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ABSTRACT
Background: Structural variant (SV) calling from DNA sequencing data has been
challenging due to several factors, including the ambiguity of short-read alignments,
multiple complex SVs in the same genomic region, and the lack of “truth” datasets for
benchmarking. Additionally, caller choice, parameter settings, and alignment
method are known to affect SV calling. However, the impact of FASTQ read order on
SV calling has not been explored for long-read data.
Results:Here, we used PacBio DNA sequencing data from 15 Caenorhabditis elegans
strains and four Arabidopsis thaliana ecotypes to evaluate the sensitivity of different
SV callers on FASTQ read order. Comparisons of variant call format files generated
from the original and permutated FASTQ files demonstrated that the order of input
data affected the SVs predicted by each caller. In particular, pbsv was highly sensitive
to the order of the input data, especially at the highest depths where over 70% of the
SV calls generated from pairs of differently ordered FASTQ files were in
disagreement. These demonstrate that read order sensitivity is a complex,
multifactorial process, as the differences observed both within and between species
varied considerably according to the specific combination of aligner, SV caller, and
sequencing depth. In addition to the SV callers being sensitive to the input data order,
the SAMtools alignment sorting algorithm was identified as a source of variability
following read order randomization.
Conclusion: The results of this study highlight the sensitivity of SV calling on the
order of reads encoded in FASTQ files, which has not been recognized in long-read
approaches. These findings have implications for the replication of SV studies and
the development of consistent SV calling protocols. Our study suggests that
researchers should pay attention to the input order sensitivity of read alignment
sorting methods when analyzing long-read sequencing data for SV calling, as
mitigating a source of variability could facilitate future replication work. These results
also raise important questions surrounding the relationship between SV caller read
order sensitivity and tool performance. Therefore, tool developers should also
consider input order sensitivity as a potential source of variability during the
development and benchmarking of new and improved methods for SV calling.
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INTRODUCTION
Structural variants (SVs) describe a broad category of large chromosome alterations, often
defined at greater than 100 bp, that include deletions, insertions, inversions, translocations,
and duplications. SVs are a major source of genetic diversity that often account for more
nucleotide level differences within and between species compared to single nucleotide
variants (Perry, 2009; Pang et al., 2010; Long et al., 2018; Catanach et al., 2019; Stuart et al.,
2023). Major phenotypic consequences are associated with SVs, especially those that
disrupt genes or modulate gene expression (Nowakowska, 2017). Notably, hundreds of
microdeletions and microduplication syndromes (Wetzel & Darbro, 2022) are associated
with copy number variants, which contribute to approximately 10% of rare disorders
(Truty et al., 2019). While SVs are often deleterious, they also play key evolutionary roles as
a source of novel genes and adaptive phenotypes (Radke & Lee, 2015). In particular, gene
duplications are described as a mechanism that provides the raw material for natural
selection to act upon (McGrath et al., 2014). Theoretically, this may lead to adaptive
changes in a process known as neofunctionalization, where one of the duplicated genes
may diverge and acquire a novel function (Zhang, 2003; Hurles, 2004). Alternatively, gene
duplication may result in sub-functionalization, where the ancestral function is partitioned
between the two duplicates (Hurles, 2004). Natural selection is predicted to act on these
two duplicated genes separately, resulting in further fitness benefits (Zhang, 2003).
Increases in gene copy numbers may also contribute to adaptive evolution if increases in
gene dosage provide a selective advantage (Katju & Bergthorsson, 2013). Copy number
neutral changes can also play major roles in genome evolution and adaptation. Inversions,
as an example, have been theorized to facilitate local adaptation and speciation. For
example, locally adapted alleles can be preserved from gene flow through the suppression
of recombination in the inverted region (Huang & Rieseberg, 2020). Within a population,
the suppression of recombination can lead to adaptive divergence, which may eventually
result in speciation (Huang & Rieseberg, 2020).

