics nomogram model and its
utility in clinical practice.

CONCLUSION
The nomogram model based on radiomics data could be beneficial for preoperative
prediction of LNM and postoperative survival analysis of gastric cancer patients.
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