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ABSTRACT
Canopy structure and understory light have important effects on forest productivity
and the growth and distribution of the understory. However, the effects of stand
composition and season on canopy structure and understory light environment
(ULE) in the subtropical mountain Pinus massoniana forest system are poorly
understood. In this study, the natural secondary P. massoniana—Castanopsis eyrei
mixed forest (MF) and P. massoniana plantation forest (PF) were investigated.
The study utilized Gap Light Analyzer 2.0 software to process photographs,
extracting two key canopy parameters, canopy openness (CO) and leaf area index
(LAI). Additionally, data on the transmitted direct (Tdir), diffuse (Tdif), and total
(Ttot) radiation in the light environment were obtained. Seasonal variations in
canopy structure, the ULE, and spatial heterogeneity were analyzed in the two
P. massoniana forest stands. The results showed highly significant (P < 0.01)
differences in canopy structure and ULE indices among different P. massoniana
forest types and seasons. CO and ULE indices (Tdir, Tdif, and Ttot) were
significantly lower in the MF than in the PF, while LAI was notably higher in the MF
than in the PF. CO was lower in summer than in winter, and both LAI and ULE
indices were markedly higher in summer than in winter. In addition, canopy
structure and ULE indices varied significantly among different types of
P. massoniana stands. The LAI heterogeneity was lower in the MF than in the PF,
and Tdir heterogeneity was higher in summer than in winter. Meanwhile, canopy
structure and ULE indices were predominantly influenced by structural factors, with
spatial correlations at the 10 m scale. Our results revealed that forest type and season
were important factors affecting canopy structure, ULE characteristics, and
heterogeneity of P. massoniana forests in subtropical mountains.
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INTRODUCTION
Light is a key environmental factor that provides energy for plant photosynthesis, thus,
driving primary productivity in plants and serving as the primary source of energy input
for all forest ecosystems. Light conditions are intimately tied to many ecological processes,
compositional structures, and ecosystem service functions in forest ecosystems, such as the
diversity of understory plants (Sercu et al., 2017), species composition (Musselman,
Pomeroy & Link, 2015), biodiversity (Bartels & Chen, 2010) and global climate regulation
(Nakamura et al., 2017). In a given forest ecosystem, only a small amount of light can enter
the forest (Jiang et al., 2005) after passing through the forest canopy owing to the
combined effects of canopy structure (vertical and horizontal) and dynamic changes
(Ediriweera, Singhakumara & Ashton, 2008; Takashima, Kume & Yoshida, 2006).
Furthermore, the understory light environment (ULE) exhibits high spatial heterogeneity
that provides opportunities for certain tree species to become dominant, thereby
enhancing forest productivity. However, most recent studies have focused on the average
light levels at the forest floor, while ULE spatial heterogeneity and its underlying
mechanisms have been largely overlooked despite their crucial importance for forest
sustainability (Feng et al., 2022; Ligot et al., 2016). Therefore, exploring the heterogeneity of
canopy structure and ULE in different forest types is important for enhancing forest
productivity and sustainable management.

Mixed forests (MFs) have higher productivity than pure forests (Feng et al., 2022; Kelty,
2006), and they can use resources more effectively and stably in response to global climate
change (Pretzsch et al., 2015). The “mixing effect” may be due to vertical stratification,
spatial complementarity and plasticity of canopies, and niche differentiation among MFs
species (Pretzsch, 2014; Sapijanskas et al., 2014). Therefore, each layer of MFs can
effectively utilize light resources which are highly correlated with productivity (Erskine,
Lamb & Bristow, 2006; Thomas et al., 2023), thereby increasing forest diversity and
productivity. Currently, tree species mixing has been widely promoted as a promising
silvicultural tool to improve productivity or ecological service functions in artificial forests.
For example, forest management in Europe has shifted from a production forestry model
dominated by logging to “close-to-nature forest management” (Lu et al., 2018). In Asia,
China is transforming artificially pure forests into heterogeneous MFs (Yang, 2022). Some
tropical countries emphasize cultivating MFs of native species with high economic value
(Erskine, Lamb & Bristow, 2006), integrating local environmental features such as light
conditions. Although the area of MFs is increasing, the mechanisms of mixing effects in
MFs remain unclear (Liu, Kuchma & Krutovsky, 2018), including suitable mixing methods
based on specific site conditions and the biological characteristics of tree species.
Therefore, selecting the optimal tree species combinations with low light competition, high
economic value, and ecological services based on canopy and light environment
mechanisms remains crucial for establishing MFs (Oxbrough et al., 2012).

