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ABSTRACT
Tuber plants are of great significance in theworld as human food crops. Polysaccharides,
important metabolites in tuber plants, also serve as a source of innovative drugs
with significant pharmacological effects. These drugs are particularly known for their
immunomodulation and antitumor properties. To fully exploit the potential value of
tuber plant polysaccharides and establish a synthetic system for their targeted synthesis,
it is crucial to dissect their metabolic processes and genetic regulatory mechanisms.
In this article, we provide a comprehensive summary of the basic pathways involved
in the synthesis of various types of tuber plant polysaccharides. We also outline the
key research progress that has been made in this area in recent years. We classify the
main types and functions of tuber plant polysaccharides and analyze the biosynthetic
processes and genetic regulation mechanisms of key enzymes involved in the metabolic
pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified
hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide
synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber
plants and understanding the underlying mechanism of action of key enzymes in the
metabolic pathway, we can provide a theoretical framework for enhancing the yield of
polysaccharides and other metabolites in plant culture cells. This will ultimately lead to
increased production efficiency.

Subjects Biochemistry, Plant Science, Synthetic Biology
Keywords Tuber plants, Polysaccharides, Biosynthetic, Genetic mechanism, Metabolic pathway

INTRODUCTION
Polysaccharides play a vital role in the growth and development of tuber plants. They can
be found in the form of starch, cellulose, and pectin, and are crucial for the morphology,
growth, development, and defense of tuber plants. These sugar chains are formed by
glycosidic bonds and consist ofmore than 10monosaccharides.Homo-polysaccharides, like
starch and cellulose, aremade up of the samemonosaccharide, while heteropolysaccharides,
such as gum arabic, contain different monosaccharides. Polysaccharides are glycosides
and can be hydrolyzed to produce intermediate products. In recent years, natural
polysaccharides have shown a wide range of pharmacological properties, including
anti-tumor, immunomodulatory, antioxidant, and anti-inflammatory effects (Wang,
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Kanyuka & Papp-Rupar, 2023). Polysaccharides derived from tuber plants not only have
high nutritional value and energy storage capacity, but also play a vital role in the prevention
and treatment of various diseases. Increasing the yield of polysaccharides can be achieved
through various methods, such as overexpressing key genes in polysaccharide biosynthesis,
co-expressing multiple genes, directed evolution of enzymes, and blocking polysaccharide
anabolic bypass (Yang, Yang & Zhang, 2020). Therefore, a comprehensive understanding
of the genetic mechanisms involved in polysaccharide biosynthesis in tuber plants is crucial
for their widespread application in diverse fields, including food and beverage production,
drug development, and the creation of new materials.

The biosynthesis of polysaccharides is a complex process that is regulated by a network
of proteins. Recent studies have identified various genes and enzymes responsible for
regulating different pathways of polysaccharide biosynthesis in tuber plants. For example,
genes involved in producing different starch components, such as amylopectin and amylose,
have been identified in potato tubers (Nakamura et al., 2022). Enzymes involved in the
synthesis of tuber starch have also been characterized. Furthermore, research has focused
on investigating the regulatory mechanisms involved in the process of tuber development,
leading to the identification of genes responsible for the biosynthesis and storage of soluble
sugars and the regulation of enzyme activity in the process. Genetic mechanisms involved
in the synthesis of other polysaccharides, which are present in some tuber plants like
Jerusalem artichoke, have also been explored (Sawicka et al., 2020).

In recent years, numerous studies have focused on themechanisms of enzymes and genes
related to specific plants or the metabolism of single polysaccharides. However, there have
been few reports summarizing a specific classification of plants known as tubers. This lack
of targeted summaries has resulted in a dearth of research on the biosynthetic mechanisms
of the main polysaccharides found in tuber plants. Tuber plants hold a significant position
in the field which are an essential component of land plants (Dong et al., 2021). This article
aims to address these gaps by summarizing the main types and functional properties of
polysaccharides in tubers. Additionally, it will describe the biosynthetic pathways and
the processes of key synthases. The study also emphasizes the potential for industrial
exploitation and clinical application of polysaccharides. Furthermore, the article concludes
with an examination of the genetic mechanisms involved in regulating polysaccharide
synthesis in tuber plants. This comprehensive analysis seeks to establish a foundation for
further research on the regulation of polysaccharide synthesis in plants, as well as provide
a theoretical basis for the use of directed synthesis to improve polysaccharide yields in
industrial production.