The detection of SVs from DNA sequencing data has proved to be challenging and the
barriers to accurate and comprehensive SV prediction are multifactorial. Many variants
span genomic regions that exceed the read sizes generated by high-throughput sequencing
platforms, which may hinder accurate mapping to a reference genome (Sedlazeck et al.,
2018). Because SVs, such as deletions and duplications, typically arise in low complexity
regions, this problem is compounded by ambiguous mappings that are inherent to
short-read alignments (Treangen & Salzberg, 2012). Multiple SVs may also occur in the
same genomic region (Carvalho & Lupski, 2016; Lin & Gokcumen, 2019; Cook et al., 2020),
leading to complex rearrangements that are difficult to resolve computationally
(Weckselblatt & Rudd, 2015).

Considerable work has gone into improving SV calling methods, but the limited
availability of “truth” datasets with known variants has limited benchmarking efforts
(Leung et al., 2015; Mahmoud et al., 2019; Chen et al., 2023). Several sources of variability
have also been identified that contribute further difficulties for the development of
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consistent SV calling protocols. While differences in library preparation (Guan & Sung,
2016) or sequencing platform can affect the predicted SVs, considerable disparities
between the call sets generated by different sequencing centers has been observed when
using the same protocols (Khayat et al., 2021). On the computational side, caller choice,
parameter settings, and alignment method are known to affect SV calling (Lesack et al.,
2022; Liu et al., 2022a). For short-read data, how software handles ambiguous read-to-
genome mappings is a surprising and significant source of variation in SV identification;
changing the order of the reads in the FASTQ file led to changes in predicted SVs (Firtina
& Alkan, 2016). These discrepancies were as high as 25% for certain callers, raising the
possibility that the random nature of FASTQ read order could have a substantial impact on
replication work. Without knowing ground truth, it is not possible to quantify the exact
relationship between these SV call discrepancies and caller accuracy. Nonetheless, high
sensitivity to read order reflects poor performance for certain metrics. Theoretically, a
given caller may have a high true positive rate but may also generate considerably different
predictions when the FASTQ file read order is changed. This would be consistent with the
caller having high precision, but low recall, as the call set differences would include many
true positives that are members of one call set but not the other. However, a caller with a
high false positive rate could conceivably have a high recall, while also exhibiting high read
order sensitivity. Here, most of the call set differences would correspond to false positives
generated from a specific read order that were not generated in the other. An interesting
question would be: Are the calls that differ following the randomization of read order
biased towards being false positives? If any biases are found to exist, read order
permutation could be used to improve the caller performance.

It is unclear if FASTQ read order should also be a consideration for SV calling from
long-read data. To evaluate the FASTQ read order sensitivity of long-read callers, we used
PacBio DNA sequencing data from 15 separate Caenorhabditis elegans strains and four
Arabidopsis thaliana ecotypes. We generated FASTQ files with permutated read order
from the original files and evaluated the differences between the SVs predicted using the
initial and randomized data. Although each caller was found to be deterministic, the order
of reads provided to each caller had an impact on the predicted SVs. Several factors were
identified that contributed to the sensitivity of different SV callers on the order of FASTQ
file reads. These results bring attention to a largely unrecognized factor that may affect the
inferences made from structural variant studies.

METHODS
Portions of this text were previously published as part of a preprint https://www.biorxiv.
org/content/10.1101/2023.03.27.534439v1.full.

Snakemake (v7.9.0) was used to manage the individual scripts used for read order
permutation, read alignment, subsampling, SV prediction, and statistical summary (Köster
& Rahmann, 2012).
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DNA sequencing datasets and read order randomization
PacBio sequencing data were obtained for 14 C. elegans strains (DL238, ECA36, ECA396,
EG4725, JU1400, JU2526, JU2600, JU310, MY2147, MY2693, NIC2, NIC526, QX1794,
and XZ1516) from the Caenorhabditis elegans Natural Diversity Resource (CeNDR)
database (Cook et al., 2017) and one sequencing run of the reference strain, N2 (SRA
accession = DRR142768). PacBio sequencing data were obtained for four A. thaliana
ecotypes (1254, 6021, 6024, and 9470; BioProject accession PRJNA779205) from the 1,001
Genomes Project (Weigel & Mott, 2009; Jaegle et al., 2023).

