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This study presents a novel approach to high-resolution density distribution mapping of
two key species of the 1170 “Reefs” habitat, Dendrophyllia cornigera and Phakellia
ventilabrum, in the Bay of Biscay using deep learning models. The main objective of this
study was to establish a pipeline based on deep learning models to extract species density
data from raw images obtained by a remotely operated towed vehicle (ROTV). Different
object detection models were evaluated and compared in various shelf zones at the head
of submarine canyon systems using metrics such as precision, recall, and F1 score. The
best-performing model, YOLOv8, was selected for generating density maps of the two
species at a high spatial resolution. The study also generated synthetic images to augment
the training data and assess the generalization capacity of the models. The proposed
approach provides a cost-effective and non-invasive method for monitoring and assessing
the status of these important reef-building species and their habitats. The results have
important implications for the management and protection of the 1170 habitat in Spain
and other marine ecosystems worldwide. These results highlight the potential of deep
learning to improve efficiency and accuracy in monitoring vulnerable marine ecosystems,
allowing informed decisions to be made that can have a positive impact on marine
conservation.
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15 Abstract

16 This study presents a novel approach to high-resolution density distribution mapping 

17 of two key species of the 1170 �Reefs� habitat, Dendrophyllia cornigera and Phakellia 

18 ventilabrum, in the Bay of Biscay using deep learning models. The main objective of 

19 this study was to establish a pipeline based on deep learning models to extract 

20 species density data from raw images obtained by a remotely operated towed vehicle 

21 (ROTV). Different object detection models were evaluated and compared in various 

22 shelf zones at the head of submarine canyon systems using metrics such as 

23 precision, recall, and F1 score. The best-performing model, YOLOv8, was selected 

24 for generating density maps of the two species at a high spatial resolution. The study 

25 also generated synthetic images to augment the training data and assess the 

26 generalization capacity of the models. The proposed approach provides a cost-

27 effective and non-invasive method for monitoring and assessing the status of these 

28 important reef-building species and their habitats. The results have important 

29 implications for the management and protection of the 1170 habitat in Spain and 

30 other marine ecosystems worldwide. These results highlight the potential of deep 

31 learning to improve efficiency and accuracy in monitoring vulnerable marine 

32 ecosystems, allowing informed decisions to be made that can have a positive impact 

33 on marine conservation.

34 Keywords: Artificial Intelligence, Vulnerable Marine Ecosystem, Habitat Mapping, 

35 Object Detection Model, Natura 2000 Network
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36 Introduction

37 The Habitats Directive (Directive 92/43/EEC) establishes the "Natura 2000" network, 

38 a network of European sites which aims to maintain or, if possible, re-establish a 

39 favorable conservation status for certain types of natural habitats and certain animal 

40 and plant species. The marine Natura 2000 network is an integral part of the 

41 European ecological network Natura 2000, and constitutes the application of the 

42 Habitats Directive and the Birds Directive (Directive 2009/147/EC) in the marine 

43 environment, considered the two most important legislative tools for the conservation 

44 of biodiversity in Europe. The Natura 2000 network is composed of Sites of 

45 Community Importance (SCI), which eventually become Special Areas of 

46 Conservation (SAC), and Special Protection Areas for Birds (SPA). 

47 The Habitats Directive (92/43/EEC) lists different types of marine habitats that are 

48 important for the community and need to be conserved. To do this, Special Areas of 

49 Conservation (SACs) are designated. One of the habitats listed in Annex I of the 

50 Habitats Directive is Habitat 1170, which refers to Reefs. Reefs in the sense of the 

51 Directive are considered to be all those compact hard substrates that outcrop on the 

52 seabed in the sublittoral (submerged) or littoral (intertidal) zone, whether of biogenic 

53 or geological origin.

54 In Spain, the Habitat 1170 Reefs  extends along the entire coastline and marine 

55 waters, from coastal areas to the deep seabed, occupying extensive regions. In this 

56 diverse array of Habitat 1170 typologies, our focus narrows to two rocky outcrops 

57 within the Cantabrian Sea�s circalittoral shelf. These outcrops are categorized as 

58 vulnerable marine ecosystems (VMEs) due to their importance as biodiversity 

59 hotspots and ecosystem functioning in the deep sea (FAO, 2009). Circalittoral rocky 

60 substrates, located within the phytal system below the maximum distribution level of 

61 marine phanerogams and photophilic algae, and extending to the scyaphilic algae�s 

62 maximum depth, are characterized by low light levels and relatively stable 

63 hydrodynamic conditions compared to shallower regions.. The depth at which the 

64 circalittoral zone begins depends directly on the amount of light penetrating the 

65 seafloor. Animal species predominantly dominate most circalittoral rocky substrates 

66 due to the diminished light conditions. The number of species living on these 

67 seabeds can be very highly variable, influenced by geographical factors, seabed 

68 geomorphology, and various environmental elements (Dominguez-Carrió et al., 

69 2022).

