

High-resolution density assessment assisted by deep learning of *Dendrophyllia cornigera* (Lamarck, 1816) and *Phakellia ventilabrum* (Linnaeus, 1767) in rocky circalittoral shelf of Bay of Biscay

Alberto Gayá-Vilar ¹, Adolfo Cobo ², Alberto Abad-Uribarren ³, Augusto Rodríguez ³, Sergio Sierra ⁴, Sabrina Clemente ¹. Elena Prado ^{Corresp. 3}

Corresponding Author: Elena Prado Email address: elena.prado@ieo.csic.es

This study presents a novel approach to high-resolution density distribution mapping of two key species of the 1170 "Reefs" habitat, Dendrophyllia cornigera and Phakellia ventilabrum, in the Bay of Biscay using deep learning models. The main objective of this study was to establish a pipeline based on deep learning models to extract species density data from raw images obtained by a remotely operated towed vehicle (ROTV). Different object detection models were evaluated and compared in various shelf zones at the head of submarine canyon systems using metrics such as precision, recall, and F1 score. The best-performing model, YOLOv8, was selected for generating density maps of the two species at a high spatial resolution. The study also generated synthetic images to augment the training data and assess the generalization capacity of the models. The proposed approach provides a cost-effective and non-invasive method for monitoring and assessing the status of these important reef-building species and their habitats. The results have important implications for the management and protection of the 1170 habitat in Spain and other marine ecosystems worldwide. These results highlight the potential of deep learning to improve efficiency and accuracy in monitoring vulnerable marine ecosystems, allowing informed decisions to be made that can have a positive impact on marine conservation.

Department of Animal Biology, Soil and Geology, University of La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

² Photonics Engineering Group, University of Cantabria, Santander, Cantabria, Spain

³ Santander Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santander, Cantabria, Spain

⁴ Complutum Geographic Information Technologies (COMPLUTIG), Alcalá de Henares, Madrid, Spain

- High-resolution density assessment assisted by deep learning of 1
- Dendrophyllia cornigera (Lamarck, 1816) and Phakellia ventilabrum 2
- (Linnaeus, 1767) in rocky circalittoral shelf of Bay of Biscay 3
- 4 Alberto Gayá-Vilar¹, Adolfo Cobo², Aberto Abad-Uribarren³, Augusto Rodríguez-
- 5 Basalo³, Sergio Sierra⁴, Sabrina Clemente¹, Elena Prado³
- 678910112 1121314 ¹Department of Animal Biology, Soil and Geology, University of La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
 - ²Photonics Engineering Group, University of Cantabria, Santander, Cantabria, Spain
- ³Santander Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santander, Cantabria, Spain
- ⁴Complutum Geographic Information Technologies (COMPLUTIG), Alcalá de Henares, Madrid, Spain
- Elena Prado

15

- Av. de Severiano Ballesteros, 16, 39004 Santander, Cantabria, Spain
- Email address: elena.prado@ieo.csic.es

Abstract

- This study presents a novel approach to high-resolution density distribution mapping 16
- 17 of two key species of the 1170 "Reefs" habitat, Dendrophyllia cornigera and Phakellia
- 18 ventilabrum, in the Bay of Biscay using deep learning models. The main objective of
- 19 this study was to establish a pipeline based on deep learning models to extract
- 20 species density data from raw images obtained by a remotely operated towed vehicle
- 21 (ROTV). Different object detection models were evaluated and compared in various
- 22 shelf zones at the head of submarine canyon systems using metrics such as
- 23 precision, recall, and F1 score. The best-performing model, YOLOv8, was selected
- 24 for generating density maps of the two species at a high spatial resolution. The study
- 25 also generated synthetic images to augment the training data and assess the
- 26 generalization capacity of the models. The proposed approach provides a cost-
- 27 effective and non-invasive method for monitoring and assessing the status of these
- 28 important reef-building species and their habitats. The results have important
- 29 implications for the management and protection of the 1170 habitat in Spain and
- 30 other marine ecosystems worldwide. These results highlight the potential of deep
- 31 learning to improve efficiency and accuracy in monitoring vulnerable marine
- 32 ecosystems, allowing informed decisions to be made that can have a positive impact
- 33 on marine conservation.
- 34 **Keywords:** Artificial Intelligence, Vulnerable Marine Ecosystem, Habitat Mapping,
- 35 Object Detection Model, Natura 2000 Network

36 Introduction

- 37 The Habitats Directive (Directive 92/43/EEC) establishes the "Natura 2000" network,
- 38 a network of European sites which aims to maintain or, if possible, re-establish a
- 39 favorable conservation status for certain types of natural habitats and certain animal
- 40 and plant species. The marine Natura 2000 network is an integral part of the
- 41 European ecological network Natura 2000, and constitutes the application of the
- 42 Habitats Directive and the Birds Directive (Directive 2009/147/EC) in the marine
- 43 environment, considered the two most important legislative tools for the conservation
- of biodiversity in Europe. The Natura 2000 network is composed of Sites of
- 45 Community Importance (SCI), which eventually become Special Areas of
- 46 Conservation (SAC), and Special Protection Areas for Birds (SPA).
- 47 The Habitats Directive (92/43/EEC) lists different types of marine habitats that are
- 48 important for the community and need to be conserved. To do this, Special Areas of
- 49 Conservation (SACs) are designated. One of the habitats listed in Annex I of the
- 50 Habitats Directive is Habitat 1170, which refers to Reefs. Reefs in the sense of the
- 51 Directive are considered to be all those compact hard substrates that outcrop on the
- 52 seabed in the sublittoral (submerged) or littoral (intertidal) zone, whether of biogenic
- 53 or geological origin.
- In Spain, the Habitat 1170 Reefs extends along the entire coastline and marine
- waters, from coastal areas to the deep seabed, occupying extensive regions. In this
- 56 diverse array of Habitat 1170 typologies, our focus narrows to two rocky outcrops
- 57 within the Cantabrian Sea's circalittoral shelf. These outcrops are categorized as
- vulnerable marine ecosystems (VMEs) due to their importance as biodiversity
- 59 hotspots and ecosystem functioning in the deep sea (FAO, 2009). Circalittoral rocky
- substrates, located within the phytal system below the maximum distribution level of
- 61 marine phanerogams and photophilic algae, and extending to the scyaphilic algae's
- 62 maximum depth, are characterized by low light levels and relatively stable
- 63 hydrodynamic conditions compared to shallower regions. The depth at which the
- 64 circalittoral zone begins depends directly on the amount of light penetrating the
- 65 seafloor. Animal species predominantly dominate most circalittoral rocky substrates
- due to the diminished light conditions. The number of species living on these
- seabeds can be very highly variable, influenced by geographical factors, seabed
- 68 geomorphology, and various environmental elements (Dominguez-Carrió et al.,
- 69 2022).

