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This study presents a novel approach to high-resolution density distribution mapping of
two key species of the 1170 “Reefs” habitat, Dendrophyllia cornigera and Phakellia
ventilabrum, in the Bay of Biscay using deep learning models. The main objective of this
study was to establish a pipeline based on deep learning models to extract species density
data from raw images obtained by a remotely operated towed vehicle (ROTV). Different
object detection models were evaluated and compared in various shelf zones at the head
of submarine canyon systems using metrics such as precision, recall, and F1 score. The
best-performing model, YOLOvS8, was selected for generating density maps of the two
species at a high spatial resolution. The study also generated synthetic images to augment
the training data and assess the generalization capacity of the models. The proposed
approach provides a cost-effective and non-invasive method for monitoring and assessing
the status of these important reef-building species and their habitats. The results have
important implications for the management and protection of the 1170 habitat in Spain
and other marine ecosystems worldwide. These results highlight the potential of deep
learning to improve efficiency and accuracy in monitoring vulnerable marine ecosystems,
allowing informed decisions to be made that can have a positive impact on marine
conservation.
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Abstract

This study presents a novel approach to high-resolution density distribution mapping
of two key species of the 1170 “Reefs” habitat, Dendrophyllia cornigera and Phakellia
ventilabrum, in the Bay of Biscay using deep learning models. The main objective of
this study was to establish a pipeline based on deep learning models to extract
species density data from raw images obtained by a remotely operated towed vehicle
(ROTV). Different object detection models were evaluated and compared in various
shelf zones at the head of submarine canyon systems using metrics such as
precision, recall, and F1 score. The best-performing model, YOLOvVS8, was selected
for generating density maps of the two species at a high spatial resolution. The study
also generated synthetic images to augment the training data and assess the
generalization capacity of the models. The proposed approach provides a cost-
effective and non-invasive method for monitoring and assessing the status of these
important reef-building species and their habitats. The results have important
implications for the management and protection of the 1170 habitat in Spain and
other marine ecosystems worldwide. These results highlight the potential of deep
learning to improve efficiency and accuracy in monitoring vulnerable marine
ecosystems, allowing informed decisions to be made that can have a positive impact
on marine conservation.

Keywords: Atrtificial Intelligence, Vulnerable Marine Ecosystem, Habitat Mapping,
Object Detection Model, Natura 2000 Network
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Introduction

The Habitats Directive (Directive 92/43/EEC) establishes the "Natura 2000" network,
a network of European sites which aims to maintain or, if possible, re-establish a
favorable conservation status for certain types of natural habitats and certain animal
and plant species. The marine Natura 2000 network is an integral part of the
European ecological network Natura 2000, and constitutes the application of the
Habitats Directive and the Birds Directive (Directive 2009/147/EC) in the marine
environment, considered the two most important legislative tools for the conservation
of biodiversity in Europe. The Natura 2000 network is composed of Sites of
Community Importance (SCI), which eventually become Special Areas of
Conservation (SAC), and Special Protection Areas for Birds (SPA).

The Habitats Directive (92/43/EEC) lists different types of marine habitats that are
important for the community and need to be conserved. To do this, Special Areas of
Conservation (SACs) are designated. One of the habitats listed in Annex | of the
Habitats Directive is Habitat 1170, which refers to Reefs. Reefs in the sense of the
Directive are considered to be all those compact hard substrates that outcrop on the
seabed in the sublittoral (submerged) or littoral (intertidal) zone, whether of biogenic
or geological origin.

In Spain, the Habitat 1170 Reefs extends along the entire coastline and marine
waters, from coastal areas to the deep seabed, occupying extensive regions. In this
diverse array of Habitat 1170 typologies, our focus narrows to two rocky outcrops
within the Cantabrian Sea’s circalittoral shelf. These outcrops are categorized as
vulnerable marine ecosystems (VMESs) due to their importance as biodiversity
hotspots and ecosystem functioning in the deep sea (FAO, 2009). Circalittoral rocky
substrates, located within the phytal system below the maximum distribution level of
marine phanerogams and photophilic algae, and extending to the scyaphilic algae’s
maximum depth, are characterized by low light levels and relatively stable
hydrodynamic conditions compared to shallower regions.. The depth at which the
circalittoral zone begins depends directly on the amount of light penetrating the
seafloor. Animal species predominantly dominate most circalittoral rocky substrates
due to the diminished light conditions. The number of species living on these
seabeds can be very highly variable, influenced by geographical factors, seabed
geomorphology, and various environmental elements (Dominguez-Carri6 et al.,
2022).
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Within the Cantabrian circalittoral rocky platform, communities consist mainly of
numerous sponge and coralligenous species, which provide three-dimensional
structure to these habitats, classifying them under Habitat 1170 Reefs. However,
despite their importance as structuring species, their small size and highly
fractionated distribution of this organism on the seabed pose significant challenges
for mapping . Simultaneously, monitoring these species and tracking community
distribution across time and space is imperative for habitat protection. The use of
remotely operated vehicles (ROV’s) imagery has emerged as a valuable tool to
address this challenge.