PeerJ reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)

Manuscript to be reviewed

R
Isticanje
one fullstop

R
Isticanje
highly already means very variable

R
Isticanje
Network



3

70 Within the Cantabrian circalittoral rocky platform, communities consist mainly of 

71 numerous sponge and coralligenous species, which provide three-dimensional 

72 structure to these habitats, classifying them under  Habitat 1170 Reefs. However, 

73 despite their importance as structuring species, their small size and highly 

74 fractionated distribution of this organism on the seabed pose significant challenges 

75 for mapping . Simultaneously, monitoring these species and tracking community 

76 distribution across time and space is imperative for habitat protection. The use of 

77 remotely operated vehicles (ROV�s) imagery has emerged  as a valuable tool to 

78 address this challenge.

79 Underwater vehicles generates a large amount of in situ, non-destructive, 

80 representative and potentially repeatable samples, and this allows not only a 

81 complete characterization of benthic diversity but could also lay the groundwork for a 

82 long-term monitoring initiatives (Dominguez-Carrió et al., 2022). However, processing 

83 this information has encountered bottlenecks, primarily attributed to the time-

84 consuming, labor-intensive and costly nature of annotating visual data (Weinstein, 

85 2017). In addition, deep ecosystems present complex environments characterized by 

86 unbalanced light conditions, low contrast, and the presence of occlusion and 

87 organisms camouflage. Under these circumstances, objects captured by the ROV 

88 camera become challenging to identify (Song et al., 2022).  

89 To address these problems and obtain quantitative information from underwater 

90 images, new automated image analysis tools have emerged. One of the most 

91 promising approaches involves the use of deep learning techniques based on neural 

92 networks, a combination of artificial intelligence and computer vision. This approach 

93 entails the application of multiple layers of highly interconnected machine learning 

94 algorithms to achieve improved results from raw images (Olden et al., 2008; Le Cun 

95 et al., 2015). These techniques have already achieved formidable results in different 

96 marine ecology tasks such as coral classification (Bhandarkar et al., 2022; Mahmood 

97 et al., 2017; Raphael et al., 2020), fish detection and classification (Zhong et al., 

98 2022; Siddiqui et al., 2018; Knausgård et al., 2021 ), and identification of diverse 

99 benthic fauna (Abad-Uribarren et al., 2022; Song et al., 2022; Liu & Wang 2022).

100 Within the field of deep learning, object detectors can be classified into two 

101 categories: two-stage detectors and single-stage detectors. Two-stage detectors 

102 exemplified by Faster R-CNN (Ren et al., 2017), first generates a set of region 

103 proposals (RPN) before determining the object category and location. In contrast, 

104 single-stage detectors, such as YOLO (Redmon et al., 2016), simultaneously identify 

105 and locate objects in a single step. These object detection models can be used as 
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106 tools to automate species identification procedures and generate accurate density 

107 maps for ecosystem monitoring. Surveys employing these models yield 

108 comprehensive records of ecosystems and facilitate the identification of trends in 

109 habitat health and biodiversity.

110 Marine ecosystems are subject to numerous threats and impacts, such as climate 

111 change, waste pollution, commercial fishing and deep sea mining (Pinheiro et al., 

112 2023). Therefore, it is important to generate detailed mapping of their most 

113 vulnerable ecosystems in order to make informed decisions about their management 

114 and conservation. Accurate mapping facilitates the identification of critical areas that 

115 require protection and the development of effective strategies to mitigate negative 

116 impacts on the ecosystem (Rodriguez-Basalo et al., 2022).

117 In this study, we assess the density of Habitat 1170 structuring species in two 

118 circalittoral rocky shelf areas of the Cantabrian Sea. We employ object detection 

119 models to automatically identify and label species in underwater images. Initially, we 

120 compare  object detection models with different neural architectures, to determine the 

121 most effective model for generating species density maps from geolocated images 

122 obtained along a photo-transect. Subsequently, the model demonstrating the best 

123 metrics is employed to establish a pipeline for generating detailed species density 

124 maps. Our ultimate goal is to create  an initial base map for monitoring ecosystem 

125 health, offering a comprehensive  geographic description of Habitat 1170 structuring 

126 species, and serving as a support tool for decision-making in Natura 2000 network 

127 areas. The expected results of this model's application  include the automated 

128 generation of density and geographic presence data for benthic species D. cornigera 

129 and P. ventilabrum, with results presented through species density maps.

130 Materials and methods

131 Study area

132 The research was centered on two rocky outcrops situated within the circalittoral 

133 shelf of the Aviles submarine Canyons System (ACS)and the Capbreton submarine 

134 Canyons System (CCS), both located in the Cantabrian Sea to the south of the Bay 

135 of Biscay (Figure 1). The ACS has been designated as a Site of Community Interest 

136 (SCI) and is currently undergoing studies aimed at elevating its status from SCI to 

137 Special Area of Conservation (SAC).Likewise, the CCS area is under examination for 

138 SCI status, with the intention of integrating it into  the marine Natura 2000 Network. 
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139 These studies are part of the actions carried out in the LIFE IP INTEMARES project 

140 (Baena et al., 2021).