For survey methodology of this article, we firstly surveyed the related articles of the past
3–5 years by searching the key words of tuber plants, polysaccharides, biosynthetic, genetic
mechanism and metabolic pathway in PubMed, Web of Science, NCBI, Baidu Scholar and
Bing Scholar. Then we concluded the valued information for preparing this article.
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APPLICATION VALUE OF THE TUBER PLANT
POLYSACCHARIDES
Tuber plants contain various types of polysaccharides, including starch, cellulose,
pectin, gum, mucilage, and fructan, which serve different purposes and demonstrate
medicinal properties (Table 1). Polysaccharides have numerous applications and values.
Firstly, their physicochemical characteristics make them suitable for the production of
pharmaceutical materials and drug releasers (Zierer et al., 2021). Some polysaccharides
have properties such as easy gel formation, high osmotic pressure, high viscosity, and
excellent water absorption (Dong et al., 2021). Secondly, their pharmacological properties,
antigenicity, anti-tumor effects, and other biological functions make them useful for the
development of new drugs or vaccines (Cheng et al., 2023). For example, yams’ starch
and mucopolysaccharides help prevent cardiovascular disease, diabetes, and intestinal
microbiota disorders (Epping & Laibach, 2020). Additionally, the polysaccharides and
other components in Salvia exhibit antioxidant pharmacological activity (Fu et al., 2023).
The polysaccharide components of Ginseng, Atractylodes macrocephala, Poria, and Licorice
are used to treat neuroendocrine disorders, gastrointestinal motility, and hormonal
abnormalities (Ma et al., 2021). Bletilla striata’s yeast polysaccharide has pharmacological
effects such as wound healing, hemostasis, antioxidant, anti-inflammatory, anti-fibrotic,
and in vitro immunomodulatory activities (Xu et al., 2021). Furthermore, the dried tuber
of Bletilla striata is an important astringent and hemostatic drug widely used for treating
gastrointestinal mucosal injuries, ulcers, bleeding, bruises, and burns (Jiang et al., 2021).
The Polygonatum sibiricum tuber’s polysaccharide exhibits antioxidant, antibacterial, and
antitumor properties while also lowering blood sugar and lipids, enhancing the immune
system, and displaying remarkable moisturizing and moisture-proof properties (Yu et al.,
2022). Gastrodia elata’s dried tuber provides relief from gout, spasms, and calms liver fire.
It is rich in polysaccharide components with anti-aging, anti-tumor, immunomodulatory,
and other functions (Lu et al., 2022).

METABOLIC PATHWAY SYNTHESIS OF POLYSACCHARIDES
IN TUBER PLANTS
Sugars play a crucial role in the metabolism of plants, providing them with the energy
and essential intermediate products necessary for survival, growth, development, and
reproduction. Through the process of photosynthesis, green plants convert carbon
dioxide and water into sugars. These sugars can then be further metabolized into
vital substances such as adenosine triphosphate (ATP), coenzyme (NADH), pyruvate,
phosphoenolpyruvate, erythrose-4-phosphate, ribose, and various other compounds.
These substances are vital for maintaining the life processes of plant organisms and are
synthesized through different metabolic pathways (Duan et al., 2021).

For the synthesis of other polysaccharides as the end product of photosynthesis,
sucrose must either be hydrolyzed into glucose and fructose using converting enzymes
or catalyzed into fructose through sucrose synthase (Fig. 1). Before they can be utilized
by the biosynthetic enzymes and glycosyltransferases (GTs) in the cell, monosaccharides
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Table 1 Main classification and functional application of polysaccharides in plant tubers.

Polysaccharide
classification

Main
storage
areas

Functions Physical and
chemical characteristics

Medicinal
properties

Reference

Starch Seed and
tuber

Plant nutrients, food industry, bioactive ingredient
delivery vehicles

Polysaccharide polymer compounds composed of
glucose, including amylose and amylopectin, with
different adsorption properties depending on the
molecular form. Present white powder state, insoluble
in cold water, soluble in hot water, easy to paste in
hot water, aging when the temperature decreases

Natural starches separated from natural sources
are used as adhesives and disintegrators in tablet
formulations. In the formulation of metronidazole
tablets, the natural starch in the sedge tuber is used as
a binder.

Chakraborty,
Kalita &
Sen (2019),
Qiu et al.
(2023), Sun
et al. (2023)

Cellulose Cell wall Provide cohesion, protection and directional growth for
plants with stability.

D-glucopyranosyl groups insoluble in water,
dilute acids and bases at room temperature are chain-
like macromolecular compounds linked by β-1,4
glycosidic bonds.