Underwater vehicles generates a large amount of in situ, non-destructive,
representative and potentially repeatable samples, and this allows not only a
complete characterization of benthic diversity but could also lay the groundwork for a
long-term monitoring initiatives (Dominguez-Carri6 et al., 2022). However, processing
this information has encountered bottlenecks, primarily attributed to the time-
consuming, labor-intensive and costly nature of annotating visual data (Weinstein,
2017). In addition, deep ecosystems present complex environments characterized by
unbalanced light conditions, low contrast, and the presence of occlusion and
organisms camouflage. Under these circumstances, objects captured by the ROV
camera become challenging to identify (Song et al., 2022).

To address these problems and obtain quantitative information from underwater
images, new automated image analysis tools have emerged. One of the most
promising approaches involves the use of deep learning techniques based on neural
networks, a combination of artificial intelligence and computer vision. This approach
entails the application of multiple layers of highly interconnected machine learning
algorithms to achieve improved results from raw images (Olden et al., 2008; Le Cun
et al., 2015). These techniques have already achieved formidable results in different
marine ecology tasks such as coral classification (Bhandarkar et al., 2022; Mahmood
et al., 2017; Raphael et al., 2020), fish detection and classification (Zhong et al.,
2022; Siddiqui et al., 2018; Knausgard et al., 2021 ), and identification of diverse
benthic fauna (Abad-Uribarren et al., 2022; Song et al., 2022; Liu & Wang 2022).

Within the field of deep learning, object detectors can be classified into two
categories: two-stage detectors and single-stage detectors. Two-stage detectors
exemplified by Faster R-CNN (Ren et al., 2017), first generates a set of region
proposals (RPN) before determining the object category and location. In contrast,
single-stage detectors, such as YOLO (Redmon et al., 2016), simultaneously identify
and locate objects in a single step. These object detection models can be used as
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tools to automate species identification procedures and generate accurate density
maps for ecosystem monitoring. Surveys employing these models yield
comprehensive records of ecosystems and facilitate the identification of trends in
habitat health and biodiversity.

Marine ecosystems are subject to numerous threats and impacts, such as climate
change, waste pollution, commercial fishing and deep sea mining (Pinheiro et al.,
2023). Therefore, it is important to generate detailed mapping of their most
vulnerable ecosystems in order to make informed decisions about their management
and conservation. Accurate mapping facilitates the identification of critical areas that
require protection and the development of effective strategies to mitigate negative
impacts on the ecosystem (Rodriguez-Basalo et al., 2022).

In this study, we assess the density of Habitat 1170 structuring species in two
circalittoral rocky shelf areas of the Cantabrian Sea. We employ object detection
models to automatically identify and label species in underwater images. Initially, we
compare object detection models with different neural architectures, to determine the
most effective model for generating species density maps from geolocated images
obtained along a photo-transect. Subsequently, the model demonstrating the best
metrics is employed to establish a pipeline for generating detailed species density
maps. Our ultimate goal is to create an initial base map for monitoring ecosystem
health, offering a comprehensive geographic description of Habitat 1170 structuring
species, and serving as a support tool for decision-making in Natura 2000 network
areas. The expected results of this model's application include the automated
generation of density and geographic presence data for benthic species D. cornigera
and P. ventilabrum, with results presented through species density maps.

Materials and methods

Study area

The research was centered on two rocky outcrops situated within the circalittoral
shelf of the Aviles submarine Canyons System (ACS)and the Capbreton submarine
Canyons System (CCS), both located in the Cantabrian Sea to the south of the Bay
of Biscay (Figure 1). The ACS has been designated as a Site of Community Interest
(SCI) and is currently undergoing studies aimed at elevating its status from SCI to
Special Area of Conservation (SAC).Likewise, the CCS area is under examination for
SCI status, with the intention of integrating it into the marine Natura 2000 Network.
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These studies are part of the actions carried out in the LIFE IP INTEMARES project
(Baena et al., 2021).

In the Bay of Biscay, the continental shelf is generally narrow, a common feature of
compressive continental margins (Ercilla et al., 2008). The region is characterized by
the presence of rocky outcrops mainly formed due to sedimentary transport
mechanisms associated with oceanographic dynamics. These rocky outcrops serve
as critical habitats for a diverse array of benthic communities, many of which fall
within the 1170 habitat category.forming a heterogeneous and complex ecosystem
capable of supporting a rich biodiversity. . Within these communities, our study
focuses on two species selected for their significant role in structuring the 1170
habitat within the rocky circalittoral platform of the Cantabrian Sea (Rodriguez-Basalo
et al., 2022). These species are the yellow coral Dendrophyllia cornigera (Lamarck,
1816) and the cup sponge Phakellia ventilabrum (Linnaeus, 1767) (Figure 2).