141 In the Bay of Biscay, the continental shelf is generally narrow, a common feature of 

142 compressive continental margins (Ercilla et al., 2008). The region is characterized by 

143 the presence of rocky outcrops mainly formed due to sedimentary transport 

144 mechanisms associated with oceanographic dynamics. These rocky outcrops serve 

145 as critical habitats for a diverse array of benthic communities, many of which fall 

146 within the 1170 habitat category.forming a heterogeneous and complex ecosystem 

147 capable of supporting a rich biodiversity. . Within these communities, our study 

148 focuses on two species selected  for their significant role  in structuring the 1170 

149 habitat within the rocky circalittoral platform of the Cantabrian Sea (Rodríguez-Basalo 

150 et al., 2022). These species are the yellow coral Dendrophyllia cornigera (Lamarck, 

151 1816) and the cup sponge Phakellia ventilabrum (Linnaeus, 1767) (Figure 2).

152 ROTV underwater imagery

153 High-resolution underwater images obtained using the remotely operated towed 

154 vehicle (ROTV) Politolana (Sánchez & Rodríguez, 2013) were employed. The ROTV 

155 Politolana, designed by the Santander Oceanographic Center of the Spanish Institute 

156 of Oceanography (IEO-CSIC), has the capability to descend to a maximum depth of 

157 2000 m. For seabed exploration, the ROTV Politolana uses photogrammetric 

158 methods and is equipped with a high-resolution camera, bidirectional telemetry and 

159 an acoustic positioning system. Additionally, the vehicle is equipped with four laser 

160 pointers coupled at a precise distance of 25 cm from each other. This configuration 

161 allows precise measurements and detailed data to be obtained during each 

162 deployment. Furthermore, the vehicle acquires high-definition images and videos 

163 synchronized with environmental data, ensuring the acquisition of comprehensive 

164 datasets during each dive.

165 In total, 20 transects were conducted for this study, with an average length of 410 m 

166 per transect. In the ACS, images were acquired during the INTEMARES A4 Avilés 

167 oceanographic campaign (2017). In contrast, in the CCS, photographic transects 

168 were carried out during the INTEMARES-Capbreton 0619 and 0620 campaigns 

169 (2019 and 2020). These transects, both in ACS and CCS, were carried out in a depth 

170 range between 90 and 300 m.

171 The Politolana ROTV captures photographs at time intervals ranging from 0.5 s and 

172 20 s, depending on the chosen sampling configuration. This approach provided 

173 representative data of the habitat and benthic communities to be characterized. 
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174 These high resolution images provided  comprehensive views of the seafloor in 

175 (Figure 3). In total, 5012 images were contributed from both ACS and CCS for this 

176 study.

177 Image preprocessing and algorithm training

178 To evaluate the model's generalization capabilities, 60 images from a pool of 300 

179 obtained from the ACS were randomly selected as the validation set. The remaining 

180 240 images were used as training images in a ratio of 8 to 2. Ensuring that there 

181 were no repeated images or individuals between the training and validation sets was 

182 crucial to prevent model overfitting. 

183 For image annotation, we utilized the Supervisely image data annotation software 

184 (https://supervise.ly/), enabling the creation of bounding boxes around the target 

185 species D. cornigera and P. ventilabrum. Our labeling approach ensured that each 

186 annotation encompassed the entire individual while minimizing background area 

187 (Figure 4). The training data set received meticulous attention, with 527 and 1045 

188 annotations performed for the D. cornigera and P. ventilabrum classes. Annotations 

189 were carried out by trained expert scientists. To balance class distribution, the 

190 Supervisely flying object function (https://github.com/supervisely-ecosystem/flying-

191 objects) was used. This function generates synthetic data for object detection tasks. 

192 Specifically, it involved annotating specimens from both classes as masks, followed 

193 by the application of magnifications to the objects and their distribution on different 

194 selected backgrounds. With the creation of 20 synthetic images, class balance was 

195 achieved with 2330 and 2605 annotations for the classes D. cornigera and P. 

196 ventilabrum, respectively (Figure 4).

197 In addition, to evaluate the capacity of the model to generalize across varying 

198 environmental conditions 60 images were randomly selected from the CCS area,  a 

199 region where the two target species are exposed to different environmental 

200 pressures. These images were used as validation images to determine if the model 

201 was able to correctly detect the target species.

202 All object detection models were based on the same pre-training weights from the 

203 COCO (Common Objects in Context) dataset, which is a widely used dataset in 

204 computer vision research. The models were trained on selected ACS images, both 

205 with and without data augmentation. The training spanned 200 epochs, allowing the 

206 models to continually  improve their accuracy and performance. During each epoch, 

207 the models processed the entire training data set, iteratively adjusting their 
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208 parameters to minimize prediction error. This allowed the models to continuously 

209 improve their ability to accurately detect the target species.

210 Automatic species labeling of underwater images using deep learning

211 For automatic annotation of the  image set, a deep learning based framework was 

212 developed, considering three different deep neural network architectures. A neural 

213 network consists of input layers that receive the data, a processing core with hidden 

214 layers, and output layers that provide the model output. The term "deep" refers to the 

215 number of hidden layers in the neural network structure. A neural network is trained 

216 to produce the desired output by adjusting its internal parameters, called weights, 

217 based on the error between the model output and the correct response. This 

218 adjustment is performed by a process called gradient descent (Schmidhuber, 2014).

