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ABSTRACT
Dynamic functional connectivity, derived from resting-state functional magnetic
resonance imaging (rs-fMRI), has emerged as a crucial instrument for investigating
and supporting the diagnosis of neurological disorders. However, prevalent features
of dynamic functional connectivity predominantly capture either temporal or spatial
properties, such as mean and global efficiency, neglecting the significant information
embedded in the fusion of spatial and temporal attributes. In addition, dynamic func-
tional connectivity suffers from the problem of temporal mismatch, i.e., the functional
connectivity of different subjects at the same time point cannot be matched. To address
these problems, this article introduces a novel feature extraction framework grounded
in two-directional two-dimensional principal component analysis. This framework
is designed to extract features that integrate both spatial and temporal properties of
dynamic functional connectivity. Additionally, we propose to use Fourier transform to
extract temporal-invariance properties contained in dynamic functional connectivity.
Experimental findings underscore the superior performance of features extracted by
this framework in classification experiments compared to features capturing individual
properties.

Subjects Neuroscience, Neurology, Psychiatry and Psychology, Radiology and Medical Imaging,
Computational Science
Keywords Dynamic functional connectivity, Spatial and temporal properties

INTRODUCTION
The human brain is a complex functional system that is artificially divided into different
brain regions. Each brain region has a different primary function and they work together
to accomplish complex tasks. An in-depth study of the interactions between brain regions
can reveal the operating mechanisms of the brain and lay the foundation for the discovery
of the pathogenesis of brain diseases (Angermann et al., 2022; Bai et al., 2009; Chopade
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et al., 2023). In order to study the correlations between different brain regions of the
brain as they work, a large number of studies have used resting-state functional magnetic
resonance (rs-fMRI) to construct functional connectivity (FN) between different brain
regions, which characterizes the interactions between different brain regions (Damaraju
et al., 2014; Dawson, Rieder & Johnson, 2023; Farah et al., 2020; Gao et al., 2022; Grandjean
et al., 2023). Currently, functional connectivity is now a key tool to help further our
understanding and aid in the diagnosis of neurological disorders such as Parkinson’s
disease and autism (Holz et al., 2023;Huber et al., 2021;Hutchison et al., 2013; Kazeminejad
& Sotero, 2019).

Functional connectivity is generally categorized into two main groups: (1) static
functional connectivity, which assumes that rs-fMRI is constant throughout the recording
period and does not change over time. Higher-order brain networks based on static
functional connectivity achieve good results in assisting the diagnosis of neurological
diseases (Kumar & Aravind, 2010; Ladwig et al., 2022; Lawrence et al., 2020; Li et al., 2020);
(2) dynamic functional connectivity (DFC), which characterizes the dynamics of functional
connectivity over time, and is generally derived from functional connectivity time series by
the ‘‘sliding window’’ method. Dynamic functional connectivity has better performance
on classification tasks because it contains time-varying information (Liu et al., 2020; Liu
et al., 2019; Long et al., 2020; Lu et al., 2019; Lurie et al., 2020; Matson & Nebel-Schwalm,
2007). On the one hand the dynamics of functional connectivity over time can be referred
to as the temporal properties of dynamic functional connectivity. On the other hand, the
brain as a complex functional system has not only interactions between regions of interest
(ROIs), but also complex spatial relationships between different functional connections,
which reflect the spatial properties of functional connections.

Although dynamic functional connectivity includes both temporal and spatial properties,
researchers have mostly analyzed one aspect of a single property. For example, for temporal
properties, most studies use statistical methods to count the minimum, maximum, mean,
standard deviation, root mean square, etc., of the time series of dynamic functional
connectivity (Ni et al., 2014; Olczyk et al., 2022; Pang et al., 2022). For spatial properties,
most researchers have represented different functional brain regions and their connections
as a brain network, and then statistically analyzed the characteristic path lengths, global
efficiencies, and clustering coefficients of this network (Park et al., 2020; Qiu et al., 2014;
Razzak et al., 2020). Few studies have been conducted to extract and analyze features
that integrate both temporal and spatial properties of dynamic functional connectivity
(Ricaud et al., 2019). It can be reasonably assumed that features combining complementary
temporal and spatial properties can provide more critical information for brain disease
research and more differential information for classifiers, which in turn improves the
correctness of the diagnosis of neurological disorders and the diagnostic efficiency of
doctors. Therefore, a framework is needed to extract features that simultaneously contain
the temporal and spatial properties of dynamic functional connectivity.

Based on the above analysis, we propose a new feature extraction framework based on
two-directional two-dimensional principal component analysis ((2D)2PCA) (Royer et al.,
2022; Sadat & Joye, 2020; Shen et al., 2023), which is capable of extracting features that
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integrate both temporal and spatial characteristics of dynamic functional connectivity. In
this framework, we utilize the (2D)2PCA function that can fully consider the properties of
the matrix in both directions while eliminating noise, (2D)2PCA is used to simultaneously
consider the relationship between the temporal and spatial orientations of the dynamic
functional connectivity, and thus integrates the properties in both directions. To the best
of our knowledge, there is no (2D)2PCA based feature extraction method for dynamic
functional connectivity to extract features. In contrast to previous feature extraction
methods that only capture structural information in a single direction, the proposed
(2D)2PCA based feature extraction method can simultaneously integrate features in both
directions.