ROTV underwater imagery

High-resolution underwater images obtained using the remotely operated towed
vehicle (ROTV) Politolana (Sanchez & Rodriguez, 2013) were employed. The ROTV
Politolana, designed by the Santander Oceanographic Center of the Spanish Institute
of Oceanography (IEO-CSIC), has the capability to descend to a maximum depth of
2000 m. For seabed exploration, the ROTV Politolana uses photogrammetric
methods and is equipped with a high-resolution camera, bidirectional telemetry and
an acoustic positioning system. Additionally, the vehicle is equipped with four laser
pointers coupled at a precise distance of 25 cm from each other. This configuration
allows precise measurements and detailed data to be obtained during each
deployment. Furthermore, the vehicle acquires high-definition images and videos
synchronized with environmental data, ensuring the acquisition of comprehensive
datasets during each dive.

In total, 20 transects were conducted for this study, with an average length of 410 m
per transect. In the ACS, images were acquired during the INTEMARES A4 Avilés
oceanographic campaign (2017). In contrast, in the CCS, photographic transects
were carried out during the INTEMARES-Capbreton 0619 and 0620 campaigns
(2019 and 2020). These transects, both in ACS and CCS, were carried out in a depth
range between 90 and 300 m.

The Politolana ROTV captures photographs at time intervals ranging from 0.5 s and
20 s, depending on the chosen sampling configuration. This approach provided

representative data of the habitat and benthic communities to be characterized.
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These high resolution images provided comprehensive views of the seafloor in
(Figure 3). In total, 5012 images were contributed from both ACS and CCS for this
study.

Image preprocessing and algorithm training

To evaluate the model's generalization capabilities, 60 images from a pool of 300
obtained from the ACS were randomly selected as the validation set. The remaining
240 images were used as training images in a ratio of 8 to 2. Ensuring that there
were no repeated images or individuals between the training and validation sets was
crucial to prevent model overfitting.

For image annotation, we utilized the Supervisely image data annotation software
(https://supervise.ly/), enabling the creation of bounding boxes around the target
species D. cornigera and P. ventilabrum. Our labeling approach ensured that each
annotation encompassed the entire individual while minimizing background area
(Figure 4). The training data set received meticulous attention, with 527 and 1045

annotations performed for the D. cornigera and P. ventilabrum classes. Annotations
were carried out by trained expert scientists. To balance class distribution, the
Supervisely flying object function (https://github.com/supervisely-ecosystem/flying-
objects) was used. This function generates synthetic data for object detection tasks.
Specifically, it involved annotating specimens from both classes as masks, followed
by the application of magnifications to the objects and their distribution on different
selected backgrounds. With the creation of 20 synthetic images, class balance was
achieved with 2330 and 2605 annotations for the classes D. cornigera and P.
ventilabrum, respectively (Figure 4).

In addition, to evaluate the capacity of the model to generalize across varying
environmental conditions 60 images were randomly selected from the CCS area, a
region where the two target species are exposed to different environmental
pressures. These images were used as validation images to determine if the model
was able to correctly detect the target species.

All object detection models were based on the same pre-training weights from the
COCO (Common Objects in Context) dataset, which is a widely used dataset in
computer vision research. The models were trained on selected ACS images, both
with and without data augmentation. The training spanned 200 epochs, allowing the
models to continually improve their accuracy and performance. During each epoch,
the models processed the entire training data set, iteratively adjusting their
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parameters to minimize prediction error. This allowed the models to continuously
improve their ability to accurately detect the target species.

Automatic species labeling of underwater images using deep learning

For automatic annotation of the image set, a deep learning based framework was
developed, considering three different deep neural network architectures. A neural
network consists of input layers that receive the data, a processing core with hidden
layers, and output layers that provide the model output. The term "deep" refers to the
number of hidden layers in the neural network structure. A neural network is trained
to produce the desired output by adjusting its internal parameters, called weights,
based on the error between the model output and the correct response. This
adjustment is performed by a process called gradient descent (Schmidhuber, 2014).

This study compared, three object detection models with different neural
architectures: YOLOv7 and YOLOvVS8 (Bochkovskiy et al., 2022; Karmaker et al.,
2023), both single-stage models, and Faster R-CNN (Ren et al., 2017), a two-stage
model. YOLO single-stage models have been shown to have advantages compared
to Faster R-CNN (Abdulghani & Menekse Dalveren 2022; Maity et al., 2021; Zheng et
al., 2022), so the latter two model versions were included in the comparison.