219 This study compared, three object detection models with different neural 

220 architectures: YOLOv7 and YOLOv8 (Bochkovskiy et al., 2022; Karmaker et al., 

221 2023), both single-stage models, and Faster R-CNN (Ren et al., 2017), a two-stage 

222 model. YOLO single-stage models have been shown to have advantages compared 

223 to Faster R-CNN (Abdulghani &  Dalveren 2022; Maity et al., 2021; Zheng et 

224 al., 2022), so the latter two model versions were included in the comparison.

225 YOLOv7 and YOLOv8 are real-time object detection models that employ 

226 convolutional neural networks (CNNs) to efficiently identify and localize objects in 

227 images. YOLOv7 uses the ELAN architecture, which improves the learning and 

228 convergence capabilities of deep networks. On the other hand, YOLOv8 integrates 

229 advances in deep learning and computer vision, including attention structures and 

230 dilation convolution blocks, resulting in improved speed and accuracy in object 

231 detection. In this study, the YOLOv8x model was used for YOLOv8 training, while the 

232 YOLOv7-E6E model was used for YOLOv7 training.

233 Faster R-CNN, a two-stage object detection model, integrates a CNN for features 

234 extraction and a Region Proposal Network (RPN) to generate high-quality proposals. 

235 The RPN predicts the boundaries and objectivity scores at each image position and 

236 is trained end-to-end. These proposals are then used by Faster R-CNN in the object 

237 detection and classification stage (Ren et al., 2017). In this study, the X-101-32x8d 

238 model was used for Faster R-CNN training.

239 The YOLOv8x, YOLOv7-E6E and Faster R-CNN X-101-32x8d versions were chosen 

240 for this study because of their object detection performance. According to the data 
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241 and the information available in the GitHub repositories, these versions present high 

242 performance in terms of accuracy and speed in object detection.

243 For training the object detection models, we used Google Colab Pro, a platform that 

244 provided us access to the NVIDIA A100-SXM GPU. This high-performance GPU 

245 enabled efficient processing of large datasets and expedited model training. 

246 Furthermore, Google Colab facilitated seamless code sharing and result 

247 dissemination among  team members.

248 Object detection model selection

249 To evaluate the performance of the different models in the task of detecting D. 

250 cornigera and P. Ventilabrum within the ACS and CCS shelf areas, we selected three 

251 widely used metrics for object detection tasks: precision, recall, and F1 Score. These 

252 metrics were compared and analyzed for the YOLOv8, YOLOv7, and Faster R-CNN 

253 object detection models. 

254 Precision measures the accuracy of the model predictions, representing the 

255 percentage of predictions that are correct. 

256 Recall (or the sensitivity of a classifier) evaluates how effectively the model identifies 

257 all positive instances, quantifying the number of actual positives correctly labeled as 

258 positives.

259 The F1 score serves as an index that evaluates the balance between precision and 

260 recall, a widely used metric in deep learning for comparing the performance of two 

261 models on the same task. The calculations for precision, recall and F1 are described 

262 by the following equations (1), (2) and (3) (Van Rijsbergen, 1974):

263

264 For model evaluation, an intersection over union (IoU) of 0.5 was adopted. IoU 

265 quantifies the overlap between the detection and the actual object, calculated as the 

266 intersection between the two bounding boxes divided by their union (Figure 5). An 

PeerJ reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)

Manuscript to be reviewed

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20%5Ctext%7Bprecision%7D%20%26%3D%20%5Cfrac%7B%5Ctext%7BTrue%20positives%7D%7D%7B%5Ctext%7BTrue%20positives%7D%20%2B%20%5Ctext%7BFalse%20positives%7D%7D%20%5Ctag%7B1%7D%20%5C%5C%20%5Ctext%7Brecall%7D%20%26%3D%20%5Cfrac%7B%5Ctext%7BTrue%20positives%7D%7D%7B%5Ctext%7BTrue%20positives%7D%20%2B%20%5Ctext%7BFalse%20negatives%7D%7D%20%5Ctag%7B2%7D%20%5C%5C%20F1%20%26%3D%202%20%5Ccdot%20%5Cfrac%7B%5Ctext%7Bprecision%7D%20%5Ccdot%20%5Ctext%7Brecall%7D%7D%7B%5Ctext%7Bprecision%7D%20%2B%20%5Ctext%7Brecall%7D%7D%20%5Ctag%7B3%7D%20%5Cend%7Balign*%7D#0


9

267 IoU of 0.5 implies that 50% of the area of the real object�s area is covered by the 

268 detection. In addition, metrics were computed for two different confidence thresholds 

269 (0.5 and 0.6), enabling assessment of the model's detection performance at different 

270 levels of certainty.

271 Both Aviles training datasets, with and without augmentations, were used for 

272 evaluating the models on the Aviles and Capbreton validation datasets. The addition 

273 of the Capbreton dataset was crucial for assessing the model`s ability to generalize 

274 to other canyon systems subjected to different pressures and environmental 

275 conditions.A comprehensive evaluation of the models was conducted under different 

276 scenarios and conditions, ensuring the acquisition of accurate and reliable results for 

277 object detection in subsea systems.