Manuscript to be reviewed

- 70 Within the Cantabrian circalittoral rocky platform, communities consist mainly of
- 71 numerous sponge and coralligenous species, which provide three-dimensional
- structure to these habitats, classifying them under Habitat 1170 Reefs. However,
- despite their importance as structuring species, their small size and highly
- 74 fractionated distribution of this organism on the seabed pose significant challenges
- 75 for mapping . Simultaneously, monitoring these species and tracking community
- distribution across time and space is imperative for habitat protection. The use of
- 77 remotely operated vehicles (ROV's) imagery has emerged as a valuable tool to
- 78 address this challenge.
- 79 Underwater vehicles generates a large amount of in situ, non-destructive,
- 80 representative and potentially repeatable samples, and this allows not only a
- 81 complete characterization of benthic diversity but could also lay the groundwork for a
- 82 long-term monitoring initiatives (Dominguez-Carrió et al., 2022). However, processing
- this information has encountered bottlenecks, primarily attributed to the time-
- 84 consuming, labor-intensive and costly nature of annotating visual data (Weinstein,
- 85 2017). In addition, deep ecosystems present complex environments characterized by
- 86 unbalanced light conditions, low contrast, and the presence of occlusion and
- 87 organisms camouflage. Under these circumstances, objects captured by the ROV
- 88 camera become challenging to identify (Song et al., 2022).
- 89 To address these problems and obtain quantitative information from underwater
- 90 images, new automated image analysis tools have emerged. One of the most
- 91 promising approaches involves the use of deep learning techniques based on neural
- 92 networks, a combination of artificial intelligence and computer vision. This approach
- 93 entails the application of multiple layers of highly interconnected machine learning
- 94 algorithms to achieve improved results from raw images (Olden et al., 2008; Le Cun
- et al., 2015). These techniques have already achieved formidable results in different
- 96 marine ecology tasks such as coral classification (Bhandarkar et al., 2022; Mahmood
- 97 et al., 2017; Raphael et al., 2020), fish detection and classification (Zhong et al.,
- 98 2022; Siddiqui et al., 2018; Knausgård et al., 2021), and identification of diverse
- 99 benthic fauna (Abad-Uribarren et al., 2022; Song et al., 2022; Liu & Wang 2022).
- 100 Within the field of deep learning, object detectors can be classified into two
- 101 categories: two-stage detectors and single-stage detectors. Two-stage detectors
- exemplified by Faster R-CNN (Ren et al., 2017), first generates a set of region
- proposals (RPN) before determining the object category and location. In contrast,
- single-stage detectors, such as YOLO (Redmon et al., 2016), simultaneously identify
- and locate objects in a single step. These object detection models can be used as

136

137

138

Manuscript to be reviewed

106 107 108	tools to automate species identification procedures and generate accurate density maps for ecosystem monitoring. Surveys employing these models yield comprehensive records of ecosystems and facilitate the identification of trends in
109	habitat health and biodiversity.
110 111 112 113 114 115 116	Marine ecosystems are subject to numerous threats and impacts, such as climate change, waste pollution, commercial fishing and deep sea mining (Pinheiro et al., 2023). Therefore, it is important to generate detailed mapping of their most vulnerable ecosystems in order to make informed decisions about their management and conservation. Accurate mapping facilitates the identification of critical areas that require protection and the development of effective strategies to mitigate negative impacts on the ecosystem (Rodriguez-Basalo et al., 2022).
117 118 119 120 121 122 123 124 125 126 127 128 129	In this study, we assess the density of Habitat 1170 structuring species in two circalittoral rocky shelf areas of the Cantabrian Sea. We employ object detection models to automatically identify and label species in underwater images. Initially, we compare object detection models with different neural architectures, to determine the most effective model for generating species density maps from geolocated images obtained along a photo-transect. Subsequently, the model demonstrating the best metrics is employed to establish a pipeline for generating detailed species density maps. Our ultimate goal is to create an initial base map for monitoring ecosystem health, offering a comprehensive geographic description of Habitat 1170 structuring species, and serving as a support tool for decision-making in Natura 2000 network areas. The expected results of this model's application include the automated generation of density and geographic presence data for benthic species <i>D. cornigera</i> and <i>P. ventilabrum</i> , with results presented through species density maps.
130	Materials and methods
131	Study area
132 133 134 135	The research was centered on two rocky outcrops situated within the circalittoral shelf of the Aviles submarine Canyons System (ACS)and the Capbreton submarine Canyons System (CCS), both located in the Cantabrian Sea to the south of the Bay of Biscay (Figure 1). The ACS has been designated as a Site of Community Interest

(SCI) and is currently undergoing studies aimed at elevating its status from SCI to

Special Area of Conservation (SAC). Likewise, the CCS area is under examination for

SCI status, with the intention of integrating it into the marine Natura 2000 Network.

Manuscript to be reviewed

- 139 These studies are part of the actions carried out in the LIFE IP INTEMARES project 140 (Baena et al., 2021). 141 In the Bay of Biscay, the continental shelf is generally narrow, a common feature of 142 compressive continental margins (Ercilla et al., 2008). The region is characterized by 143 the presence of rocky outcrops mainly formed due to sedimentary transport 144 mechanisms associated with oceanographic dynamics. These rocky outcrops serve 145 as critical habitats for a diverse array of benthic communities, many of which fall 146 within the 1170 habitat category.forming a heterogeneous and complex ecosystem 147 capable of supporting a rich biodiversity. Within these communities, our study 148 focuses on two species selected for their significant role in structuring the 1170 149 habitat within the rocky circalittoral platform of the Cantabrian Sea (Rodríguez-Basalo 150 et al., 2022). These species are the yellow coral Dendrophyllia cornigera (Lamarck, 151 1816) and the cup sponge *Phakellia ventilabrum* (Linnaeus, 1767) (Figure 2). **ROTV** underwater imagery 152 153 High-resolution underwater images obtained using the remotely operated towed 154 vehicle (ROTV) Politolana (Sánchez & Rodríguez, 2013) were employed. The ROTV 155 Politolana, designed by the Santander Oceanographic Center of the Spanish Institute of Oceanography (IEO-CSIC), has the capability to descend to a maximum depth of 156 157 2000 m. For seabed exploration, the ROTV Politolana uses photogrammetric 158 methods and is equipped with a high-resolution camera, bidirectional telemetry and 159 an acoustic positioning system. Additionally, the vehicle is equipped with four laser 160 pointers coupled at a precise distance of 25 cm from each other. This configuration 161 allows precise measurements and detailed data to be obtained during each 162 deployment. Furthermore, the vehicle acquires high-definition images and videos 163 synchronized with environmental data, ensuring the acquisition of comprehensive 164 datasets during each dive. 165 In total, 20 transects were conducted for this study, with an average length of 410 m 166 per transect. In the ACS, images were acquired during the INTEMARES A4 Avilés 167 oceanographic campaign (2017). In contrast, in the CCS, photographic transects 168 were carried out during the INTEMARES-Capbreton 0619 and 0620 campaigns 169 (2019 and 2020). These transects, both in ACS and CCS, were carried out in a depth 170 range between 90 and 300 m.
- 171 The Politolana ROTV captures photographs at time intervals ranging from 0.5 s and
- 172 20 s, depending on the chosen sampling configuration. This approach provided
- 173 representative data of the habitat and benthic communities to be characterized.

- These high resolution images provided comprehensive views of the seafloor in (Figure 3). In total, 5012 images were contributed from both ACS and CCS for this study.
- 177 Image preprocessing and algorithm training
- 178 To evaluate the model's generalization capabilities, 60 images from a pool of 300
- obtained from the ACS were randomly selected as the validation set. The remaining
- 180 240 images were used as training images in a ratio of 8 to 2. Ensuring that there
- were no repeated images or individuals between the training and validation sets was
- 182 crucial to prevent model overfitting.
- 183 For image annotation, we utilized the Supervisely image data annotation software
- 184 (https://supervise.ly/), enabling the creation of bounding boxes around the target
- species *D. cornigera* and *P. ventilabrum*. Our labeling approach ensured that each
- 186 annotation encompassed the entire individual while minimizing background area
- 187 (Figure 4). The training data set received meticulous attention, with 527 and 1045
- annotations performed for the *D. cornigera* and *P. ventilabrum* classes. Annotations
- were carried out by trained expert scientists. To balance class distribution, the
- 190 Supervisely flying object function (https://github.com/supervisely-ecosystem/flying-
- 191 <u>objects</u>) was used. This function generates synthetic data for object detection tasks.
- 192 Specifically, it involved annotating specimens from both classes as masks, followed
- by the application of magnifications to the objects and their distribution on different
- 194 selected backgrounds. With the creation of 20 synthetic images, class balance was
- achieved with 2330 and 2605 annotations for the classes *D. cornigera* and *P.*
- 196 *ventilabrum*, respectively (Figure 4).
- 197 In addition, to evaluate the capacity of the model to generalize across varying
- 198 environmental conditions 60 images were randomly selected from the CCS area, a
- region where the two target species are exposed to different environmental
- 200 pressures. These images were used as validation images to determine if the model
- 201 was able to correctly detect the target species.
- 202 All object detection models were based on the same pre-training weights from the
- 203 COCO (Common Objects in Context) dataset, which is a widely used dataset in
- 204 computer vision research. The models were trained on selected ACS images, both
- with and without data augmentation. The training spanned 200 epochs, allowing the
- 206 models to continually improve their accuracy and performance. During each epoch,
- 207 the models processed the entire training data set, iteratively adjusting their