YOLOv7 and YOLOVS are real-time object detection models that employ
convolutional neural networks (CNNs) to efficiently identify and localize objects in
images. YOLOv7 uses the ELAN architecture, which improves the learning and
convergence capabilities of deep networks. On the other hand, YOLOVS integrates
advances in deep learning and computer vision, including attention structures and
dilation convolution blocks, resulting in improved speed and accuracy in object
detection. In this study, the YOLOv8x model was used for YOLOVS training, while the
YOLOvV7-EGE model was used for YOLOvV7 training.

Faster R-CNN, a two-stage object detection model, integrates a CNN for features
extraction and a Region Proposal Network (RPN) to generate high-quality proposals.
The RPN predicts the boundaries and objectivity scores at each image position and
is trained end-to-end. These proposals are then used by Faster R-CNN in the object
detection and classification stage (Ren et al., 2017). In this study, the X-101-32x8d
model was used for Faster R-CNN training.

The YOLOvV8x, YOLOvV7-EGE and Faster R-CNN X-101-32x8d versions were chosen
for this study because of their object detection performance. According to the data
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and the information available in the GitHub repositories, these versions present high
performance in terms of accuracy and speed in object detection.

For training the object detection models, we used Google Colab Pro, a platform that
provided us access to the NVIDIA A100-SXM GPU. This high-performance GPU
enabled efficient processing of large datasets and expedited model training.
Furthermore, Google Colab facilitated seamless code sharing and result
dissemination among team members.

Object detection model selection

To evaluate the performance of the different models in the task of detecting D.
cornigera and P. Ventilabrum within the ACS and CCS shelf areas, we selected three
widely used metrics for object detection tasks: precision, recall, and F1 Score. These
metrics were compared and analyzed for the YOLOv8, YOLOv7, and Faster R-CNN
object detection models.

Precision measures the accuracy of the model predictions, representing the
percentage of predictions that are correct.

Recall (or the sensitivity of a classifier) evaluates how effectively the model identifies
all positive instances, quantifying the number of actual positives correctly labeled as
positives.

The F1 score serves as an index that evaluates the balance between precision and
recall, a widely used metric in deep learning for comparing the performance of two
models on the same task. The calculations for precision, recall and F1 are described
by the following equations (1), (2) and (3) (Van Rijsbergen, 1974):

True positives

recision =
b True positives + False positives
(1)
True positives
recall = — -
True positives + False negatives
(2)
recision - recall
F1=2.2

precision + recall

(3)

For model evaluation, an intersection over union (loU) of 0.5 was adopted. loU
quantifies the overlap between the detection and the actual object, calculated as the
intersection between the two bounding boxes divided by their union (Figure 5). An

Peer] reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023)


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20%5Ctext%7Bprecision%7D%20%26%3D%20%5Cfrac%7B%5Ctext%7BTrue%20positives%7D%7D%7B%5Ctext%7BTrue%20positives%7D%20%2B%20%5Ctext%7BFalse%20positives%7D%7D%20%5Ctag%7B1%7D%20%5C%5C%20%5Ctext%7Brecall%7D%20%26%3D%20%5Cfrac%7B%5Ctext%7BTrue%20positives%7D%7D%7B%5Ctext%7BTrue%20positives%7D%20%2B%20%5Ctext%7BFalse%20negatives%7D%7D%20%5Ctag%7B2%7D%20%5C%5C%20F1%20%26%3D%202%20%5Ccdot%20%5Cfrac%7B%5Ctext%7Bprecision%7D%20%5Ccdot%20%5Ctext%7Brecall%7D%7D%7B%5Ctext%7Bprecision%7D%20%2B%20%5Ctext%7Brecall%7D%7D%20%5Ctag%7B3%7D%20%5Cend%7Balign*%7D#0

Peer]

267
268
269
270

271
272
273
274
275
276
277

278

279
280
281
282
283
284
285
286
287
288

289
290
291
292
293
294
295
296

297
298
299
300
301

loU of 0.5 implies that 50% of the area of the real object’s area is covered by the
detection. In addition, metrics were computed for two different confidence thresholds
(0.5 and 0.6), enabling assessment of the model's detection performance at different
levels of certainty.

Both Aviles training datasets, with and without augmentations, were used for
evaluating the models on the Aviles and Capbreton validation datasets. The addition
of the Capbreton dataset was crucial for assessing the model's ability to generalize
to other canyon systems subjected to different pressures and environmental
conditions.A comprehensive evaluation of the models was conducted under different
scenarios and conditions, ensuring the acquisition of accurate and reliable results for
object detection in subsea systems.

Pipeline for species density map generation

To streamline the process of generating species density maps from raw transect
images, A pipeline was implemented in Google Colab Pro (Figure 6). The images
were synchronized with the ROTV telemetry data, which provided information on the
depth, coordinates, and height of the ROTYV relative to the seafloor for each transect
image. In parallel, using ImagedJ software (version 1.530), the distance between the
ROTYV laser pointer marks on 50 images was manually measured to obtain the area
covered by each image based on its resolution. With this data, a simple regression
model was trained using machine learning techniques to relate the area to the height
of the ROTV relative to the seafloor. The model predictions were used to calculate
the area of the rest of the images.