The addition of nanocellulose polysaccharide can
improve the antibacterial activity of polysaccha-
ride. Bacterial cellulose has been used as a source for
human drug delivery systems, and skin patches based
on bacterial cellulose are used to load different drug
molecules; Formulations of tizanidine (water soluble)
and Famotidine (less water soluble) oral tablets using
bacterial cellulose as the sole excipient, both drugs
in capsules have excellent release effects. Bacterial
cellulose as a laxative medicine has used a variety of
hygroscopic.

Ul-Islam et
al. (2020),
Niu et al.
(2023), Ped-
ersen et al.
(2023)

Pectin Cell wall
and inter-
cellular
layer

It regulates plant adaptation to low temperature
photosynthesis, regulates plant sucrose distribution,
promote intercellular adhesion, provide structural
support in the main wall; influence the secondary
wall formation of fiber and woody tissue;
provide a reservoir of oligosaccharide signaling
molecules important for plant growth and
defense responses, affects wall rheology and
supports seed and root growth.

Include homogalacturonan (HG),
rhamnogalacturonan I (RGI) and
rhamnogalacturonan II (RGII), different pectin
domains are covalently linked to each other in the
cell wall and have great gelation, emulsification and
antioxidant properties. It is a soluble dietary fiber
with good gelation, emulsification and antioxidant
properties.

The physicochemical and antibacterial properties of
pectin can be used as multi-functional pharmaceuti-
cal excipients and nutritional products. Pectin and its
modified nanocomposites can be used for pharma-
ceutical and drug delivery.

Kedir,
Deresa
& Diriba
(2022),
Wang et al.
(2022)

Gum All organi-
zations

Aqueous dispersions usually have the characteristics of
suspension, dispersion, emulsification adhesive or
viscous, and gel, commonly used as
coagulants, adhesives, lubricants or film-
forming substances, biocompatible,
biodegradable, stable, and will not cause immune
response

As a water-soluble polysaccharide substance, the
aqueous dispersion of gum usually has the character-
istics of suspension, dispersion, emulsification gum or
viscous, and gel, etc. It is often used as coagulant,
adhesive, lubricant or film-forming substance.

Gum can be used as an excipient, replacing
Astragalus gum and starch as a binder and
disintegrator, respectively; used in the development
of biomaterials, which can be used in surgery, as
a cell growth scaffold during tissue regeneration,
gum scaffolds have good support for the growth
of mesenchymal stem cells (MSC); be used as a
component of synthetic substrates for therapy and
tissue repair.

Amaral et
al. (2022),
Owusu et
al. (2022),
Tuteja &
Nagpal
(2023)

(continued on next page)
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Table 1 (continued)
Polysaccharide
classification

Main
storage
areas

Functions Physical and
chemical characteristics

Medicinal
properties

Reference

Mucilage Mucus cells
of thin-
walled tis-
sues

It has strong hygroscopicity, swells rapidly in water,
dissolves to form viscous slurry, and is insoluble in
organic solvents. It is often used as lubricant, suspen-
sion agent and auxiliary emulsifier in medicine.

It is mainly a compound of high molecular weight
polymeric polysaccharides combined with organic
acids. It contains galactose, pentose and methyl
pentose, which are linked to glyoxylate residues
via glycosidic bonds. Due to its anionic
structure, the mucilage can interact with other
cationic polymers, resulting in the formation of
polyelectrolyte compounds.

The mucilage is suitable for formulating uncoated
tablets and can be safely used as a drug excipient. The
flow characteristics of the particles prepared with
mucilage have good compressibility compared with
those prepared with starch and PVP.

Ilango et
al. (2022),
Xu, Hu &
Li (2023),
Goksen et al.
(2023)

Fructan Roots,
stems,
leaves and
seeds of
Asteraceae,
Gramineae
and Lili-
aceae

As an autotrophic and heterotrophic organ of plants, it
regulates the adaptation of plants to low temperature
photosynthesis, regulates the distribution of sucrose in
plants and adapts plants to water deficit, and is often
used in the production of fructose after hydrolysis.

Polymorph of β-D-fructose, white powder. Soluble
in water, low viscosity of aqueous solution, similar to
the properties of gum Arabic. Insoluble in more than
65% ethanol. With dextrose.

Fructan, as a prebiotic, can selectively promote the
activity and growth of specific native bacteria to
regulate the gut flora in patients with inflammatory
bowel disease (IBD). The addition of fructan
to food can significantly increase the number
of bifidobacteria, thereby improving the gut
microbiome, and its fermentation products can
reduce the gut pH and inhibit the growth of
pathogenic and spoilage bacteria. In addition,
fructooligosaccharides may reduce the risk of colon
cancer. The production of butyrate from fructan by
intestinal flora can reduce the incidence of tumor and
inhibit tumor growth and metastasis.

