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ABSTRACT
Background . Malaria has been appraised as a significant vector-borne parasitic disease
with grave morbidity and high-rate mortality. Several challenges have been confronting
the efficient diagnosis and treatment of malaria.
Method. Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank
(EKB) were all used to gather articles.
Results. Diverse biochemical and physiological indices canmirror complicated malaria
e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the
lower antioxidant capacity that does not only destroy the parasite but also induces
endothelial damage. Multiple trials have been conducted to improve recent points
of care in malaria involving biosensors, lap on-chip, and microdevices technology.
Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts
with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine
and the emergence of nanocarrier (either active or passive) in drug transportation
are promising. The combination therapeutic trials e.g., amodiaquine + artemether +
lumefantrine are presented to safely counterbalance the emerging drug resistance in
addition to the Tafenoquine as a new anti-relapse therapy.
Conclusion. Recognizing the pathophysiology indices potentiate diagnosis of malaria.
The new points of care can smartly manipulate the biochemical and hematological
alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine
appeared promising. Chemical and plant extracts remain points of research.

Subjects Parasitology, Immunology, Infectious Diseases
Keywords Malaria, Biochemical, Physiological, Point of care, Nanomedicine, Plant extract,
Combination treatment

INTRODUCTION
In 2023, the World Health Organization (WHO) estimated cases infected with malaria by
249 million globally which seriously exceeded the pre-pandemic level reported in 2019
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(∼233 million) by 16 million patients. The WHO now interrelates the surge in malaria
reports with the continuous climate changes. The higher incidences of deaths occur in
61% of children under 5 years and 125 million pregnant females are at threat of malaria
infections (World Health Organization, 2023). Severe malaria is a systemic parasitic disease
with a high death rate. Human malaria is characterized by a complex life cycle with liver
and blood stages. In P. vivax and P. ovale sporozoites convert into hypnozoites and remain
latent in the hepatocytes for months or years causing relapses (Nureye & Assefa, 2020).
Also, in P. falciparum and P. malariae, ineffective clearance of the parasite (recrudescent
infection) or entire reinfection may frequently occur (Plucinski et al., 2015).

Both developing and developed nations are prone to the misdiagnose of malaria
either due to scarcity of resources or poor acquaintance with the disease. Conventional
microscopy of Giemsa stained thick and thin blood films despite being the standardmethod
of diagnosis is time-consuming and demands proficiency; thus, various research managed
to develop alternative diagnostic techniques. The main purpose is to improve sensitivity,
and test duration, with competitive costs to allow efficient parasite identification and
quantification (Pham et al., 2018). Malaria is strongly related to several biochemical and
hematological changes. Yet, useful manipulation of these indices either in the routine
laboratory panel or in the development of new ‘‘points of care’’ (Liu, Ye & Cui, 2020) has
been introduced in the current review

Another issue is the challenges that face the long list of anti-malarial drugs involving
quinine, primaquine, chloroquine, and artemisinin and their byproducts. For example, the
widespread resistance to a single therapy (Alven & Aderibigbe, 2020), (2) the unfavorable
physiochemical side effects, (3) the complex pathogenesis of the (Okagu et al., 2022), and
the intensive sequestration of the parasites that hinder parasite clearance and reduce the
efficacy of artemisinin. Accordingly, recent therapeutic means have been explored to
restore the biochemical and physiological norms by killing Plasmodiumwhile evading toxic
side effects (Okagu et al., 2022; Kluck et al., 2019). Yet, nano-medicine and medicinal plant
extracts appeared to be efficient antimalarial agents (Patra et al., 2018; Laryea & Borquaye,
2019).

In the current review, we are drawing in the first section a paradigm for the biochemical
and physiological changes in blood indicative of malaria in a laboratory panel. In the
second section, we scoped the advances in diagnostic techniques to increase the accuracy
of detecting malaria, and in the third section, we overviewed the recent therapeutic trends
of malaria.

MATERIALS AND METHODS
The current review manipulated several aspects in malaria disease involving insights in
the pathophysiology, the recent diagnostic techniques and points of care, and the updates
in the therapeutic trials. The proposed protocol was discussed by the authors. Google
Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used
to gather articles. To gather articles, a comprehensive screening of all keywords-related
studies was done via their titles and abstracts. Keywords includedmalaria diagnosis, malaria
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pathophysiology, biochemical changes in malaria, malaria rapid diagnostic tests (RDTs),
types of biosensors, molecular diagnosis in malaria, malaria conventional treatment,
nanotreatment for malaria, Phyto treatment of malaria, combined treatment of malaria,
treatment of malaria relapses. The bulk of referenced scientific papers were in English
and conducted online during the period (2015–2023). Yet, when older studies i.e., before
2015 were a certain source of information, we cited them. The inclusion criteria involved
peer-reviewed research studies that introduced clinical and experimental applications.
Besides, observation and cohort studies were determined. Of note, the comprehensive
systematic and narrative reviews that were peer-reviewed, published online, and comprised
the aimed keywords were scanned. Case reports were visited by the authors to enhance
our understanding. Editorials and studies that were not peer-reviewed, articles with vague
abstracts, or unrelated to a certain scientific Database site were excluded.

RESULTS AND DISCUSSION
Biochemical and physiological changes
Hypoglycemia induced by malarial infection
The disruption of glucose metabolism in malaria chiefly results from the sequestration of
intraerythrocytic stages in the arteries of the liver in severe P. falciparum infection (Sengupta
et al., 2020;Olszewski et al., 2009; Tian et al., 2022;Glaharn et al., 2018). Other mechanisms
involve the inhibition of ATP-sensitive potassium (KATP) channels, which modulate the
pancreatic beta-cell membrane’s permeability to potassium. This results in marked calcium
influx and insulin release and reduction of the blood glucose level (Onyesom & Agho, 2011).
In summary, one or more of the following can also contribute to hypoglycemia in malaria:
1. The malaria parasite consumes the host’s circulating glucose to meet its energy

requirements: The host’s glucose supply is a major source of support for the parasites
during the asexual phases, which they use to produce ATP through the process of
glycolysis (Sengupta et al., 2020).

2. The metabolic modifications brought on by parasites that prevent gluconeogenesis:
Infectionwith P. falciparum causes the release of cytokines such as tumor necrosis factor
(TNF), interleukin (IL)-1, and 6, which block the activity of phosphoenolpyruvate
carboxykinase, a crucial enzyme in the gluconeogenetic pathway (Mavondo et al.,
2019).

3. Malaria-related increases in IL-1 and IL-6 release encourage islet cell hyperplasia
resulting in an unregulated insulin response and subsequent reduction of the blood
glucose level (Mavondo et al., 2019).

4. Erythrocytes can more easily absorb glucose when it is transported across the plasma
membrane by GLUT1. The merozoite invasion results in insertion of numerous
transmembrane proteins that lead to dramatic change in the plasma membranes of IEs
(Autino et al., 2012).