Seasonal changes (solar elevation angle, temperature) and canopy structure (leaf area
index) are important factors affecting the forest light environment. Deciduous tree species
have distinct active (growing) and dormant (non-growing) periods. During the growing
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season, the budding and leaf expansion of canopy leaves increase the light absorption
capacity of the canopy, decreasing light intensity beneath the trees. As deciduous canopy
leaves fall in the non-growing season, light intensity beneath the forest canopy increases.
Therefore, the ULE in forests with deciduous tree species often exhibits pronounced
seasonal differences (Zhou et al., 2021). The ULE in evergreen tree forests is generally less
affected by combined changes between seasons and canopy structure; the canopy structure
of evergreen broadleaved forests does not change significantly seasonally, and the canopy
has a high light-intercepting ability. Therefore, evergreen coniferous forests maintain
relatively low-light environmental conditions throughout the year (Li & Li, 2003).
Additionally, changes in canopy structure across different seasons can increase the
spatiotemporal diversity of sun flecks in the understory, thereby increasing the spatial
heterogeneity of the ULE (Leakey, Scholes & Press, 2005). This provides opportunities for
colonization and growth of different species in the understory, thereby increasing species
diversity in forest ecosystems and enhancing ecosystem stability, which is advantageous in
mitigating the impacts of climate change.

Subtropical montane forests redistribute environmental factors such as light,
temperature, and humidity, affecting the growth of understory plants, impacting forest
composition and resource availability (Wang et al., 2023). These environmental changes
significantly shape the crown structure and the ULE by influencing plant growth and
development. However, little is known about the factors influencing canopy structure and
the ULE in subtropical montane forests and their distributional characteristics. Therefore,
in this study, we investigated typical natural secondary Pinus massoniana—Castanopsis
eyrei MFs and P. massoniana plantation forests (PFs) in the subtropical mountains of
southwest China. Our first hypothesis is that the canopy structure and the ULE will differ
significantly among the different P. massoniana forest types. Our second hypothesis is that
the canopy structure and the ULE is affected by seasonal changes between pure and mixed
P. massoniana forest stands. Ultimately, this study aimed to enrich ecological theory and
provide a scientific basis for the sustainable management of subtropical montane
P. massoniana forests.

MATERIALS AND METHODS
Study area
The research site is situated in Kaiyang County, Guizhou Province, Southwest China
(106�45′–107�17′E, 26�48′–27�22′N). It is characterized by a predominantly mountainous
terrain and ranges in elevation 1,000–1,400 m. The region belongs to a mid-subtropical
humid monsoon climate, with an average yearly temperature around 15 �C. Its vegetation
is primarily evergreen broad-leaved forests, occupying 52.92% of the area, and the forest
soil is predominantly yellow or yellow-brown loam. P. massoniana and Cunninghamia
lanceolata are primary species of the current artificial forests, whereas Fagaceae, Pinaceae,
Theaceae, Aquifoliaceae, and Lauraceae plants account for the majority of species in
secondary natural forests.
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Site selection and survey
As study sites, we selected a natural secondary forest of P. massoniana–C. eyrei mixed
forest (MF) and P. massoniana plantation forest (PF), in each plot of which, we established
a single 50 m × 50 m survey quadrat (Table 1). Using the adjacent grid method, each
survey quadrat was further divided into one hundred 5 m × 5 m grid cells with the aid of a
Real-time kinematic measuring instrument (RTK: Beidou Haida TS5 Pro, Hi-Target,
China), and for each cell, we recorded the central latitude and longitude. For each tree in
each grid cell with a diameter at breast height (DBH) of greater 5 cm, we recorded the
species, DBH, height, and crown width.