278 Pipeline for species density map generation

279 To streamline the process of generating species density maps from raw transect 

280 images, A pipeline was implemented in Google Colab Pro (Figure 6). The images 

281 were synchronized with the ROTV telemetry data, which provided information on the 

282 depth, coordinates, and height of the ROTV relative to the seafloor for each transect 

283 image. In parallel, using ImageJ software (version 1.53o), the distance between the 

284 ROTV laser pointer marks on 50 images was manually measured to obtain the area 

285 covered by each image based on its resolution. With this data, a simple regression 

286 model was trained using machine learning techniques to relate the area to the height 

287 of the ROTV relative to the seafloor. The model predictions were used to calculate 

288 the area of the rest of the images.

289 Simultaneously, predictions were carried out using the YOLOv8 model, previously 

290 trained with our data (YOLOv8-SCS), to analyze the images captured in the 

291 transects. Notably, in the comparison of object detection models, YOLOv8 obtained 

292 the best metrics with an IoU of 0.5 and a confidence threshold of 0.6 (Figure 7). 

293 Therefore, we set these parameters to perform the predictions and generate the 

294 inferences in the  workflow. These results were integrated with the area and 

295 coordinates of each image in order to calculate the number of individuals per square 

296 meter in each image.

297 Finally, QGIS software (version 3.22) was used to create maps based on the species 

298 density data obtained from each transect image point. We applied a symbology 

299 scheme based on graduated symbol sizes to represent density categories (Schmidt 

300 et al., 2022). The density data series was classified into intervals according to their 

301 values, and each interval was assigned a corresponding symbol size, with larger 
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302 sizes indicating higher densities. This approach facilitated the clear visualization of 

303 areas with the highest species density on the generated maps.

304 Results

305 Comparison of object detection models

306 In the evaluation of object detection models, we compared one-stage models 

307 YOLOv7 and YOLOv8 with the two-stage model Faster R-CNN. Our assessment 

308 included both models trained with and without data augmentation, and the results are 

309 summarized in Table 1. Notably, data augmentation significantly improved the 

310 performance of all three models, with the one-stage models demonstrating more 

311 substantial enhancements for D. cornigera. YOLOv8 achieved a recall rate of 18.5% 

312 and an F1 score of 11.4%, while YOLOv7 showed improvements above 7.7% across 

313 all its metrics. For P. ventilabrum species, the Faster R-CNN model showed the most 

314 significant improvement  with an 8.5% increase in recall and a 5.2% in F1 score. The 

315 YOLOv8 model also showed a  5.7% improvement in precision.for P. ventilabrum.

316 Figure 7 provides a comparison of metrics for detecting P. ventilabrum and D. 

317 cornigera species using the YOLOv8, YOLOv7, and Faster R-CNN models in both 

318 the ACS and CCS regions. The analysis includes augmented data and confidence 

319 thresholds of 0.5 and 0.6. Notably, the YOLOv8 model outperforms the other models 

320 in terms of precision, recall, and F1 for both confidence thresholds. In the ACS, the 

321 YOLOv8 model achieves precision values exceeding 92.3% for P. ventilabrum and 

322 exceptional results for D. cornigera, with a precision of 92.4%, a recall of 91.0%, and 

323 an F1 score of 91.7% for a threshold of 0.6. Furthermore, YOLOv8 exhibits superior 

324 generalization capabilities by delivering the best metrics for both species in the CCS 

325 area.

326 Overall, the performance of all three models improves as the threshold is increased 

327 from 0.5 to 0.6 in terms of precision and F1. These results indicate that the YOLOv8 

328 model is most suitable for the task and a threshold of 0.6 enhances precision and F1 

329 scores.

330 Figure 8 presents a visual representation of the detection results obtained using the 

331 YOLOv8, Faster R-CNN and YOLOv7 models. A detector confidence threshold was 

332 set at 0.6 and an IoU threshold at 0.5. 

333 The images reveal that all three models occasionally misclassify certain sponges as 

334 P. ventilabrum, particularly Faster R-CNN, which exhibits more false detections, even 
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335 mistaking D. cornigera for other sponge species. Notably, none of the models detect 

336 all D. cornigera specimens in the images, with YOLOv7 showing the highest number 

337 of undetected specimens, missing over 60% of them. YOLOv8 stands out for its 

338 ability to detect smaller D. cornigera specimens at high densities.

339 In a separate set of images, Faster R-CNN misclassifies a complex sponge as both 

340 D. cornigera and P. ventilabrum and also inaccurately identifies encrusting sponge 

341 specimens as D. cornigera. The YOLO-based models struggle to detect P. 

342 ventilabrum specimens accurately.

343 Overall, these results demonstrate that YOLOv8 exhibits superior detection efficiency 

344 and counting precision compared to other evaluated models, making it the preferred 

345 algorithm for detecting these valuable marine benthic species.

346 Species density survey

347 A total of 5021 transect images were processed through a pipeline designed for 

348 automatic detection of target species. These transects covered an area of 5647.48 

349 m², with an average area covered of 282.37 m². As a result, the YOLOv8-SCS model 

350 generated 27668 automatic annotations comprising 6087 for P. ventilabrum and 

351 21581 for D. cornigera. This resulted in an average density of 1.01 individuals/m² for 

352 P. ventilabrum and 3.07 individuals/m² for D. cornigera in the ACS and 1.18 

353 individuals/m² for P. ventilabrum and 4.98 individuals/m² for D. cornigera in the CCS. 