5. Additional factors likemalaria-related loss of appetite contribute to the downregulation
of 5′ AMP-activated protein kinase (AMPK) gene expression, and reduced energy intake
(Apoorv, Karthik & Babu, 2018). Moreover, the parasite modulated the enzyme 5′
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AMP-activated protein kinase (AMPK) and lowered AMPK phosphorylation following
infection thus influencing the energetic metabolism of the cell.

Dyslipidemia induced by malarial infection
Dyslipidemia in patients with malaria is implicated chiefly by the parasite. Plasmodium
spp. depend on the host for some of the lipids necessary for their growth and development
because some of their important lipids cannot be produced via intraerythrocytic
biosynthesis (Okagu et al., 2022). By enhancing lipid absorption, de novo synthesis, lowering
cellular uptake, and/or other strategies, the parasite manipulates the host’s circulating lipid
levels to maximize the availability of these vital lipids. The results of a study showed raised
TAG levels in the serum, white adipose, and liver, as well as greater free fatty acids and
cholesterol in the hepatic tissues of chabaudi rodent malaria (Autino et al., 2012). Also,
Kluck et al. (2019) deduced that P. chabaudi infection changes the hepatic mRNA and
expression of key enzymes and transcription factors determent in the metabolism of lipids,
thus resulting in a lipogenic state. However, variances in the modification of lipid levels in
malaria appear to be affected by the severity of the illness and the species of Plasmodium
parasite. For instance, P. vivax-infected patients were observed to have lower TC, LDL,
and HDL levels while having higher TAG levels when compared to normal/apparently
healthy individuals (Mesquita et al., 2016). Falciparum malaria has also been associated
with decreased levels of HDL, LDL, and total cholesterol as well as increased or unaltered
levels of TAGs and very low-density lipoproteins (VLDL) (Kullu et al., 2018). Of note,
following antimalarial medication therapy, these changes in lipid levels normalized along
with a significant decrease in parasitemia and the eradication of clinical symptoms of
malaria. Mice infected with P. berghei NK-65 in experimental rodent malaria had higher
serum lipid profile levels than control mice (Enechi, Okagu & Ezumezu, 2021).

Kidney functions. Falciparum and Plasmodium malariae infections are associated with
renal manifestations that can produce an immune complex-mediated glomerular disease-
causing nephrotic syndrome (Naqvi, 2021). P. falciparum infection is associated with more
renal tubular changes than glomerular changes, and acute renal failure (ARF) is a possible
complication (Lendongo Wombo et al., 2023). Oliguria, high serum creatinine, and blood
urea nitrogen are useful to diagnose ARF. The adverse effects of the malaria parasite on the
kidney can cause hypernatremia, hyperkalemia, high blood urea, low urine specific gravity,
and metabolic acidosis (Enechi et al., 2021).

Severe malaria infection is associated with increased urea and creatinine compared to
mild infection. The renal ischemia caused by the sequestration of the parasite into the
microvasculature bed of the kidney could be the cause of high urea and creatinine in severe
malaria. It was observed that serum protein decreased markedly in severe malaria infection,
which is thought to be due to the influence of the parasite on protein synthesis (Ozojiofor
et al., 2020).

Malaria patients showed a decrease in electrolyte levels. The decrease in Na+, Cl−, and
HCO3 levels reflects the level of renal dysfunction, which is proportional to the severity
of malaria infection. Low Na+ levels are explained by their loss in urine and sweat to
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Figure 1 Paradigm showing pathogenesis of malaria. (A) Liver. (B) Kidney. (C) Oxidative stress.
Full-size DOI: 10.7717/peerj.17084/fig-1

compensate for the high lactase and urea levels of plasmodium falciparum-infected patients
(Uwah et al., 2021). Meanwhile, K+ levels are high in severe infections, with a possible risk
of developing metabolic acidosis. Malaria infection causes impaired glomerular filtration,
which results in a decrease in Na+ available in the renal tubule for K + exchange. The
resulting imbalance in hydrogen ions causes K+ retention, which can explain the high K+

serum levels (Enechi et al., 2021) (Fig. 1A).

Liver dysfunction. Malaria infection is usually accompanied by liver dysfunction, which is
indicated by the sharp rise in liver enzymes. This can be explained by the invasion of hepatic
cells by the parasite and the leakage of liver enzymes into the circulation. The increase in
liver enzyme levels is also proportional to the severity of the malaria infection (Megabiaw
et al., 2022; Ahad et al., 2022). Liver dysfunction in malaria cases results from congestion,
cellular inflammation, and sinusoidal blockage caused by the parasite (Auta, Zakariyya &
Everest, 2018).

The incidence of jaundice with severe P. falciparum infection ranges from 5.3 to 45%
(Nathumal et al., 2020). It is caused by hepatic dysfunction, intravascular hemolysis, and
microangiopathic hemolysis. This condition is accompanied by high plasma renin activity,
high vascular sensitivity to catecholamines, uricosuria, natriuresis, and left ventricular
dysfunction (Ishioka et al., 2020). Consequently, patients manifesting jaundice usually
show complications such as ARF (Tijjani & Adebayo, 2023).

Malaria patients showed high conjugated and unconjugated bilirubin levels. On the
other hand, serum albumin, globulin, and total protein levels were unchanged. It was
reported that high serum bilirubin was the first indicator of liver impairment three
days after infection, followed by increased serum aspartate transaminase (AST) and
alanine transaminase (ALT) activities (Bhattacharjee et al., 2021) (Fig. 1B). Experimentally,
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hepatocytes were found to overstimulate hemeoxygenase-1 to degrade free heme to
guard against the increased oxidative stress; besides, TNF and NF- κB are upgraded thus
facilitating neutrophil infiltration and liver damage during the hemolytic phases of acute
malaria (Dey et al., 2019).

Oxidative stress. Reactive oxidant species (ROS) and reactive nitrogen species (RNS) are
produced by the immune system of the host in response to the parasitic invasion to kill
the parasite. In many cases, the host’s cells are damaged by the resulting oxidative stress
(OS). It is suggested that OS is a defense mechanism generated by the host against the
invading parasite. On the other hand, others argue that OS results from parasite metabolic
processes causing complications and organ dysfunction in the host. Of note, degradation
of hemoglobin by Plasmodium parasites residing inside infected erythrocytes produces
free heme, which is released into the bloodstream at the terminal stage of the parasite
replication cycle, Further, the oxidative stress intensities on the host might result in
complicated life-threatening malaria (Vasquez, Zuniga & Rodriguez, 2021).

Total antioxidant capacity is reduced inmalaria-infected patients. The activity of catalase
(CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide
dismutase (SOD) is significantly decreased. There is a decrease in vitamin A, C, and E
levels, which are known to be antioxidant vitamins (Raza et al., 2015).