Data collection
During mid-July and late December in 2022, canopy and ULE information was collected
using a Top-1300 plant canopy image analyzer (Top-1300, Hangzhou, China). To obtain
data, points were placed in the centers of each 5 m × 5 m cell to take photographs (Matsuo,
Hiura & Onoda, 2022), with images being obtained from directly above using a 180-degree
fisheye lens positioned at a height of 1.3 m above ground level. To avoid interference from
direct sunlight, photography was performed during the early morning, at dusk, or on
cloudy days.

Calculations and analyses
Photographs were processed using Gap Light Analyzer 2.0 software (https://rem-main.
rem.sfu.ca/forestry/publications/downloads/gaplightanalyzer.htm) to obtain two canopy
parameters, canopy openness (CO) and leaf area index (LAI), as well as the amount of
transmitted direct (Tdir), diffuse (Tdif), and total radiation (Ttot) light environment data
(Frazer et al., 2001).

Non-parametric tests were performed on the data using R 4.21 software to analyze
the significance between the canopy structure and light environment indicators. The
non-metric multidimensional scaling method (NMDS) was used to rank the canopy and
ULE of different P. massoniana forest types and different seasons, and then analysis of
similarities (ANOSIM) to assess the presence of significant differences between groups. GS
+7.0 software was used to calculate the semi-variance function and fit the theoretical model
to analyze the spatial heterogeneity of the canopy structure and ULE. Spatial distribution
maps of canopy and light environment indicators were constructed using Kriging

Table 1 Basic descriptive information of sites.

Sites Latitude and longitude Altitude
(m)

Aspect
(�)

Slope
(�)

height
(m)

Mean diameter
(cm)

Basal area
(cm2)

Stand density
(N/hm2)

P. massoniana plantation forest
(PF)

26�57′56″N, 106�54′18″E 1,219 224 12 11.3 17.4 303.1 1,484

P. massoniana-C. eyrei mixed
forest (MF)

26�58′3″N, 106�54′10″E 1,178 241 5 10.0 13.7 207.7 1,356

Note:
N, Number of measured trees per forest types.
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interpolation in the Geostatistical Analyst module of ArcGIS 10.2 software. The ‘ggplot2’ R
package was used for visual mapping.

RESULTS
Differences in canopy structure and ULE in different P. massoniana
forest types
Canopy (CO, LAI) and ULE (Tdir, Tdif, Ttot) indicators show extremely significant
differences (P < 0.01) among different P. massoniana forest types, as well as significant
differences between seasons. The coefficient of variation for all indicators in MF is higher
than that in PF (except for LAI in summer), with the Tdir coefficient of variation being the
highest. The CO in MF is significantly lower than that in PF for Tdir, Tdif and Ttot, while
the LAI in MF is significantly higher than that in PF. The CO in summer is lower than that
in winter, and the LAI and ULE indicators in summer are all significantly higher than those
in winter (Fig. 1, Table S1).

The NMDS indicates significant differences in canopy and ULE indicators among forest
types and seasons (Fig. 2). The NMDS stress values for the canopy structure and the ULE
are both less than 0.05, and the square of R is close to 1, indicating a good fit (Bray &
Curtis, 1957). The results of NMDS combined with ANOSIM show that forest type and
season significantly affect canopy structure (Fig. 2A, Stress = 0.012, R = 0.311, P = 0.01)
and the ULE (Fig. 2B, Stress = 0.012, R = 0.246, P = 0.01).