208

209

209	improve their ability to accurately detect the target species.
210	Automatic species labeling of underwater images using deep learning
211 212 213 214 215 216 217 218	For automatic annotation of the image set, a deep learning based framework was developed, considering three different deep neural network architectures. A neural network consists of input layers that receive the data, a processing core with hidden layers, and output layers that provide the model output. The term "deep" refers to the number of hidden layers in the neural network structure. A neural network is trained to produce the desired output by adjusting its internal parameters, called weights, based on the error between the model output and the correct response. This adjustment is performed by a process called gradient descent (Schmidhuber, 2014).
219 220 221 222 223 224	This study compared, three object detection models with different neural architectures: YOLOv7 and YOLOv8 (Bochkovskiy et al., 2022; Karmaker et al., 2023), both single-stage models, and Faster R-CNN (Ren et al., 2017), a two-stage model. YOLO single-stage models have been shown to have advantages compared to Faster R-CNN (Abdulghani & Menekşe Dalveren 2022; Maity et al., 2021; Zheng et al., 2022), so the latter two model versions were included in the comparison.
225 226 227 228 229 230 231 232	YOLOv7 and YOLOv8 are real-time object detection models that employ convolutional neural networks (CNNs) to efficiently identify and localize objects in images. YOLOv7 uses the ELAN architecture, which improves the learning and convergence capabilities of deep networks. On the other hand, YOLOv8 integrates advances in deep learning and computer vision, including attention structures and dilation convolution blocks, resulting in improved speed and accuracy in object detection. In this study, the YOLOv8x model was used for YOLOv8 training, while the YOLOv7-E6E model was used for YOLOv7 training.
233 234 235 236 237 238	Faster R-CNN, a two-stage object detection model, integrates a CNN for features extraction and a Region Proposal Network (RPN) to generate high-quality proposals. The RPN predicts the boundaries and objectivity scores at each image position and is trained end-to-end. These proposals are then used by Faster R-CNN in the object detection and classification stage (Ren et al., 2017). In this study, the X-101-32x8d model was used for Faster R-CNN training.
239 240	The YOLOv8x, YOLOv7-E6E and Faster R-CNN X-101-32x8d versions were chosen for this study because of their object detection performance. According to the data

parameters to minimize prediction error. This allowed the models to continuously

- and the information available in the GitHub repositories, these versions present high
- 242 performance in terms of accuracy and speed in object detection.
- 243 For training the object detection models, we used Google Colab Pro, a platform that
- 244 provided us access to the NVIDIA A100-SXM GPU. This high-performance GPU
- 245 enabled efficient processing of large datasets and expedited model training.
- 246 Furthermore, Google Colab facilitated seamless code sharing and result
- 247 dissemination among team members.
- 248 Object detection model selection
- To evaluate the performance of the different models in the task of detecting *D*.
- 250 cornigera and P. Ventilabrum within the ACS and CCS shelf areas, we selected three
- 251 widely used metrics for object detection tasks: precision, recall, and F1 Score. These
- 252 metrics were compared and analyzed for the YOLOv8, YOLOv7, and Faster R-CNN
- 253 object detection models.
- 254 Precision measures the accuracy of the model predictions, representing the
- 255 percentage of predictions that are correct.
- 256 Recall (or the sensitivity of a classifier) evaluates how effectively the model identifies
- 257 all positive instances, quantifying the number of actual positives correctly labeled as
- 258 positives.
- 259 The F1 score serves as an index that evaluates the balance between precision and
- 260 recall, a widely used metric in deep learning for comparing the performance of two
- 261 models on the same task. The calculations for precision, recall and F1 are described
- by the following equations (1), (2) and (3) (Van Rijsbergen, 1974):

$$precision = \frac{True \ positives}{True \ positives + False \ positives}$$

$$(1)$$

$$recall = \frac{True \ positives}{True \ positives + False \ negatives}$$

$$(2)$$

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

- **263** (3)
- For model evaluation, an intersection over union (IoU) of 0.5 was adopted. IoU
- 265 quantifies the overlap between the detection and the actual object, calculated as the
- intersection between the two bounding boxes divided by their union (Figure 5). An

Manuscript to be reviewed

267268269270	loU of 0.5 implies that 50% of the area of the real object's area is covered by the detection. In addition, metrics were computed for two different confidence thresholds (0.5 and 0.6), enabling assessment of the model's detection performance at different levels of certainty.
271 272 273 274 275 276 277	Both Aviles training datasets, with and without augmentations, were used for evaluating the models on the Aviles and Capbreton validation datasets. The addition of the Capbreton dataset was crucial for assessing the model's ability to generalize to other canyon systems subjected to different pressures and environmental conditions. A comprehensive evaluation of the models was conducted under different scenarios and conditions, ensuring the acquisition of accurate and reliable results for object detection in subsea systems.
278	Pipeline for species density map generation
279 280 281 282 283 284 285 286 287 288	To streamline the process of generating species density maps from raw transect images, \overline{A} pipeline was implemented in Google Colab Pro (Figure 6). The images were synchronized with the ROTV telemetry data, which provided information on the depth, coordinates, and height of the ROTV relative to the seafloor for each transect image. In parallel, using ImageJ software (version 1.530), the distance between the ROTV laser pointer marks on 50 images was manually measured to obtain the area covered by each image based on its resolution. With this data, a simple regression model was trained using machine learning techniques to relate the area to the height of the ROTV relative to the seafloor. The model predictions were used to calculate the area of the rest of the images.
289 290 291 292 293 294 295 296	Simultaneously, predictions were carried out using the YOLOv8 model, previously trained with our data (YOLOv8-SCS), to analyze the images captured in the transects. Notably, in the comparison of object detection models, YOLOv8 obtained the best metrics with an IoU of 0.5 and a confidence threshold of 0.6 (Figure 7). Therefore, we set these parameters to perform the predictions and generate the inferences in the workflow. These results were integrated with the area and coordinates of each image in order to calculate the number of individuals per square meter in each image.
297 298 299 300 301	Finally, QGIS software (version 3.22) was used to create maps based on the species density data obtained from each transect image point. We applied a symbology scheme based on graduated symbol sizes to represent density categories (Schmidt et al., 2022). The density data series was classified into intervals according to their values, and each interval was assigned a corresponding symbol size, with larger PeerJ reviewing PDF (2023:10:92075:0:1:NEW 30 Oct 2023)

304

Manuscript to be reviewed

sizes indicating higher densities. This approach facilitated the clear visualization of areas with the highest species density on the generated maps.