Phagocytes are activated as a defense mechanism in response to malaria infections. This
causes the production of large amounts of ROS and RNS, which leads to an imbalance
between antioxidants and free radicals’ formation, triggering OS. It is believed that OS
is caused by the increased production of free radicals rather than decreased antioxidant
levels. OS represents an important defense mechanism against the parasite (Gomes et al.,
2022).

ROS produced by phagocytes, including O2 • − and ONOO −, participate in the
oxidative destruction of the parasite and the infected erythrocytes. Moreover, proteolytic
enzymes and ROS produced by neutrophils can cause apoptosis of endothelial cells.
There are high levels of cytokines and endothelial injury associated with severe malaria
infection, caused by P. falciparum, that can cause organic failure. Therefore, it’s believed
that the inflammatory processes mediated by the immune response may not be effective
against some Plasmodium species and can cause harm to the host cells (Vasquez, Zuniga &
Rodriguez, 2021) (Fig. 1C).

However, it is very important to note that the malaria parasite resides in a highly
oxygenated environment (the host erythrocytes) where it produces a huge amount of
toxic-free heme imposing oxidative stress on the parasite itself. Yet, malaria parasites tend
to tightly manage oxidative stress through active redox and antioxidant defense systems.
Heme detoxification protein in P.falciparum (Pf HDP) is one of the numerous defense
mechanisms exerted by the parasite to convert free heme to hemozoin. Interestingly,
heme detoxification protein is a protein that exists in the food vacuole of the parasite, the
parasitophorous vacuole, and the cytosol of the infected erythrocyte that also acts in the
uptake of hemoglobin (Gupta et al., 2022).

El Saftawy et al. (2024), PeerJ, DOI 10.7717/peerj.17084 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj.17084


Limitations of biochemical and physiological indices
To our understanding, the range of functional reference of any parameter is a resultant
interaction of multiple physiological components. In malaria infection, another
pathological component becomes added to the stream of biochemical reactions. This
might highlight the important role exerted by laboratory professionals to use literature,
interrelate data, and facilitate comprehension and prediction of diagnosis e.g., in patients
with hypoglycemia and dyslipidemia and who have a travel history to malaria-endemic
areas. Another issue, in case clinicians are relying on the physiological and biochemical
indices to predict a diagnosis of malaria, it is important to assess sensitivity, specificity, and
the rate of device failure to reduce rates of misdiagnosis. More studies for the comparative
validity of physiological and biochemical indices for differential diagnosis of malaria
infection from other metabolic conditions are still needed.

Malaria diagnostics techniques
Rapid diagnostic tests or immunochromatographic tests
This type of device is considered a widespread point-of-care test (POCT) to diagnose
malaria. Rapid diagnostic tests (RDTs) is a lateral flow immunoassay technique that
detects the presence of biomarkers specific to the Plasmodium parasite. The technique is a
single-step test with the advantage of being cheap and fast. However, the affordability and
accessibility RDTs do not define them as distinctive malaria diagnostic factors (Wittenauer,
Nowak & Luter, 2022). This device is comprised of a nitrocellulose membrane netted with
antibodies and antibodies against the target antigen to detect several biomarkers.

Commercially, the available RDTs biomarkers involve P. falciparum histidine175 rich
protein-II (Pf-HRP-II), which is water soluble and is expressed on the surface of the RBCs.
Also, plasmodial aldolase (pALD), as well as plasmodial lactate dehydrogenase (pLDH),
are parasite-specific glycolytic enzymes recognized in all plasmodium species. Yet, several
drawbacks have been determined for RDTs. For instance, Pf-HRP-II is the most principal
target to detect the parasite; yet, it is exclusively produced by P. falciparum and thus not
sensitive for other species, has a detection limit >40–100 parasites per µL, persists as
positive for up to 31 days post-treatment, reported for cross-reactivity either with other
plasmodium species or autoantibodies; besides it cannot detect viability of the parasite.
Regarding HRPII, it is released during schizogony into the bloodstream and remains
positive for several weeks, even after the clearance of infection, shows a higher detection
limit of parasites/µL, and is inefficient in differentiating parasite species (Grandesso et al.,
2016). The pALD exhibits comparable drawbacks similar to HRPII, yet, its positive result
defines the viability of the parasite.

The limitation of conventionally used RDT also involves the reduction in peripheral
parasitemia owing to Plasmodium sequestration. Also, PfHRP2 antigen are also useful in
Africa, India, Asia, middle east, Amazon regions in addition to sub-Saharan countries and
South America, since some isolates lacking this antigen have been found from these areas.
The the presence of Pf-HRP-II/III deletions in the parasites reinforces the necessity for
novel diagnostic techniques for systematic surveillance in endemic regions (Berhane et al.,
2018).
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Figure 2 A general paradigm for biosensors.
Full-size DOI: 10.7717/peerj.17084/fig-2

Biosensors as a recent “point-of-care”
Firstly, what are the biosensors? Biosensors are detector devices composed of immobilized
bio-receptors (bio-recognition element) and a transducer. The bio-receptor might be an
antibody, enzyme, DNA, or microorganism that detects and bind with the target analyte,
and the produced changes in the physicochemical characteristics (e.g., electrochemical,
magnetic, optical, and piezoelectric acaustic) are transformed into a quantitative or
semi-quantitative electrical signal that can be measured by a transducer as shown in Fig. 2
(Ding, Srinivasan & Tung, 2015). Such devices were designated to explore for analytes
like hemozoin and several other enzymatic markers e.g., LDH, glutamate dehydrogenase
(GDH), merozoite surface protein 3 (MSP-3), and ALD in enzyme-based biosensors
(Dutta, 2020).

Types of biosensors
Magneto-optical biosensors. The hemozoin is a paramagnetic structure that was found to
possess a small and positive magnetic moment to externally applied magnetic fields. Based
on this unique property,Mens et al. (2010) determined that when a malaria-infected blood
sample was placed in a magnetic field hemozoin crystals aligned within the field. Yet,
crystals became free when the field was removed as shown in (Fig. 2B).

Piezoelectric acoustic transducer. The poly-vinylidene fluoride (PVDF) film is used as a
smooth thin plate that provides no-slip condition.When a viscous blood sample propagates
along this smooth thin plate, a thin shear layer is formed near the surface. This layer can be
divided into three zones according to the different flow states: (1) the laminar flow zone,
(2) the transition zone, and (3) the turbulent zone. Fluid motion produces hydrodynamic

El Saftawy et al. (2024), PeerJ, DOI 10.7717/peerj.17084 8/31

https://peerj.com
https://doi.org/10.7717/peerj.17084/fig-2
http://dx.doi.org/10.7717/peerj.17084


noise due to the vibration of the PVDF film. The intensity of the flow noise increases as
the speed of the fluid flow increases (Li et al., 2019). Therefore, the developed acoustic
transducer can be capable of assessing the velocity of the fluids within capillary vessels.
Yet, future work is necessary to improve the characteristics of this sensor to be a reliable
diagnostic tool for malaria in blood specimens (Katta & Sandanalakshmi, 2021) (Fig. 2C).