For each sequencing run, we created five permutated FASTQ files with randomized
orders of the original reads. Initially, the BBTools (v39.00) shuffle.sh and shuffle2.sh scripts
were used to randomize the FASTQ sequence order (Bushnell, 2022). However, in addition
to randomizing the sequence order, the FASTQ files generated by both scripts contained
changes in the Phred scores. Specifically, Phred scores encoded as “!” in the original
FASTQ files were changed to “#” in the permutated versions. Therefore, the permutated
FASTQ files were created using the seq-shuf script (Hackl, 2023). A comparison between
the original and permutated FASTQ files indicated that only the order of sequences was
altered using seq-shuf.

Sequence alignment, subsampling, and structural variant prediction
Alignments for each FASTQ file were created using pbmm2 (v1.12.0) (Pacific Biosciences,
2023), Minimap2 (v2.26) (Li, 2018a), and NGMLR (v0.2.7) (Sedlazeck et al., 2018). The
BAM files were then sorted using SAMtools (v1.9) (Danecek et al., 2021) and Picard
(v2.27.5) (Broad Institute, 2022). SAMtools v.1.9 was used to sort the BAM files, as the
CIGAR strings generated from these long-read alignments generated errors with newer
releases of the tool. We do not anticipate that using a newer version would have affected
the results, as the same sorting criteria, based on the leftmost genomic coordinate, was
described in the documentation for SAMtools v.1.9 and subsequent releases. To identify
any changes that resulted from read order randomization, the sorted BAM files generated
from the original and permutated FASTQ files were compared with each other. While
different BAM file read orders were observed in those sorted using SAMtools, the
alignments contained identical information in the original and randomized versions.
The Picard-sorted BAM files from the original and permuted FASTQ files were found to be
identical. Identical output files were generated when the read alignment and sorting steps
were repeated a second time using identical input data, indicating that these steps were
deterministic.

SVs were predicted from the original and permutated datasets using the default
parameters for three tools: pbsv (v2.9.0) (Pacific Biosciences, 2022), Sniffles (v2.2.0)
(Sedlazeck et al., 2018), and SVIM (v2.0.0) (Heller & Vingron, 2019). Variant calls below
100bp were filtered out in order to limit the analysis to structural variants. We evaluated if
each caller was deterministic by calling SVs twice using each alignment file. Apart from
timestamps, the variant call format (VCF) files were identical to those from the original
analysis. Given that the exact same sets of SV calls were predicted from a total of 342 BAM
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files, we considered each caller to be deterministic (i.e., the same results are obtained given
identical input data).

Each FASTQ file was subsampled to 20X sequencing depth using Seqtk (v1.3) (Li,
2018b) prior to variant calling in both C. elegans and A. thaliana. To evaluate the impact of
depth on FASTQ read order sensitivity, variant calling was performed for C. elegans at four
subsampled depths (10X, 20X, 40X, and 60X), as well as the full depth of sequencing
(Minimap2 median depth = 145.602; NGMLR median depth = 135.136; pbmm2 median
depth = 136.831).

Comparison of predicted structural variants
For each strain or ecotype, we compared the predictions generated from the original and
permutated FASTQ files from the same aligner. The SV call sets generated from each caller
included breakends (BND), deletions (DEL), tandem duplications (DUP), insertions (INS),
and inversions (INV). Only the SVIM comparisons included interspersed duplications
(DUP:I), as no other tool supported the identification of this SV type. Two approaches were
used to assess the impact of read order randomization on the predicted structural variants:
(1) VCF-level differences and (2) coordinate-level differences. At the VCF-level, the SV calls
contained in the VCF files created from the original and permutated FASTQ files were
compared using all VCF fields, except for the variant ID. The variant ID field was excluded
because it only describes an arbitrary name assigned to the SV call from its order in the VCF
file. Because an analyst may only be concerned with the locations of SVs that pass quality
filtering, a less strict analysis was also performed that limited comparisons to the variant
type, filter, chromosome, start coordinate, and end coordinate (not applicable to BND or
INS calls).