Wan et al.
(2020), Do-
sio et al.
(2023)
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Figure 1 Polysaccharide synthesis process regulated by enzymes encoded by structural genes.
Full-size DOI: 10.7717/peerj.17052/fig-1

need to be activated as NMP or NDP derivatives. Examples of activated monosaccharides
include ADP (adenosine diphosphate), TDP (thymidine diphosphate), GDP (guanosine
diphosphate), and UDP (uridine diphosphate) (Thibodeaux, Melançon & Liu, 2007).
Glucose-6-phosphate and fructose-6-phosphate are the primary sources of nucleotide
sugars (Fig. 1). In the biosynthesis of GDP sugars, phosphomannoisomerase (PMI)
converts fructose-6-phosphate to mannose-6-phosphate (Tanaka et al., 2023). Conversely,
glucosamine-6-phosphate synthase (GlmS) converts fructose-6-phosphate to glucosamine-
6-phosphate for the formation of UDP sugars. Alternatively, UDP-sugars can be produced
fromgalactose through the Leloir pathway, ultimately leading toUDP-glucose (Thibodeaux,
Melançon & Liu, 2008). Although glucose-6-phosphate serves as a precursor for many
UDP-sugars, it is more commonly utilized in the biosynthesis of TDP- and CDP-sugars
(Hua et al., 2021). Finally, monosaccharides are enzymatically catalyzed by various GTs to
bind together and form growing polysaccharide polymers, which are then polymerized and
exported to create plant polysaccharides (Wingler & Henriques, 2022). These substances
are further metabolized, eventually resulting in the formation of polysaccharides such as
starch, cellulose, pectin, fructan, and other metabolites at different sites through enzymatic
catalysis (Lynch, 2022).

Metabolic synthesis pathway of starch
In plant tubers, the main sites for starch synthesis are chloroplasts and amyloplasts.
Within the chloroplast stroma, the Calvin cycle utilizes CO2, which enters the chloroplast
matrix through the stomata (Lee et al., 2022). Initially, it forms 3-phosphoglycerate
(3PG) by reacting with its receptor RuBP under the influence of Rubisco carboxylase.
Subsequently, 3PG is reduced to glyceraldehyde-3-phosphate (G3P) (Sharkey, 2023). G3P
serves two purposes: some is transported to the cytosol to produce sucrose via a series
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Figure 2 Starch synthesis pathways in chloroplasts.
Full-size DOI: 10.7717/peerj.17052/fig-2

of biochemical reactions, while the rest is converted to fructose-6-phosphate (F6P). F6P
is further transformed into ADP-glucose (ADP-Glucose) through glucose-6-phosphate
(G6P) and glucose-1-phosphate (G1P), ultimately culminating in starch production
(Funfgeld et al., 2022). On the other hand, in amyloplasts, starch is produced using sucrose,
generated during photosynthesis, as a carbon source. Sucrose is conveyed from the leaves
to the seeds, where it is hydrolyzed by either sucrose synthase or sucrose convertase to
produce fructose and ADP-glucose (Liu et al., 2022). ADP-Glucose is then converted by
ADP glucose pyrophosphorylase (AGPase) into hexose phosphate (G1P and G6P), leading
to further ADP-glucose synthesis (Fig. 2) (Zhu et al., 2022). Finally, ADP-glucose produces
amylopectin through the activities of starch isomerase, starch branching enzyme, and
soluble starch synthase, while another portion is transformed into amylose by granule-
bound starch synthase and stored in endosperm cells (Lee et al., 2022). In sugarmetabolism,
sucrose phosphate synthase (SPS) and sucrose phosphatase (SPP) are present as compounds
in plants, and the process of sucrose production catalyzed by SPS is irreversible (Worden et
al., 2015;Mason et al., 2023).