Electrochemical biosensors. This type of biosensor perceives an electrical signal when a
target biomarker (analyte) binds with the specific bioreceptor. The concentration of
the target analyte is directly related to the intensity of the electrical signal, Fig. 2D. It
shows high sensitivity, reasonable cost, requires small specimens, quantitative and feasible.
Nevertheless, these are thermos-sensitive, with a narrow temperature range. The limited
shelf time and nonspecific reactions are also other challenges for these biosensors (Menon
et al., 2020).

In an attempt to identify β-hematin (synthetic hemozoin), Obisesan et al. (2019)
processed an electrochemical nano-sensor that was composed of metal oxide of copper,
aluminum, and iron (as nanoparticles) deposited on the gold electrode. So far, the
maintenance of a stable electric current and electrodes after several cycles, and the high-cost
technology might hamper the method.

Graphene is another example that detects the reactions of the electronic transfer
of hemoglobin from the ferrous state (Fe++) into the ferric state (Fe+++) to produce
hemozoin (Moutaouakil, Belmoubarik & Peng, 2020; Hole & Pulijala, 2021).

Optical biosensors. This type of biosensor is established on identifying alterations in light
of the reaction between the target analyte and the bio-recognition (bio-receptor) element.
The most popular types are surface plasmon resonance (SPR) and fluorescence biosensors.

SPR biosensors. These sensors detect the reaction between the bio-receptors and the target
analyte through the alteration in the refractive index of the plasma resonance substrate, the
SPR angle, and the intensity of light reflectance. These types of biosensors are label-free,
have high sensitivity and resolution, permit real-time evaluation, and possess a high
signal-to-noise ratio; hence can be considered suitable for point-of-care applications of
malaria disease. However, SPR bio-sensors are motion-sensitive and rely on the quality of
the light indicator. They entail the adjustment of light distance and angle and are affected by
the molecular size and concentration of the analyte. Therefore, full automation is necessary
to avoid extensive calibration and light intrusions (Ragavan et al., 2018) as in (Fig. 3A).

There are several models for this type; for example, Chaudhary, Kumar & Kumar (2021)
attempted to improve the SPR using two sheets of air holes in the form of a hexagonal
lattice (photonic crystal fiber) and a tinny layer of gold (Au). Evaluation of this model
showed a recognizable shift in the SPR resonance wavelength ( λ) and refractive index with
malaria-infected red blood cells (RBCs) compared with normal RBCs. In addition, it was
useful to discriminate early infections and the different stages of the parasite; for instance,
ring stage at λ= 13,714.29 nm/RIU, trophozoite at λ= 9,789.47 nm/RIU, and schizont at
λ= 8,068.97 nm/RIU (Chaudhary, Kumar & Kumar, 2021).
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Figure 3 Paradigm of optical biosensors. (A) SPR biosensors. Target analyte reacted with immobilized
bioreceptors. Excitation of electrons in the metal film by inclined photons. Dissemination of electrons
parallel to the metal surface (plasmon wave). Shifting in the refractive index (RI). (B) Surface-enhanced
Raman spectroscopy. (1) Silicon (Si) substrate, (2) coating of Si substrates by polydi-allyl-dimethyl
ammonium (PDDA), (3) assemblage of AuNps on PDDA, (4) formation of the poly-di-methylsiloxane
(PDMS) layer, (5) embedding of Au Nps on PDMS, (6) hematin detection by Raman laser. (C)
Fluorescence biosensors. The target analyte binds the bottom immobilized bioreceptor layer. Then a
‘‘Top bioreceptor layer’’ is detected by either (1) Abs- fluorescently-labeled Abs, (2) a double layer of
antibodies (Abs)- fluorescently-labeled Abs, (3) or a monolayer of fluorescently-labeled aptamers.

Full-size DOI: 10.7717/peerj.17084/fig-3

Surface-enhanced Raman spectroscopy (SERS) and enhanced Raman signals. Raman
spectroscope relies on the very few photons that elastically scatter and interact with
the chemical bonds of the molecules or the functional groups within a substance. In
malaria, hemozoin exhibits Raman scattering. It is a popular highly sensitive and specific
optical technique that however possesses a low signal-to-noise ratio (Villena Gonzales,
Mobashsher & Abbosh, 2019; Xu et al., 2022). Several methods were developed to increase
the efficacy of the SERS biosensors, for example, (1) the manipulation of the Graphium
weiskei butterfly rings that interact with hemozoin (Garrett et al., 2014), (2) the usage of
a magnetic field that brings the nanoparticles and the paramagnetic β-hematin into line
for the laser spotlight to intense the Raman signal (Yuen, 2012), (3) manipulation of gold
nanoparticles (Au Nps) for their plasmon coupling features and near-infrared SPR to
improve the Raman signals and detection of haematin (Cai et al., 2021) as shown in (Fig.
3B).
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Fluorescence biosensors. These sensors rely on the emission of fluorescent light from
fluorophore molecules at a definite wavelength (λ) when the bio receptor interacts with
the target analyte the intensity of light is correlated to the concentration of the target
analyte (Ragavan et al., 2018). For example,Minopoli et al. (2021) evaluated a fluorescence
biosensor composed of immobilized Au Nps onto a glass substrate. The target analyte
binds to the bio-receptor layer (antibodies), which is covalently attached to the surface of
Au Nps. Thereafter, a top bioreceptor layer of fluorescently labeled aptamers is applied in a
sandwich pattern to recognize the reaction as shown in (Fig. 3C). The suggested biosensor
specifically detected P. falciparum lactate dehydrogenase enzyme in the whole blood down
to 0.3 ng/mL without any sample pre-processing (Minopoli et al., 2021).

The lab-on-a-chip and micro-device technology
The novel microdevices, especially lab-on-a-chip devices, have been considered a potential
portable point of care for the diagnosis of malaria. This technology relies on the
concentration of RBCs through their margination using micro-channels for more specific
and sensitive detection. The design of the micro-channels simulates blood capillaries with
a caliber of less than 300 µm. It is well known that RBCs are more deformable and smaller
than white blood cells (WBCs). Therefore, RBCs under normal conditions flow faster than
WBCs along the axial center of the blood capillaries; whereas, WBCs marginate to the
endothelium of the blood capillaries. In malaria infection, the stiffer infected RBCs act
similarly to WBCs and show cytoadherence to the endothelium (Giacometti et al., 2021).

In the fabricated micro-channel, P. falciparum-infected RBCs align along the sidewalls
‘‘via margination’’; thereafter, infected RBCs can be removed and separated using a three-
outlet system as shown in Fig. 4A (Kolluri, Klapperich & Cabodi, 2018). Another model was
invented that relied on the magnetic properties of the hemozoin to fasten the margination
of the infected RBCs in a magnet-based microfluidic device. The device is coupled to a
nickel wire that attracts infected RBCs and a permanent magnet to create an external field
(∼0.6 T). Thus, allowing the separation of malaria-infected RBCs as in Fig. 4B (Nam et al.,
2019).