Simultaneously, predictions were carried out using the YOLOv8 model, previously
trained with our data (YOLOV8-SCS), to analyze the images captured in the
transects. Notably, in the comparison of object detection models, YOLOvS8 obtained
the best metrics with an loU of 0.5 and a confidence threshold of 0.6 (Figure 7).
Therefore, we set these parameters to perform the predictions and generate the
inferences in the workflow. These results were integrated with the area and
coordinates of each image in order to calculate the number of individuals per square
meter in each image.

Finally, QGIS software (version 3.22) was used to create maps based on the species
density data obtained from each transect image point. We applied a symbology
scheme based on graduated symbol sizes to represent density categories (Schmidt
et al., 2022). The density data series was classified into intervals according to their

values, and each interval was assigned a corresponding symbol size, with larger
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sizes indicating higher densities. This approach facilitated the clear visualization of
areas with the highest species density on the generated maps.

Results

Comparison of object detection models

In the evaluation of object detection models, we compared one-stage models
YOLOv7 and YOLOvV8 with the two-stage model Faster R-CNN. Our assessment
included both models trained with and without data augmentation, and the results are
summarized in Table 1. Notably, data augmentation significantly improved the
performance of all three models, with the one-stage models demonstrating more
substantial enhancements for D. cornigera. YOLOvV8 achieved a recall rate of 18.5%
and an F1 score of 11.4%, while YOLOv7 showed improvements above 7.7% across
all its metrics. For P. ventilabrum species, the Faster R-CNN model showed the most
significant improvement with an 8.5% increase in recall and a 5.2% in F1 score. The
YOLOvV8 model also showed a 5.7% improvement in precision.for P. ventilabrum.

Figure 7 provides a comparison of metrics for detecting P. ventilabrum and D.
cornigera species using the YOLOv8, YOLOv7, and Faster R-CNN models in both
the ACS and CCS regions. The analysis includes augmented data and confidence
thresholds of 0.5 and 0.6. Notably, the YOLOv8 model outperforms the other models
in terms of precision, recall, and F1 for both confidence thresholds. In the ACS, the
YOLOv8 model achieves precision values exceeding 92.3% for P. ventilabrum and
exceptional results for D. cornigera, with a precision of 92.4%, a recall of 91.0%, and
an F1 score of 91.7% for a threshold of 0.6. Furthermore, YOLOvV8 exhibits superior
generalization capabilities by delivering the best metrics for both species in the CCS
area.

Overall, the performance of all three models improves as the threshold is increased
from 0.5 to 0.6 in terms of precision and F1. These results indicate that the YOLOv8
model is most suitable for the task and a threshold of 0.6 enhances precision and F1
scores.

Figure 8 presents a visual representation of the detection results obtained using the
YOLOVS, Faster R-CNN and YOLOv7 models. A detector confidence threshold was
set at 0.6 and an loU threshold at 0.5.

The images reveal that all three models occasionally misclassify certain sponges as
P. ventilabrum, particularly Faster R-CNN, which exhibits more false detections, even

Peer] reviewing PDF | (2023:10:92075:0:1:NEW 30 Oct 2023) 10


R
Isticanje
italics

R
Isticanje
italics


Peer]

335
336
337
338

339
340
341
342

343
344
345

346

347
348
349
350
351
352
353

354
355
356
357
358
359

360
361
362
363
364

365

366
367

mistaking D. cornigera for other sponge species. Notably, none of the models detect
all D. cornigera specimens in the images, with YOLOv7 showing the highest number
of undetected specimens, missing over 60% of them. YOLOvV8 stands out for its
ability to detect smaller D. cornigera specimens at high densities.

In a separate set of images, Faster R-CNN misclassifies a complex sponge as both
D. cornigera and P. ventilabrum and also inaccurately identifies encrusting sponge
specimens as D. cornigera. The YOLO-based models struggle to detect P.
ventilabrum specimens accurately.

Overall, these results demonstrate that YOLOvV8 exhibits superior detection efficiency
and counting precision compared to other evaluated models, making it the preferred
algorithm for detecting these valuable marine benthic species.

Species density survey

A total of 5021 transect images were processed through a pipeline designed for
automatic detection of target species. These transects covered an area of 5647.48
m?2, with an average area covered of 282.37 m2. As a result, the YOLOv8-SCS model
generated 27668 automatic annotations comprising 6087 for P. ventilabrum and
21581 for D. cornigera. This resulted in an average density of 1.01 individuals/m? for
P. ventilabrum and 3.07 individuals/m? for D. cornigera in the ACS and 1.18
individuals/m? for P. ventilabrum and 4.98 individuals/m? for D. cornigera in the CCS.