354 Species density maps were generated based on this information, allowing for a 

355 comparison of the two study areas. The CCS rocky platform exhibited the highest 

356 densities for both species, with a maximum density of 60.56 individuals/m² for D. 

357 cornigera and 12.96 individuals/m² for P. ventilabrum. These peak density 

358 observations occurred within the same transect at an average depth of 160.08 m and 

359 are illustreted in the species density maps (Figure 9).

360 The implementation of the YOLOv8-SCS model for automatic annotation has led to 

361 significant time savings. While a professional researcher would require approximately 

362 210h 53min to annotate all 5021 images, the YOLOv8-SCS model accomplished the 

363 same task in just 2h 9min. This represents a time reduction of over 98%, highlighting 

364 the efficiency and effectiveness of the automatic annotation process.

365 Discussion

366 The present study addresses the need to provide efficient solutions for the 

367 monitoring, protection and conservation of vulnerable marine ecosystems (VMEs) of 
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368 the circalittoral shelf by implementing automatic identification algorithms and 

369 calculating densities without human intervention. These ecosystems are crucial for 

370 maintaining marine biodiversity and play a vital role in the provision of essential 

371 ecosystem services (Ríos et al., 2022). Incorporating automatic image analysis 

372 techniques represents a significant advancement in the field of benthic community 

373 studies (Abad-Uribarren et al., 2022). The tremendous diversity of species present 

374 poses a formidable challenge for an exhaustive species analysis approach. 

375 Nevertheless, cataloging the species and their sizes provides an invaluable means to 

376 analyze community composition. Unfortunately, this aspect is frequently overlooked 

377 due to the considerable time it consumes in the evaluation process (Schoening et al., 

378 2012). To this end, we have used deep learning tools to assist in the identification 

379 and mapping of these VMEs of rocky circalittoral shelf areas adjacent to the 

380 headwaters of two submarine canyon systems, the ACSs and CCSs. The choice of 

381 YOLOv8 as the algorithm for this task was influenced by its efficient information 

382 processing capabilities and sophisticated architecture that includes advanced loss 

383 functions (Lin, 2023). It is worth noting that various versions of the YOLO algorithms 

384 have been adapted to tackle specific challenges of underwater images, such as lack 

385 of sharpness, small size, and overlap (Zhang et al., 2022; Xu et al., 2023). The 

386 continuous evolution of these algorithms and the release of newer versions present 

387 an opportunity to test each version on the same datasets to quantify improvements in 

388 results (Zhong et al., 2022). The latest version, YOLOv8, has already shown promise 

389 in plant species recognition (Wang et al., 2023), yet its application in marine 

390 environments remains largely unexplored. This opens up new research avenues and 

391 potential enhancements to our current methodology.

392 Emerging from this, our study has made significant strides in the application of 

393 YOLOv8 to marine environments. Despite the inherent challenges posed by the 

394 notable morphological differences between specimens of the same species, such as 

395 the diversity in shapes, sizes, and complexity of the colonies of D. cornigera, and the 

396 variability in sizes and shapes of P. ventilabrum, YOLOv8 has proven to be highly 

397 effective. It has achieved F1 values higher than 91.7% for both species in the ACS, 

398 indicating a high level of detection precision and recall. Furthermore, it has managed 

399 to detect both species with accuracies above 92.4% in the ACS. These results not 

400 only support the study by Li et al. (2023), which concludes that YOLOv8 is a suitable 

401 model for complex conditions, showing remarkable universality and robustness in 

402 detecting objects in images with variability and noise but also contribute significantly 

403 to our understanding of rocky circalittoral shelf habitats and the distribution patterns 

404 of vulnerable species within Natura 2000 areas.
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405 The success in detecting the species can be attributed to the prior training of the 

406 models on large-scale datasets, such as COCO (Lin et al., 2014), and data 

407 augmentation using synthetic imagery. This approach has been beneficial in 

408 addressing class imbalance and has improved the metrics. In particular, we observed 

409 an 11.4% improvement in F1, when including synthetic images, for the class D. 

410 cornigera. However, the generalization capacity of the models used is a crucial issue 

411 to ensure that the different studies and developments in the field of the application of 

412 Deep-learning to ecological studies can advance towards an operational stage. It is 

413 common to find generalization problems in which algorithms implemented and trained 

414 for one or two data sets do not work correctly when we change the study area or 

415 introduce species for which the algorithm has not been trained (W. Xu and S. 

416 Matzner , 2018). In this context, YOLOv8 demonstrated excellent generalization 

417 ability by performing well in CCS predictions. However, it was observed that YOLOv7 

418 failed to generalize adequately, obtaining inferior metrics when switching to CCS. 

419 Therefore, validation with Capbreton (CCS) images was crucial to assess model 

420 overfitting and its impact on metrics. An alternative approach to improving model 

421 generalization involves augmenting the manual annotation effort. However, this 

422 method is associated with significant personnel and time costs (Weinstein et al., 

423 2022). Although limited to the identification of the same target species, this study 

424 demonstrates the capacity of the selected and trained model for geographical 

425 generalization in the process of automatic labeling of underwater images.

426 The analysis carried out in this study provides valuable insights into the distribution 

427 patterns of two target species within and between our study areas. The species are 

428 not uniformly distributed, but seem to present a patchy distribution with higher or 

429 lower associated densities depending on the geographic location. This finding aligns 

430 with previous research, such as the study by Rodríguez-Basalo and colleagues in 

431 2022 in ACS, which also observed differences in the densities of D. cornígera and P. 