Multiplex polymerase chain reaction
Molecular detection of Plasmodium DNA in blood is a sensitive diagnostic tool (5
parasites/µL) (Pham et al., 2018). Application of multiplex polymerase chain reaction
(PCR) determined the significant existence of asymptomatic reservoirs that may prolong
the endemicity of malaria. For instance, a study in Eastern parts of Afghanistan reported
the presence of P. falciparum, P. vivax and their co-existence in asymptomatic individuals
(Mosawi et al., 2020). Another study in Malaysia demonstrated that in 251 samples mono-
infection of P. vivax was reported in 39 cases (16%), Plasmodium falciparum in 50 cases
(20%), P. vivax in 39 cases (16%), P. knowlesi in 9 cases (4%), and mixed infections in 20
cases (8%) (Jiram et al., 2019).

Multiplex human malaria array. A new sensitive generation of rapid diagnostics for the
quantification ofmalaria antigensmay facilitate the screening of asymptomaticmalaria. The
Q-Plex™HumanMalaria Array (Quansys Biosciences, Logan, UT, USA) has been evaluated
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Figure 4 Lab-on-a-chip andmicrofluidic system designs. (A) Infected RBCs are displaced to the mar-
gins of the micro-channel wall (RBCs margination) whereas healthy RBCs migrate to the axial center due
to gradients in the flow velocity. (B) Faster margination of infected RBCs was achieved by an externally
applied magnetic field.

Full-size DOI: 10.7717/peerj.17084/fig-4

to quantify the antigens specific for Plasmodium spp. e.g., HRP-2, Pf -LDH, Pv-LDH, and
Pan-LDH. The new kit showed 99.5 improved specificity whereas sensitivities against
PCR were 92.7%, 71.5%, 46.1%, and 83.8% for HRP2, Pf -LDH, Pv-LDH, and Pan LDH,
respectively (Jang et al., 2020).

Loop-mediated isothermal amplification PCR
Loop-mediated isothermal amplification assay (LAMP) is a recently-developed simple,
field applicable, molecular malaria diagnostic technique that employs amplification of
nucleic acids under isothermal conditions. Given the advantages of minimum equipment,
short time, 99% sensitivity and accurate diagnosis of asymptomatic malaria, LAMP is now
considered a superior screening test than conventional methods for malaria diagnosis
especially in non-endemic countries (Feleke, Alemu & Yemanebirhane, 2021). Considering
18s rRNA as the target gene, SYBR green I also adds higher specificity to LAMP than the
nested PCR (Lai, Ooi & Lau, 2021).

Rolling circle enhanced enzyme activity detection
Rolling circle enhanced enzyme activity detection (REEAD) is the process of detecting
endogenous enzyme activity at a single-catalytic event. REEAD was shown to assess the
enzyme activity in both Plasmodium parasites and single human cells. The rolling circle
amplification products (RCPs) are detected using ‘‘an organic dye-tagged linear DNA
probe’’. Nevertheless, the high cost hampers its usage on a wide scale. A novel class of
activatable probes, NanoCluster Beacons (NCBs), has been shown to facilitate REEAD
assays by being cost-effective, sensitive, photostable, easily prepared without purification
and capable of producing a large fluorescence enhancement upon hybridization (Juul
et al., 2015). Givskov et al. (2016) deduced the assessment of topoisomerase -I from P.
falciparum parasite is a useful tool for detecting malaria in epidemic areas. Combining
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rolling circle amplification techniques with affinity biosensors using optical probes is a
promising recently-tailored research area (Schmidt et al., 2022).

Micromagnetic resonance reflaxometric tests
Micromagnetic resonance reflaxometric (MMR) tests is a novel procedure for sensitive,
quantitative and rapid detection of Plasmodium spp.-infected RBCs with minimal sample
preparatory steps and without any chemical or immunolabeling.

A parasitemia level of fewer than ten parasites per microliter in a volume below 10 µl of
whole blood is detected in a few minutes by the means of magnetic field.

In the course of the intraerythrocytic cycle of malaria, the parasite metabolizes large
amounts of cellular hemoglobin and converts it into hemozoin crystallites. On exposing
intact blood cells to a powerful magnetic field, the paramagnetic Fe3+ ions in hemozoin
distract the synchronizing hydrogen atoms. The more the hemozoin crystals inside the
RBC’s, the more rapidly the hydrogen atoms are disrupted reflecting the ‘parasite load’ in
blood (Kumar & Renu, 2015).

Recent malaria therapeutic perspective
A good antimalarial agent not only eliminates the Plasmodium parasites but also rectifies
pathophysiology and altered biochemical parameters associated with the disease (Enechi et
al., 2021). Control of malaria is chiefly dependable on chemotherapy involving quinine,
amodiaquine, 4-aminoquinolines, primaquine, pyrimethamine, sulfonamides, mefloquine,
lumefantrine, halofantrine, atovaquone, proguanil, artesunate, artemeter, piperaquine,
and chloroquine. Chloroquine is a competent antimalarial drug. Yet, artemisinin and its
semi-synthetic derivatives are more recommendable owing to their effectiveness compared
with quinine. Therefore, they are the current first-line treatment against P. falciparum
malaria. Nevertheless, limitations for non-artemisinin drugs involve low efficacy, high cost,
toxicity, short half-life time, and low water solubility. In addition, to reach the desired drug
concentration exposure to undesired side effects and non-specific drug targeting frequently
occur. In addition, the current antimalarial drugs are facing the emergence of resistance
which prevails owing to their similar chemical structures. For instance, the cross-resistance
that occurs between 4-aminoquinolines, CQ, and AQ. Currently, artemisinin-resistant
Plasmodium parasites are conquering some regions of the world, therefore, research for
more efficient and safer alternatives is demanded (Erhirhie et al., 2021). Table 1 shows
comparative insights into conventional, phytotherapy, and nano-medicine.

Chemical falcipain inhibitors
Falcipains are cysteine protease enzymes related to the papain family. The Papain family
of proteins has a wide range of aminopeptidases dipeptidyl peptidases, endopeptidases,
and enzymes with both exo- and endopeptidase action. Falcipain-2 and -3 are key protease
enzymes produced by the P. falciparum parasites and are involved in the hydrolysis
of hemoglobin and the production of free amino acids. Falcipain-2 is convoluted in
slicing band 4.1 protein and ankirin involved in the cytoskeleton of the red blood cell.
Interestingly, other Plasmodium species express proteases homologs to falcipain-1, -2 and-3
proteases. Therefore, falcipain inhibitors are regarded as promising agents against other
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Table 1 Conventional treatment, phytotherapy, and nanomedicine.