In addition, dynamic functional connectivity suffers from the problem of sensitive to
the chronological order of its subnetworks, which limits its use in comparative studies (Shi
et al., 2019). The Fourier transform has been widely used in the field of communications,
acoustics and optics, where it converts signals that are difficult to analyze in the time
domain into a frequency domain representation and then goes on to analyze them (Starck
et al., 2013; Sun et al., 2022; Sun et al., 2019; Valentine, Al-Mualem & Baiz, 2021; Valsasina
et al., 2019). Inspired by the Fourier transform function, we propose to use the Fourier
transform to solve the problem. In the feature extraction framework, the time series of
different functional connections are converted from time domain to frequency domain
representation by Fourier transform. By comparing the information on the same frequency
instead of comparing the information on the same time point, the impact of temporal
mismatch on to the dynamic functional connectivity comparison study is mitigated.

In order to verify that the features extracted by the framework have better separability,
we trained classifiers using the extracted features for subsequent adjunctive diagnosis of
neurological disorders and conducted experiments in two brain disease classification tasks.
The experimental results show that the features extracted by the framework perform better
in disease-assisted diagnosis than those extracted by feature extraction methods that only
include temporal or spatial unidirectional features, and the Fourier transform mitigates
the problem of dynamic functional connectivity being sensitive to the temporal order of
its subnetworks. In addition, the extracted features show a performance improvement
over the comparison methods on both classification tasks, and it can be found that our
proposed framework is aiding in the diagnosis of neurological disorders, and not only for
a particular disease.

In summary, there are two parts of contribution in this article: (1) proposing a new
feature extraction framework for extracting features that integrate temporal and spatial
properties of dynamic functional connectivity; (2) utilizing the Fourier transform method
to capture dynamic functional connectivity properties without performing chronological
time matching. The framework has promising applications in the detection, prevention
and prognostic assessment of brain diseases, and the abnormal functional connectivity and
brain regions of brain disease patients identified in the article can provide new perspectives
for subsequent research.
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MATERIALS AND DATA PREPROCESSING
Subjects
The rs-fMRI data of 45 autism spectrum disorders (ASD) patients and 47 healthy controls
(HC) groups were scanned using a 3-T Siemens Allegra scanner at the NYU Langone
Medical Center. Due to the difference in medical device, collection protocol, etc to mitigate
data heterogeneity, scans were exclusively considered from 45 individuals diagnosed with
ASD and 47 individuals within the age range of 7 to 15 years. The imaging was conducted
at NYU Langone Medical Center. All subjects under consideration exhibited minimal
head movement, with displacement <1.5 mm or angular rotation <1.5◦ in any of the
three directions. The ASD subjects were diagnosed according to the autism criteria in the
Diagnostic and Statistical Manual of Mental Disorders (4th Edition, Text Revised) (DSM-
IV-TR) (American Psychiatric Association, 2000). For more details of the data collection,
exclusion criteria, and scan parameters, please visit the ABIDE website. The main scanning
parameters used in this dataset include the flip angle= 90, 33 slices, TR/TE= 2,000/15 ms,
180 volumes, and voxel thickness = 4 mm.

The rs-fMRI data of 52 end-stage renal disease (ESRD) patients and 49 HC groups were
scanned using GE Signa HDX 3.0T MRI equipment at hospital of Qingdao University.
Inclusion criteria for the ESRD group: (1) Diagnosed by the Affiliated Hospital of Qingdao
University as Chronic Kidney Disease Stage 5, glomerular filtration rate less than 15 ml
·min−1 ·

(
1.73 m2)−1. (2) Age 18–70 years old; (3) No contraindications to magnetic

resonance examination and claustrophobia. Exclusion criteria: (1) history of severe
traumatic brain injury; (2) intracranial organic pathology, intracranial organic disease,
such as tumour, infarction, haemorrhage, etc.; (3) cerebrovascular disease, such as cerebral
arteriovenous malformation, smoky disease, etc. and smog disease; (4) history of mental
illness; and (5) history of substance abuse (drug ethanol or cigarettes); (6) hypertension,
diabetes mellitus, coronary artery disease, heart failure, liver and kidney failure, etc. failure,
liver or kidney failure, and other serious systemic diseases; (7) incompatibility with the
test subjects who are incompatible with the test or unable to effectively complete the MRI
scan. The scan parameters are TR = 3,000 ms, TE = 40 ms, FA = 90◦, 25 slices, thickness
= 5 mm, gap = 0 mm, matrix size = 96×96 and FOV = 24 cm × 24 cm.

