# The Effect of Flywheel Complex Training with Eccentric-Overload on Muscular Adaptation in Elite Female Volleyball Players

Jiaoqin Wang<sup>1,2</sup>, Qiang Zhang<sup>2</sup>, Wenhui Chen<sup>3</sup>, Fuhong Hao<sup>4</sup>, Ming Zhang<sup>1\*</sup>, Yongzhao Fan<sup>2\*</sup>

### Abstract

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

This study aimed to compare the effects of 8 weeks (24 sessions) between flywheel complex training with eccentric overload and traditional complex training of well-trained volleyball players on muscle adaptation, including hypertrophy, strength, and power variables. Fourteen athletes were recruited and randomly divided into the flywheel complex training with an eccentric-overload group (FCTEO, n = 7) and the control group (the traditional complex training group, TCT, n = 7). Participants performed semi-squats using a flywheel device or Smith machine and drop jumps, with three sets of 8 repetitions and three sets of 12 repetitions, respectively. The results which were measured included the muscle thickness at the proximal, mid, and distal sections of the quadriceps femoris, maximal semi-squat strength (1RM-SS), squat jump (SJ), countermovement jump (CMJ), and three-step approach jump (AJ). In addition, a two-way repeated ANOVA analysis was used to find differences between the two groups and between the two testing times (pre-test vs. post-test). The results of the FCTEO group showed a significantly better improvement (p < .05) in CMJ (height: ES= .648, peak power: ES= .750), AJ (height: ES= .538, peak power: ES = .478), 1RM-SS (ES= .671), and the muscle thickness at the mid of the quadriceps femoris (ES= .504) compared to the TCT group. Since volleyball requires lower limb strength and explosive effort during repeated jumps and spiking, these results suggest that FCTEO affects muscular adaptation in a way that improves performance in welltrained female volleyball players.

**Keywords:** female volleyball players, hypertrophy, strength, power, flywheel complex training

# 29

# Introduction

In competitive team sports such as basketball, volleyball, and American football, muscle strength and power are essential because they form the basis for performance-determining activities such as jumping, running, and hitting. Sheppard et al. stated that the ability to jump is critical to success in volleyball because it allows for a competitive advantage on offense (greater height to hit over the block/greater angle of attack) and also on defense (achieving a higher block position) (Sheppard et al., 2007; Sheppard et al., 2008a; Sheppard et al., 2008b). The strength and power of an athlete's lower limbs account for the majority of their jumping capacity. (Young et al., 1999).

Power equals strength multiplied by velocity(Cardinale et al., 2011). This simple formula demonstrates that maximal strength, or the capacity to generate significant amounts of force, is essential for power generation and jumping heights. Coaches and scientific researchers are committed to finding effective training methods to improve maximal muscle strength and power, and have found many muscle strength and power training methods. Previous studies proposed that the way to develop power is to develop maximal strength, force rate, ballistic movements, plyometrics and

# Commented [HCK1]:

"The opening paragraph does not clearly elucidate the broader problem the authors aim to address. Is it related to training methodologies and strategies that optimize this process? A particularly relevant statement can be found in lines 36-38, which mentions "Coaches and scientific researchers..."."

# Commented [HCK2]:

"Please modify 'power' to 'power output' throughout the manuscript."

# Commented [HCK3]:

"This matter isn't straightforward. The improvement in performance might depend on the rate at which force needs to be generated. Simply increasing strength may not be sufficient. Please revise or provide justification."

technical exercises(Kraemer and Newton, 1994; Bompa, 1999; Zatsiorsky et al., 2020). Therefore, athletes must simultaneously increase their maximal muscle strength and movement speed in order to achieve great power. Complex training (CT), a form of combination training, is best described as training that alternates between traditional RT (heavy RT) and PT (light RT) within a single training session(Chu, 1996; Ebben and Blackard, 1997; Ebben, 2002). CT can increase maximal muscle strength and power at the same time (Carter and Greenwood, 2014; Pagaduan and Pojskic, 2020). Nonetheless, in traditional complex training (TCT), the RT portion of TCT primarily employs weight plates as resistance method, which is affected by the force arm in human biomechanics, i.e., the load that muscles overcome at different joint angles is different, and the maximal load that muscles overcome at the muscle viscoelastic point determines the maximal intensity in the concentric phase of the muscle(Norrbrand et al., 2010), which means that only at the viscoelastic point does the maximal intensity in traditional resistance training (TRT) methods cannot provide adequate load intensity during the eccentric training phase because muscle eccentric contraction produces more force than concentric contraction (Alkner et al., 2003). According to studies, TRT can only provide 40% to 50% of the maximal eccentric load during the eccentric phase (Dudley et al., 1991). In comparison to low-load eccentric training, high-load intensity eccentric training has superior effects on developing muscle strength and hypertrophy(Hakkinen, 1981; Dudley et al., 1991; Norrbrand et al., 2008; Norrbrand et al., 2010; English et al., 2014).

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Therefore, new training techniques are continually sought to enhance the capacity of skeletal muscles to develop muscle strength and power (Perez-Gomez and Calbet, 2013). Inertial-resistance training, specifically using flywheel devices, has emerged as an alternative to TRT. The flywheel paradigm offers limitless resistance throughout the entire range of motion (Norrbrand et al., 2008; Norrbrand et al., 2010), which optimizes muscle loading at each joint angle (Tesch et al., 2017). Properly performed flywheel exercise may provide a safer and more effective eccentric phase than TRT (Raya-González et al.; Maroto-Izquierdo et al., 2017b; Tesch et al., 2017; Raya-González et al., 2021), resulting in improved physical capacity and athletic performance-related adaptations (Petré et al., 2018; Beato and Dello Iacono, 2020; Beato et al., 2020; Liu et al., 2020; de Keijzer et al., 2022; Bright et al., 2023). Various studies have demonstrated the superiority of flywheel training over TRT for increasing vertical jumping ability (Maroto-Izquierdo et al., 2017b; Puustinen et al., 2023), stimulating muscle fiber hypertrophy (Norrbrand et al., 2008), and improving post-activation performance (Norrbrand et al., 2010). Overall, flywheel exercise is considered a valid and effective training technique.

Due to the paucity of research in flywheel complex training, which might compensate for the shortcomings of TRT in TCT, this study aimed to compare the effects of an eight-week periodized strength/power training program between flywheel complex training with eccentric-overload (FCTEO) and TCT. Furthermore, to examine the squat jump (SJ), countermovement jump (CMJ), three-step approach jump (AJ), maximal semi-squat strength (1RM-SS), and the muscle thickness at the

#### Commented [HCK4]:

"What does this acronym stand for? Ensure that throughout the manuscript, abbreviations are introduced with their full terminology before being used."