Conventional treatment Phytotherapy Nanomedicine References

Source/origin 4 major classes:
• Quinoline-related
compounds (plant origin)
• Antifolates,
• Artemisinin derivatives
(plant origin),
• Two antibiotic families:
macrolides and tetracyclines
• Recently, Falcipain inhibitors
e.g., Quinoline-4-carboxamide
derivative, The (E)-
chalcone inhibitor,
and Tetracycline

Stem, seeds, leaves, or the
roots of the medicinal plant
Examples: Buchholzia coriacea,
Gymnema inodorum, Anogeissus
leiocarpus, Triumfetta cordifolia,
Bidens pilosa, Syzygium
guineense and Parinari
congensis, Amaranthaceae,
Annonaceae, Nyctagynaceae,
Rubiaceae, Vitaceae etc.

• Metallic NPs
e.g., gold and silver
a. Non-biological methods
(physical and chemical).
b. Biological method (green NPs
from bacteria, fungus, plant)
• Inorganic nonmetallic NPs
a- Titanium dioxide,
b- Zinc oxide,
c- Cadmium oxide
• Carbon-based NPs
a- Multi-walled
carbon nanotubes.
b- Carbon–silicon

Erhirhie et al. (2021);
Boonyapranai et al. (2022b);
Dahiru, Badgal & Neksumi (2023);
Ezenyi et al. (2020);
Panneerselvam et al. (2019)

Action • Quinoline: interacts
with RBCs membrane
stomatin protein
• Antifolates: antagonize
vit B9 (folic acid)
• Artemisinin: decomposes
the endoperoxide bridges
of heme producing toxic
anti-parasite free radicals.
•Macrolides: inhibits
parasite’s RBC invasion
• Tetracycline: targets
Plasmodium apicoplast
• Falcipain inhibitors:
hydrolyses hemoglobin

• Buchholzia coriacea Engl.
seeds and Gymnema inodorum
leaf. improves the hematologi-
cal and biochemical parameters.
• Anogeissus leiocarpus. Anti-
oxidants improve liver functions.
• Triumfetta cordifolia, Bidens
pilosa, Syzygium guineense and
Parinari congensis extracts.
anti-plasmodial activity.

• Diffusion via RBCs membrane,
• or interacts with the RBC
membrane

Gaillard et al. (2016);
Wilson et al. (2015);
Biddau & Sheiner (2019)

Advantage • Artesunate of choice in adult
cerebral falciparum malaria
• The artemether
is rapidly absorbed
• Artemisinin selectively toxic to
parasite

• Ameliorates physiological
and biochemical changes
• Selective toxicity of the parasite

• Biological extraction of metal
NPS is friendly to the ecosystem.
• Inorganic NPs are
non-toxic, hydrophilic,
biocompatible, and stable
compared to organic materials
• Improved AUC curve.
• Lower doses
• Lower frequencies
of administration,
• Improved half-life time,
• Better water solubility

• South East Asian Quinine Artesunate
Malaria Trial (SEQUAMAT) group (2005);
•White, van Vugt & Ezzet (1999)

(continued on next page)
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Table 1 (continued)

Conventional treatment Phytotherapy Nanomedicine References

Limitations •Multi-drug resistance,
• Declining efficacy,
•High cost,
• Toxicity,
• Short half-life time,
• Low water solubility
• Limited as chemopro-
phylactic e.g., Quinine
• Restricted in organ dysfunction
e.g., hepatic dysfunction
→impairs the conversion of
quinine to 3-hydroxyquinoline.

• Parasiticidal efficacy
needs further research.
• Systemic effects of the
medicinal plant not evaluated.
• Effects are dose-dependent.

• Non-biological extraction
of metallic NPs is hazardous.
• Limited industrial chances,
• Not cost effective,
• Limited clinical trials

• Baruah et al. (2018)
• Shanks (2016)
• Erhirhie et al. (2021)

Prospective Areas
of Research

• Studies on gene mutation,
• Trials of combined treatment
with modified chemical formulas

• Effects of combined
crude plant extracts +
chemotherapy against cytokine
storm of acute malaria
• Phyto therapies versus
chemotherapies regarding
anti-inflammatory, and
anti-oxidative effects using
different plant species.
• Evaluation of the
plasmodocidal effects of
various plant species in
particular in complicated
and resistant strains.
• Refining research on
a species-specific level.
• Assessing its antimalaria
prophylactic activity.

• The biological synthesis of
metallic NPs (green NPS)
• Comparative studies of Green
NPs using different plant species
• Assessing solid lipid NPs as
a carrier or antimalaria target
therapy in resistant malaria
• Systemic assessment of
the biological effects of NPs
• Evaluation of NPs with or
without drugs in complicated or
acute malaria.
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parasite species (Rosenthal, 2020; Ettari et al., 2021). Examples involve (1) quinoline-4-
carboxamide derivative. This compound was developed using molecular hybridization.
The efficacy of quinoline-4-carboxamides involves the inhibition of falcipain-2; besides
altering the food-vacuole and morphology of the parasite (Singh et al., 2021). (2) The (E)-
chalcone inhibitor. Chalcones are organic compounds with antimalarial and antioxidant
activities. E-chalcone 48 was found to bind only to the falcipain-2-substrate binding cleft;
thus, achieving high specificity (Machin, Kantsadi & Vakonakis, 2019). (3) Tetracycline.
Tetracycline is a broad-spectrum antibiotic; where its derivatives were found to inhibit
Falcipain-2 by interacting with its distal allosteric site (Hernández González et al., 2021).

Plant extracts
Medicinal plants proved to have impressive anti-plasmodial activities. Interestingly, studies
afford the scientific basis of plant extracts and their adventitious usage in folkloric herbal
medicine. Herein, we presented some examples (Laryea & Borquaye, 2019). Examples
involve (1) Buchholzia coriacea Engl. Seeds. In a murine study, a flavonoid-rich extract
of B. coriacea seeds (FEBCS) had a dose-dependent chemo-suppression; yet its efficacy was
lower than combisunate. FEBCS improved the hematological and biochemical parameters
to near-normal levels with nomorphological or behavioral sign toxicity (Enechi et al., 2021).
(2) Gymnema inodorum Leaf. In murine models, this plant extract exhibited protective
effects against the biochemical changes due to Plasmodium berghei e.g., hypoglycemia,
dyslipidemia, and acute liver and Kidney injury (Boonyapranai et al., 2021a); in addition,
alterations in hematological (Ounjaijean et al., 2021) and blood coagulation parameters
were normalized (Boonyapranai et al., 2022b). (3) Ethanol extract of the stem bark of
Anogeissus leiocarpus (EESAL). Treatment of malaria-infected murine models with
EESAL showed improved hematological parameters, restored biochemical indicators for
lipid peroxidation and liver functions, and exerted antioxidant effects. Besides, EESAL
was tolerable per oral up to 5,000 mg/kg body weight (Dahiru, Badgal & Neksumi, 2023).
(4) Ethanol extract of Triumfetta cordifolia. A Nigerian study revealed the efficient anti-
plasmodial activity ofT. cordifolia; yet, itsmechanismof action is still not recognized (Ezenyi
et al., 2020). (5) Bidens pilosa, Syzygium guineense and Parinari congensis extracts. In
mammalian cell lines, these extracts exhibited very feeble to no cytotoxicity. Yet, it showed
high selectivity for Plasmodium parasites. Extracts from Syzygium guineense and Parinari
congensis were the most toxic against the parasite (Laryea & Borquaye, 2019).