432 ventilabrum.

433 In our study, we found that P. ventilabrum has densities ranging from 45.3 to 173 

434 ind/100m², while D. cornígera shows densities ranging from 7.5 to 149.3ind/100m². 

435 This complex distribution pattern highlights the need for a comprehensive dataset 

436 consisting of multiple spatial images to accurately capture the nuances in species 

437 distribution. From an ecological and management perspective, understanding these 

438 density differences in our study areas is of great importance. Our work provides a 

439 detailed mapping of density variations for these species, serving as a foundation for 

440 future research into the underlying causes of these variations. These causes could 
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441 be related to differences in environmental conditions between the study areas, 

442 varying levels of human influence, or a combination of both factors.

443 Our findings indicate that D. cornigera and P. ventilabrum have higher densities in 

444 the CCS compared to the ACS. Furthermore, the ACS displayed a more intricate but 

445 less abundant coral community, along with a higher prevalence of encrusting 

446 sponges and fewer three-dimensional sponges. These differences did impact the 

447 performance of our models in both study systems. However, it's important to note 

448 that despite these varying characteristics, our models demonstrated a high degree of 

449 accuracy and proficiency in object detection. It's worth emphasizing that the main 

450 focus of this work is the development of an automated annotation tool, and we do not 

451 provide an exhaustive ecological interpretation of the data generated by this tool. 

452 This limitation highlights the need for further research to explore the ecological 

453 implications of the observed distribution patterns of these two species in the study 

454 areas.

455 Once YOLOv8 was identified as the most effective model for the detection of the 

456 target species, we proceeded to automate the process of obtaining ecological data 

457 from raw images. The use of deep learning algorithms allows us to generate accurate 

458 and efficient species density maps (Figure 9). The time required to perform all image 

459 labeling using these automatic models is drastically reduced compared to the time 

460 required for this same task by experts, who must manually search and label each 

461 species present in thousands of images. Therefore, these models provide a great 

462 advantage, since they provide valuable information in a minimum amount of time for 

463 carrying out subsequent in-depth population and ecological studies, which result in 

464 the improvement of management measures applied in the ecosystems studied.

465 The presence of high densities of species belonging to the 1170 Reef habitat 

466 supports the need to establish regulations and sustainable management measures to 

467 preserve biodiversity in the ACS and CCS. These ecosystems are being considered 

468 for protection and conservation through their designation as SAC and SCI, thanks to 

469 the LIFE IP INTEMARES project, which is aligned with the global objective of 

470 reaching 30% of marine protected areas by 2030 under the umbrella of the Natura 

471 2000 Network. This study demonstrates the importance of using advanced 

472 technologies to comprehensively study these complex and deep ecosystems serving 

473 as a basis for the establishment of appropriate legislative measures, supported by 

474 rigorous scientific information with a high degree of detail, in order to maintain the 

475 balance of the structure of these benthic ecosystems, of the trophic relationships they 

476 support, and to ensure the sustainability of the fisheries they support.
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477 The implementation of a pipeline as a management and conservation tool for ACSs 

478 and CCSs provides the opportunity to monitor the densities of the shelf area study 

479 species. In addition, the pipeline has the potential to evolve and adapt to the needs of 

480 future surveys to obtain real-time data, cover a larger number of species, and provide 

481 more detailed information on the sizes of detected organisms. In addition, their ability 

482 to replicate over time will favor the monitoring of the environmental evolution of these 

483 areas or their possible response to the management measures applied. Several 

484 studies, such as Zhong et al. (2022), have successfully demonstrated the use of 

485 YOLO-based object detection models for real-time identification of marine animals, 

486 supporting the validity of the approach. For the extraction of species measurements 

487 there are promising state-of-the-art segmentation models such as the SAM model 

488 (Segment Anything Model) that would allow us to obtain the area occupied by the 

489 species in the image in real time (Kirillov et al., 2023). To ensure the accuracy of 

490 these measurements, it is essential to establish a protocol for ROV image capture 

491 that minimizes the possibility of errors, properly synchronizing the ROV data with the 

492 captured image. Likewise, it would also be interesting to expand the range of species 

493 detected (Li et al., 2022), which would expand the scope of the study and provide 

494 more detailed information on the structure of the communities in the area. This tool 

495 would provide a holistic perspective, being able to detect changes in marine life 

496 patterns in terms of density, mean sizes and biomasses, in order to properly assess 

497 the impact of human activities on these habitats. This would facilitate the adoption of 

498 measures to protect and conserve these unique marine ecosystems.

499 Regarding possible improvements of the present work, it is suggested to use a larger 

500 and more diverse set of high quality images to train the model. It is proven that 

501 increasing the number of images during training significantly improves the 

502 generalizability and accuracy of the object detection model (Eversberg & Lambrecht, 

503 2021; Zoph et al., 2020).

504 Conclusion

505 1. The YOLOv8 model was effective for the detection of the yellow coral 
506 Dendrophyllia cornigera and the cup sponge Phakellia ventilabrum, two key 
507 species of the Cantabrian Sea circalittoral shelf rock. 