Data preprocessing
Data preprocessing is performed for all rs-fMRI data by using a standard pipeline, including
time correction, head motion correction, spatial normalization and smoothing using
MATLAB’s DPABI toolbox. Specifically, (1) conversion of data format; (2) removal of data
from the first 10 sampling points for each subject in order to exclude the effects of initial
magnetic field instability and the subject’s initial emotional instability; (3) correction of
time layer, head motion. Subjects with excessive head movements are excluded; (4) spatial
normalization in terms of MNI standard space with the resolution of 3 × 3 × 3 mm2;
(5) ventricle signals, cerebrospinal fluid signal and white matter signal were regressed out
as nuisance signals; (6) to filter out various physiological noises to reduce the effects of
low-frequency linear drift and physiological noise, the data were processed to remove linear
trends and band-pass filtered (0.01−0.08 Hz).
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In this experiment, after data pre-processing, the brain was divided into 116 brain
regions for each subject according to the AAL template, and the average of the BOLD signal
of all voxels in each brain region was calculated to obtain the average time series of the 116
brain regions.

METHODS
In this section, we first introduce DFC construction, the Fourier transform and (2D)2PCA
technology, and then present the details of the construction of the framework proposed in
this article.

Construction of DFC
For each subject, let zi = (zi1,zi2,...,ziN) (i= 1,2, . . . ,116) denotes the average rs-fMRI
time series of the ith brain region, where N denotes the number of image time points.
Dynamic FC is implemented using a sliding window approach, assuming that the length
of the sliding window is T, and the step length between every two adjacent windows is S.
Then the time series of length N is divided into K partially overlapping subseries with each
other, where K= [(N−T)]

S +1.
Letting zi(k)= [zi1(k),zi2(k),...,ziT(k)](k= 1,2,...,K) denotes the kth time subseries

of zi, then just need to list all sliding windows of FC. FC is often modeled as a FC network
(FCN), with each brain ROI as a node in the network, and the strength of FC between a
pair of brain ROIs as an edge. The FCN of the kth time subseries can be generated by a
symmetric submatrix D(k), defined as:

D(k)= [ρij (k)]1≤i,j≤K (1)

where ρij (k) denotes the Pearson’s correlation between the average time subseries zi(k)
and zj (k), defined as:

ρij (k)=
∑T

t=1
(
zit (k)−zi(k)

)(
zjt (k)−zj (k)

)√∑T
t=1
(
zit (k)−zi(k)

)2√∑T
t=1
(
zjt (k)−zj (k)

)2 (2)

where zi(k) and zj (k) denote average value of the average time subseries zi(k) and zj (k).
The submatrix series {D(k)}Kk=1 can describe the temporal change of the connectivity
strength for all ROI pairs.

The Fourier transform
Discrete Fourier Transform, as amathematical tools, is commonly used in signal processing.
The Discrete Fourier Transform can convert a signal into a linear combination of a set
of sinusoidal functions of different frequencies, which have the property of being easy to
implement and observe.

The Discrete Fourier Transform of vector x (k),k={1,2,...,K } is defined as:

f (u)=
K∑
k=1

x (k)W (k−1)(u−1)
K (3)
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where u denote the frequency-domain pixel coordinate of Cr , u= {1,2,...,K }, WK is
defined as:

WK = e
−2π i
K . (4)

(2D)2 PCA
(2D)2PCA is a matrix feature extraction technique based on two-dimensional principal
component analysis (2DPCA). 2DPCAcan extractwhole-matrix features by finding optimal
projection directions from the covariance matrix. First introduce how 2DPCA learns an
optimal projection matrix reflecting the information between rows of matrixes. Letting
A ∈ Rm×n be a matrix, X ∈ Rn×d be a projection matrix with n projection directions.
Projecting A onto X to obtain the matrix Y = AX . Suppose that there are M training
matrixes, denoted by Ak (k= 1,2,...,M), and denote the covariance matrix as:

X =
1
M

M∑
k

(
Ak−A

)T (Ak−A
)

(5)

where A be denoted as:

A=
1
M

M∑
k

Ak (6)

The optimal value for the projection matrix X is composed by the vectors X1,X2,...,Xd of
G corresponding to the d largest eigenvalues. The value of d can be controlled as follows:∑d

i=1λi∑n
i=1λi

≥ θ (7)

where λ= {λ1,λ2,...,λn} is a sequence of eigenvalues in ascending order for G and θ is a
pre-set threshold.

2DPCA also can learn an optimal matrix Z reflecting the information between columns,
and then projects A onto Z to obtain the matrix B= ZTA, and denote the covariance
matrix as:

Z =
1
M

M∑
k

(
Ak−A

)(
Ak−A

)T (8)

(2D)2PCA is a way to simultaneously use the projection matrices X and Z. Projecting A
onto X and Z, yielding a matrix C:

C =ZTAX (9)

The matrix C in Eq. (9) is the matrix after projection.