Results

305	Comparison of object detection models
306 307 308	In the evaluation of object detection models, we compared one-stage models YOLOv7 and YOLOv8 with the two-stage model Faster R-CNN. Our assessment included both models trained with and without data augmentation, and the results are
309	summarized in Table 1. Notably, data augmentation significantly improved the
310	performance of all three models, with the one-stage models demonstrating more
311	substantial enhancements for <i>D. cornigera</i> . YOLOv8 achieved a recall rate of 18.5%
312	and an F1 score of 11.4%, while YOLOv7 showed improvements above 7.7% across
313	all its metrics. For <i>P. ventilabrum</i> species, the Faster R-CNN model showed the most
314	significant improvement with an 8.5% increase in recall and a 5.2% in F1 score. The
315	YOLOv8 model also showed a 5.7% improvement in precision.for <i>P. ventilabrum</i> .
316	Figure 7 provides a comparison of metrics for detecting <i>P. ventilabrum</i> and <i>D.</i>
317	cornigera species using the YOLOv8, YOLOv7, and Faster R-CNN models in both
318	the ACS and CCS regions. The analysis includes augmented data and confidence
319	thresholds of 0.5 and 0.6. Notably, the YOLOv8 model outperforms the other models
320	in terms of precision, recall, and F1 for both confidence thresholds. In the ACS, the
321	YOLOv8 model achieves precision values exceeding 92.3% for P. ventilabrum and
322	exceptional results for D. cornigera, with a precision of 92.4%, a recall of 91.0%, and
323	an F1 score of 91.7% for a threshold of 0.6. Furthermore, YOLOv8 exhibits superior
324	generalization capabilities by delivering the best metrics for both species in the CCS
325	area.
326	Overall, the performance of all three models improves as the threshold is increased
327	from 0.5 to 0.6 in terms of precision and F1. These results indicate that the YOLOv8
328	model is most suitable for the task and a threshold of 0.6 enhances precision and F1
329	scores.
330	Figure 8 presents a visual representation of the detection results obtained using the
331	YOLOv8, Faster R-CNN and YOLOv7 models. A detector confidence threshold was
332	set at 0.6 and an IoU threshold at 0.5.
333	The images reveal that all three models occasionally misclassify certain sponges as
334	P. ventilabrum, particularly Faster R-CNN, which exhibits more false detections, even

Manuscript to be reviewed

335 336 337 338	all <i>D. cornigera</i> for other sponge species. Notably, none of the models detect all <i>D. cornigera</i> specimens in the images, with YOLOv7 showing the highest number of undetected specimens, missing over 60% of them. YOLOv8 stands out for its ability to detect smaller <i>D. cornigera</i> specimens at high densities.
339 340 341 342	In a separate set of images, Faster R-CNN misclassifies a complex sponge as both <i>D. cornigera</i> and <i>P. ventilabrum</i> and also inaccurately identifies encrusting sponge specimens as <i>D. cornigera</i> . The YOLO-based models struggle to detect <i>P. ventilabrum</i> specimens accurately.
343 344 345	Overall, these results demonstrate that YOLOv8 exhibits superior detection efficiency and counting precision compared to other evaluated models, making it the preferred algorithm for detecting these valuable marine benthic species.
346	Species density survey
347 348 349 350 351 352 353 354 355 356 357 358 359	A total of 5021 transect images were processed through a pipeline designed for automatic detection of target species. These transects covered an area of 5647.48 m², with an average area covered of 282.37 m². As a result, the YOLOv8-SCS model generated 27668 automatic annotations comprising 6087 for <i>P. ventilabrum</i> and 21581 for <i>D. cornigera</i> . This resulted in an average density of 1.01 individuals/m² for <i>P. ventilabrum</i> and 3.07 individuals/m² for <i>D. cornigera</i> in the ACS and 1.18 individuals/m² for <i>P. ventilabrum</i> and 4.98 individuals/m² for <i>D. cornigera</i> in the CCS. Species density maps were generated based on this information, allowing for a comparison of the two study areas. The CCS rocky platform exhibited the highest densities for both species, with a maximum density of 60.56 individuals/m² for <i>D. cornigera</i> and 12.96 individuals/m² for <i>P. ventilabrum</i> . These peak density observations occurred within the same transect at an average depth of 160.08 m and are illustreted in the species density maps (Figure 9).
360 361 362 363 364	The implementation of the YOLOv8-SCS model for automatic annotation has led to significant time savings. While a professional researcher would require approximately 210h 53min to annotate all 5021 images, the YOLOv8-SCS model accomplished the same task in just 2h 9min. This represents a time reduction of over 98%, highlighting the efficiency and effectiveness of the automatic annotation process.
365	Discussion
366 367	The present study addresses the need to provide efficient solutions for the monitoring, protection and conservation of vulnerable marine ecosystems (VMEs) of

PeerJ reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)

11

398

399

400

401

402

403

404

368 the circalittoral shelf by implementing automatic identification algorithms and 369 calculating densities without human intervention. These ecosystems are crucial for 370 maintaining marine biodiversity and play a vital role in the provision of essential 371 ecosystem services (Ríos et al., 2022). Incorporating automatic image analysis 372 techniques represents a significant advancement in the field of benthic community 373 studies (Abad-Uribarren et al., 2022). The tremendous diversity of species present 374 poses a formidable challenge for an exhaustive species analysis approach. 375 Nevertheless, cataloging the species and their sizes provides an invaluable means to 376 analyze community composition. Unfortunately, this aspect is frequently overlooked 377 due to the considerable time it consumes in the evaluation process (Schoening et al., 378 2012). To this end, we have used deep learning tools to assist in the identification 379 and mapping of these VMEs of rocky circalittoral shelf areas adjacent to the 380 headwaters of two submarine canyon systems, the ACSs and CCSs. The choice of 381 YOLOv8 as the algorithm for this task was influenced by its efficient information 382 processing capabilities and sophisticated architecture that includes advanced loss 383 functions (Lin. 2023). It is worth noting that various versions of the YOLO algorithms 384 have been adapted to tackle specific challenges of underwater images, such as lack 385 of sharpness, small size, and overlap (Zhang et al., 2022; Xu et al., 2023). The 386 continuous evolution of these algorithms and the release of newer versions present 387 an opportunity to test each version on the same datasets to quantify improvements in 388 results (Zhong et al., 2022). The latest version, YOLOv8, has already shown promise 389 in plant species recognition (Wang et al., 2023), yet its application in marine 390 environments remains largely unexplored. This opens up new research avenues and 391 potential enhancements to our current methodology. 392 Emerging from this, our study has made significant strides in the application of 393 YOLOv8 to marine environments. Despite the inherent challenges posed by the 394 notable morphological differences between specimens of the same species, such as 395 the diversity in shapes, sizes, and complexity of the colonies of *D. cornigera*, and the 396 variability in sizes and shapes of P. ventilabrum, YOLOv8 has proven to be highly 397 effective. It has achieved F1 values higher than 91.7% for both species in the ACS.

indicating a high level of detection precision and recall. Furthermore, it has managed

only support the study by Li et al. (2023), which concludes that YOLOv8 is a suitable

detecting objects in images with variability and noise but also contribute significantly

to our understanding of rocky circalittoral shelf habitats and the distribution patterns

to detect both species with accuracies above 92.4% in the ACS. These results not

model for complex conditions, showing remarkable universality and robustness in

of vulnerable species within Natura 2000 areas.