Species density maps were generated based on this information, allowing for a
comparison of the two study areas. The CCS rocky platform exhibited the highest
densities for both species, with a maximum density of 60.56 individuals/m? for D.
cornigera and 12.96 individuals/m? for P. ventilabrum. These peak density
observations occurred within the same transect at an average depth of 160.08 m and
are illustreted in the species density maps (Figure 9).

The implementation of the YOLOvV8-SCS model for automatic annotation has led to
significant time savings. While a professional researcher would require approximately
210h 53min to annotate all 5021 images, the YOLOv8-SCS model accomplished the
same task in just 2h 9min. This represents a time reduction of over 98%, highlighting
the efficiency and effectiveness of the automatic annotation process.

Discussion

The present study addresses the need to provide efficient solutions for the
monitoring, protection and conservation of vulnerable marine ecosystems (VMEs) of
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the circalittoral shelf by implementing automatic identification algorithms and
calculating densities without human intervention. These ecosystems are crucial for
maintaining marine biodiversity and play a vital role in the provision of essential
ecosystem services (Rios et al., 2022). Incorporating automatic image analysis
techniques represents a significant advancement in the field of benthic community
studies (Abad-Uribarren et al., 2022). The tremendous diversity of species present
poses a formidable challenge for an exhaustive species analysis approach.
Nevertheless, cataloging the species and their sizes provides an invaluable means to
analyze community composition. Unfortunately, this aspect is frequently overlooked
due to the considerable time it consumes in the evaluation process (Schoening et al.,
2012). To this end, we have used deep learning tools to assist in the identification
and mapping of these VMEs of rocky circalittoral shelf areas adjacent to the
headwaters of two submarine canyon systems, the ACSs and CCSs. The choice of
YOLOV8 as the algorithm for this task was influenced by its efficient information
processing capabilities and sophisticated architecture that includes advanced loss
functions (Lin, 2023). It is worth noting that various versions of the YOLO algorithms
have been adapted to tackle specific challenges of underwater images, such as lack
of sharpness, small size, and overlap (Zhang et al., 2022; Xu et al., 2023). The
continuous evolution of these algorithms and the release of newer versions present
an opportunity to test each version on the same datasets to quantify improvements in
results (Zhong et al., 2022). The latest version, YOLOvVS8, has already shown promise
in plant species recognition (Wang et al., 2023), yet its application in marine
environments remains largely unexplored. This opens up new research avenues and
potential enhancements to our current methodology.

Emerging from this, our study has made significant strides in the application of
YOLOVvV8 to marine environments. Despite the inherent challenges posed by the
notable morphological differences between specimens of the same species, such as
the diversity in shapes, sizes, and complexity of the colonies of D. cornigera, and the
variability in sizes and shapes of P. ventilabrum, YOLOvV8 has proven to be highly
effective. It has achieved F1 values higher than 91.7% for both species in the ACS,
indicating a high level of detection precision and recall. Furthermore, it has managed
to detect both species with accuracies above 92.4% in the ACS. These results not
only support the study by Li et al. (2023), which concludes that YOLOVS is a suitable
model for complex conditions, showing remarkable universality and robustness in
detecting objects in images with variability and noise but also contribute significantly
to our understanding of rocky circalittoral shelf habitats and the distribution patterns
of vulnerable species within Natura 2000 areas.
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405 The success in detecting the species can be attributed to the prior training of the

406 models on large-scale datasets, such as COCO (Lin et al., 2014), and data

407 augmentation using synthetic imagery. This approach has been beneficial in

408 addressing class imbalance and has improved the metrics. In particular, we observed
409 an 11.4% improvement in F1, when including synthetic images, for the class D.

410 cornigera. However, the generalization capacity of the models used is a crucial issue
411  to ensure that the different studies and developments in the field of the application of
412  Deep-learning to ecological studies can advance towards an operational stage. It is
413 common to find generalization problems in which algorithms implemented and trained
414  for one or two data sets do not work correctly when we change the study area or

415 introduce species for which the algorithm has not been trained (W. Xu and S.

416  Matzner, 2018). In this context, YOLOv8 demonstrated excellent generalization

417  ability by performing well in CCS predictions. However, it was observed that YOLOv7
418 failed to generalize adequately, obtaining inferior metrics when switching to CCS.
419 Therefore, validation with Capbreton (CCS) images was crucial to assess model

420 overfitting and its impact on metrics. An alternative approach to improving model

421  generalization involves augmenting the manual annotation effort. However, this

422 method is associated with significant personnel and time costs (Weinstein et al.,

423  2022). Although limited to the identification of the same target species, this study
424  demonstrates the capacity of the selected and trained model for geographical

425 generalization in the process of automatic labeling of underwater images.