Comparison methods
In this section we describe two comparison methods used in subsequent experiments: the
central moment method and the topological index method.
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The central moment method
The feature extraction method based on the central moment method is a feature
extraction method designed for retaining the temporal information of dynamic functional
connections. As follows, ρij (k) is calculated according to Eq. (2), and then dth order
central-moment mij(d) of ρij (k) is calculated:

mij (d)=
d

√∑K
k=1

[
ρij (k)−ρ ij

]d
K

(d = 1,2,...,D) (10)

where D denotes the highest order, ρ ij is the mean of ρij (k)(k= 1,2,...,K).
Different central moment features represent different information about the dynamic

functional connectivity in the time direction, and it represents different discriminatory
power, so the order of the central moment should be carefully chosen. d is a parameter in
the central moment feature framework that needs to be adjusted in subsequent training.
Finally, the selected features are fed into the SVM classifier.

The topological index method
Converting dynamic functional connectivity to topology. Specifically, first define the
threshold value T and ignore this functional connection by changing the value ρij (k)<T
to 0. Then the topology is constructed by retaining the weights of the edges of ρij (k)≥T or
changing them to 1. We have empirically changed the top 20 per cent of weights to 1 and
the rest to 0 (Van Den Heuvel & Pol, 2010). The calculated topological index consisted of
measures of segregation (Clustering Coefficient, Transitivity), integration (Characteristic
Path Length, Efficiency), and centrality (Betweenness centrality, within module degree
Z -score, Participation coefficient) of the brain network. Formulas for each metric are
presented in the article (Wang, Zhang & Qiao, 2023). The selected features are fed into the
SVM classifier.

Construction of the proposed framework
In this subsection, we describe the proposed framework building process in detail. Figure 1
depicts the main steps of the feature extraction framework, and it can be seen that there are
four main steps: (1) Construction of the dynamic network. (2) Construction of the new
network. (3) (2D)2PCA learns the best projection matrix. (4) Projecting the new network
and selecting features.

Specifically, we first construct the DFC {D(k)}Kk=1 on the continuous rs-fMRI time series
by the sliding-window strategy. Then in order to retain both temporal and spatial dynamic
information, we transform the 3D DFC into a 2D new network, so that the spatial and
temporal information to be stored in the row and column structure of the new network.

Figure 2 illustrates the process of new network construction. For each subject, we
transform the submatrix series {D(k)}Kk=1 into a matrix A∈RM∗K , where M denotes the
number of upper triangular elements of matrix D(k). The upper triangular elements of
matrix D(k) are pulled into a column vector as the kth column of matrix A. Each row of
matrix A reflects the change of each functional connectivity series

{
ρij (k)

}K
k=1 over time.

To solve the problem that the correspondence of dynamic FC subnetworks from the same
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Figure 1 Illustration of the proposed feature extraction framework integrating both temporal and
spatial properties of DFCs. Including (1) rs-fMRI image preprocessing and networks construction, (2)
doing Fourier transform and new network construction, (3) obtaining the best projection matrix in both
directions by (2D)2 PCA, (4) Selecting features and training SVM classifier.

Full-size DOI: 10.7717/peerj.17078/fig-1

window of different subjects cannot be established, we convert the time series
{
ρij (k)

}K
k=1

from the time domain to the frequency domain by Fourier transform, which is calculated
by Eq. (3). After transformation, the transformation of functional connectivity with time
is represented by a linear combination of ‘trigonometric functions of different frequencies,
so we can analyze the problem from a new perspective, which eliminates the problem of
time not corresponding.

Furthermore, we use (2D)2PCA to learn the best projection matrix, which is calculated
by Eqs. (5) and (8). The new network is projected by Eq. (9) with the optimal projection
matrix to select features that integrate spatial and temporal properties of the new network.
(2D)2PCA is widely used for image matrix dimensionality reduction in face recognition
and palmprint recognition, which can learn two optimal matrixes from a set of training
matrixes reflecting information between rows and between columns of training matrixes,
so (2D)2PCA can integrate properties in both directions.

Finally, the features extracted by (2D)2PCAwill have high dimensionality, so an effective
feature selectionmethod is conducive to accurate diagnosis. For dichotomous classification
tasks, t -test can be effective in selecting significantly different features between subjects
and healthy controls. Therefore, we use a t -test to select the features with p-values less than
a certain threshold value.

EXPERIMENTS AND RESULTS
This section contains three sub-chapters: methods for comparison, experimental setting
and classification performance.
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Figure 2 Illustration the process of new network construction. pij (k) denotes the value of the i-th row
and j-th column of functional connectivity network D(k). M denotes the number of upper triangular ele-
ments of functional connectivity networks D.

Full-size DOI: 10.7717/peerj.17078/fig-2

Methods for comparison
We first compare our proposed method with the central moment method (denoted as
Central). In the central moment method, the Pearson correlation between ROI based
on the time series of each window is first computed, then the brain networks between
ROI are constructed, and the multistep central moment of the brain networks of all the
windows solved are used as features for the classification task. Then we compare our
proposed method with the method that use topological index of functional connectivity to
classify (defined as T-index). In the topological index method, the topology is generated
by retaining as nodes the functional connections in the dynamic functions that are greater
than a certain threshold, and then the topological index of the topology is derived for
binary classification.