405	The success in detecting the species can be attributed to the prior training of the
406	models on large-scale datasets, such as COCO (Lin et al., 2014), and data
407	augmentation using synthetic imagery. This approach has been beneficial in
408	addressing class imbalance and has improved the metrics. In particular, we observed
409	an 11.4% improvement in F1, when including synthetic images, for the class D.
410	cornigera. However, the generalization capacity of the models used is a crucial issue
411	to ensure that the different studies and developments in the field of the application of
412	Deep-learning to ecological studies can advance towards an operational stage. It is
413	common to find generalization problems in which algorithms implemented and trained
414	for one or two data sets do not work correctly when we change the study area or
415	introduce species for which the algorithm has not been trained (W. Xu and S.
416	Matzner, 2018). In this context, YOLOv8 demonstrated excellent generalization
417	ability by performing well in CCS predictions. However, it was observed that YOLOv7
418	failed to generalize adequately, obtaining inferior metrics when switching to CCS.
419	Therefore, validation with Capbreton (CCS) images was crucial to assess model
420	overfitting and its impact on metrics. An alternative approach to improving model
421	generalization involves augmenting the manual annotation effort. However, this
422	method is associated with significant personnel and time costs (Weinstein et al.,
423	2022). Although limited to the identification of the same target species, this study
424	demonstrates the capacity of the selected and trained model for geographical
425	generalization in the process of automatic labeling of underwater images.
426	The analysis carried out in this study provides valuable insights into the distribution
427	patterns of two target species within and between our study areas. The species are
428	not uniformly distributed, but seem to present a patchy distribution with higher or
429	lower associated densities depending on the geographic location. This finding aligns
430	with previous research, such as the study by Rodríguez-Basalo and colleagues in
431	2022 in ACS, which also observed differences in the densities of <i>D. cornígera</i> and <i>P.</i>
432	ventilabrum.
433	In our study, we found that <i>P. ventilabrum</i> has densities ranging from 45.3 to 173
434	ind/100m², while <i>D. cornígera</i> shows densities ranging from 7.5 to 149.3ind/100m².
435	This complex distribution pattern highlights the need for a comprehensive dataset
436	consisting of multiple spatial images to accurately capture the nuances in species
437	distribution. From an ecological and management perspective, understanding these
438	density differences in our study areas is of great importance. Our work provides a
439	detailed mapping of density variations for these species, serving as a foundation for
440	future research into the underlying causes of these variations. These causes could

Manuscript to be reviewed

441 be related to differences in environmental conditions between the study areas. 442 varying levels of human influence, or a combination of both factors. 443 Our findings indicate that D. cornigera and P. ventilabrum have higher densities in 444 the CCS compared to the ACS. Furthermore, the ACS displayed a more intricate but 445 less abundant coral community, along with a higher prevalence of encrusting 446 sponges and fewer three-dimensional sponges. These differences did impact the 447 performance of our models in both study systems. However, it's important to note 448 that despite these varying characteristics, our models demonstrated a high degree of 449 accuracy and proficiency in object detection. It's worth emphasizing that the main 450 focus of this work is the development of an automated annotation tool, and we do not 451 provide an exhaustive ecological interpretation of the data generated by this tool. 452 This limitation highlights the need for further research to explore the ecological 453 implications of the observed distribution patterns of these two species in the study 454 areas. 455 Once YOLOv8 was identified as the most effective model for the detection of the 456 target species, we proceeded to automate the process of obtaining ecological data 457 from raw images. The use of deep learning algorithms allows us to generate accurate 458 and efficient species density maps (Figure 9). The time required to perform all image 459 labeling using these automatic models is drastically reduced compared to the time 460 required for this same task by experts, who must manually search and label each 461 species present in thousands of images. Therefore, these models provide a great 462 advantage, since they provide valuable information in a minimum amount of time for 463 carrying out subsequent in-depth population and ecological studies, which result in 464 the improvement of management measures applied in the ecosystems studied. 465 The presence of high densities of species belonging to the 1170 Reef habitat 466 supports the need to establish regulations and sustainable management measures to 467 preserve biodiversity in the ACS and CCS. These ecosystems are being considered 468 for protection and conservation through their designation as SAC and SCI, thanks to 469 the LIFE IP INTEMARES project, which is aligned with the global objective of 470 reaching 30% of marine protected areas by 2030 under the umbrella of the Natura 471 2000 Network. This study demonstrates the importance of using advanced

474 rigorous scientific information with a high degree of detail, in order to maintain the

balance of the structure of these benthic ecosystems, of the trophic relationships they

support, and to ensure the sustainability of the fisheries they support.

475

476

477 The implementation of a pipeline as a management and conservation tool for ACSs 478 and CCSs provides the opportunity to monitor the densities of the shelf area study 479 species. In addition, the pipeline has the potential to evolve and adapt to the needs of 480 future surveys to obtain real-time data, cover a larger number of species, and provide 481 more detailed information on the sizes of detected organisms. In addition, their ability 482 to replicate over time will favor the monitoring of the environmental evolution of these 483 areas or their possible response to the management measures applied. Several 484 studies, such as Zhong et al. (2022), have successfully demonstrated the use of 485 YOLO-based object detection models for real-time identification of marine animals. 486 supporting the validity of the approach. For the extraction of species measurements 487 there are promising state-of-the-art segmentation models such as the SAM model 488 (Segment Anything Model) that would allow us to obtain the area occupied by the 489 species in the image in real time (Kirillov et al., 2023). To ensure the accuracy of 490 these measurements, it is essential to establish a protocol for ROV image capture 491 that minimizes the possibility of errors, properly synchronizing the ROV data with the 492 captured image. Likewise, it would also be interesting to expand the range of species 493 detected (Li et al., 2022), which would expand the scope of the study and provide 494 more detailed information on the structure of the communities in the area. This tool 495 would provide a holistic perspective, being able to detect changes in marine life 496 patterns in terms of density, mean sizes and biomasses, in order to properly assess 497 the impact of human activities on these habitats. This would facilitate the adoption of 498 measures to protect and conserve these unique marine ecosystems.

Regarding possible improvements of the present work, it is suggested to use a larger and more diverse set of high quality images to train the model. It is proven that increasing the number of images during training significantly improves the generalizability and accuracy of the object detection model (Eversberg & Lambrecht, 2021; Zoph et al., 2020).

Conclusion

504

505

506

507

508

509

510

511

512

- 1. The YOLOv8 model was effective for the detection of the yellow coral Dendrophyllia cornigera and the cup sponge Phakellia ventilabrum, two key species of the Cantabrian Sea circalittoral shelf rock.
- 2. A powerful and accurate tool was developed, within a pipeline, that allows automatic detection of target species from raw transect images of the circalittoral shelf by remotely operated vehicles (ROVs).
- 3. The results show that all three models (YOLOv7, YOLOv8 and Faster R-CNN) improve their performance when trained with data augmentation and that

Manuscript to be reviewed

- YOLOv8 is the model that presents the best performance in terms of precision, recall and F1 for both confidence thresholds 0.5 and 0.6.
- 515 4. The implementation of this tool in the shelf area of the Aviles (ACS) and Capbreton Submarine Cannon Systems (CCS) allowed monitoring of these vulnerable marine ecosystems, with detailed density maps of target species indicating that the CCS rocky shelf presented the highest densities *D. cornigera* and *P. ventilabrum*.
- 5. The implementation of deep learning based technologies are an efficient and accurate methodology for sampling and monitoring sessile benthic populations. This is essential to support the protection and conservation of biodiversity in these ecosystems.

Acknowledgements

- 525 This research has been carried out within the scope of the Nature + LIFE
- 526 INDEMARES (07/NAT/E/000732) and INTEMARES projects, partially funded by the
- 527 LIFE+ "Nature and Biodiversity" call of the European Commission (LIFE15 IPE ES
- 528 012) and coordinated by the Biodiversity Foundation of the Spanish Ministry for
- 529 Ecological Transition, with the participation of different scientific institutions and
- 530 NGOs.

524

531 **Bibliografía**

- 532 Abad-Uribarren, A., Prado, E., Sierra, S., Cobo, A., Rodríguez-Basalo, A., Gómez-
- 533 Ballesteros, M., & Sánchez, F. (2022). Deep learning-assisted high resolution
- mapping of vulnerable habitats within the Capbreton Canyon System, Bay of Biscay.
- 535 Estuarine, Coastal and Shelf Science, 275(107957), 107957.
- 536 https://doi.org/10.1016/j.ecss.2022.107957
- 537 Abdulghani, A. M. A. G., & Menekşe Dalveren, G. G. (2022). Moving object detection
- 538 in video with algorithms YOLO and faster R-CNN in different conditions. European
- Journal of Science and Technology. https://doi.org/10.31590/ejosat.1013049
- 540 Baena, I., Mallol, S., Rodríguez, N., Fraile-Nuez, E., Arrieta, J. M., González-Vega,
- 541 A., Vázquez, J.-T., Palomino, D., Díez, I. P., García, J., Ramos, J. M., Sánchez, F.,
- 542 Rodríguez, J. M., & Díaz., D. (2021). LIFE IP INTEMARES, Informe de la campaña
- 543 INTEMARES COLCARTO 0221.
- 544 https://intemares.es/sites/default/files/informe campana columbretes 2021.pdf
- 545 Bhandarkar, S. M., Kathirvelu, S., & Hopkinson, B. M. (2022). Object detection in 3D
- 546 coral ecosystem maps from multiple image sequences. 2022 26th International
- 547 Conference on Pattern Recognition (ICPR).