Biosynthesis pathway of cellulose
Cellulose is synthesized directly at the plasma membrane in plants. The remaining portion
of the wall, consisting of hemicellulose and pectin, is formed within the Golgi apparatus
and released into the apoplast through exocytosis (Verma et al., 2023). Bacteria have the
ability to produce a variety of polysaccharides, which are generated and transported by
different membrane protein complexes. Similarly, chitin and glucan chains in fungi are
synthesized directly at the plasmamembrane by glycosyltransferases, while maintaining the
same meaning (Noack & Persson, 2023). Cellulose synthesis involves a complex of multiple
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Figure 3 Cellulose biosynthesis pathways.
Full-size DOI: 10.7717/peerj.17052/fig-3

cellulose synthases. Cellulose synthase complexes (CSCs) are assembled in the Golgi and
then transported to the cytoplasmic membrane for synthesis. The CSCs consist of a rosette
structure composed of six subunits, each containing six cellulose synthase monomers. The
arrangement of microfibrils within the cell wall is influenced by cellular microtubules and
microtubule dynamin/kinesin, and cell wall proteins also play a role in this process (Wang
et al., 2020). Furthermore, certain membrane proteins, such as the Kor protein, participate
in cellulose synthesis (Hoffmann et al., 2021).

The movement of CSCs along cortical microtubule pathways defines the direction
of cellulose microfibril synthesis (Chebli & Geitmann, 2023). The regulation of cellulose
biosynthesis includes the transcriptional regulation of CesA genes, post-translational
modification of CesA proteins, assembly, transportation, and localization of CSC
complexes, as well as the regulation of other enzymes involved in glucan synthesis (Fig. 3)
(Wang et al., 2022). The circulation of CSCs between the plasma membrane and various
intracellular compartments plays a crucial role in determining the level of cellulose synthesis
(Vellosillo et al., 2021). Studies have demonstrated that several factors, such as transcription
factors like MYB family proteins, SND1, VND family proteins, and signaling molecules
including NO, NAA, and BR, can promote cellulose synthesis (Guo et al., 2022).

Pectin biosynthesis pathway
Pectin, which is a crucial component of the plant cell wall, is primarily composed
of three essential polysaccharide structural domains: homogalacturonic acid (HG),
rhamnogalacturonan I (RG-I), and rhamnogalacturonan II (RG-II) (Fig. 4).
Homogalacturonan, the simplest structure of pectin, consists of 1,4-linked acidic residues
of α-D-galacturonic acid (GalA). Some of these residues have a methyl esterified carboxylic
group (Zdunek, Pieczywek & Cybulska, 2021). RG-I is composed of alternating disaccharide
units of 4-linked α-D-galacturonic acid and 2-linked α-D-rhamnose. It also contains
branches with side chains of arabinan, galactan, and arabinogalactan. On the other hand,
RG-II is the most complex form of pectin, with high substitutions of monosaccharide
residues such as rhamnose, xylose, arabinose, galactose, and some deoxy sugars like aceric
acid, KDO, and DHA. These residues are linked together by 20 different glycosidic linkages
(Kumar et al., 2023).

Pectins undergo polymerization, methyl-esterification, andmodification in Golgi stacks
before being transported to the cell wall in highly methyl-esterified forms. The synthesis
of pectin requires various enzymes, including glycosyltransferase, methyl-transferase,
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Figure 4 Pectin biosynthesis pathways.
Full-size DOI: 10.7717/peerj.17052/fig-4

and acetyltransferase, which are involved in constructing complex structures of pectin
polysaccharides in the cis-Golgi, intermediate Golgi, and trans-Golgi (Li et al., 2023).
Highly esterified pectins are modified by pectin-degrading enzymes, such as pectin
methylesterases (PME), through demethylesterification and deacetylation processes,
resulting in the production of pectate and the release of methanol (Kumar et al., 2023).
Pectin biosynthesis relies on different nucleotide sugars as active sugar donors, which are
converted from free sugars into nucleotide sugars by a few nucleotide sugar precursors
(UDP-Glc, GDP-Man). This conversion process involves reciprocal enzyme actions
followed by a series of sequential reactions catalyzed by glucokinase and UDP-glucose
pyrophosphorylase (Tan et al., 2022).