Moreover, we compare our proposed method with two methods for extracting
unidirectional information using two-dimensional principal component analysis (2DPCA)
(Wang, Wang & Yan, 2018;Wee et al., 2016; Xu et al., 2019), which include (1) the method
using 2DPCA in the temporal direction (denoted as Fourier-temporal), and (2) the
method using 2DPCA in the spatial direction (denoted as Fourier-spatial). In this way, it
is demonstrated that (2D)2PCA can integrate temporal and spatial information improves
the performance of classification. It is worth noting that both methods use the Fourier
transform to eliminate the effects of time mismatch.

In order to demonstrate that the Fourier transform can play a role in eliminating the
time mismatch problem. We also compare our proposed method with that of (2D)2PCA
which does not use Fourier transform (denoted as Temporal-spatial). All the methods use
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the same T -test as the proposed method for feature selection, and then the features are fed
into a SVM classifier for classification.

Experimental setting
In the experiment, we constructed two classification tasks, including (1) the classification
task for autism spectrum disorder (ASD) and normal control group (NC), and (2) the
classification task for end-stage renal disease (ESRD) and NC. We used six evaluation
indexes, namely, classification accuracy (ACC), true positive rate (TPR), true negative
rate (TNR), positive predictive value (PPV), negative predictive value (NPV), and F1
score, to comprehensively evaluate the advantages and disadvantages of the parameters
and the classification effect of the methods. Considering that the number of samples used
in the experiments is more than 50 and the parameters such as sliding window length,
sliding step size, information content thresholds for temporal and spatial directions, and
p-value thresholds need to be adjusted in the feature extraction framework proposed
in this article. After referring to the relevant literature (Shi et al., 2019), we selected the
ten-fold cross-validation method, which appears in the literature, and did not choose the
leave-one-out method, which is more computationally intensive. To avoid possible errors
in the experiments, the whole ten-fold cross-validation was repeated 10 times, dividing the
samples randomly each time. Finally, the average of the 10 times of recognition accuracy
was used as the final accuracy.

In the construction of the network, in order to avoid erroneous experimental results with
arbitrarily determined window width and step size, we constructed brain networks with
different window widths and step sizes, window width parameter T ∈ [20,30,40,50,60]
and sliding step size S ∈ [2,4,6,8,10]. Studies have shown that window width and step
size in this range produce robust results in image acquisitions and topological properties
of brain networks. We take the DFC derived from all the different parameters and take
the average value as the final DFC. In the feature selection phase, we choose features with
statistical significance p< 0.01. After that, the features are fed into a SVM classifier for
training and classification, and the six metrics mentioned in the previous paragraph are
calculated (Yang et al., 2022; Yao, Becker & Kendrick, 2021).

Classification performance
Table 1 summarizes the classification performance of each of the six methods in the
two classification tasks. From Table 1, we can see that our proposed method performs
better than comparison methods. For example, the proposed method acc achieves 88.1%
and 76.1% in the two classification tasks and the highest accuracy of the comparison
method is at 86.1% and 72.8%. Table 1 shows that the method integrating temporal and
spatial information of the network performs better than the method using one attribute
alone, which implies that the temporal and spatial information are two complementary
pieces of information, so integrating the brain through (2D)2PCA network’s two kinds of
information can further improve the classification performance.

In addition, we could observe that, from Table 1, that using Fourier transform
to transform the DFC from the time domain to the frequency domain has a higher

Zhao et al. (2024), PeerJ, DOI 10.7717/peerj.17078 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.17078


Table 1 Results of five methods on two classification tasks.

Task Method ACC
(%)

TPR
(%)

TNR
(%)

PPV
(%)

NPV
(%)

F1
(%)

Fourier-spatial 85.2 88.9 81.5 84.3 89.6 85.8
Fourier-temporal 85.1 88.4 81.7 83.9 87.1 86.0
Temporal-spatial 86.1 84.6 87.8 88.0 84.0 86.3
T-index 82.2 80.8 83.7 84.0 80.4 82.4
Central 85.1 82.4 87.7 87.6 83.5 84.7

NC vs. ESRD

Proposed 88.1 92.4 84.0 86.9 91.8 89.0
Fourier-spatial 71.7 66.7 76.7 73.2 70.1 69.8
Fourier-temporal 70.1 68.9 72.3 70.0 70.1 69.7
Temporal-spatial 72.8 71.1 74.5 72.7 72.9 71.9
T-index 68.3 67.3 69.4 70.0 66.7 68.6
Central 68.5 64.4 72.3 69.1 68.0 66.7

NC vs. ASD

Proposed 76.1 73.3 78.7 76.7 75.5 75.0

Notes.
Values highlighted in bold show best results in the classification task.

classification accuracy than the method that does not use Fourier transform, so we can
think that Fourier transform can eliminate the effect of time mismatch to a certain extent
and bring better classification performance.

In the process of constructing the dynamic brain network, we used the ‘‘sliding
window’’ strategy, so there are two hyperparameters, window width and step size,
and we subsequently evaluated the effect of hyperparameters on the classification
performance in the classification experiments of nephropathic and normal human
beings. Figure 3 shows the effect of different hyperparameters on the classification
performance in the four methods, namely Fourier-spatial, Fourier-temporal, Central
and our proposed method. It can be concluded that there is an effect of hyperparameters
on the classification performance, and our proposed method has more stable and higher
classification performance on different combinations of hyperparameters, and has the
highest classification accuracy of 88.1% when T = 50 and S= 8.