For each comparison, the symmetric difference (the union of the SVs predicted from the
original and permutated FASTQ file, but not in their intersection) and Jaccard distance
(the ratio of the symmetric difference to the union) was used to quantify the differences
that occurred following read order randomization. The differences and proportions
described for each strain or ecotype are represented using the mean ± population standard
deviation (SD). The impact of the alignment method and sequencing depth on FASTQ
read order sensitivity are described as the global means of the differences and distances
from all strains or ecotypes in each species. The values included in the figures indicate the
mean proportion of different calls that resulted from read order permutation.

RESULTS
Structural variant calling is affected by FASTQ read order
Comparisons of VCF files generated from the FASTQ files with the original and
randomized read orders demonstrated that the order of input data impacts SV prediction.
For both C. elegans and A. thaliana, the overall differences between the SV call sets
generated from the original and randomized FASTQ files were highest for SVIM, followed
by pbsv, and Sniffles (Table 1). Within C. elegans and A. thaliana, the same callers
generated the most differences for breakends (pbsv), tandem duplications (pbsv),
insertions (SVIM), and inversions (pbsv). For deletions, pbsv and SVIM accounted for the
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majority of differences in C. elegans and A. thaliana, respectively. Although the total
differences were highest in SVIM compared to pbsv and Sniffles, it generated the lowest
overall Jaccard distances (Table S1), indicating that fewer differences were observed
relative to the total number of SVIM calls. For each caller, fewer differences were observed
when the comparison was limited to the SV type, VCF filter category (e.g., PASS), and
genomic coordinates for each SV call (Table 1). While less stringent than an exact
comparison of all VCF fields, these criteria may be of interest to the analyst that does not
perform further post hoc quality assurance following SV calling. Unsurprisingly, these
criteria resulted in fewer call set differences for each caller (Table 1), with the overall
differences again being highest in SVIM.

A wide range of differences were observed among the C. elegans strains (Fig. 1; Tables S2
and S3), suggesting that divergence from the reference strain may impact the sensitivity to
FASTQ read order. Notably, the differences seen in XZ1516, the most divergent C. elegans
strain (Lee et al., 2021), were among the highest observed for the strains within each call
set. However, when the Jaccard distance was used to quantify read order sensitivity, this
was only observed for SVIM. In pbsv, N2, the C. elegans reference strain, accounted for a
significantly higher Jaccard distance in contrast to Sniffles and SVIM.

In contrast to C. elegans, fewer differences were observed among the A. thaliana
ecotypes and similar patterns were observed for both the symmetric differences and
Jaccard distances (Fig. 2; Tables S4 and S5).

FASTQ read order sensitivity is affected by the alignment program
To evaluate the impact of the sequence aligner on FASTQ read order sensitivity, three
programs were used to align the original and randomized FASTQ files prior to SV calling:
Minimap2, NGMLR and pbmm2. In C. elegans, the highest overall Jaccard distance
resulted from Minimap2 aligned reads in pbsv (0.022). Similarly, higher distances were
generated in pbsv using the pbmm2 (0.016) and NGMLR (0.014) alignments compared
those derived from other aligner and caller combinations (Fig. 3). For Sniffles, NGMLR
generated the highest overall distance (0.005), followed by Minimap2 (0.004), and pbmm2

Table 1 Average differences between the SV call sets generated from the original and randomized
FASTQ files.

Species Caller1 BND2 DEL2 DUP2 DUP:I2,3 INS2 INV2 Total2

C. elegans pbsv 2 (0) 87 (11) 22 (12) NA 115 (63) 1 (0) 227 (86)

Sniffles 0 (0) 0 (0) 0 (0) NA 34 (34) 0 (0) 34 (34)

SVIM 0 (0) 15 (8) 0 (0) 0 (0) 306 (293) 0 (0) 321 (301)

A. thaliana pbsv 26 (2) 66 (12) 19 (13) NA 149 (83) 4 (0) 264 (110)

Sniffles 0 (0) 0 (0) 0 (0) NA 58 (58) 0 (0) 58 (58)

SVIM 0 (0) 79 (32) 10 (8) 0 (0) 512 (474) 0 (0) 601 (515)