The formation of the intine can be regulated by certain genes involved in pectin
metabolism (Fig. 4). UDP-sugar pyrophosphorylase (USP) is involved in the processes of
synthesis and modification of the cell wall during pectin synthesis, as pectin is the main
component of the intine layer (Liu et al., 2021). Deletion occurs in the USP mutant due to
the impaired synthesis of pollen intine (Mi et al., 2022). Pectic ArabinoGalactan synthesis-
Related (PAGR) encodes a protein belonging to the DUF-246 family. PAGR can influence
the formation of AGPs and the structure of RG-1 (Stonebloom et al., 2016). Abnormal
pollen germination occurs as a result of the mutant’s affected intine, which in turn impacts
pectin synthesis (Ma et al., 2021). Moreover, the modification of pectin side-chains by
specific genes plays a crucial role in pollen development, germination, and pollen tube
growth (Zhou et al., 2022). In the presence of Ca2+, pectin degradation occurs through
β-elimination catalyzed by PLL (pectate lyase-like) (Safran et al., 2023). Demethylesterified
pectin can be degraded catalytically by polygalacturonase (PG), either as an internal or
external enzyme (Olawuyi et al., 2022). PMEs play a role in the development of pollen
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and pollen tubes by promoting the demethylesterification of pectin (Ma et al., 2021). In
Arabidopsis, specific genes expressed in pollen grains or pollen tubes, namely VDG1 and
PPME1, have been identified and are involved inmaintaining the homeostasis of pollen tube
growth (Tang et al., 2023). Additionally, PME48 regulates pollen germination and affects
the reconstruction of pollen intine (Ma et al., 2021). There is a delay in pollen germination
and a significant decrease in the germination rate in the PME48 mutant, accompanied
by the production of two pollen tubes from some pollen grains. The development of
intine, pollen germination, and pollen tube growth are regulated by PMEI s, which inhibit
the activity of PMEs by binding to them (Kim et al., 2020). In summary, these factors
collectively play a crucial role in the development of pectin biosynthesis.

Biosynthetic pathway of fructan
The biosynthesis of fructan in plants utilizes sucrose as a donor of fructose. The plant
glycoside hydrolase family GH32 consists of both synthetases and degrading enzymes,
collectively known as fructan active enzymes (FAZYs). These FAZYs are responsible
for regulating the diversity of structure and size of fructans (Hu et al., 2022). Fructan
biosynthesis occurs in vacuoles and is catalyzed by two or more fructan transferases (FTs),
which transfer a portion of fructose from the donor substrate to the acceptor molecule
(Lekakarn et al., 2022). On the other hand, fructan hydrolysis is facilitated by fructan
exohydrolase (FEH), which cleaves fructose residues located at the terminal end (Matros et
al., 2021). Unlike other polysaccharides, fructan synthesis does not require phosphorylation
or nucleotide cofactors. Instead, various combinations of FTs engage sucrose in the
synthesis of different types of fructans (Chen et al., 2023). In a qualitative study on fructan
metabolism inHelianthus tuberosus tubers, it was found that the entire metabolic process of
inulin-type fructan involves two enzymes: sucrose: sucrose 1-fructosyltransferase (1-SST)
and fructan: fructan 1-fructosyltransferase (1-FFT) (Huang et al., 2021). In the presence
of 1-SST, sucrose undergoes an irreversible one-step transfer of fructose from one sucrose
molecule to the C1 position of the fructose group of another sucrose molecule, resulting
in the formation of 1-kestose (Fig. 5). Subsequently, 1-FFT extends the carbon chain
based on sucrose, leading to the formation of inulin-type fructans with different degrees
of polymerization in a reversible one-step reaction (Márquez-López, Loyola-Vargas &
Santiago-García, 2022). The spatial and temporal distribution of fructans, similar to other
polysaccharides, is determined by the balance between biosynthesis and degradation
pathways. Fructan homeostasis, in turn, is affected by changes in plant growth stages and
environmental conditions.

Regulation mechanism of tuber plant polysaccharide enzyme
The biosynthesis of polysaccharides is regulated by a variety of enzymes encoded by
structural genes, including SUS, SPS, INV, HXK, FRK, UGPase, and GTs (as shown in
Table 2, Fig. 1). Sucrose decomposition is primarily controlled by SUS and INV. SUS
facilitates the reversible cleavage of sucrose into fructose and UDP-glucose or adenosine
diphosphate glucose, while SPS converts UDP-glucose into sucrose (Boulanger et al.,
2021). In contrast, INV plays a role in breaking down sucrose into fructose and glucose in
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Figure 5 Fructan biosynthesis pathways.
Full-size DOI: 10.7717/peerj.17052/fig-5