DISCUSSION
Numerous studies have shown significant changes in dynamic functional connectivity in
patients with brain diseases. Studying changes in the brain’s dynamic connectivity network
may contribute to a better understanding of brain diseases and help with early prevention
and later treatment. Currently, the study of dynamic functional connectivity in patients
with brain diseases is limited to a single feature of a single characteristic. These features do
not integrate the temporal and spatial properties of dynamic functional connectivity. In
this article, we propose a feature extraction framework that integrates both temporal and
spatial bidirectional information of dynamic functional connectivity. Experimentally, it is
found that the features extracted by this framework are helpful for the assisted diagnosis
of brain diseases, compared to feature extraction methods that contain only temporal
direction information.
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Figure 3 Accuracy of four methods in the task for ESRD and NC. (A) ACC of Fourier-spatial. (B) ACC
of Fourier-temporal. (C) ACC of our proposed method. (D) ACC of Central.

Full-size DOI: 10.7717/peerj.17078/fig-3

In order to verify that the features extracted from our proposed framework perform
better on the classification task, we used them to train classifiers and make predictions.
Considering the two current problems of dynamic functional connectivity mentioned in
the article, which may be common to most neurological disorders. In order to validate
that our proposed framework has a role to play in a wide range of neurological disorders,
we conducted classification experiments on two different neurological disorders datasets.
The experiments revealed that the classification performance was improved to some extent
on both classification tasks. On the classification task of ASD and NC, the classification
performance is improvedmore, probably because the diagnosis of ASD patients relies more
on the combination of temporal and spatial information.

Experiments show that our proposed method has better classification performance than
both the central moment method and the local variable method. This suggests that both
temporal and spatial information of dynamic functional connectivity can provide support
for classification, and combining complementary spatial and temporal information is
responsible for the improved classification performance. The classification performance
of using 2DPCA for feature extraction framework in one direction is lower than that of
our proposed framework, which also confirms that combining complementary spatial
and temporal information can improve the classification performance. Also, through
experiments we can find that using Fourier transform can improve the classification
performance. This is because the Fourier change converts dynamic functional connectivity
to frequency domain information, and replaces the way of comparing information at the
same time point with the way of comparing information at the same frequency, which
avoids the problem of mismatch of information at the same time point and improves the
classification performance.

We investigate the important features extracted through our proposed method to
discover the brain regions most likely to be abnormal in ESRD patients and autistic
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Table 2 Abbreviations and name of ROIs selected for the experiment.

Abbreviation ROI name Abbreviation ROI name

INS Insula SMA Supplementary motor area
TPOsup Temporal pole: superior temporal gyrus ROL Rolandic operculum
PoCG Postcentral gyrus IPL Inferior parietal, but supramarginal and angular gyri
STG Superior temporal gyrus PCUN Precuneus
CAL Calcarine fissure and surrounding cortex ACG Anterior cingulate and paracingulate gyri

ESRD

SFGmed Superior frontal gyrus, medial
ITG Inferior temporal PCUN Precuneus
PHG Parahippocampal

gyrus
TPOmid Temporal pole: middle temporal gyrus

REC Rectus gyrus TPOsup Temporal pole: superior temporal gyrus
PCG Posterior cingulate

gyrus
INS InsulaASD

SMA Supplementary motor area ORBsupmed Orbitofrontal cortex
(medial)

patients. Each selected feature, contains both temporal and spatial information, and there
exists an element that contributes the most information to that feature in both spatial
and temporal directions. In the spatial direction, the element that contributes the most
information represents the functional connectivity between two brain regions that we
believe are most likely to have abnormalities. For the categorization experiments, the
features selected in each cross-validation experiment were different, so we chose features
with a p-value of less than 0.01 and appearing in each cross-over experiment. The ROIs
most likely to be abnormal in patients with end-stage renal disease and autism are given
in Table 2, Figs. 4 and 5 depicts these functional connections and the corresponding brain
regions, where L and R denote the left and right hemispheres of the brain.

From Fig. 4, we find that the precuneus and temporal lobes dominate among the
brain regions most associated with ESRD. Of these, the precuneus is associated with
many high-level cognitive functions, such as situational memory, self-related information
processing, and various aspects of consciousness, and abnormalities in the precuneus may
contribute to the increased risk of cognitive impairment in ESRD patients. The temporal
lobe is primarily responsible for language function and auditory perception, may be
associated with decreased communication skills in ESRD patients (Ye et al., 2023; Yu et al.,
2020; Zhang et al., 2011). From Fig. 5, it can be concluded that most of the brain regions
associated with ASD are related to motor coordination and emotional expression, such
as the posterior cingulate gyrus (Zhang & Small, 2006; Zhao et al., 2020; Zhou et al., 2019;
Zou et al., 2021).