# Commented [HCK5]:

"The sentence spanning lines 46-53 is overly lengthy.

Consider shortening it or dividing it into two or three separate sentences."

### Commented [HCK6]:

"This paragraph seems to be missing a concluding sentence."

# Commented [HCK7]:

"This sentence might be more fitting as the concluding statement of the previous paragraph."

# Commented [HCK8]:

"This paragraph seems to be missing a concluding sentence."

# Commented [HCK9]:

"This point should have been introduced earlier in the text."

# Commented [HCK10]:

"Why is the connector 'Furthermore' used here? Aren't these the dependent variables?"

proximal, mid, and distal sections of the quadriceps femoris of well-trained volleyball players.

# Methods

# **Experimental Approach to the Problem**

A randomized two-group design with repeated measures was utilized. Sample size was determined using G\*Power Software (Faul et al., 2007), with a power of (1-β) .90, an alpha error of .05, and an effect size of .58 based on previous study examining the benefits of flywheel resistance training (FRT) on team sport participants (Seynnes et al., 2007). Thus, a minimum sample size of 12 participants was necessary. Participants (n=14) were then randomly assigned to the FCTEO group, which performed RT with a flywheel device, or the control group (the traditional complex training group, TCT group), which performed RT with a Smith machine. All other training factors (specific training, rest, movement tempo, training attire, food, etc.) remained constant. The training interventions lasted three times each week for eight weeks. Before and after the examination, muscle density, strength, and power were measured (Figure 1).

# Figure 1. Design of the Entire Study, Including All Points of Measurement **Subjects**

The study selected 14 women from high level volleyball team, whose competitive level was Division I. Throughout the previous three months, they engaged in volleyball practice at least four times each week, as well as RT and jumping exercises. Fourteen women were assigned randomly to either the FCTEO or TCT group. The ages, heights, and weights of each subject are enumerated in Table 1. Each participant gave written consent to participate in this research, which was approved by the Capital University of Physical Education and Sports's Ethics Council(2021A39).

Before beginning training (pre) and after 8 weeks of training (post) testing was conducted. Regarding the annual periodization, the research was executed during the off-season. The primary exclusion criteria for this study were a lower limb joint injury within 6 months prior to the study and/or a severe lower limb muscle injury (strains lasting more than 27 days) within 2 months prior to the study. (Maroto-Izquierdo et al., 2017a). Athletes who sustained an injury during the study's experimental phase were excluded. No participant was excluded from the research. In addition, during the study, all athletes adhered to consistent dietary regimens that were designed to meet their body weight and activity requirements, Which was recorded by 24-hour quantitative food frequency Questionnaire (Assessment, 2018). Athletes were encouraged to track their sleep habits and it appeared that they consistently received the recommended 8 hours per night. Alcohol consumption was minimal to nonexistent.

# Table 1. Information on the Groups' Anthropometry

# Measures

### Commented [HCK11]:

"Please specify the attrition rate of subjects used in the study."

A one-week test was followed by a one-week familiarization session. The participants attended the laboratory four times during the initial week: Monday, participants was dedicated to familiarizing with each testing technique. Before any testing, participants completed a 15-minute general warm-up consisting of dynamic stretching, cycling, and rowing, as well as Submaximal familiarization exercises for the assessment exercises. Basic anthropometric measurements, including the subject's weight, age, height, and training history, were taken on Tuesday. Subsequently, ultrasound imaging was utilized to determine muscle thickness (MT). Wednesday, 1RM parallel semi-squat measure. The subjects underwent a progressive resistance loading test for the 1RM parallel semisquat (top of the thigh parallel to the ground). We instructed the participants to descend and rise without halting until the knee and hip joints were fully extended. An optical encoder (ChronoJump Co., Barcelona, Spain) with an accuracy of 1 mm and a sampling rate of 1000 Hz was mounted to the barbell to measure displacement during both the concentric and eccentric phases. To ensure uniformity across trials and between sessions, the knee flexion angle was evaluated via video analysis (Hudl Technique App, Agile Sports Technologies). Participants began the parallel semi-squat at 50% of their 1RM, with the increments for each load determined according to the technique specified by Brown et al (Brown and Weir, 2001). Weekend, muscular power tests include SJ, CMJ, and three-step approach AJ. The participants completed three maximal SJs, CMJs, and three-step approach AJs, with two to three minutes of rest in between.

A week later, the subjects completed a progressive loading test in the parallel semi-squat utilizing a flywheel device (Desmetec Full 11, Italy), beginning with 0.12 kg·m² moment of inertia. We increased the moment of inertia for the flywheel until the velocity of the flywheel was similar to that caused by the barbell parallel semi-squat using 80% of 1RM intensity. Each repetition consisted of a maximal concentric action accelerating the wheel, followed by an eccentric action decelerating the wheel to a stop at approximately 90° knee flexion (Fernandez-Gonzalo et al., 2014). A washout interval of 48 to 72 hours was permitted. Participants conducted the first experimental session (FCTEO or TCT) at the same time each day, followed by the second experimental session. The assessment days were separated by at least 48 hours of rest to reduce the influence of fatigue on subsequent measurements.

# Hypertrophy Testing

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Athletes' muscle thickness (MT) measurements were taken. Participants were instructed to fast for 12 hours prior to the test, abstain from consuming alcohol for 24 hours, refrain from vigorous exercise for 24 hours, and urinate immediately before the exam. Ultrasonic imaging was utilized to determine muscle thickness (MT). Ultrasonic has been utilized in various investigations to evaluate hypertrophic changes(Miyatani et al., 2004; Pretorius and Keating, 2008), and has been proven as a good predictor of gross muscular hypertrophy in these muscles (Abe et al., 2000; Nogueira et al., 2009). It has been stated that the reliability and validity of ultrasonography in identifying MT are very good when compared to the "gold standard" magnetic resonance imaging (Reeves et al., 2004). Testing was performed

by an experienced technician using a B-mode ultrasound machine (ECO3; Chison

# Commented [HCK12]:

"Please define which variables were used. Was it solely the jump height?"

# Commented [HCK13]:

"Kindly justify the decision to use this methodology to determine training intensity. Why was 80% chosen over, say, 75% or 85%?"

# Commented [HCK14]:

"The evaluation of hypertrophy is mentioned, but this topic isn't introduced in the Introduction section nor its potential impact. If deemed significant, it should be introduced there."

# Commented [HCK15]:

"What is the reliability of this evaluation method? Please provide this information with an objective indicator, such as the CV%."