- 548 <u>BOE.es</u> (1992). DOUE-L-1992-81200 Directiva 92/43/CEE del Consejo, de 21 de
- mayo de 1992, relativa a la conservación de los hábitats naturales y de la fauna y
- flora silvestres. (s/f). Boe.es. Recuperado el 16 de mayo de 2023, de
- https://www.boe.es/buscar/doc.php?id=DOUE-L-1992-81200
- Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-
- 553 freebies sets new state-of-the-art for real-time object detectors. ArXiv,
- 554 abs/2207.02696.
- 555 Dominguez-Carrió, C., Riera, J. L., Robert, K., Zabala, M., Requena, S., Gori, A.,
- Orejas, C., Lo Iacono, C., Estournel, C., Corbera, G., Ambroso, S., Uriz, M. J.,
- 557 López-González, P. J., Sardá, R., & Gili, J.-M. (2022). Diversity, structure and spatial
- 558 distribution of megabenthic communities in Cap de Creus continental shelf and
- submarine canyon (NW Mediterranean). Progress in Oceanography, 208(102877),
- 560 102877. https://doi.org/10.1016/j.pocean.2022.102877
- 561 Ercilla, G., Casas, D., Estrada, F., Vázquez, J. T., Iglesias, J., García, M., Gómez,
- M., Acosta, J., Gallart, J., & Maestro-González, A. (2008). Morphosedimentary
- 563 features and recent depositional architectural model of the Cantabrian continental
- 564 margin. Marine Geology, 247(1–2), 61–83.
- 565 <u>https://doi.org/10.1016/j.margeo.2007.08.007</u>
- 566 Eversberg, L., & Lambrecht, J. (2021). Generating images with physics-based
- rendering for an industrial object detection task: Realism versus domain
- randomization. Sensors (Basel, Switzerland), 21(23), 7901.
- 569 https://doi.org/10.3390/s21237901
- 570 FAO, 2009. International Guidelines for the Management of Deep-Sea Fisheries in
- 571 the High-Seas. Food and Agriculture Organization of the United Nations, Rome.
- 572 flying-objects: Research app to generate synthetic data for detection / segmentation /
- instance segmentation tasks. (s/f). Github.com. Recuperado el 4 de Agosto de 2023,
- 574 de https://github.com/supervisely-ecosystem/flying-objects
- 575 Karmaker, A., & Ray, P. (2023). A Comprehensive Review of YOLO: From YOLOv1
- 576 to YOLOv8 and Beyond. ArXiv, abs/2304.00501.
- 577 Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
- Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment
- 579 Anything. https://doi.org/10.48550/ARXIV.2304.02643

- 580 Knausgård, K. M., Wiklund, A., Sørdalen, T. K., Halvorsen, K. T., Kleiven, A. R., Jiao,
- 581 L., & Goodwin, M. (2022). Temperate fish detection and classification: a deep
- learning based approach. Applied Intelligence, 52(6), 6988–7001.
- 583 https://doi.org/10.1007/s10489-020-02154-9
- Lamarck, J.-B. M. (1816). Histoire naturelle des animaux sans vertèbres. Tome
- 585 second. Verdière. 568 pp
- 586 LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-
- 587 444. https://doi.org/10.1038/nature14539
- 588 Li, J., Xu, W., Deng, L., Xiao, Y., Han, Z., & Zheng, H. (2022). Deep learning for
- visual recognition and detection of aquatic animals: A review. Reviews in
- 590 Aguaculture. https://doi.org/10.1111/rag.12726
- 591 Linnaeus, C. (1766). Systema naturae per regna tria naturae: secundum classes,
- 592 ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed, 533-
- 593 1327.
- 594 Liu, Y., & Wang, S. (2022). Corrigendum to "A quantitative detection algorithm based
- on improved faster R-CNN for marine benthos". Ecological Informatics, 70(101655),
- 596 101655. https://doi.org/10.1016/j.ecoinf.2022.101655
- 597 Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick,
- 598 G., & Fisher, R. B. (2017). Deep learning for coral classification. En Handbook of
- 599 Neural Computation (pp. 383–401). Elsevier.
- 600 Maity, M., Banerjee, S., & Sinha Chaudhuri, S. (2021). Faster R-CNN and YOLO
- 601 based Vehicle detection: A Survey. 2021 5th International Conference on Computing
- 602 Methodologies and Communication (ICCMC).
- Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning methods without
- tears: a primer for ecologists. The Quarterly Review of Biology, 83(2), 171–193.
- 605 https://doi.org/10.1086/587826
- 606 Pinheiro, M., Martins, I., Raimundo, J., Caetano, M., Neuparth, T., & Santos, M. M.
- 607 (2023). Stressors of emerging concern in deep-sea environments: microplastics,
- 608 pharmaceuticals, personal care products and deep-sea mining. The Science of the
- 609 Total Environment, 876(162557), 162557.
- 610 https://doi.org/10.1016/j.scitotenv.2023.162557

- Prado, E., Rodríguez-Basalo, A., Cobo, A., Ríos, P., & Sánchez, F. (2020). 3D fine-
- scale terrain variables from underwater photogrammetry: A new approach to benthic
- 613 microhabitat modeling in a circalittoral rocky shelf. Remote Sensing, 12(15), 2466.
- 614 https://doi.org/10.3390/rs12152466
- Raphael, A., Dubinsky, Z., Iluz, D., & Netanyahu, N. S. (2020). Neural Network
- recognition of marine benthos and corals. Diversity, 12(1), 29.
- 617 https://doi.org/10.3390/d12010029
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:
- 619 Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and
- 620 Pattern Recognition (CVPR).
- Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time
- object detection with region proposal networks. IEEE Transactions on Pattern
- Analysis and Machine Intelligence, 39(6), 1137–1149.
- 624 https://doi.org/10.1109/TPAMI.2016.2577031
- 625 Ríos, P., Altuna, Á., Frutos, I., Manjón-Cabeza, E., García-Guillén, L., Macías-
- Ramírez, A., Ibarrola, T. P., Gofas, S., Taboada, S., Souto, J., Álvarez, F., Saiz-
- 627 Salinas, J. I., Cárdenas, P., Rodríguez-Cabello, C., Lourido, A., Boza, C., Rodríguez-
- 628 Basalo, A., Prado, E., Abad-Uribarren, A., ... Cristobo, J. (2022). Avilés Canyon
- 629 System: Increasing the benthic biodiversity knowledge. Estuarine, Coastal and Shelf
- 630 Science, 274(107924), 107924. https://doi.org/10.1016/j.ecss.2022.107924
- Rodríguez-Basalo, A., Ríos, P., Arrese, B., Abad-Uribarren, A., Cristobo, J., Ibarrola,
- 632 T. P., Gómez-Ballesteros, M., Prado, E., & Sánchez, F. (2022). Mapping the habitats
- of a complex circalittoral rocky shelf in the Cantabrian Sea (South Bay of Biscay).
- 634 Estuarine, Coastal and Shelf Science, 273(107912), 107912.
- 635 https://doi.org/10.1016/j.ecss.2022.107912
- 636 Sánchez, F., & Rodríguez, J.M. (2013). POLITOLANA, a new low cost towed vehicle
- designed for the characterization of the deep-sea floor. Instrumentation Viewpoint.
- 638 69.
- 639 Schmidhuber, J. (2014). Deep learning in neural networks: An overview. En arXiv
- 640 [cs.NE]. http://arxiv.org/abs/1404.7828
- 641 Schmidt, C., Muñoz, G., Lancaster, L. T., Lessard, J.-P., Marske, K. A., Marshall, K.
- 642 E., & Garroway, C. J. (2022). Population demography maintains biogeographic
- 643 boundaries. Ecology Letters, 25(8), 1905–1913. https://doi.org/10.1111/ele.14058