Nano-medicine
Why is nano-medicine regarded as the new era in malaria treatment? Plasmodium parasites
evade the host immune system within the RBCs. Thus, targeting the parasite necessitates
the ability of the drug to cross membranous barriers of the RBCs and the parasitophorous
vacuole and plasma membrane of the Plasmodium parasite. Thereafter, the drug, in an
optimumdose, should reach a definite target e.g., a food vacuole or an apicoplastmembrane
of the parasite (Anamika et al., 2020). Yet, nanocarriers are less than 1,000 nm with a high
surface area: volume ratio; thus, allowing for improving the area under curve (AUC curve)
and efficacy of the drugs with lower doses and frequencies of administration, improved
half-life time, and water solubility (Rathee et al., 2015; Patra et al., 2018).
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Overall, antimalarial drugs can approach their targets either through the lipidmembrane
of the RBCs by diffusion or through interacting with the protein component of the
erythrocyte membrane (receptors and transporters) by carrier-mediated transportation.
Carrier-mediated transportation is either passive or active (Clemons et al., 2018). In the
case of passive carrier-mediated transportation energy is not required; hence considered
facilitated diffusion. This type is attained by the conventional nanocarriers (the liposomes,
the polymeric nanoparticles, and the long-circulating polyethylene glycol nanocarriers
(PEGylated)). Nanocarriers, which are less than 80 nm in diameter, leak through the
porous membrane of the infected RBCs. In this case, the nano-carrier bypasses the cytosol
of the RBCs and sinks directly to the parasite through the tubovesicular membrane (TVM).
TVM is an alteration in the architecture of the RBCs wherein a network is synthesized by the
parasite to connect the membrane of the RBCs with the membrane of the parasitophorous
vacuole (that surrounds the parasite inside the RBCs). This TVM facilitates Plasmodium-
derived proteins transport, nutrition uptake, and elimination of waste products outside the
cell; thus, allowing the thriving of the parasite (Rai et al., 2017). For example, human serum
albumin (HSA) has been recognized as a potential drug-delivery vehicle for artemether
(ATM) in models infected with P. berghei species. These nanoparticles showed two-fold
higher peaks in the drug concentrations inside the RBCs. Overall, HSA is non-toxic and
non-immunogenic (Kaur et al., 2021). In addition,HSA is an endogenous transport protein
with several drug binding sites; thus, acting as a useful drug carrier to improve stability and
half-life time of the loaded drugs or perform as a targeting agent. HSA has high specificity
and uptake by the parasitized RBCs (Tahir, Malhotra & Chauhan, 2003). In 2019, Esu et
al. (2019) speculated that HSA can intensely bind to ATM and its byproducts by thiol and
amino groups, and thus can be used in drug-resistant.

On the contrary, active drug targeting requires energy consumption and surface
activation of the nanocarriers by using specific ligands that bind to receptors on the
membrane of the infected RBCs. These ligands might be in the form of antibodies,
carbohydrates, peptides, or proteins. In this type, the drug is delivered to the parasite
through the cytosol of the RBCs (Anamika et al., 2020). For instance, pyronaridine and
atovaquone can be formulated as immunoliposomes and interact with the glycophorin-
A receptor on the RBCs through anti-glycophorin A-antibodies (Biosca et al., 2019).
Artemisinin can be loaded on nanostructured lipid carriers and react with the transferrin
receptor on the brain cells (in cerebral malaria) through transferrin ligands (Emami,
Yousefian & Sadeghi, 2018). Recently, the emergence of the polymeric wall in the
encapsulation of lipophilic (oil) drugs has been introduced. These Nanocapsules have
high entrapment efficacies and low toxicity and polymer content. In addition, it increases
the solubility of the compounds and evades drug inactivation in the gut (Rajabi & Mousa,
2016). In a prior study, the poly (butyl methacrylate-co-morpholino ethyl sulfobetaine
methacrylate)-based nanoparticles were shown to specifically target P. falciparum-infected
RBCs compared with the healthy RBCs by a ratio 74.8%: 0.8% (Biosca et al., 2021).

Green silver nanoparticles (Ag NPs). Green synthesis is the processing of biologically
friendly elements e.g., plants for nanoparticle synthesis. These are other recent models with
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high therapeutic potential against malaria. For example, silver nanoparticles extracted from
the leaves of the Indigofera oblongifolia plant alleviated the oxidative injury of the infected
livers and improved ISHAK’s inflammatory scale (or the modified histology activity index
score) at a dose of 50 mg/kg for 7 days (Dkhil et al., 2020). The neem-AgNPs were shown to
have no hemolytic activity against healthy and parasitized RBCs (Ghazali, Mohamed Noor
& Mustaffa, 2022).

Solid lipid nanoparticles. These are produced as an alternative to liposomes, emulsions,
polymeric nanoparticles, and lipid nanocarriers and is considered the second generation
of lipid carriers (Vanka et al., 2018). For instance, Chloroquine was structured in the
form of solid lipid nanoparticles that react with glycosaminoglycans (GAG)-like receptors
on the membrane of the RBCs through specific ligand (heparin). The results showed
higher efficacy with less adverse effects compared with the conventional treatment (Muga,
Gathirwa & Tukulula, 2018).

Models for anti-malaria nano treatments
Using in vitro model, nanosized solid dispersion of chloroquine and primaquine loaded
with dissolvingmicroarray patches enhanced treatment Plasmodium vivax infection (Anjani
et al., 2023). In BALB/c mice, the synthesized nano- chloroquine revealed its appropriate
size and solubility. Highest suppressive impact of nano-chloroquine on the growth of
Plasmodium parasitic was determined at 16 mg/kg dose eliminating 95% of the parasites.
ED50 (the dose of drug that results in a precise effect in 50% of the experimental treated
group) is detected at a dose of 7.7 mg/kg. Biochemical indices revealed that the synthesized
nano-chloroquine was safer than chloroquine. Moreover, no adverse effects were detected
when assessed in tissues (Elmi et al., 2022). Of note, Usman & Farrukh (2018) formulated
the polymeric iron nano-chloroquine phosphate using the polyol method and showed that
its nanoparticle size is approximately 10 nm. Using rodent models infected with P. berghei,
nano-chloroquine ameliorated the oxidative damage in the mitochondria of the liver and
spleen (Tripathy et al., 2013).