Medical Imaging, Ltd, Jiangsu, China). The technician, who was not blinded to group assignment, applied a water-soluble transmission gel (Aquasonic 100 ultrasound transmission gel) to each measurement site and then placed a 5 to 10 MHz ultrasound probe perpendicular to the tissue surface without pressing the skin. Images for muscle thickness measures were captured at distances of 25, 50, and 75% between the lateral condyle of the femur and the greater trochanter of the quadriceps femoris (QF25, QF50, and QF75, respectively). To maintain consistency from session to session, sites were measured with a vinyl measuring tape and then marked with a felt pen. During measurements of the quadriceps, participants stood with their legs stretched and relaxed. To prevent training-induced muscle swelling from obscuring the results, pictures were taken 48–72 hours before to the commencement of the study and following the final training session (Ogasawara et al., 2012).

### **Power Testing**

The participants conducted three maximal-effort jumps and submaximal familiarization trials with the assessment jumps, comprising the squat jump (SJ), the counter movement jump (CMJ), and the three-step approach jump (AJ) . The SJ required players to descend to the starting position, with the knee angle reaching 90 degrees, before stabilizing for two to three seconds. The jump was then performed without a counter movement. Participants were instructed to keep their palms on their ipsilateral hip throughout the jump. For the CMJ, participants were instructed to make a rapid countermovement to achieve a 90-degree knee angle and then instantly extend powerfully through the hips, knees, and ankles to leap as high as possible (Kozinc et al., 2022). The AJ involved a three-step approach and counter movement with the legs before the jump(Sattler et al., 2012). In all jumping tests, participants had to land in the same location from which they had taken off to avoid bending their knees and varying their measurements (Markovic et al., 2004). The participants rested for two to three minutes between each trial and varied tests. Smart Jump (Fusion Sport, Coopers Plains, Queensland, Australia) sampler, capable of monitoring 1202 Hz (Street et al., 2001), was used to capture all jumping tests, with the best jumping recorded for analysis.

# **Maximal Semi-squat Strength Testing**

After consuming breakfast and at least 750 ml of liquid, the athletes assembled at 9:00 AM, having been instructed to get at least 8 hours of sleep the night before. Athletes performed a typical warm-up and submaximal familiarization trials with the assessment activities to quantify maximal strength. Due to its well-established effectiveness, the semi-squat exercise was selected for 1RM testing. The athletes executed a controlled semi-squat to just below parallel while being guided by a professional strength-conditioning coach. Utilizing individual records of historical performance, athletes performed 5\*50%1RM, 3\*60%1RM, and 2\*80%1RM, followed by 1\*90%1RM, 1\*95%1RM, and 1\*100%1RM, as measured following Brown et al. If successful at the 1×100% 1RM lift, the athlete continued to increase the weight by 2.5 kg per attempt until failure (Brown and Weir, 2001). The maximal load lifted by each athlete was recorded as their 1RM. A 5-minute rest period was provided between the lifting attempts for passive recovery.

Commented [HCK16]: Validity?

# **Experimental Procedures**

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

The exercises semi-squats and drop jumps comprised a complex training regimen for the lower limbs that was done by the participants. The eight-week training program consisted of three weekly sessions separated by at least 48 hours (Norrbrand et al., 2008). Each session consisted of three sets of eight semi-squat repetitions and three sets of twelve drop jump repetitions. Each workout began with a 6-minute cycling warm-up, two sets of 5 bodyweight drop jumps and two sets of 10 nonmaximal repetitions of particular semi-squat exercises. The flywheel device (Desmetec Full 11, Italy) employed by the FCTEO group was equipped with an intensity that provided a mean velocity similar to the mean velocity achieved with 80% of the 1RM semi-squat (Figure 2). FCTEO was conducted by the FCTEO group by extending and flexing the knees and hips to accelerate and decelerate flywheels (Fernandez-Gonzalo et al., 2014). Briefly, each repeat involved rotating the wheels with a maximum concentric push on the platform where the feet were positioned. Over the course of the entire concentric exercise, which ranged from 90° of knee flexion to almost full extension, participants were instructed to press with utmost effort. The flywheel strap coiled back at the end of this concentric movement as a result of inertial forces, which started the reversed eccentric movement. Participants were told to resist softly during the 1/3 of the eccentric action, and then to use maximal braking power to stop the movement at around 90° knee flexion (Fernandez-Gonzalo et al., 2014). With this strategy, eccentric overload was produced (Tesch et al., 2004; Norrbrand et al., 2010; Romero-Rodriguez et al., 2011). The TCT team performed a half-squat on the Smith machine. Both groups did the same training volume with a load equivalent to 80% 1RM (Hanson et al., 2007). After finishing the resistance training part, participants conducted drop jumps. Drop jumps were conducted with the height of the boxes beginning from 45 cm at the first week and raised to 60 cm at the eighth week. The participants were asked to rate their felt exertion at the end of each set. Based on earlier study, the number of sets (Timon et al., 2019), and repetitions (Güllich and Schmidtbleicher, 1996; Mihalik et al., 2008) were determined. Rest intervals between sets lasted 60 seconds, while those between exercises lasted 2 minutes (Fleck and Kraemer).

Figure 2 Experimental design. Min = minutes. 8 + 2 repetitions = 8 maximal repetitions with

2 initial repetitions utilized to initiate the movement.

# **Statistical Analysis**

SPSS version 20.0 (SPSS Inc., IBM, China) was utilized to conduct the statistical analysis. The statistics depicted in tables and graphs are presented as mean  $\pm$  standard deviation. Using the Shapiro-Wilk, Levene, and Mauchly tests, the variances of the sample data were assessed for normality, homogeneity, and sphericity, respectively. During the pre-test, between-group comparisons were evaluated using univariate analysis of variance (ANOVA), and the effects of the experimental intervention were assessed using a two-way repeated ANOVA (group [FCTEO vs. TCT] time [pre-test vs. post-test 8 weeks]). When an interaction or main

# Commented [HCK17]:

"Please provide a rationale for consistently using maximum concentric speed."

# Commented [HCK18]:

"Regarding the plyometric exercises, why were these specific heights chosen? How were they individually determined? Furthermore, this type of training cannot be categorized as low intensity. You state that 'Complex training (CT), a form of combination training, is best described as training that alternates between traditional RT (heavy RT) and PT (light RT) within a single training session'. Is the plyometrics used truly of low intensity? Please clarify and justify."

effect was found to be statistically significant, post hoc comparisons using the Bonferroni correction were performed to determine mean differences. At P .05, statistical significance was determined. The training's effect size (ES) was estimated using partial eta squared (Cohen, 1965). According to Cohen, ES values of 0.01, 0.06, and 0.14, respectively, represent modest, moderate, and substantial effects.