This study needs to consider the following limitations. (1) the relatively small sample
size in this study will affect the stability of the experimental results. In future studies we will
use a larger sample size to verify the correctness of our conclusions. (2) The scan period of
rs-fMRI is short, and the dynamic characteristics are not reflected enough. A longer scan
period can better reflect the change of functional connectivity over time, which may be
crucial for future studies of dynamic functional connectivity. (3) The eigenvalues extracted
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Figure 4 Diagrammatic representation of the relevant functional connections of important features in
ESRD.

Full-size DOI: 10.7717/peerj.17078/fig-4

Figure 5 Diagrammatic representation of the relevant functional connections of important features in
ASD.

Full-size DOI: 10.7717/peerj.17078/fig-5

by the framework are not given a specific meaning and cannot reflect the relevant changes
directly through the eigenvalues.

CONCLUSION
In this article, we propose a feature extraction framework based on (2D)2PCA that integrates
both temporal and spatial properties of dynamic functional connectivity. The framework
involves constructing the dynamic connectivity network using a sliding window strategy,
addressing the sensitivity of dynamic functional networks to the order of subnetworks
through Fourier transform, and leveraging (2D)2PCA to integrate temporal and spatial
information of dynamic functional connectivity. Experimental results demonstrate
the complementary effects of considering both temporal and spatial orientations in
improving feature extraction performance. These findings provide novel insights into the
pathophysiological mechanisms underlying cognitive deficits from a dynamic functional
connectivity perspective.
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Ricaud B, Borgnat P, Tremblay N, Gonçalves P, Vandergheynst P. 2019. Fourier could
be a data scientist: from graph Fourier transform to signal processing on graphs.
Comptes Rendus Physique 20:474–488 DOI 10.1016/j.crhy.2019.08.003.

Royer J, Bernhardt BC, Larivière S, Gleichgerrcht E, Vorderwülbecke BJ, Vulliémoz
S, Bonilha L. 2022. Epilepsy and brain network hubs. Epilepsia 63:537–550
DOI 10.1111/epi.17171.

Sadat A, Joye IJ. 2020. Peak fitting applied to fourier transform infrared and raman spec-
troscopic analysis of proteins. Applied Sciences 10:5918 DOI 10.3390/app10175918.

ShenM,Wen P, Song B, Li Y. 2023. Automatic identification of schizophrenia
based on EEG signals using dynamic functional connectivity analysis and 3D
convolutional neural network. Computers in Biology and Medicine 160:107022
DOI 10.1016/j.compbiomed.2023.107022.

Shi Y, Tong C, ZhangM, Gao X. 2019. Altered functional connectivity density in the
brains of hemodialysis end-stage renal disease patients: an in vivo resting-state
functional MRI study. PLOS ONE 14:e0227123 DOI 10.1371/journal.pone.0227123.

Starck T, Nikkinen J, Rahko J, Remes J, Hurtig T, HaapsamoH, Jussila K, Kuusikko-
Gauffin S, Mattila M-L, Jansson-Verkasalo E. 2013. Resting state fMRI reveals a
default mode dissociation between retrosplenial and medial prefrontal subnetworks
in ASD despite motion scrubbing. Frontiers in Human Neuroscience 7:802.

Sun J, Zhao R, He Z, ChangM,Wang F,WeiW, Zhang X, Zhu Y, Xi Y, Yang
X. 2022. Abnormal dynamic functional connectivity after sleep deprivation

Zhao et al. (2024), PeerJ, DOI 10.7717/peerj.17078 18/20

https://peerj.com
http://dx.doi.org/10.1148/radiol.13130816
http://dx.doi.org/10.3390/ijerph19042389
http://dx.doi.org/10.3389/fnins.2021.820641
http://dx.doi.org/10.1002/brb3.1708
http://dx.doi.org/10.1371/journal.pone.0098346
http://dx.doi.org/10.1016/j.neunet.2019.08.030
http://dx.doi.org/10.1016/j.crhy.2019.08.003
http://dx.doi.org/10.1111/epi.17171
http://dx.doi.org/10.3390/app10175918
http://dx.doi.org/10.1016/j.compbiomed.2023.107022
http://dx.doi.org/10.1371/journal.pone.0227123
http://dx.doi.org/10.7717/peerj.17078


from temporal variability perspective. Human Brain Mapping 43:3824–3839
DOI 10.1002/hbm.25886.

Sun Y, Collinson SL, Suckling J, Sim K. 2019. Dynamic reorganization of functional
connectivity reveals abnormal temporal efficiency in schizophrenia. Schizophrenia
Bulletin 45:659–669 DOI 10.1093/schbul/sby077.

Valentine ML, Al-Mualem ZA, Baiz CR. 2021. Pump slice amplitudes: a simple and
robust method for connecting two-dimensional infrared and Fourier trans-
form infrared spectra. The Journal of Physical Chemistry A 125:6498–6504
DOI 10.1021/acs.jpca.1c04558.