- 644 Siddiqui, S. A., Salman, A., Malik, M. I., Shafait, F., Mian, A., Shortis, M. R., &
- 645 Harvey, E. S. (2018). Automatic fish species classification in underwater videos:
- exploiting pre-trained deep neural network models to compensate for limited labeled
- data. ICES Journal of Marine Science: Journal Du Conseil, 75(1), 374–389.
- 648 https://doi.org/10.1093/icesjms/fsx109
- 649 Schoening, T., Bergmann, M., Ontrup, J., Taylor, J., Dannheim, J., Gutt, J., Purser,
- 650 A., & Nattkemper, T. W. (2012). Semi-automated image analysis for the assessment
- of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN. PloS
- One, 7(6), e38179. https://doi.org/10.1371/journal.pone.0038179
- Song, P., Li, P., Dai, L., Wang, T., & Chen, Z. (2022). Boosting R-CNN: Reweighting
- R-CNN samples by RPN's error for underwater object detection.
- 655 https://doi.org/10.48550/ARXIV.2206.13728
- 656 Supervisely: unified OS for computer vision. (s/f). Supervisely.com. Recuperado el 26
- de Abril de 2023, de https://supervisely.com/
- Van Rijsbergen, C. J. (1974). Foundation of evaluation. The Journal of
- Documentation; Devoted to the Recording, Organization and Dissemination of
- 660 Specialized Knowledge, 30(4), 365–373. https://doi.org/10.1108/eb026584
- Wang, N., Liu, H., Li, Y., Zhou, W., & Ding, M. (2023). Segmentation and phenotype
- 662 calculation of rapeseed pods based on YOLO v8 and Mask R-convolution neural
- 663 networks. Plants, 12(18). https://doi.org/10.3390/plants12183328
- Weinstein, B. G. (2018). A computer vision for animal ecology. The Journal of Animal
- 665 Ecology, 87(3), 533–545. https://doi.org/10.1111/1365-2656.12780
- Weinstein, B. G., Garner, L., Saccomanno, V. R., Steinkraus, A., Ortega, A., Brush,
- 667 K., Yenni, G., McKellar, A. E., Converse, R., Lippitt, C. D., Wegmann, A., Holmes, N.
- D., Edney, A. J., Hart, T., Jessopp, M. J., Clarke, R. H., Marchowski, D., Senyondo,
- 669 H., Dotson, R., ... Ernest, S. K. M. (2022). A general deep learning model for bird
- detection in high-resolution airborne imagery. Ecological Applications: A Publication
- of the Ecological Society of America, 32(8), e2694. https://doi.org/10.1002/eap.2694
- Karaman St. (2018). Underwater fish detection using deep learning for
- water power applications. 2018 International Conference on Computational Science
- and Computational Intelligence (CSCI).

- 675 Xu, X., Liu, Y., Lyu, L., Yan, P., & Zhang, J. (2023). MAD-YOLO: A quantitative
- detection algorithm for dense small-scale marine benthos. Ecological Informatics,
- 677 75(102022), 102022. https://doi.org/10.1016/j.ecoinf.2023.102022
- Zhang, J., Yongpan, W., Xianchong, X., Yong, L., Lyu, L., & Wu, Q. (2022). YoloXT:
- A object detection algorithm for marine benthos. Ecological Informatics, 72(101923),
- 680 101923. https://doi.org/10.1016/j.ecoinf.2022.101923
- 681 Zhong, J., Li, M., Qin, J., Cui, Y., Yang, K., & Zhang, H. (2022). Real-time marine
- animal detection using Yolo-based deep learning networks in the coral reef
- 683 ecosystem. ISPRS International Archives of the Photogrammetry Remote Sensing
- and Spatial Information Sciences, XLVI-3/W1-2022, 301–306.
- 685 https://doi.org/10.5194/isprs-archives-xlvi-3-w1-2022-301-2022
- 686 Zoph, B., Cubuk, E. D., Ghiasi, G., Lin, T.-Y., Shlens, J., & Le, Q. V. (2020). Learning
- data augmentation strategies for object detection. En Computer Vision ECCV 2020
- 688 (pp. 566–583). Springer International Publishing.

Table 1(on next page)

Impact of Data Augmentation on Object Detection Model Performance for *D. cornigera* and *P. ventilabrum*

Difference in performance of YOLOv8, YOLOv7 and Faster R-CNN models in terms of precision, recall and F1 for *D. cornigera* and *P. vetilabrum* species with and without data augmentation. Values represent the difference between model performance with data augmentation minus model performance without data augmentation.

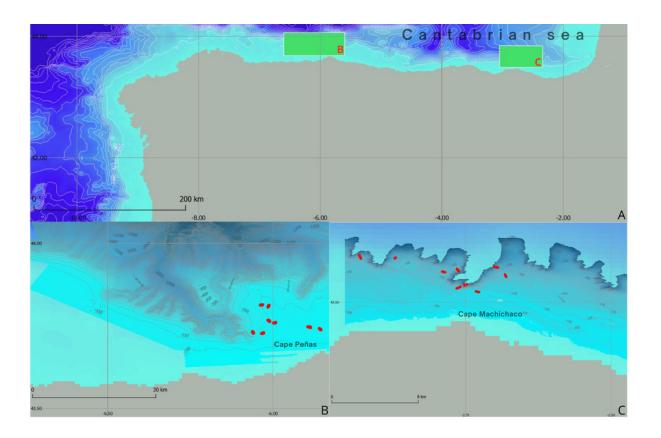
D. cornigera

P. ventilabrum

Model	Precision (%)	Recall (%)	F1 (%)	Precision (%)	Recall (%)	F1 (%)
YOLOv8	(1,4)	18,5	11,4	5,7	3,5	3,3
YOLOv7	7,7	10,4	9,6	0,5	3,1	2,3
Faster R-CNN	0,4	1,6	1,5	3,5	8,5	5,2

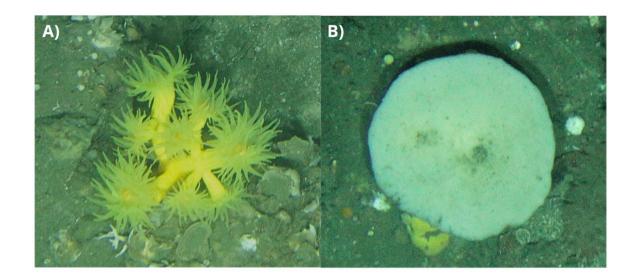
Geographical and Bathymetric Overview of Study Areas in the Cantabrian Sea

(A) Location map showing the study areas highlighted by a green rectangle, located in the Cantabrian Sea. In addition, detailed representations of the bathymetry of (B) the Aviles submarine canyon system and (C) the Capbreton submarine canyon system are presented, where the ROV transects identified by red dots are highlighted.



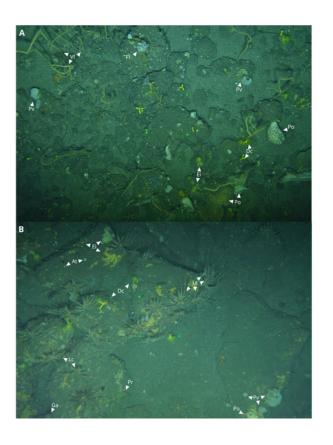
Detailed Photographs of *Dendrophyllia cornigera* and *Phakellia ventilabrum*

Detailed photograph of the species (A) *Dendrophyllia cornigera* and (B) *Phakellia ventilabrum*.