plants. It is involved in cell osmotic regulation and the accumulation of sugar in storage
organs, providing substrates for the subsequent synthesis of polysaccharides (Chen et al.,
2022). HXK facilitates glucose phosphorylation in plant cells, while fructose undergoes
phosphorylation by fructose kinase prior to metabolism. The second part involves the
biosynthetic pathway from sucrose to GDP-mannose and GDP-fucose, as described by
Sosicka et al. (2022). Firstly, SUS catalyzes the conversion of sucrose to fructose, which
is then further converted into fructose-6-phosphate with the help of HXK (Lehretz et al.,
2020). Subsequently, fructose-6-phosphate is transformed into mannose-6-phosphate
through the catalysis of mannose-6-phosphate isomerase (MPI). This is followed by the
conversion of mannose-6-phosphate into mannose-1-phosphate by phosphomannose
isomerase (PMM), ultimately leading to the formation of GDP-mannose with the action
of GDP-mannose pyrophosphorylase (GMPP) (Fang et al., 2022). GDP-mannose can
be utilized as a precursor for synthesizing various compounds such as UDP-rhamnose,
UDP-fucose, UDP-galactose, UDP-xylose, and others (Beerens, Gevaert & Desmet, 2021).
UDP-glucose can directly convert to UDP-galactose with the help of UDP-glucose-4-
epimerase (UGE) (Althammer et al., 2022). UDP-glucose hydrogenase is also able to
catalyze the conversion of UDP-glucose into UDP-glucuronic acid, which serves as a
precursor for synthesizing hyaluronic acid on the plasmamembrane, as well as UDP-xylose
and proteoglycan synthesis in the Golgi apparatus (Zimmer, Barycki & Simpson, 2021).
Importantly, the conversion process between UDP-glucuronic acid and UDP-galacturonic
acid by UDP-glucuronic acid isomerase further increases the complexity of polysaccharide
composition.
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Table 2 Functions of key enzymes in polysaccharide synthesis.

Key enzyme Role in carbohydrate synthesis Other physiological functions Influencing factors of activity Reference

Sucrose synthase
(SUS)

It catalyzes the decomposition and synthesis
of sucrose, that is, sucrose is decomposed into
UDP-glucose and fructose in the presence of
UDP, and its reverse reaction

Sucrose is transported to multiple pathways
to provide the precursor UDP-glucose for
the biosynthesis of cell wall polymers and
starch; It helps the growth, development and
metabolism of sink organs, and help plants
adapt to abiotic stress environments such as
hypoxia and cold

Fructose and UDPG inhibited degradation
activity, UDP inhibited synthesis activity, and
glucose inhibited synthesis and degradation;
inhibited by Zn2+, Hg2+, Gu2+, Fe2+, Ni2+
and Co2+

Sheng et al.
(2023)

Sucrose invertase
(INV)

Irreversibly catalyze the hydrolysis of sucrose
into glucose and fructose

It regulates the distribution and utiliza-
tion of assimilates in the sink organ, for
example, in the sink tissue, the cell wall
sucrose invertase hydrolyzes sucrose into
hexose, and the hexoglycoprotein transports
hexose into the cells of the sink tissue, thereby
reducing the sucrose concentration outside
the sink tissue and driving the extracellular
phloem of the sink organ to unload; delay-
ing leaf senescence; early defense in disease
resistance and plant-symbiont system

By transcription, translation, post-
translational modification; induced by
low temperature, stress and maturation

Coculo & Lionetti
(2022)

Sucrose phos-
phateSynthase
(SPS)

SPS catalyzes the conversion of UDPG and
fructose-6-phosphate (F6P) to sucrose-6-
phosphate (S6P) in plants. In the ripening
stage of fruit, the expression and activity of
SPS were up-regulated, which promoted
the synthesis of sucrose and increased the
sweetness of fruit

By regulating sucrose synthesis to cope with
cold, drought, water shortage and other
environmental stress pressure

Phosphate and sucrose-6-phosphate are
SPS inhibitors. Fructose-6-phosphate and
1,5-anhydroglucitol-6-phosphate could
activate SPS activity. Histidine participates in
the catalytic reaction; under the regulation
of post-translational modification, SPS is
phosphorylated in the dark and its
activity is inhibited. Under light, SPS is
phosphorylated and its activity is restored,
indicating that phosphorylation and
dephosphorylation can regulate the activity of
SPS in plants

Liao et al. (2022)

Hexokinase
(HXK)

Phosphorylation of several hexoses, including
d-glucose (Glc), d-fructose (Fru), d-mannose
(Man) and d-galactose (Gal)

as a hexose sensor, it plays a variety of roles
in regulating plant growth, sugar sensors,
regulating sugar signal transduction, and
cooperating with plant hormones

Glucose excess can cause HXK sugar sensing
pathway, T6P pathway and rapamycin (TOR)
kinase target pathway to play a role.

Dou et al. (2022)

Fructokinase
(FRK)

Phosphorylation of free fructose with high
substrate specificity and affinity

It is specifically expressed in the anther
during the late stage of pollen development
and pollen germination, and regulates the
acquisition of carbohydrates required
for cell wall synthesis during pollen
development; plays a role in long-term
developmental processes in vascular
development.