Assessing the antimalarial efficacy of primaquine phosphate loaded on polyethylene
glycol galactosylated nano-lipid carriers showed suppression of parasitemia by 99.46%
at a dose of 2 mg/kg/d. After the 35-day post-treatment, there was better inhibition of
the parasitemia by 28% and a higher survival rate (66.66%) when compared with pure
drug (Baruah et al., 2018). Also, zein nanoparticles as carriers of artemether have been
suggested for the treatment of severe malaria as a pioneering intravenous dosage form
(Boateng-Marfo et al., 2021).

Yet, manipulating other anti-malaria drug classes (Table 1) using different forms
of nanoparticles (Tables 1, 2 and 3) to attain therapeutic efficacy particularly during
complicated and severe malaria is yet to be investigated. Also, translating antimalaria
nano-medicine from laboratory trials to clinical trials would improve intensely our insights
into the dosage, frequency, and treatment duration appropriate to treat malaria.
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Table 2 Types of nanocarrier-mediated transportation through erythrocytic membrane.

Front of comparison Passive carrier-mediated transportation Active carrier-mediated transportation

Type of NPs Conventional nanocarriers with a diameter of 80 nm. Nanocarriers with specific ligands
Examples NPs in the form of:

• Liposomes,
• polymeric nanoparticles,
• or long-circulating polyethylene glycol Nanocarriers
(PEGylated)

Ligands in the form of:
• Antibodies
• carbohydrates,
• peptides,
• or proteins

Application of drug-NPs Human serum albumin as drug-delivery Artemether in P.
berghei infection

• Pyronaridine and atovaquone (formulated as
immunoliposomes) acts via anti-glycophorin A-antibodies
→interact with the Glycophorin-A receptor on the RBCs
• Artemisinin (loaded on nanostructured lipid carriers) acts
via transferrin ligands→ react with the transferrin receptor
on the brain cells (in cerebral malaria).

Energy requirement ATP is not required (facilitated diffusion). ATP is required
Mechanism of action Bypasses the cytosol of the RBCs and sinks

directly to the parasite through the TVM.
Nanocarriers via specific ligands + receptors on the
membrane of the infected RBCs→membrane surface
activation of infected RBCs→ The drug is delivered
through the cytosol of the RBCs

Effects • Two-fold increases in the drug
concentrations inside the RBCs.
• Non-toxic and non-immunogenic.
•HSA is an endogenous transport
protein→ several drug binding sites.
• Improved stability and 1/2 lifetime of the loaded drugs
• Acts as a targeting agent.
•High specificity
•High uptake by the parasitized RBCs

•High entrapment efficacies
• Low toxicity and polymer content.
• Increased solubility
• Evades drug inactivation in the gut
•High target specificity

Table 3 Green silver NPs and solid lipid nanoparticles (NPs) in malaria treatment.

Green silver nanoparticles (AgNPs) Solid lipid NPs

Origin Extracted from the plants 2nd generation of lipid carriers
Examples • The Indigofera oblongifolia plant

• Neem-AgNPs
Chloroquine-solid lipid NPs

Effects Antioxidative, anti-inflammatory,
anti-hemolytic

React with GAG-like receptors on the RBCs

Limitations of nano-mediated drug delivery systems
Nano-medicine despite being regarded as an opportunity to face challenges in malaria
treatment, the emerging issues like assessment of safety, biological fate, industrial chances,
cost-effectiveness, and transferring the knowledge from laboratorial trials to real clinical
trials still require further in-depth investigations for safe, efficient and feasible future
application (Zhang et al., 2020).

The combination therapy
To compete challenges in malaria treatment combination treatments is replacing single
therapeutic protocols. Combination treatments involve non-artemisinins e.g., sulfadoxine+
pyrimethamine, sulfadoxine + pyrimethamine + amodiaquine, and artemisinins e.g.,
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artesunate + amodiaquine, artesunate +mefloquine, artemether + lumefantrine, artesunate
+ sulfadoxine/pyrimethamine (Erhirhie et al., 2021). Curcumin-loaded liposomes
combined with α/ β arteether showed therapeutic efficacy against malaria compared
with liposome formulation alone; in addition, recrudescence was significantly prevented
(Aditya et al., 2012). The Artemisinin-based combination therapies for uncomplicated
Plasmodium falciparum infection in endemic regions have been recommended by the
WHO e.g., Artemether-Lumefantrine (Art-L) (Coartem®) (World Health Organization,
2015; Assefa et al., 2010). However, resistance among artemisinin and its partner drug
continues to evolve, producing Plasmodium strains more capable of surviving treatment,
which can subsequently spread across a wider geographical area. As a result, triple
drug combinations mefloquine + dihydroartemisinin + piperaquine and amodiaquine
+ artemether + lumefantrine appeared to counterbalance the resistant mechanisms of the
parasite; besides being well tolerated and safe. Adverse effects were mainly in the form of
loss of appetite, nausea, and vomiting in some cases. Atovaquone + pyronaridine is also
recommended in combination with different mechanisms of action (van der Pluijm et al.,
2021).

The anti-relapse therapies. Tafenoquine which is a long-acting 8-aminoquinoline
compound belonging to primaquine has been recently introduced. In 2018, the Food
and Drug Administration reported afenoquine as an anti-relapse treatment (trade name
Krintafel and Arakoda) (Haston, Hwang & Tan, 2019).

CONCLUSION
Further than conventional microscopy, malaria particularly in its complicated form can be
mirrored through diverse altered biochemical and hematological indices e.g., dyslipidemia,
hypoglycemia, and elevated liver and renal functions. Of note, the aforementioned
physiological anomalies are common outcomes of many metabolic and lifestyle disorders.
Thus, the current review suggests comprehensive coupling of the laboratory indices with
other malaria diagnosis procedures with a core emphasis on promoting the development of
high-performance and highly-sensitive detection methods to refine the definitive diagnosis
of malaria. In this context, we found that the exploration of biosensors is one of the
promising methodologies for feasible, sensitive, and efficient malaria diagnosis. Falcipan-2
as a therapeutic target has been extensively manipulated in recent chemical therapeutic
trials. The efficacy of plant extract remains a matter of research despite being derived from
old folklore as having anti-plasmodial activities. Antimalaria nano-medicine demonstrates
the emergence of nanocarriers (either active or passive) in drug transportation. Recent
trends in antimalaria nano-medicine involve polymeric wall encapsulation of lipophilic
drugs, green silver nanoparticles, and solid nanoparticles that however are under trial to
increase the efficacy of antimalaria nano-medicine. The emerging drug resistancemandated
trials for safe combination treatment e.g., amodiaquine + artemether + lumefantrine. Also,
afenoquine has been introduced as a new anti-relapse therapy.
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Study limitation
Due to human ethical considerations, the majority of studies conducted on malaria were
carried out on unnatural host-parasite interaction e.g., murine models that are affected by
factors related to differences in host specificity and physiological functions. Thus, caution
should be applied when translating those findings on human pathophysiology bearing in
mind the discrepancy in metabolism and/or physiological differences among species.
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