Notes:
1. SV call sets were generated from Minimap2 aligned and SAMtools sorted BAM files (20X depth).
2. Values represent the global mean of the symmetric differences between the original and randomized FASTQ files for
each strain or ecotype. Values outside parentheses describe the VCF level differences. Values inside parentheses describe
the coordinate level differences.
3. The identification of interspersed duplications was only supported by SVIM.
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(0.002). Minimap2 generated the highest distance in SVIM (0.002), followed by NGMLR
(0.001) and pbmm2 (0.001). No consistent pattern was observed for the impact of each
aligner on read order sensitivity, as the relative order of the Jaccard distances differed
between callers, as well as among the different strains (Figs. S1–S3).

In A. thaliana, pbsv also generated the highest overall Jaccard distances compared to the
other callers and, similar to the C. elegans results, the differences were proportionally
higher for the Minimap2 (0.017), pbmm2 (0.013) and NGMLR (0.010) alignments (Fig. 4).
For Sniffles, the Minimap2 aligned reads generated the highest overall distance (0.006),
followed by NGMLR (0.005), and pbmm2 (0.003). The highest overall distance in SVIM
also resulted from Minimap2 alignments (0.005), followed by NGMLR (0.003) and

Figure 1 SV call set differences in C. elegans attributable to FASTQ read order. For each strain, five
files with randomized read orders were created from the original FASTQ file. Each FASTQ file was
subsampled to ensure that the Minimap2 alignment depths were 20X and the BAM files were sorted using
SAMtools. The symmetric differences describe the disagreement between the call sets generated from the
original and randomized FASTQ files. The Jaccard distances describe the proportion of predictions that
disagree between the two call sets. Full-size DOI: 10.7717/peerj.17101/fig-1
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pbmm2 (0.003). For all ecotypes, Minimap2 generated the highest distances, whereas the
relative impact of NGMLR and pbmm2 varied by strain and caller (Figs. S4–S6).

Sequencing depth affects FASTQ read order sensitivity
To evaluate the impact of sequencing depth on read order sensitivity, the C. elegans
FASTQ files were subsampled to ensure that four read depths (10X, 20X, 40X, and 60X)
were obtained from each aligner. For each caller, the Jaccard distances increased at higher
depths from the Minimap2 alignments (Fig. 5), a pattern also observed for NGMLR
(Fig. S7) and pbmm2 (Fig. S8) aligned files. Notably, the pbsv Jaccard distances increased
substantially with depth, which increased to 0.713 for the Minimap2 aligned data. In

Figure 2 SV call set differences in A. thaliana attributable to FASTQ read order. For each strain, five
files with randomized read orders were created from the original FASTQ file. Each FASTQ file was
subsampled to ensure that the Minimap2 alignment depths were 20X and the BAM files were sorted using
SAMtools. The symmetric differences describe the disagreement between the call sets generated from the
original and randomized FASTQ files. The Jaccard distances describe the proportion of predictions that
disagree between the two call sets. Full-size DOI: 10.7717/peerj.17101/fig-2
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contrast, at full depth, the distances for Sniffles and SVIM only reached 0.025 and 0.031,
respectively.

BAM file sorting contributes to FASTQ read order sensitivity in SV
calling
Several analyses were included to identify potential causes of the differences observed
following the randomization of FASTQ file read order. Variant calling was repeated using
the same alignment files, but identical results were obtained from each alignment,
indicating that the callers are deterministic (i.e., the same results are obtained given
identical input data). For each strain or ecotype, the alignments generated from the
original and permutated FASTQ files were compared. For each read alignment in the

Figure 3 Impact of the aligner on read order sensitivity in C. elegans. For each strain, five files with
randomized read orders were created from the original FASTQ file. Each FASTQ file was subsampled to
ensure that the alignment depths of each aligner were 20X and the BAM files were sorted using SAMtools.
The Jaccard distances describe the proportion of predictions that were in disagreement between the call
sets generated from the original and randomized FASTQ files.