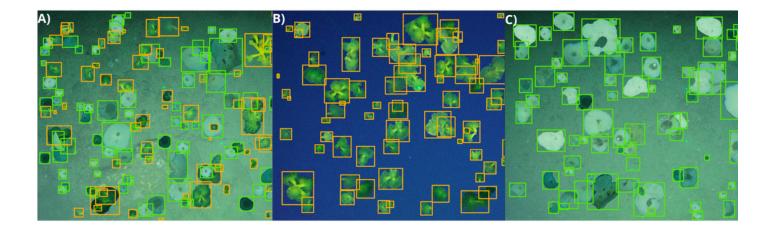
ROTV Captured Images of Marine Species in Capbreton and Aviles Canyon Systems

ROTV-obtained images of marine species on rocky substrate. (A) Capbreton canyon system, showing *Dendrophyllia cornigera* (Dc), *Phakellia ventilabrum* (Pv), encrusting sponges (Ei), other Porifera organisms (Po), *Viminella flagellum* coral (Vf), and *Filograna cf implexa* serpulid (Fi). (B) Aviles canyon system, displaying Dc, Pv, Ei, At, Po, *Leptometra celtica* (Lc), *Parastichopus regalis* (Pr), and *Gracilechinus acutus* urchin (Ga). Lasers are visible in the center of both images.



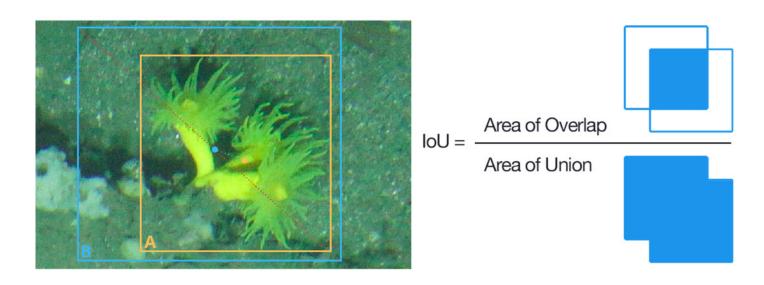
Synthetic Image Generation of *D. cornigera* and *P. ventilabrum* Using Supervisely

Synthetic images generated using Supervisely image data annotation software. (A) Specimens of both *D. cornigera* and *P. ventilabrum*. (B) Specimens of *D. cornigera* only. (C) Specimens of *P. ventilabrum* only. Each image, enhanced by the flying object function for magnification and sample size increase, contains an average of 120 annotations.



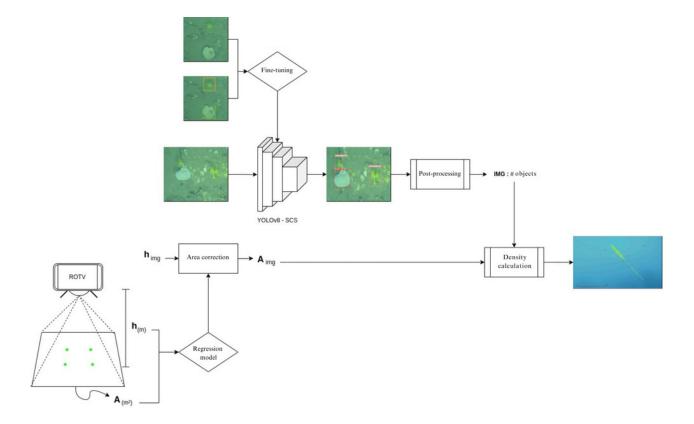
Intersection Over Union (IoU) Calculation for D. cornigera Detection

The image shows the calculation of the intersection over union (IoU) for the detection of *D. cornigera*. Orange (A) shows the bounding box of the annotation and blue (B) shows the bounding box of the inference, as well as the center of each box and the distance between both points. The IoU is calculated as the intersection between the two boxes divided by their junction.



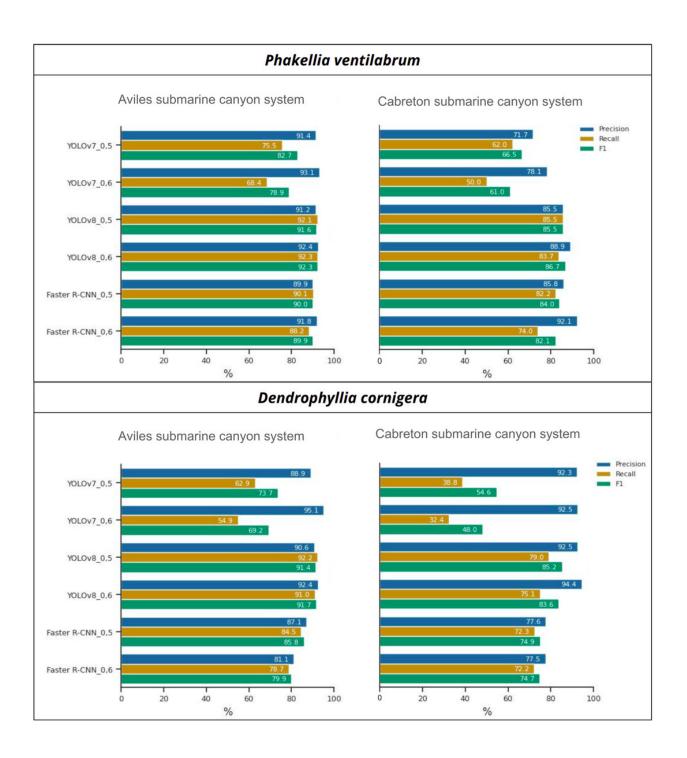
Automated Species Density Map Generation Pipeline in Google Colab

Graphical representation of the pipeline implemented in Google Colab for automated generation of species density maps from raw transect images and ROTV telemetry data.



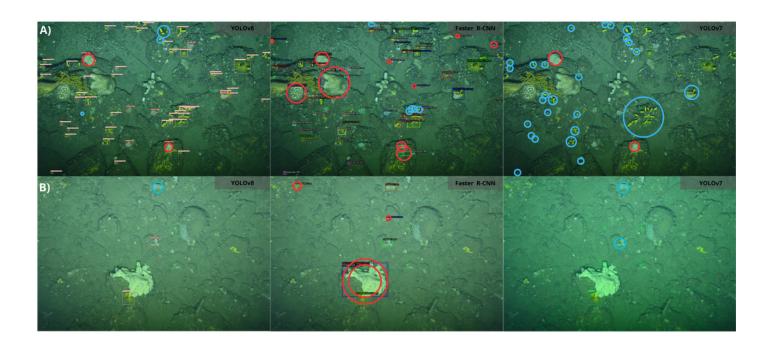
Metrics Comparison for Species Detection Using YOLOv8, YOLOv7 and Faster R-CNN Models

Comparison of metrics for detection of *P. ventilabrum* and *D. cornigera* species using the YOLOv8, YOLOv7 and Faster R-CNN models in the ACS and CCS. precision, recall and F1 metrics were analyzed using augmented data and confidence thresholds of 0.5 and 0.6.



Detection Results Comparison of Different Algorithms for CCS Images

Comparison of detection results of different algorithms for images obtained from the CCS. (A) and (B) represent different images. Red circles indicate false detections, while blue circles indicate missed detections. The detection model used is shown in the right frame of each image.



Species Density Maps for *D. cornigera* and *P. ventilabrum* in Aviles and Capbreton Canyon Systems

Species density maps for (A) *Dendrophyllia cornigera* and (B) *Phakellia ventilabrum*. Both species are shown in the Aviles Submarine Canyon System (bottom left) and the Capbreton Canyon System (bottom right). A large-scale situation map at the top depicts the locations of both canyon systems.