Spatial variability characteristics of canopy structure and ULE in
different P. massoniana forest types
The best-fitting spatial distribution models of different types of P. massoniana canopy
structures and ULE indicators are the Gaussian model and spherical mode. The range of
the coefficient of determination for each indicator’s model is 0.602 to 0.932, and the
residual sum of squares (RSS) is relatively low (Table 2). These models accurately describe
the spatial structural characteristics of the canopy structure and ULE. The nugget value
(C0+C) for MF is higher than that for PF, indicating greater fluctuations in the MF canopy
structure and ULE. The spatial structure ratio (C/(C0+C)) for the two forest types for each
indicator exceeds 90%, suggesting strong spatial autocorrelation. This means that
variations caused by spatially structured factors (stand, climate, soil physical and chemical
properties) account for 90%, while variations caused by random factors (felling,
fertilization and tillage) account for less than 10% (Yan, He & Yang, 2020). The range for
different types of P. massoniana canopy structures and ULE indicators is within 10 m,
indicating the spatial correlation of indicators within this range.

Canopy spatial distribution characteristics in different P. massoniana
forest types
The spatiotemporal distribution of canopy indicators (CO, LAI) shows significant
differences among different P. massoniana forest types. The number and distribution of
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Figure 1 Differences in canopy structure and understory light environment of PF and MF in
summer and winter. Canopy structure, which includes CO (A) and LAI (B); understory light envir-
onment, which includes Tdir (C), Tdif (D) and Ttot (E). Full-size DOI: 10.7717/peerj.17067/fig-1
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high- and low-LAI patches differ under different forest types; MF has lower heterogeneity
than PF. The CO distribution trend in different seasons also differs. PF exhibits an obvious
but relatively gentle decreasing trend in summer, while the MF summer trend is severe

Figure 2 Non-metric multidimensional scaling ordination graph of canopy structure (A) and
understory light environment (B) in PF and MF at summer and winter seasons. Canopy structure,
which includes CO and LAI (A); understory light environment, which includes Tdir, Tdif and Ttot (B).

Full-size DOI: 10.7717/peerj.17067/fig-2

Table 2 Semivariogram models and parameters for canopy structure and understory light environment.

Sites Season Indicator Model Nugget
C0

Sill
C0+C

Range
(m)

Spatial structure ratio
C/C0+C

Coefficient of determination
R2

Residual sum of squares
RSS

PF Summer CO Gau 0.001 0.843 7.985 0.999 0.721 0.032

LAI Gau 0.001 0.789 9.405 0.999 0.724 0.057

Tdir Gau 0.093 0.965 6.668 0.904 0.932 0.002

Tdif Sph 0.001 0.842 8.230 0.999 0.722 0.014

Ttot Gau 0.001 0.874 8.833 0.999 0.816 0.031

Winter CO Gau 0.001 0.828 7.742 0.999 0.602 0.046

LAI Gau 0.001 0.750 8.972 0.999 0.640 0.066

Tdir Sph 0.001 0.966 7.000 0.999 0.617 0.011

Tdif Gau 0.020 0.806 7.032 0.975 0.733 0.010

Ttot Gau 0.001 0.833 8.158 0.999 0.653 0.050

MF Summer CO Sph 0.001 0.918 6.350 0.999 0.363 0.008

LAI Gau 0.001 1.026 7.898 0.999 0.633 0.073

Tdir Gau 0.083 1.096 7.621 0.924 0.879 0.012

Tdif Gau 0.001 0.972 7.760 0.999 0.594 0.072

Ttot Gau 0.001 1.056 7.604 0.999 0.725 0.039

Winter CO Gau 0.001 1.066 8.678 0.999 0.792 0.047

LAI Gau 0.001 1.004 9.405 0.999 0.725 0.081

Tdir Sph 0.021 1.012 7.710 0.979 0.927 0.002

Tdif Sph 0.001 1.028 9.059 0.999 0.831 0.039

Ttot Gau 0.001 0.994 8.245 0.999 0.797 0.030

Note:
Sph, Spherical model; Gau, Gaussian model.
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(Fig. 3). Therefore, canopy heterogeneity is influenced by forest type and season, with PF
exhibiting the highest LAI heterogeneity.

ULE spatial distribution characteristics in different P. massoniana
forest types
The spatial and temporal distribution of ULE indicators varies significantly among
different P. massoniana forest types. Among different forest types, the number of Tdir
patches is higher in MF than in PF, and the distribution of Ttot is more uniform in MF
than in PF. The high and low Tdir values appear in different regions during the summer,
and changes are pronounced; however, the Tdir distribution is more uniform, and changes
are smoother during the winter (Fig. 4).