Full-size DOI: 10.7717/peerj.17101/fig-3
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original BAM file, identical alignments were present in the permutated versions. However,
despite being sorted using SAMtools, the order of aligned sequences differed between the
different BAM files. Further examination revealed that the order of alignments varied for
sequences aligned to the same leftmost genomic coordinate, which is also described in the
SAMtools documentation (http://www.htslib.org/doc/samtools-sort.html). Identical
results were obtained from the original and permutated FASTQ files when they were
sorted using Picard.

DISCUSSION
Our results demonstrate the importance of considering the impact of FASTQ read order
on SV calling and further highlight the need to consider how routine intermediate

Figure 4 Impact of the aligner on read order sensitivity in A. thaliana. For each strain, five files with
randomized read orders were created from the original FASTQ file. Each FASTQ file was subsampled to
ensure that the alignment depths of each aligner were 20X and the BAM files were sorted using SAMtools.
The Jaccard distances describe the proportion of predictions that were in disagreement between the call
sets generated from the original and randomized FASTQ files.

Full-size DOI: 10.7717/peerj.17101/fig-4
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methods, such as BAM sorting, can affect the results of a bioinformatics analysis. While the
FASTQ file read order affected each caller, this sensitivity was considerably higher in pbsv,
especially at higher read depths. Strikingly, over 70% of the pbsv SV calls differed when
generated from the full depth Minimap2 alignments. Read order sensitivity also increased
in Sniffles and SVIM at higher depths, albeit at considerably lower levels. As expected,
fewer differences were observed when the SV call comparisons were limited to the SV type,
VCF filter category, and genomic coordinates. Nonetheless, these findings have important
implications for SV research, even if stringent post hoc quality assurance following SV
calling is not a requirement. For example, even when using these relaxed criteria, 5% of the
duplications called by pbsv from the 20X Minimap2 aligned A. thaliana data were in
disagreement. The variability seen among the C. elegans strains raises the possibility that

Figure 5 Impact of sequencing depth on read order sensitivity in C. elegans. For each strain, five files
with randomized read orders were created from the original FASTQ file and subsampled to 10X, 20X,
40X, and 60X depth. The subsampled and full depth FASTQ files were aligned in Minimap2 and, sub-
sequently, sorted using SAMtools. The Jaccard distances describe the proportion of predictions that were
in disagreement between the call sets generated from the original and randomized FASTQ files.

Full-size DOI: 10.7717/peerj.17101/fig-5
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genetic diversity within a species may contribute to read order sensitivity. In particular, the
N2 reference strain accounted for the highest proportion of differences in pbsv. Given that
most C. elegans research uses N2, these results should be considered for future laboratory
work aimed at exploring structural variants in C. elegans.

Multiple factors must be considered to estimate the optimal sequencing depth for SV
calling. These include desired recall, breakpoint accuracy, sequencing platform, tool
choice, and the SV types under study. Generally, this choice involves trade-offs between
accuracy and cost. With this in mind, we used subsampled data to determine if read order
sensitivity is affected by sequencing depth. Although the read order sensitivity increased
with higher depths for each caller, these differences were considerably higher for pbsv,
where an overall Jaccard distance of 0.713 was attained using the full depth data. While the
read order sensitivity may be discounted as an artifact of using exceptionally high read
depths, high Jaccard distances were also observed in pbsv at 40X (0.098) and 60X (0.244).
These depths are not drastically different from the higher range of recommendations from
past benchmarks (typically between 15X and 30X) (Sedlazeck et al., 2018; Liu et al., 2022b;
Chen et al., 2023) and are well below those that have been generated for other species, such
asDrosophila melanogaster (Rech et al., 2022) and Plasmodium knowlesi (Lapp et al., 2018).