#### Results

Participants from both the FCTEO and TCT groups successfully completed all training sessions. After the training sets, the FCTEO and TCT groups reported comparable levels of perceived effort. Prior to the training session, neither FCTEO nor TCT individuals differed in terms of measurable variables (Table 2). Based on diary entries, all experimental subjects with the exception of one followed the FCTEO and TCT training programs as prescribed. Apart for delayed muscular soreness, no adverse effects were observed in the FCTEO and TCT groups during the training intervention.

# Table 2 Muscle thickness and Strength and Power Tests before the Training Period *Hypertrophy*

The results of muscle thickness of the quadriceps femoris are presented in Figure 3. There was no significant interaction effect between group and time on QF25 ( $F_{group} x_{time} = .015$ , P = .0908, ES = .002). The main effects of time ( $F_{time} = .038$ , P = .852, ES = .006) and group ( $F_{group} = .015$ , P = .0908, ES = .002) on QF25 were also not significant. The interaction effect between group and time on QF50 was not significant ( $F_{group} x_{time} = .068$ , P = .802, ES = .011), nor was the main effect of group ( $F_{group} = 1.145$ , P = .326, ES = .160). However, the main effect of time on QF50 was significant ( $F_{time} = 9.145$ , P = .023, ES = .604), indicating that only the FCTEO participants significantly increased their muscle thickness of QF50 after the training period (P = .048, P = .048). No significant main effects of group, time, or group P = .048, P = .0

 Figure 3 QF thickness at proximal (25%), medial (50%), and distal (75%) measurements pre-test and post-test for both, FCTEO and TCT groups. \* Significantly different from pre-test value, where \*p < .05, Significantly different from pre-test value. QF: quadriceps femoris.

# Maximal Semi-squat Strength

The results of maximal semi-squat strength are presented in Figure 4. A significant main effect was observed for time ( $F_{time} = 28.672$ , P = .002, ES = .827) and group x time ( $F_{group \, x \, time} = 6.080$ , P = .049, ES = .503). Both the FCTEO and TCT groups showed a significant increase in 1RM semi-squat value after the training period ( $F_{FCTEO \, group} = 45.950$ , P = .001, ES = .885;  $F_{TCT \, group} = 7.886$ , P = .031, ES = .568, respectively). Post-hoc analysis revealed that the FCTEO group had a significantly higher 1RM semi-squat value than the TCT group (P = .021, P = .021). There was no significant main effect observed for the group ( $P_{group} = 2.819$ , P = .144, P = .021).

308 Figure 4 1RM semi-squat measurements pre-test and post-test for both, FCTEO and 309 TCT groups. \* Significantly different from pre-test value, where \*p < .05, \*\*p < .01, 310 #Significantly different between FCTEO and TCT groups after the training program, 311 where  $^{\#}p < .05$ . 312 Power 313 Power results are presented in Figure 5. 314 SJ315 No significant main effects of group or group x time on SJ height were found 316  $(F_{group} = 2.567, P = .160, ES = .300; F_{group x time} = 3.441, P = .113, ES = .364,$ 317 respectively). However, the main effect of time had a significant main effect on SJ 318 height ( $F_{time} = 10.451$ , P = .018, ES = .635). Post-hoc analysis indicated that TCT 319 participants significantly increased SJ height compared to FCTEO participants after 320 the training period ( $F_{TCT \text{ vs. }FCTEO} = 11.131$ , P = .016, ES = .650). The main effects of 321 group and time on SJ peak power were significant ( $F_{group} = 7.103$ , P = .037, ES = .542, 322 and  $F_{time} = 6.968$ , P = .039, ES = .537, respectively). The post-hoc analysis showed 323 that TCT participants had significantly higher SJ peak power than FCTEO 324 participants after the training period (F<sub>TCT vs. FCTEO</sub> = 6.972, P = .039, ES = .537). 325 Thus, compared to the FCTEO training program, the TCT training program was better 326 at increasing the SJ height and peak power in well-trained volleyball players. 327 CMJ328 Significant main effects of group and time on CMJ height were found (F<sub>group</sub> = 329 6.547, P = .043, ES = .522, and  $F_{time} = 18.968$ , P = .005, ES = .760, respectively). 330 Post-hoc analysis showed that FCTEO participants had significantly higher CMJ height than TCT participants ( $F_{FCTEO\ vs.\ TCT} = 11.060$ , P = .016, ES = .648) after the 331 332 training period. Significant main effects of time and group x time were also found on 333 CMJ peak power ( $F_{time} = 9.161$ , P = .023, ES = .604, and  $F_{group \ x \ time} = 7.597$ , P = .023.033, ES = .599, respectively), with FCTEO participants having significantly higher 334 335 CMJ peak power than TCT participants (F<sub>FCTEO vs. TCT</sub> = 17.952, P = .005, ES = .750) after the training period. No significant main effects of the group on CMJ peak power 336 337 were observed. Therefore, the FCTEO training program was better than TCT in 338 increasing CMJ height and peak power in well-trained volleyball players. 339 AJ340 Significant main effects of group and time on AJ height were found ( $F_{group} =$ 341 8.246, P = .028, ES = .579, and  $F_{time} = 20.851$ , P = .004, ES = .777, respectively). The 342 interaction effect of group x time on AJ height was not significant (F<sub>group x time</sub> = .884, 343 P = .383, ES = .128). Post-hoc analysis revealed that FCTEO participants had 344 significantly higher AJ height than TCT participants ( $F_{FCTEO\ vs\ TCT} = 6.974$ , P = .038, 345 ES = .538) after the training period. The study also found a significant main effect of 346 time on AJ peak power ( $F_{\text{time}} = 11.270$ , P = .015, ES = .653), with only FCTEO 347 participants showing a significant increase in AJ peak power ( $F_{FCTEO group} = 10.813$ , P 348 = .017, ES = .643). Although no significant main effects of group and group x time on 349 CMJ peak power were found, the increase in AJ peak power after FCTEO training

was partially more significant than that of TCT intervention ( $F_{FCTEO \ vs. \ TCT} = 5.705$ , P

307

= .054, ES = .478). Therefore, the FCTEO training program appeared to be more effective than TCT in increasing AJ height and peak power in well-trained volleyball players.

Figure 5 Power measurements pre-test and post-test for both, FCTEO and TCT groups. \* Significantly different from pre-test value, where p < .05, \*\*p < .01, \*Significantly different between FCTEO and TCT groups after the training program, where p < .05.

### Discussion

According to the authors, this is the first study to compare the muscular adaptations of elite volleyball players trained with FCTEO versus TCT. The results of this study indicated that more significant increases in muscle thickness, strength, and performance in CMJ and AJ were achieved after an 8-week training program comprising flywheel complex training as part of a competitive volleyball training regimen than traditional complex training. Nevertheless, a significant improvement in SJ was only observed after TCT.