426  The analysis carried out in this study provides valuable insights into the distribution
427 patterns of two target species within and between our study areas. The species are
428 not uniformly distributed, but seem to present a patchy distribution with higher or
429 lower associated densities depending on the geographic location. This finding aligns
430  with previous research, such as the study by Rodriguez-Basalo and colleagues in
431 2022 in ACS, which also observed differences in the densities of D. cornigera and P.
432  ventilabrum.

433 In our study, we found that P. ventilabrum has densities ranging from 45.3 to 173
434  ind/100m?, while D. cornigera shows densities ranging from 7.5 to 149.3ind/100m?>.
435 This complex distribution pattern highlights the need for a comprehensive dataset
436 consisting of multiple spatial images to accurately capture the nuances in species
437  distribution. From an ecological and management perspective, understanding these
438 density differences in our study areas is of great importance. Our work provides a
439 detailed mapping of density variations for these species, serving as a foundation for
440 future research into the underlying causes of these variations. These causes could
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be related to differences in environmental conditions between the study areas,
varying levels of human influence, or a combination of both factors.

Our findings indicate that D. cornigera and P. ventilabrum have higher densities in
the CCS compared to the ACS. Furthermore, the ACS displayed a more intricate but
less abundant coral community, along with a higher prevalence of encrusting
sponges and fewer three-dimensional sponges. These differences did impact the
performance of our models in both study systems. However, it's important to note
that despite these varying characteristics, our models demonstrated a high degree of
accuracy and proficiency in object detection. It's worth emphasizing that the main
focus of this work is the development of an automated annotation tool, and we do not
provide an exhaustive ecological interpretation of the data generated by this tool.
This limitation highlights the need for further research to explore the ecological
implications of the observed distribution patterns of these two species in the study
areas.

Once YOLOvVS8 was identified as the most effective model for the detection of the
target species, we proceeded to automate the process of obtaining ecological data
from raw images. The use of deep learning algorithms allows us to generate accurate
and efficient species density maps (Figure 9). The time required to perform all image
labeling using these automatic models is drastically reduced compared to the time
required for this same task by experts, who must manually search and label each
species present in thousands of images. Therefore, these models provide a great
advantage, since they provide valuable information in a minimum amount of time for
carrying out subsequent in-depth population and ecological studies, which result in
the improvement of management measures applied in the ecosystems studied.

The presence of high densities of species belonging to the 1170 Reef habitat
supports the need to establish regulations and sustainable management measures to
preserve biodiversity in the ACS and CCS. These ecosystems are being considered
for protection and conservation through their designation as SAC and SCl, thanks to
the LIFE IP INTEMARES project, which is aligned with the global objective of
reaching 30% of marine protected areas by 2030 under the umbrella of the Natura
2000 Network. This study demonstrates the importance of using advanced
technologies to comprehensively study these complex and deep ecosystems serving
as a basis for the establishment of appropriate legislative measures, supported by
rigorous scientific information with a high degree of detail, in order to maintain the
balance of the structure of these benthic ecosystems, of the trophic relationships they
support, and to ensure the sustainability of the fisheries they support.
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The implementation of a pipeline as a management and conservation tool for ACSs
and CCSs provides the opportunity to monitor the densities of the shelf area study
species. In addition, the pipeline has the potential to evolve and adapt to the needs of
future surveys to obtain real-time data, cover a larger number of species, and provide
more detailed information on the sizes of detected organisms. In addition, their ability
to replicate over time will favor the monitoring of the environmental evolution of these
areas or their possible response to the management measures applied. Several
studies, such as Zhong et al. (2022), have successfully demonstrated the use of
YOLO-based object detection models for real-time identification of marine animals,
supporting the validity of the approach. For the extraction of species measurements
there are promising state-of-the-art segmentation models such as the SAM model
(Segment Anything Model) that would allow us to obtain the area occupied by the
species in the image in real time (Kirillov et al., 2023). To ensure the accuracy of
these measurements, it is essential to establish a protocol for ROV image capture
that minimizes the possibility of errors, properly synchronizing the ROV data with the
captured image. Likewise, it would also be interesting to expand the range of species
detected (Li et al., 2022), which would expand the scope of the study and provide
more detailed information on the structure of the communities in the area. This tool
would provide a holistic perspective, being able to detect changes in marine life
patterns in terms of density, mean sizes and biomasses, in order to properly assess
the impact of human activities on these habitats. This would facilitate the adoption of
measures to protect and conserve these unique marine ecosystems.

Regarding possible improvements of the present work, it is suggested to use a larger
and more diverse set of high quality images to train the model. It is proven that
increasing the number of images during training significantly improves the
generalizability and accuracy of the object detection model (Eversberg & Lambrecht,
2021; Zoph et al., 2020).