DISCUSSION
Differences in canopy structure and the ULE in different P. massoniana
forest types
Forest type affects forest canopy structure and ULE characteristics (Niinemets, Cescatti &
Christian, 2004). Our results indicated significant differences in canopy structure between
two types of P. massoniana stands (P < 0.01). Compared to PF, MF had a lower CO and
higher LAI (Figs. 1 and 2, Table S1). In MF, P. massoniana is a pioneer tree species in the
forest community succession, with a high and well-developed canopy (horizontal longer
crown). In contrast, C. eyrei is a shade-tolerant species in the later stage of succession, with
lower canopy height and larger leaf area. Therefore, the two tree species can occupy
different spaces in the MF, characterized by low and high CO and LAI, respectively.
The LAI of P. massoniana plantations exhibited high heterogeneity (Fig. 3). Firstly, PF is in
the mature forest stage (i.e., it has undergone self-thinning), and its stand density is lower
and uneven (Wang et al., 2021; Yao et al., 2022). P. massoniana has a denser crown (higher
leaf density per unit volume), resulting in it having more gaps that drive the highly
heterogeneous nature of the light conditions of P. massoniana forest on the horizontal axis.

Figure 3 Kriging interpolation of canopy structure in different forest types during summer and
winter seasons. Canopy structure, which includes CO (A, B, E, F) and LAI (C, D, G, H).

Full-size DOI: 10.7717/peerj.17067/fig-3
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Secondly, intraspecific competition of P. massoniana led to a reduction in the crown
cross-sectional area and taper, as well as an increase in tree height (Del et al., 2019), which
increased light heterogeneity on the vertical axis. Therefore, the LAI of P. massoniana has
high heterogeneity in PF.

The ULE is related to forest type (Hardy et al., 2004), and canopy tree species
composition can significantly affect the light environment within the stand (Montgomery
& Chazdon, 2001). In this study, all ULE indicators in different P. massoniana forest types
showed significant differences (Figs. 1 and 2), with Tdir exhibiting the highest spatial
distribution heterogeneity. P. massoniana, with its small leaf area, clustered leaves, and
high tree height, exhibits low sunlight interception efficiency throughout the year (Ruiz
et al., 2021). Moreover, it often forms gaps between adjacent trees (Messier, Parent &
Bergeron, 1998). In contrast, C. eyrei canopy leaves have a greater capacity for absorbing,
reflecting, refracting, and transmitting light. Previous studies have indicated that the
crowns of tree species in MFs tend to expand (Jucker, Bouriaud & Coomes, 2015), forming
an overlapping, multilayered canopy structure (Lu et al., 2018;Morin et al., 2011; Pretzsch,
2014) that can intercept light more efficiently. However, light can penetrate directly to the
forest floor through forest gaps. Moreover, physical leaf and branch damage and seasonal
variations in the angle of solar elevation can contribute to canopy heterogeneity

Figure 4 Kriging interpolation of understory light environment in different forest types during
summer and winter seasons. Understory light environment, which includes Tdir (A, B, E, F), Tdif
(C, D, G, H) and Ttot (I, K, J, L). Full-size DOI: 10.7717/peerj.17067/fig-4
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(Lemos-Filho, Barros & Dantas, 2010; Niinemets, Cescatti & Christian, 2004; Purves,
Lichstein & Pacala, 2007). These changes in canopy structure significantly impact the ULE,
ultimately leading to heterogeneity in understory light conditions (Clinton, 2003;
Valladares & Guzmán, 2006). However, Tdif comes from different directions in the sky
(Čater, Schmid & Kazda, 2012), and through the absorption and reflection of different
canopy heights and thicknesses, it tends to be uniform once on the forest floor. In contrast,
Tdir is highly transmissible, allowing it to directly reach the forest floor and exhibit high
heterogeneity. Overall, unlike Tdir, Tdif exhibits little spatiotemporal variation (Promis
et al., 2009).