# Muscle Hypertrophy

Our results showed that only the FCTEO group significantly improved muscle thickness at the midpoint of the quadriceps femoris (50% QF) post-training. Although there was no significant difference between the FCTEO and TCT groups, 50% of the QF muscle thickness in the FCTEO group (6.0%) increased by twofold greater than that in the TCT group (3.0%), which is similar to previous studies. A study from Norrbrand et al. found quadriceps muscle volume increased by 6.2% following 5 weeks of FRT, twofold greater than that shown in traditional resistance training (3.0%), but there was no significant difference between groups (Norrbrand et al., 2008). Similar increases were also found in healthy men and women after flywheel resistance training, such as a 5% increase in leg muscle mass (Fernandez-Gonzalo et al., 2014), a 7% increase in CSA (cross-sectional area) (Seynnes et al., 2007), and an 11.4% increase in rectus femoris muscle thickness (Horwath et al., 2019). Consequently, it seems FRT shows great potential for improving muscular hypertrophy compared to TRT.

Only the FCTEO group improved muscle thickness at the midpoint of the quadriceps femoris (50% QF) with flywheel training in our study. On the one hand, flywheel semi-squat training had greater use on the rectus femoris of the quadriceps (Illera-Domínguez et al., 2018; Kubo et al., 2019). A study has shown greater exercise-induced contrast shift and increased transverse relaxation time (T2), a tool used in MRI to quantify muscle use during exercise and to predict the magnitude of increase in CSA, following flywheel semi-squats compared with barbell squats. Furthermore, the rectus femoris increased T2 more with the flywheel semi-squat (+24  $\pm$  14%) than with barbell squats (+8  $\pm$  4%) (Norrbrand et al., 2011). On the other hand, there is evidence that eccentric activities cause greater myofibrillar disruption and muscle damage than concentric actions (Friden and Lieber, 1992; Gibala et al., 1995). It is believed that muscle injury generated by such loading is a crucial stimulus

# Commented [HCK19]:

"What implications does this hold? Please relate this back to the Introduction"

# Commented [HCK20]:

"This information is redundant with the previous paragraph."

for myofibrillar remodeling and consequently muscular growth (Evans and Cannon, 1991; Yu et al., 2003).

# Maximal Muscle Strength

The present results demonstrated that FCTEO training was more effective at improving strength in the semi-squat than TCT training (p = .021, ES = .671), increasing strength by 22.5% (FCTEO group) and 12.4% (TCT group), respectively, which is similar to Fernandez-Gonzalo et al., who found a 6 weeks of training on a flywheel squat device without a control group resulted in a 25% and 20% increase in 1 RM for men and women, respectively. (Fernandez-Gonzalo et al., 2014). In contrast to our results, Maroto-Izquierdo et al. found no significant differences in the increase of the 1RM leg press in well-trained handball players between a FRT and a TRT program (Maroto-Izquierdo et al., 2017a). The contrary result could be due to the training duration and sessions. since longer training duration and more training sessions have a larger impact on resistance training adaptations (Moran et al., 2017). In our study, the training intervention lasted 8 weeks or 24 sessions in total. While in the study of Maroto-Izquierdo et al., the training intervention only lasted six weeks or 15 sessions.

Additionally, FRT in the FCTEO group used in our study is indeed very different from the traditional resistance training in the TCT group. During flywheel exercise, the rotational inertia generates a larger eccentric overload than TRT.(Maroto-Izquierdo et al., 2017b). Moreover, TRT at varying intensities was constant resistance training. Flywheel, on the other hand, offered unrestricted resistance at all intensities and maximal or nearly maximal activation from the start due to its inertia force(McErlain-Naylor and Beato, 2021). As exercise intensity has been recognized as a significant determinant of strength training-induced adaptations (Campos et al., 2002; Heggelund et al., 2013). Additionally, eccentric loading led to certain neuromuscular changes such attenuated motor recruitment(Douglas et al., 2017), preferential recruitment of high threshold motor units, and increased cortical activity (Hody et al., 2019). Lastly, it has been shown that a rise in the production of the eccentric phase force is followed by an increase in the output of the concentric phase force (Takarada et al., 1997; Doan et al., 2002). Together, these physiological distinctions support our study findings and the usefulness of flywheel training in enhancing volleyball female players' strength.

# Muscle Power

The results of CMJ in this study are comparable to those of prior research. A study of elite soccer or basketball players found that flywheel resistance training led to significant increase in CMJ height (Seynnes et al., 2007; Stojanović et al., 2021). While a research of physical education students did not elicit substantial increases in SJ or CMJ, this may be due to the elite level of our participants. Indeed, training age (Till et al., 2017), and strength level (Prue et al., 2010) have been found to influence changes in power after resistance training. However, FCTEO participants had no significant effect on SJ performance, which may result from the less intense stimulation of concentric muscle contraction caused by the flywheel compared with TCT (MacDougall et al., 2014).

### Commented [HCK21]:

"The content of this paragraph is unclear. How does it contribute to the rationale of this study? Please discuss."

# Commented [HCK22]:

"What is the conclusion drawn from this paragraph?"

Furthermore, the large improvements in power tests (CMJ, and AJ) in FCTEO training groups may be caused by the increased semi-muscle strength. As the FCTEO training technique is similar to the CMJ test technique, the increased semi-muscle strength transfer to CMJ after FCTEO training is relatively easy to achieve. And post-activation performance enhancement (PAPE) may also play an important role in improving power. Since a positive PAPE effect caused by flywheel resistance training on the jumping performance has been reported (Beato et al., 2019; Timon et al., 2019; Maroto-Izquierdo et al., 2020; Beato et al., 2021a; Beato et al., 2021b).

In addition, increased muscle-tendon stiffness may have contributed to the improvements in CMJ and AJ in the FCTEO training group. That impact of inertial training was noticed by Onambele et al. (Onambélé et al., 2008), who found a 136% rise in gastrocnemius lateralis and soleus tendon stiffness after 12 weeks of inertial training in senior volunteers. It may also be brought on by an improvement in the stretch-shortening cycle (SSC) (Bosco et al., 1981), and an increase in the excitability threshold of the Golgi tendon organs (McNeely and Sandler, 2006). We did not, however, measure these variables. Changes in neuromuscular coordination can also influence post-exercise power gains. During EMG measurements, neuromuscular control can be seen to improve(Tesch et al., 2004) ,and Seynees et al. (Seynnes et al., 2007) assessed changes in EMG signals after training.