Conclusion

1. The YOLOvV8 model was effective for the detection of the yellow coral
Dendrophyllia cornigera and the cup sponge Phakellia ventilabrum, two key
species of the Cantabrian Sea circalittoral shelf rock.

2. A powerful and accurate tool was developed, within a pipeline, that allows
automatic detection of target species from raw transect images of the
circalittoral shelf by remotely operated vehicles (ROVs).

3. The results show that all three models (YOLOv7, YOLOvV8 and Faster R-CNN)
improve their performance when trained with data augmentation and that
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YOLOVS8 is the model that presents the best performance in terms of precision,
recall and F1 for both confidence thresholds 0.5 and 0.6.

4. The implementation of this tool in the shelf area of the Aviles (ACS) and
Capbreton Submarine Cannon Systems (CCS) allowed monitoring of these
vulnerable marine ecosystems, with detailed density maps of target species
indicating that the CCS rocky shelf presented the highest densities D.
cornigera and P. ventilabrum.

5. The implementation of deep learning based technologies are an efficient and
accurate methodology for sampling and monitoring sessile benthic
populations. This is essential to support the protection and conservation of
biodiversity in these ecosystems.
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Table 1(on next page)

Impact of Data Augmentation on Object Detection Model Performance for D. cornigera
and P. ventilabrum

Difference in performance of YOLOv8, YOLOv7 and Faster R-CNN models in terms of
precision, recall and F1 for D. cornigera and P. vetilabrum species with and without data
augmentation. Values represent the difference between model performance with data

augmentation minus model performance without data augmentation.
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1,4 18,5
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Figure 1

Geographical and Bathymetric Overview of Study Areas in the Cantabrian Sea

(A) Location map showing the study areas highlighted by.green rectangle, located in the
Cantabrian Sea. In addition, detailed representations of the bathymetry of (B) the Aviles
submarine canyon system and (C) the Capbreton submarine canyon system are presented,

where the ROV transects identified by red dots are highlighted.
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Figure 2

Detailed Photographs of Dendrophyllia cornigera and Phakellia ventilabrum

Detailed photograph of the species (A) Dendrophyllia cornigera and (B) Phakellia

ventilabrum.
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Figure 3

ROTV Captured Images of Marine Species in Capbreton and Aviles Canyon Systems

ROTV-obtained images of marine species on rocky substrate. (A) Capbreton canyon system,
showing Dendrophyllia cornigera (Dc), Phakellia ventilabrum (Pv), encrusting sponges (Ei),
other Porifera organisms (Po), Viminella flagellum coral (Vf), and Filograna cf implexa
serpulid (Fi). (B) Aviles canyon system, displaying Dc, Pv, Ei, At, Po, Leptometra celtica (Lc),
Parastichopus regalis (Pr), and Gracilechinus acutus urchin (Ga). Lasers are visible in the

center of both images.
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Figure 4

Synthetic Image Generation of D. cornigera and P. ventilabrum Using Supervisely

Synthetic images generated using Supervisely image data annotation software. (A)
Specimens of both D. cornigera and P. ventilabrum. (B) Specimens of D. cornigera only. (C)
Specimens of P. ventilabrum only. Each image, enhanced by the flying object function for

magnification and sample size increase, contains an average of 120 annotations.
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Figure 5

Intersection Over Union (loU) Calculation for D. cornigera Detection

The image shows the calculation of the intersection over union (loU) for the detection of D.
cornigera. Orange (A) shows the bounding box of the annotation and blue (B) shows the
bounding box of the inference, as well as the center of each box and the distance between

both points. The IoU is calculated as the intersection between the two boxes divided by their

junction.
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Figure 6

Automated Species Density Map Generation Pipeline in Google Colab

Graphical representation of the pipeline implemented in Google Colab for automated

generation of species density maps from raw transect images and ROTV telemetry data.
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Figure 7

Metrics Comparison for Species Detection Using YOLOv8, YOLOv7 and Faster R-CNN
Models

Comparison of metrics for detection of P. ventilabrum and D. cornigera species using the
YOLOv8, YOLOv7 and Faster R-CNN models in the ACS and CCS. precision, recall and F1

metrics were analyzed using augmented data and confidence thresholds of 0.5 and 0.6.
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Figure 8

Detection Results Comparison of Different Algorithms for CCS Images

Comparison of detection results of different algorithms for images obtained from the CCS. (A)
and (B) represent different images. Red circles indicate false detections, while blue circles

indicate missed detections. The detection model used is shown in the right frame of each

image.
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Figure 9

F

Species density maps for (A) Dendrophyllia cornigera and (B) Phakellia ventilabrum. Both

species are shown in the Aviles Submarine Canyon System (bottom left) and the Capbreton

Canyon System (bottom right). A large-scale situation map at the top depicts the locations of

both canyon systems.
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