Valsasina P, Hidalgodela CruzM, Filippi M, RoccaMA. 2019. Characterizing rapid
fluctuations of resting state functional connectivity in demyelinating, neurodegen-
erative, and psychiatric conditions: from static to time-varying analysis. Frontiers in
Neuroscience 13:618 DOI 10.3389/fnins.2019.00618.

Van Den Heuvel MP, Pol HEH. 2010. Exploring the brain network: a review on resting-
state fMRI functional connectivity. European Neuropsychopharmacology 20:519–534
DOI 10.1016/j.euroneuro.2010.03.008.

Wang G, Zhang L, Qiao L. 2023. The effect of node features on GCN-based brain
network classification: an empirical study. PeerJ 11:e14835 DOI 10.7717/peerj.14835.

Wang X,Wang J, Yan K. 2018. Gait recognition based on Gabor wavelets and (2D) 2
PCA.Multimedia Tools and Applications 77:12545–12561
DOI 10.1007/s11042-017-4903-7.

Wee C-Y, Yang S, Yap P-T, Shen D, Initiative AsDN. 2016. Sparse temporally dynamic
resting-state functional connectivity networks for early MCI identification. Brain
Imaging and Behavior 10:342–356 DOI 10.1007/s11682-015-9408-2.

Xu S, Li M, Yang C, Fang X, YeM,Wei L, Liu J, Li B, Gan Y, Yang B. 2019. Altered
functional connectivity in children with low-function autism spectrum disorders.
Frontiers in Neuroscience 13:806 DOI 10.3389/fnins.2019.00806.

Yang Z,WenM,Wei Y, Huang H, Zheng R,WangW, Gao X, ZhangM, Cheng J, Han S.
2022. Alternations in dynamic and static functional connectivity density in chronic
smokers. Frontiers in Psychiatry 13:843254 DOI 10.3389/fpsyt.2022.843254.

Yao S, Becker B, Kendrick KM. 2021. Reduced inter-hemispheric resting state functional
connectivity and its association with social deficits in autism. Frontiers in Psychiatry
12:629870 DOI 10.3389/fpsyt.2021.629870.

Ye H, Robak LA, YuM, Cykowski M, Shulman JM. 2023. Genetics and pathogenesis
of Parkinson’s syndrome. Annual Review of Pathology: Mechanisms of Disease
18:95–121 DOI 10.1146/annurev-pathmechdis-031521-034145.

Yu S-S, Zhou N-R, Gong L-H, Nie Z. 2020. Optical image encryption algorithm based on
phase-truncated short-time fractional Fourier transform and hyper-chaotic system.
Optics and Lasers in Engineering 124:105816 DOI 10.1016/j.optlaseng.2019.105816.

Zhang D,Wang Y, Zhou L, Yuan H, Shen D, Initiative AsDN. 2011.Multimodal
classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage
55:856–867 DOI 10.1016/j.neuroimage.2011.01.008.

Zhao et al. (2024), PeerJ, DOI 10.7717/peerj.17078 19/20

https://peerj.com
http://dx.doi.org/10.1002/hbm.25886
http://dx.doi.org/10.1093/schbul/sby077
http://dx.doi.org/10.1021/acs.jpca.1c04558
http://dx.doi.org/10.3389/fnins.2019.00618
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
http://dx.doi.org/10.7717/peerj.14835
http://dx.doi.org/10.1007/s11042-017-4903-7
http://dx.doi.org/10.1007/s11682-015-9408-2
http://dx.doi.org/10.3389/fnins.2019.00806
http://dx.doi.org/10.3389/fpsyt.2022.843254
http://dx.doi.org/10.3389/fpsyt.2021.629870
http://dx.doi.org/10.1146/annurev-pathmechdis-031521-034145
http://dx.doi.org/10.1016/j.optlaseng.2019.105816
http://dx.doi.org/10.1016/j.neuroimage.2011.01.008
http://dx.doi.org/10.7717/peerj.17078


Zhang J, Small M. 2006. Complex network from pseudoperiodic time series: topology
versus dynamics. Physical Review Letters 96:238701
DOI 10.1103/PhysRevLett.96.238701.

Zhao F, Chen Z, Rekik I, Lee S-W, Shen D. 2020. Diagnosis of autism spectrum
disorder using central-moment features from low-and high-order dynamic
resting-state functional connectivity networks. Frontiers in Neuroscience 14:258
DOI 10.3389/fnins.2020.00258.

Zhou G, Xu G, Hao J, Chen S, Xu J, Zheng X. 2019. Generalized centered 2-D principal
component analysis. IEEE Transactions on Cybernetics 51:1666–1677.

Zou Y, TangW, Qiao X, Li J. 2021. Aberrant modulations of static functional connectiv-
ity and dynamic functional network connectivity in chronic migraine. Quantitative
Imaging in Medicine and Surgery 11:2253 DOI 10.21037/qims-20-588.

Zhao et al. (2024), PeerJ, DOI 10.7717/peerj.17078 20/20

https://peerj.com
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.3389/fnins.2020.00258
http://dx.doi.org/10.21037/qims-20-588
http://dx.doi.org/10.7717/peerj.17078