Seasonal effects on canopy structure and the ULE in different
P. massoniana forest types
Seasonal changes, which lead to variations in climatic factors like light, temperature, and
rainfall, can directly affect plant physiological processes (shedding of branches and leaves
(Zhang et al., 2014)), which in turn can affect canopy structure (Tang & Dubayah, 2017).
We found significant differences among canopy structure indices across seasons (Fig. 1,
Table S1); these exhibited distinct spatial distributions within different types of
P. massoniana stands, with summer having a lower CO and higher LAI than winter
(Fig. 3). Different tree species exhibit seasonal variations due to their inherent biological
characteristics. In this study, 2-year-old P. massoniana needles showed phenological
changes with autumn shedding and spring budding (Zhang et al., 2014); in contrast, the
deciduous periods for evergreen Fagaceae species like C. eyrei mainly occur in April and
November (Li et al., 2014), leading to certain seasonal changes in canopy structure (Chen,
1996). Additionally, there were other deciduous tree species (e.g., Choerospondias axillaris,
Liquidambar formosana, etc.) in the MF habitat, and the seasonal changes can also shape
canopy structure. Season is closely related to leaf angle (Raabe et al., 2015), which affects
leaf distribution and arrangement, which, in turn, has a seasonal effect on canopy
structure. All these factors result in canopy structure, seasonal differences, and
spatiotemporal heterogeneity.

Seasonal dynamics and related changes are equally important for the characteristics and
distribution patterns of the ULE (Tang & Dubayah, 2017). Seasonal canopy dynamics are
closely related to sunlight (Zhao et al., 2022). When the canopy is influenced by leaf
phenology (bud burst and leaf expansion in spring and summer, and leaf drop in autumn
and winter), solar elevation angle (intense and longer sunlight in summer, weaker and
shorter sunlight in winter, (Lemos-Filho, Barros & Dantas, 2010)), and cloud cover (Weiss,
2000), the forest ULE changes accordingly (Hartikainen et al., 2020). Therefore, ULE
indices in different seasons all displayed significant differences and spatiotemporal
heterogeneity (Figs. 2 and 4, Table S1). In addition, lower P. massoniana light interception
efficiency increases the survival possibilities of other broadleaf tree species in the
understory (Ruiz et al., 2021), leading to trees having canopies of varying heights in
different seasons, which can effectively absorb and reflect light. As a result, the Tdif
fluctuations in the ULE across different seasons were minimal, and its distribution was
relatively uniform (Promis et al., 2009).
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Similar to a majority of the studies of this type, the design of the present study has
certain limitations. Firstly, there was no repetition of sample plots, and the field test was
potentially influenced by multiple factors, not all of which could be controlled. The study
area is located in a typical karst area of southern China, the terrain of which is rugged and
changeable. As far as possible, however, to ensure valid comparisons between plots, we
attempted to select sites with comparable features (similar horizontal distance, altitude,
and slope direction). Secondly, with respect to photography, when distinguishing between
canopy and non-canopy, it is necessary to set an artificial threshold, which typically
involves a certain element of subjectivity. In order to resolve this problem, all photographs
were processed by the same person, thereby minimizing the likelihood of assessor error.
To gain more robust data, further long-term observations at different spatial scales
(different latitude zones, different vertical heights of forests, and shrub and grass shading)
can provide additional insights into the adaptation of canopy structure and light to climate
change over extended periods of time, thereby enabling us to gain a more comprehensive
understanding of forest interactions.

CONCLUSIONS
We found significant differences (P < 0.01) in both canopy structure and the ULE between
the two types of P. massoniana forest stands. These statistically significant differences were
also observed across different seasons. Overall, these results showed that P. massoniana
forest composed of different tree species will exhibit differences in spatiotemporal
variability, resulting in differences in light conditions. For example, P. massoniana MF
composed of more tree species has more complex canopy structure and higher light
utilization rate. This study emphasizes the need for managers to consider the diversity of
canopy species and heterogeneity of light environments when converting mixed
P. massoniana plantation forests in subtropical montane regions.
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