Some restrictions demand additional consideration. Due to the degree of competition of our data, the results can only be generalized to similar degree of competition. Due to the off-season nature of the training intervention, it was outside the scope of this study to explore the effects of FCTEO on field-based performance measures such as sprint speed and COD. Nonetheless, such measurements could have offered further information regarding the transfer of FCTEO to team sport tasks, as FRT has been demonstrated to result in larger increases in speed and COD than TRT (Maroto-Izquierdo et al., 2017b). Since the focus of our study was on the lower body, future research should also evaluate the effects of FCTEO on the upper body. This may have substantial performance and injury prevention implications for volleyball players, as the upper body is heavily involved in training and competition (spiking, serving, blocking) (Sheppard et al., 2007). Despite this limitation, a better efficacy was reported for FCTEO training. Future research should investigate monitoring surface electromyography in the application of FCTEO, it is suggested.

# Conclusions

FCTEO training is better to improve muscular adaptation in a way in elite female volleyball players. These findings have significant implications for professionals who work with elite female volleyball players. Given the importance of increasing muscle thickness, strength, and power in female volleyball players, the training interventions presented here provide advise on the FCTEO approach that can be used to improve these characteristics. Despite the fact that our findings suggested that FCTEO may be superior to TCT, FCTEO is a good training strategy for enhancing lower-body muscular thickness, strength, and power. Future study examining FCTEO in female athletes should investigate the effects of various training prescription variables (e.g., intensity, volume, and frequency) on optimizing strength, power, and speed.

### Commented [HCK23]:

"What do you mean by 'semi-muscle strength'?"

### Commented [HCK24]:

"A concluding sentence is missing in this section."

#### Commented [HCK25]:

"This point seems out of place here. I suggest either removing it or positioning it in the limitations section."

# Commented [HCK26]:

"Are these considered KPIs in volleyball?"

# Commented [HCK27]:

What does this mean?

# Commented [HCK28]:

"You mention hypertrophy, but this isn't addressed in the Introduction. Please ensure consistency throughout the manuscript."

**Commented [HCK29]:** Es una repeticion de los mismo...en q se traduce? Borad problem

This seems to be a repetition of previously stated information. How does it relate? Please link back to the broader problem addressed." References

482

492

493

494

- Abe, T., DeHoyos, D.V., Pollock, M.L., and Garzarella, L. (2000). Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European journal of applied physiology 81, 174-180.
- 486 Alkner, B.A., Berg, H.E., Kozlovskaya, I., Sayenko, D., and Tesch, P.A. (2003). Effects of
  487 strength training, using a gravity-independent exercise system, performed during 110
  488 days of simulated space station confinement. European journal of applied physiology 90,
  489 44-49.
- 490 Assessment, F.D. (2018). A resource guide to method selection and application in low resource 491 settings. FAO: Rome, Italy 152.
  - Beato, M., Bigby, A.E., De Keijzer, K.L., Nakamura, F.Y., Coratella, G., and McErlain-Naylor, S.A. (2019). Post-activation potentiation effect of eccentric overload and traditional weightlifting exercise on jumping and sprinting performance in male athletes. PloS one 14(9), e0222466.
- Beato, M., De Keijzer, K.L., Leskauskas, Z., Allen, W.J., Iacono, A.D., and McErlain-Naylor,
   S.A. (2021a). Effect of postactivation potentiation after medium vs. high inertia eccentric
   overload exercise on standing long jump, countermovement jump, and change of
   direction performance. The Journal of Strength & Conditioning Research 35(9), 2616 2621.
- Beato, M., and Dello Iacono, A. (2020). Implementing flywheel (isoinertial) exercise in strength
   training: current evidence, practical recommendations, and future directions. Frontiers in
   Physiology 11, 569.
- Beato, M., Madruga-Parera, M., Piqueras-Sanchiz, F., Moreno-Pérez, V., and Romero-Rodriguez,
   D. (2021b). Acute effect of eccentric overload exercises on change of direction
   performance and lower-limb muscle contractile function. Journal of strength and
   conditioning research 35(12), 3327-3333.
- Beato, M., McErlain-Naylor, S.A., Halperin, I., and Iacono, A.D. (2020). Current evidence and
   practical applications of flywheel eccentric overload exercises as postactivation
   potentiation protocols: A brief review. International journal of sports physiology and
   performance 15(2), 154-161.
- Bompa, T. (1999). Periodization training for sports: program for peak strength in 35 sports.
   Champaign (IL): Human Kinetics.
- Bosco, C., Komi, P.V., and Ito, A. (1981). Prestretch potentiation of human skeletal muscle during
   ballistic movement. Acta Physiologica Scandinavica 111(2), 135-140.
- Bright, T.E., Handford, M.J., Mundy, P., Lake, J., Theis, N., and Hughes, J.D. (2023). Building
   for the Future: A Systematic Review of the Effects of Eccentric Resistance Training on
   Measures of Physical Performance in Youth Athletes. Sports Med. doi: 10.1007/s40279 023-01843-y.
- Brown, L.E., and Weir, J.P. (2001). ASEP procedures recommendation I: accurate assessment of muscular strength and power. Journal of Exercise Physiology Online 4(3).
- Campos, G.E., Luecke, T.J., Wendeln, H.K., Toma, K., Hagerman, F.C., Murray, T.F., et al.
   (2002). Muscular adaptations in response to three different resistance-training regimens:
- 524 specificity of repetition maximum training zones. European journal of applied physiology 525 88, 50-60.

- Cardinale, M., Newton, R., and Nosaka, K. (2011). Strength and conditioning: biological
   principles and practical applications. John Wiley & Sons.
- Carter, J., and Greenwood, M. (2014). Complex training reexamined: Review and
   recommendations to improve strength and power. Strength & Conditioning Journal 36(2),
   11-19.
- Chu, D.A. (1996). Explosive power & strength: complex training for maximum results. Human
   Kinetics 1.
- Cohen, J. (1965). Some statistical issues in psychological research. Handbook of clinical
   psychology, 95-121.
- de Keijzer, K.L., Gonzalez, J.R., and Beato, M. (2022). The effect of flywheel training on strength
   and physical capacities in sporting and healthy populations: An umbrella review. PLoS
   One 17(2), e0264375. doi: 10.1371/journal.pone.0264375.
- Doan, B.K., Newton, R.U., Marsit, J.L., Triplett-McBride, N.T., Koziris, L.P., Fry, A.C., et al.
   (2002). Effects of increased eccentric loading on bench press 1RM. The Journal of
   Strength & Conditioning Research 16(1), 9-13.
- Douglas, J., Pearson, S., Ross, A., and McGuigan, M. (2017). Eccentric exercise: physiological
   characteristics and acute responses. Sports Medicine 47, 663-675.
- Dudley, G.A., Tesch, P., Miller, B., and Buchanan, P. (1991). Importance of eccentric actions in
   performance adaptations to resistance training. Aviation, space, and environmental
   medicine 62(6), 543-550.
- Ebben, W.P. (2002). Complex training: A brief review. Journal of sports science & medicine 1(2),
   42.
- Ebben, W.P., and Blackard, D.O. (1997). Complex training with combined explosive weight
   training and plyometric exercises. Olympic coach 7(4), 11-12.
- English, K.L., Loehr, J.A., Lee, S.M., and Smith, S.M. (2014). Early-phase musculoskeletal
   adaptations to different levels of eccentric resistance after 8 weeks of lower body training.
   European journal of applied physiology 114, 2263-2280.
- Evans, W.J., and Cannon, J.G. (1991). 3 the metabolic effects of exercise-induced muscle damage. Exercise and sport sciences reviews 19(1), 99-126.
- Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G\* Power 3: A flexible statistical
   power analysis program for the social, behavioral, and biomedical sciences. Behavior
   research methods 39(2), 175-191.
- Fernandez-Gonzalo, R., Lundberg, T.R., Alvarez-Alvarez, L., and de Paz, J.A. (2014). Muscle
   damage responses and adaptations to eccentric-overload resistance exercise in men and
   women. European journal of applied physiology 114, 1075-1084.
- Fleck, S.J., and Kraemer, W.J. Designing Resistance Training Programs, 3rd edn (2004). Human
   Kinetics, Champaign, IL.
- Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G\* Power 3: A flexible statistical
   power analysis program for the social, behavioral, and biomedical sciences. Behavior
   research methods 39(2), 175-191.
- Friden, J., and Lieber, R.L. (1992). Structural and mechanical basis of exercise-induced muscle
   injury. Medicine & Science in Sports & Exercise 24(5), 521-530.