508 2. A powerful and accurate tool was developed, within a pipeline, that allows 
509 automatic detection of target species from raw transect images of the 
510 circalittoral shelf by remotely operated vehicles (ROVs).

511 3. The results show that all three models (YOLOv7, YOLOv8 and Faster R-CNN) 
512 improve their performance when trained with data augmentation and that 
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513 YOLOv8 is the model that presents the best performance in terms of precision, 
514 recall and F1 for both confidence thresholds 0.5 and 0.6. 

515 4. The implementation of this tool in the shelf area of the Aviles (ACS) and 
516 Capbreton Submarine Cannon Systems (CCS) allowed monitoring of these 
517 vulnerable marine ecosystems, with detailed density maps of target species 
518 indicating that the CCS rocky shelf presented the highest densities D. 
519 cornigera and P. ventilabrum. 

520 5. The implementation of deep learning based technologies are an efficient and 
521 accurate methodology for sampling and monitoring sessile benthic 
522 populations. This is essential to support the protection and conservation of 
523 biodiversity in these ecosystems.
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Table 1(on next page)

Impact of Data Augmentation on Object Detection Model Performance for D. cornigera
and P. ventilabrum

Difference in performance of YOLOv8, YOLOv7 and Faster R-CNN models in terms of
precision, recall and F1 for D. cornigera and P. vetilabrum species with and without data
augmentation. Values represent the difference between model performance with data
augmentation minus model performance without data augmentation.
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D. cornigera P. ventilabrum

Model Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

YOLOv8 1,4 18,5 11,4 5,7 3,5 3,3

YOLOv7 7,7 10,4 9,6 0,5 3,1 2,3

Faster R-CNN 0,4 1,6 1,5 3,5 8,5 5,2
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Figure 1
Geographical and Bathymetric Overview of Study Areas in the Cantabrian Sea

(A) Location map showing the study areas highlighted by a green rectangle, located in the
Cantabrian Sea. In addition, detailed representations of the bathymetry of (B) the Aviles
submarine canyon system and (C) the Capbreton submarine canyon system are presented,
where the ROV transects identified by red dots are highlighted.
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Figure 2
Detailed Photographs of Dendrophyllia cornigera and Phakellia ventilabrum

Detailed photograph of the species (A) Dendrophyllia cornigera and (B) Phakellia

ventilabrum.
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Figure 3
ROTV Captured Images of Marine Species in Capbreton and Aviles Canyon Systems

ROTV-obtained images of marine species on rocky substrate. (A) Capbreton canyon system,
showing Dendrophyllia cornigera (Dc), Phakellia ventilabrum (Pv), encrusting sponges (Ei),
other Porifera organisms (Po), Viminella flagellum coral (Vf), and Filograna cf implexa

serpulid (Fi). (B) Aviles canyon system, displaying Dc, Pv, Ei, At, Po, Leptometra celtica (Lc),
Parastichopus regalis (Pr), and Gracilechinus acutus urchin (Ga). Lasers are visible in the
center of both images.
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Figure 4
Synthetic Image Generation of D. cornigera and P. ventilabrum Using Supervisely

Synthetic images generated using Supervisely image data annotation software. (A)
Specimens of both D. cornigera and P. ventilabrum. (B) Specimens of D. cornigera only. (C)
Specimens of P. ventilabrum only. Each image, enhanced by the flying object function for
magnification and sample size increase, contains an average of 120 annotations.
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Figure 5
Intersection Over Union (IoU) Calculation for D. cornigera Detection

The image shows the calculation of the intersection over union (IoU) for the detection of D.

cornigera. Orange (A) shows the bounding box of the annotation and blue (B) shows the
bounding box of the inference, as well as the center of each box and the distance between
both points. The IoU is calculated as the intersection between the two boxes divided by their
junction.
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Figure 6
Automated Species Density Map Generation Pipeline in Google Colab

Graphical representation of the pipeline implemented in Google Colab for automated
generation of species density maps from raw transect images and ROTV telemetry data.
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Figure 7
Metrics Comparison for Species Detection Using YOLOv8, YOLOv7 and Faster R-CNN
Models

Comparison of metrics for detection of P. ventilabrum and D. cornigera species using the
YOLOv8, YOLOv7 and Faster R-CNN models in the ACS and CCS. precision, recall and F1
metrics were analyzed using augmented data and confidence thresholds of 0.5 and 0.6.

PeerJ reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)

Manuscript to be reviewed

R
Isticanje

R
Isticanje
P



PeerJ reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)

Manuscript to be reviewed



Figure 8
Detection Results Comparison of Different Algorithms for CCS Images

Comparison of detection results of different algorithms for images obtained from the CCS. (A)
and (B) represent different images. Red circles indicate false detections, while blue circles
indicate missed detections. The detection model used is shown in the right frame of each
image.
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Figure 9
Species Density Maps for D. cornigera and P. ventilabrum in Aviles and Capbreton
Canyon Systems

Species density maps for (A) Dendrophyllia cornigera and (B) Phakellia ventilabrum. Both
species are shown in the Aviles Submarine Canyon System (bottom left) and the Capbreton
Canyon System (bottom right). A large-scale situation map at the top depicts the locations of
both canyon systems.
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