We explored several potential sources of variability associated with randomizing the
FASTQ read orders. Repeated variant calling on the same input data generated identical
SV calls, indicating that nondeterministic SV caller behaviour was not a source of the
observed variability. Comparisons between the BAM files created from the FASTQ files
with the original and randomized read orders indicated that each file contained identical
alignments, but with occasional differences in their order. The algorithm used by
SAMtools to sort the aligned reads was identified as the cause of the BAM file read order
differences following randomization and, as a result, a factor in SV call variability due to
input order sensitivity. Because SAMtools only uses the leftmost genome coordinate for
sorting, permutation invariance cannot be guaranteed if multiple reads map to the same
breakpoint. The analyst may therefore choose to sort the unsorted BAM files using another
tool, such as Picard. Although this can ensure that the FASTQ read order does not affect
the predicted SVs, it does not address the issue of input order sensitivity at the caller level.
The sources of read order sensitivity were not identified for the SV callers, as a full
exploration of all possible sources of variability would require analysis and modifications
of the source code of each tool, which was beyond the scope of this study. Furthermore,
this analysis would not have been possible for pbsv, as it is closed source and distributed as
a binary file. It should also be noted that only reads mapped to the same leftmost
coordinate would be subject to input order sensitivity when sorted using SAMtools.
Therefore, these results should not be treated as an overall measure of the input order
sensitivity of each SV caller.

Although a systematic evaluation of the sources of variability in each SV caller was not
undertaken, the sensitivity to FASTQ read order can likely be attributed to how each caller
clusters SV signatures to support an SV call. In a typical SV caller, variant signatures are
first identified from the aligned reads and are subsequently clustered together (Ho, Urban
& Mills, 2020). The signatures within a cluster can then be used to determine if enough
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read support exists for a putative variant and to predict the SV breakpoints (Guan & Sung,
2016). To date, a range of clustering algorithms have been evaluated for SV calling, but
considerable work remains to be done to identify the best approaches for clustering the full
range of SV types and sizes. While each cluster would ideally be comprised of the total set
of signatures supporting a single true variant, clustering is challenging in practice. For
example, breakpoint imprecision has proved to be a major problem for optimal clustering,
as the SV signatures for the same variant can vary due to sequencing and alignment errors
(Heller & Vingron, 2019). Because SVs often occur in genomic hotspots, discriminating
between signatures representing the same SVs from others in proximity can be difficult.
Complex variants containing nested SVs add further challenges (Ho, Urban &Mills, 2020).

SV callers often include parameters that affect which signatures are clustered together,
such as the maximum distances for variant size or genomic position. The number of reads
supporting a cluster is typically used to assign a confidence score to the cluster, which is
then used to determine the final SV call set (Ritz et al., 2014). Past benchmarks have
demonstrated that read support and clustering stringency can have a major impact on SV
calling and reinforce the importance of considering the trade-offs between precision and
recall when selecting these parameter settings (Korbel et al., 2009). While these
benchmarks provide valuable information on how read support and clustering parameter
settings impact the accuracy of SV calling, the variability due to the input order sensitivity
of clustering algorithms is underappreciated. Each caller in this study performs clustering
to identify SV signatures that are expected to represent the same SV. In SVIM, SV
signatures are grouped together using hierarchical agglomerative clustering (HAC), a
bottom-up approach, where individual objects are first assigned to individual clusters that
are successively merged based on their similarity (Van Der Kloot, Spaans & Heiser, 2005).
This process is iterated until all objects are contained in a single cluster. A major problem
in HAC occurs during the merging process when the minimum distance between multiple
clusters is equal. Because these ties are usually resolved arbitrarily, HAC methods may
yield different results after permutating the order of the input data (Van Der Kloot, Spaans
& Heiser, 2005). In Sniffles, SV signatures are first assigned to bins according to their
genomic coordinates. Neighboring bins are then merged based on a distance threshold
derived from the starting coordinates of the signatures within each bin. These clusters are
subsequently split to separate candidate SVs of different sizes (Smolka et al., 2024).