- Gibala, M., MacDougall, J., Tarnopolsky, M., Stauber, W., and Elorriaga, A. (1995). Changes in
   human skeletal muscle ultrastructure and force production after acute resistance exercise.
   Journal of Applied Physiology 78(2), 702-708.
- Güllich, A., and Schmidtbleicher, D. (1996). MVC-induced short-term potentiation of explosive
   force. New studies in athletics 11, 67-84.

575

576

577

578

579

580

587

588

589

593

594

595

- Hakkinen, K. (1981). Effect of different combined concentric and eccentric muscle work regimens
   on maximal strength development. J. Hum. Move. Stud. 7, 33-44.
  - Hanson, E.D., Leigh, S., and Mynark, R.G. (2007). Acute effects of heavy-and light-load squat exercise on the kinetic measures of vertical jumping. The Journal of Strength & Conditioning Research 21(4), 1012-1017.
  - Heggelund, J., Fimland, M.S., Helgerud, J., and Hoff, J. (2013). Maximal strength training improves work economy, rate of force development and maximal strength more than conventional strength training. European journal of applied physiology 113, 1565-1573.
- Hody, S., Croisier, J.-L., Bury, T., Rogister, B., and Leprince, P. (2019). Eccentric muscle
   contractions: risks and benefits. Frontiers in physiology, 536.
- Horwath, O., Paulsen, G., Esping, T., Seynnes, O., and Olsson, M.C. (2019). Isokinetic resistance
   training combined with eccentric overload improves athletic performance and induces
   muscle hypertrophy in young ice hockey players. Journal of science and medicine in sport
   22(7), 821-826.
  - Illera-Domínguez, V., Nuell, S., Carmona, G., Padullés, J.M., Padullés, X., Lloret, M., et al. (2018). Early functional and morphological muscle adaptations during short-term inertial-squat training. Frontiers in physiology 9, 1265.
- Kozinc, Ž., Žitnik, J., Smajla, D., and Šarabon, N. (2022). The difference between squat jump and
   countermovement jump in 770 male and female participants from different sports.
   European Journal of Sport Science 22(7), 985-993.
  - Kraemer, W.J., and Newton, R.U. (1994). Training for improved vertical jump. Sports Science Exchange/Gatorade Sports Science Institute 7(6).
  - Kubo, K., Ikebukuro, T., and Yata, H. (2019). Effects of squat training with different depths on lower limb muscle volumes. European journal of applied physiology 119, 1933-1942.
- Liu, R., Liu, J., Clarke, C.V., and An, R. (2020). Effect of eccentric overload training on change of
   direction speed performance: A systematic review and meta-analysis. Journal of Sports
   Sciences 38(22), 2579-2587.
- MacDougall, D., MacDougall, J.D., and Sale, D. (2014). The physiology of training for high
   performance. Oxford University Press.
- Markovic, G., Dizdar, D., Jukic, I., and Cardinale, M. (2004). Reliability and factorial validity of
   squat and countermovement jump tests. The Journal of Strength & Conditioning Research
   18(3), 551-555.
- Maroto-Izquierdo, S., Bautista, I., and Rivera, F. (2020). Post-activation performance
   enhancement (PAPE) after a single-bout of high-intensity flywheel resistance training.
   Biology of Sport 37(4), 343-350.
- Maroto-Izquierdo, S., García-López, D., and de Paz, J.A. (2017a). Functional and muscle-size
   effects of flywheel resistance training with eccentric-overload in professional handball
   players. Journal of human kinetics 60(1), 133-143.

- Maroto-Izquierdo, S., García-López, D., Fernandez-Gonzalo, R., Moreira, O.C., González-
  - Gallego, J., and de Paz, J.A. (2017b). Skeletal muscle functional and structural
- adaptations after eccentric overload flywheel resistance training: a systematic review and
- meta-analysis. Journal of science and medicine in sport 20(10), 943-951.

612

636

637

638 639

640

641

642

- McErlain-Naylor, S.A., and Beato, M. (2021). Concentric and eccentric inertia-velocity and
   inertia-power relationships in the flywheel squat. Journal of sports sciences 39(10), 1136 1143.
- McNeely, E., and Sandler, D. (2006). Power plyometrics: the complete program. Meyer & Meyer Verlag.
- Mihalik, J.P., Libby, J.J., Battaglini, C.L., and McMurray, R.G. (2008). Comparing short-term
   complex and compound training programs on vertical jump height and power output. The
   Journal of Strength & Conditioning Research 22(1), 47-53.
- Miyatani, M., Kanehisa, H., Ito, M., Kawakami, Y., and Fukunaga, T. (2004). The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. European journal of applied physiology 91, 264-272.
- Moran, J., Sandercock, G.R., Ramírez-Campillo, R., Meylan, C., Collison, J., and Parry, D.A.
   (2017). A meta-analysis of maturation-related variation in adolescent boy athletes'
   adaptations to short-term resistance training. Journal of sports sciences 35(11), 1041 1051.
- Nogueira, W., Gentil, P., Mello, S., Oliveira, R., Bezerra, A., and Bottaro, M. (2009). Effects of power training on muscle thickness of older men. International journal of sports medicine 30(03), 200-204.
- Norrbrand, L., Fluckey, J.D., Pozzo, M., and Tesch, P.A. (2008). Resistance training using eccentric overload induces early adaptations in skeletal muscle size. European journal of applied physiology 102, 271-281.
  - Norrbrand, L., Pozzo, M., and Tesch, P.A. (2010). Flywheel resistance training calls for greater eccentric muscle activation than weight training. European journal of applied physiology 110, 997-1005.
  - Norrbrand, L., Tous-Fajardo, J., Vargas, R., and Tesch, P.A. (2011). Quadriceps muscle use in the flywheel and barbell squat. Aviation, space, and environmental medicine 82(1), 13-19.
  - Ogasawara, R., Thiebaud, R.S., Loenneke, J.P., Loftin, M., and Abe, T. (2012). Time course for arm and chest muscle thickness changes following bench press training. Interventional Medicine and Applied Science 4(4), 217-220.
- Onambélé, G.L., Maganaris, C.N., Mian, O.S., Tam, E., Rejc, E., McEwan, I.M., et al. (2008).
   Neuromuscular and balance responses to flywheel inertial versus weight training in older
   persons. Journal of biomechanics 41(15), 3133-3138.
- Pagaduan, J., and Pojskic, H. (2020). A meta-analysis on the effect of complex training on vertical jump performance. Journal of human kinetics 71, 255.
- Perez-Gomez, J., and Calbet, J. (2013). Training methods to improve vertical jump performance. J
   Sports Med Phys Fitness 53(4), 339-357.
- Petré, H., Wernstål, F., and Mattsson, C.M. (2018). Effects of flywheel training on strength related variables: A meta-analysis. Sports medicine-open 4, 1-15.
- Pretorius, A., and Keating, J. (2008). Validity of real time ultrasound for measuring skeletal muscle size. Physical Therapy Reviews 13(6), 415-426.

- 655 Prue, P., McGuigan, M., and Newton, R. (2010). Influence of strength on magnitude and 656 mechanisms of adaptation to power training. Med. Sci. Sports Exerc 42, 1566-1581.
- 657 Puustinen, J., Venojärvi, M., Haverinen, M., and Lundberg, T.R. (2023). Effects of Flywheel vs. 658 Traditional Resistance Training on Neuromuscular Performance of Elite Ice Hockey 659 Players. J Strength Cond Res 37(1), 136-140. doi: 10.1519/jsc.0000000000004159.
- 660 Raya-González, J., Castillo, D., and Beato, M. (2021). The flywheel paradigm in team sports: A 661 soccer approach. Strength & Conditioning Journal 43(1), 12-22.

662

663

664

667

668

669

673

674

675

- Raya-González, J., Keijzer, K.L.D., Bishop, C., and Beato, M. Effects of flywheel training on strength-related variables in female populations. A systematic review. Research in sports medicine (Print), 1-18.
- 665 Reeves, N.D., Maganaris, C.N., and Narici, M.V. (2004). Ultrasonographic assessment of human 666 skeletal muscle size. European journal of applied physiology 91, 116-118.
  - Romero-Rodriguez, D., Gual, G., and Tesch, P. (2011). Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: a case-series study. Physical Therapy in Sport 12(1), 43-48.
- Sattler, T., Sekulic, D., Hadzic, V., Uljevic, O., and Dervisevic, E. (2012). Vertical jumping tests 670 671 in volleyball: reliability, validity, and playing-position specifics. The Journal of Strength 672 & Conditioning Research 26(6), 1532-1538.
  - Seynnes, O.R., de Boer, M., and Narici, M.V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology 102(1), 368-373.
- 676 Sheppard, J., Borgeaud, R., and Strugnel, A. (2008a). Influence of stature on movement speed and 677 repeated efforts in elite volleyball players.
- 678 Sheppard, J.M., Cronin, J.B., Gabbett, T.J., McGuigan, M.R., Etxebarria, N., and Newton, R.U. 679 (2008b). Relative importance of strength, power, and anthropometric measures to jump 680 performance of elite volleyball players. The Journal of Strength & Conditioning Research 681 22(3), 758-765.
- 682 Sheppard, J.M., Gabbett, T., Taylor, K.-L., Dorman, J., Lebedew, A.J., and Borgeaud, R. (2007). 683 Development of a repeated-effort test for elite men's volleyball. International journal of 684 sports physiology and performance 2(3), 292-304.
- 685 Stojanović, M.D., Mikić, M., Drid, P., Calleja-González, J., Maksimović, N., Belegišanin, B., et 686 al. (2021). Greater power but not strength gains using flywheel versus equivolumed 687 traditional strength training in junior basketball players. International Journal of 688 Environmental Research and Public Health 18(3), 1181.
- 689 Street, G., McMillan, S., Board, W., Rasmussen, M., and Heneghan, J.M. (2001). Sources of error 690 in determining countermovement jump height with the impulse method. Journal of Applied Biomechanics 17(1), 43-54.
- 692 Takarada, Y., Hirano, Y., Ishige, Y., and Ishii, N. (1997). Stretch-induced enhancement of 693 mechanical power output in human multijoint exercise with countermovement. Journal of 694 Applied Physiology 83(5), 1749-1755.
- 695 Tesch, P., Ekberg, A., Lindquist, D., and Trieschmann, J. (2004). Muscle hypertrophy following 696 5-week resistance training using a non-gravity-dependent exercise system. Acta 697 Physiologica Scandinavica 180(1), 89-98.

Tesch, P.A., Fernandez-Gonzalo, R., and Lundberg, T.R. (2017). Clinical applications of isoinertial, eccentric-overload (YoYo<sup>TM</sup>) resistance exercise. Frontiers in physiology 8, 241.

- Till, K., Darrall-Jones, J., Weakley, J.J., Roe, G.A., and Jones, B.L. (2017). The influence of training age on the annual development of physical qualities within academy rugby league players. The Journal of Strength & Conditioning Research 31(8), 2110-2118.
- Timon, R., Allemano, S., Camacho-Cardeñosa, M., Camacho-Cardeñosa, A., Martinez-Guardado, I., and Olcina, G. (2019). Post-activation potentiation on squat jump following two different protocols: Traditional vs. inertial flywheel. Journal of human kinetics 69(1), 271-281
- Young, W., Wilson, G., and Byrne, C. (1999). Relationship between strength qualties and performance in standing and run-up vertical jumps. Journal of Sports Medicine and Physical Fitness 39(4), 285.
- Yu, J.-G., Fürst, D.O., and Thornell, L.-E. (2003). The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochemistry and cell biology 119, 383-393.
- Zatsiorsky, V.M., Kraemer, W.J., and Fry, A.C. (2020). Science and practice of strength training.
   Human Kinetics.