The analyses performed in this study were chosen to quantify variability in SV calling
attributable to FASTQ and alignment read order and it is unclear whether SV callers that
are more susceptible to changes in read order are more likely to be incorrect. Nonetheless,
accuracy should be a concern for callers with higher sensitivity to input data order. In the
most conspicuous case, permutating the read order could cause a given SV call to be
present in one call set and absent from the other. Depending on whether the SV represents
a true variant, it would either be a false positive or a false negative in one of the call sets.
Variability in the breakpoint coordinates can also have important consequences, especially
if the coordinates are predicted to result in high impact mutations, such as changes to
protein coding sequences, splice sites, or regulatory elements. Although these analyses
were not chosen to quantify caller accuracy, they may assist developers in the development
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of more accurate tools. Benchmarks produced using the same input data for a given truth
dataset may provide misleading estimates if the tools under evaluation are sensitive to read
order. This is a plausible concern, as the limited availability of datasets with known SVs has
resulted in most callers being benchmarked using the same data. Theoretically, if a tool is
highly sensitive to read order, it may be optimized for the data used to benchmark its
performance. By minimizing the read order sensitivity, the developer may be able to
provide improved estimates of the tool’s performance on other datasets.

Given the widespread use of clustering algorithms in SV callers, their impact on variant
calling warrants further research. Key considerations also include how read order
sensitivity is related to SV calling accuracy and if these predictions could be improved with
other clustering approaches. Variability associated with the initial order of input data has
been observed in a range of applications that involve clustering (Jakobsson & Rosenberg,
2007; Boyce, Sievers & Higgins, 2015; Westcott & Schloss, 2015) and a variety of methods
have been developed to either reduce or eliminate its impact. For example, additional
criteria may be used to decide which clusters should be merged when ties arise during
HAC or to select a solution from repeated analyses of permutated input data. Tool
developers may choose to evaluate similar approaches for clustering SV signatures, but
their success would depend on finding suitable criteria to break ties or the feasibility of
identifying a best solution from multiple analyses. It may also prove to be beneficial to
reconsider the requirement of sorting read alignments prior to SV calling to assess its
impact on clustering and to allow methods based on permutating the entire input data to
be evaluated.

Clustering algorithms commonly used to assign amplicons to operational taxonomic
units (Müller & Nebel, 2018) and to analyze gene expression data (Oyelade et al., 2016)
have also been criticized for their sensitivity to the order of the input data they are
provided. These concerns have led to the adoption of permutation invariant methods
(Mahé et al., 2014; Oyelade et al., 2016; Müller & Nebel, 2018), which could also be
evaluated for clustering SV signatures. In fact, one recent method for copy number variant
calling (Guo et al., 2022) is based on WaveCluster (Sheikholeslami, Chatterjee & Zhang,
2000), a clustering algorithm that is insensitive to the order of input data. Further
benchmarking will be necessary to quantify the impact of read order on SV calling and in
the evaluation of different clustering approaches. Because different clustering approaches
have their own strengths and weaknesses, these benchmarks would provide valuable
information on the performance of different methods and the trade-offs between accuracy
and speed. A better understanding of the relationship between read order sensitivity and
accuracy would also allow tool developers to decide if improved clustering should be
prioritized over addressing other sources of error.

Long-read sequencing has the potential to overcome some of the limitations of
short-read approaches, but room for improvement remains for the current generation of
callers. As tool developers work to improve algorithm performance, awareness of the effect
of FASTQ read order on SV calling would be beneficial. This is of particular importance
because only a small number of datasets with known SVs are currently available for
benchmarking new tools. Although the results of this work should not be interpreted as
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direct measures of accuracy, higher sensitivity on read order is cause for concern and
should be included in discussions of reproducibility and replicability. Because the FASTQ
file and alignment read order can affect the predicted variants, the randomness inherent in
sequence order may contribute to failed replication attempts. Therefore, if future
replication is a concern, we recommend that researchers sort alignment files using a tool
that is insensitive to read order, such as Picard.

CONCLUSIONS
Although many researchers are aware of the limitations of published benchmarks in
bioinformatics, it is likely that differences resulting from random, arbitrary changes to the
order of input data are underappreciated. Our results indicate that randomly permutating
the order of reads in a FASTQ file can have a profound impact on the predicted structural
variants. Seeing that the order of reads in a FASTQ file have no biological significance, we
anticipate that our results will be of interest to tool developers interested in improving SV
prediction. By quantifying the impact of read order, a developer may gain a better
understanding of how random chance affects the relationship between the input data
provided to their algorithm and the output it provides.
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