Only regulated by its own substrate fructose Fan et al. (2022)

UDP-glucose py-
rophosphorylase
(UGPase)

UDPG was synthesized by the reaction of
glucose 1-phosphate with UTP

Involved in carbohydrate metabolism, cell
wall biosynthesis and protein glycosylation
metabolism; regulating plant cell apoptosis in
chloroplasts

It is regulated by Suc (the major transport
form of carbon in plants). It was strongly
up-regulated by low temperature and down-
regulated by drought and flood conditions.

Xu et al. (2022)
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Table 2 (continued)
Key enzyme Role in carbohydrate synthesis Other physiological functions Influencing factors of activity Reference

Glycosyl trans-
ferases (GTs)

Catalytically activated glycosyl donors are
transferred to specific receptor molecules to
form glycosidic bonds

The glycosylation process can increase the
polarity and water solubility of antibiotics,
so that they can reach the ideal effective
concentration inside or outside the cell,
and the presence of glycosylation can also
enhance the chemical stability of antibiotics.
Glycosylation can specifically recognize
biological targets and play a key role in
bacteriostasis.

N-glycosylation strongly affects GTs activity
and Golgi localization.

Kurze et al.
(2022)
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Hexokinase-regulated polysaccharide synthesis mechanism
The first glucose sensor discovered in plants, hexokinase (HXK), is now recognized as a
dual-functional protein that performs important roles in plant carbohydrate metabolism.
HXK activity is tightly regulated by various internal and external signals, including sugar
availability, hormonal signals, and environmental stresses. In plant cells, hexokinase has
been shown to directly regulate starch synthesis through the up-regulation of starch
synthesis genes under sugar deprivation conditions (Bouwman et al., 2020). Additionally,
it indirectly affects the expression of genes involved in cellulose biosynthesis (Hoffmann
et al., 2021). The regulatory mechanisms of hexokinase in plant polysaccharide synthesis
are complex, involving both direct and indirect mechanisms that govern the process. It
is expected that new discoveries in this field will enhance our understanding of these
mechanisms and offer valuable insights into innovative strategies for manipulating plant
polysaccharide synthesis in biotechnological applications.

Hexokinase-mediated glucose and fructose phosphorylation initiates intracellular
metabolism by stimulating glycolysis to produce secondary metabolites and energy. Before
entering the cytoplasm, HXK, which is located on the outer membrane of the chloroplast,
catalyzes the conversion of glucose to glucose-6-phosphate (G6P) (Sonagra & Motiani,
2022). G6P acts as the intersection point between glycolysis and the pentose phosphate
pathway (Fig. 1), where G6P dehydrogenase further catalyzes its dehydrogenation to
NADPH (Laporte, González & Moenne, 2020). HXK regulates and provides substrates for
various pathways, including starch synthesis, fatty acid synthesis, nucleotide formation,
and the oxidative pentose phosphate pathway (OPPP) (Ren et al., 2022). Moreover, glucose
alone can activate root meristem through the TOR signaling pathway during the transition
from heterotrophic to autotrophic metabolism in Arabidopsis. This activation is dependent
on glucose phosphorylation by HXK, which supplies intermediate metabolites for cell wall
synthesis and the energy needed for meristem proliferation (Ye et al., 2022). Additionally,
hexosemonophosphatewithin the cytosol serves as the substrate for nucleoside diphosphate
sugar synthesis in cell wall biosynthesis. The inhibition of HXK by competitive inhibitors
also leads to the inhibition of polysaccharide biosynthesis. Moreover, the glucose-hexose
kinase system is involved in various forms of abiotic stress, such as salt tolerance, osmotic
stress tolerance, and anthocyanin accumulation (Aziz & Mohiuddin, 2023).

HXK not only participates in glucose phosphorylation but also contributes to the
regulation of some photosynthetic genes. As a sugar detecting protein, HXK is engaged in
sugar signal transduction, which involves sensing stress, light, hormones, and nutrients,
therefore influencing gene expression, as well as the growth and development of plants.
HXK exists as a multigene family in plants, and there are 7 MeHXK s in cassava (Lai et
al., 2022). At now, GenBank contains a compilation of HXK homologous genes from 28
different higher plants. The HXK gene family predominantly consists of 9 exons and codes
for 492–522 amino acids (Dou et al., 2022). The subcellular localization analysis of HXK
demonstrates that inside plant cells, the majority of HXK family members are mostly found
in mitochondria, while only a small number are present in the cytoplasm, chloroplasts, and
plastid matrix (Chen, Tian & Guo, 2023). The majority of the HXK gene family members
exhibit expression in various organs or tissues, although Arabidopsis thaliana AtHKL3 and
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Oryza sativa OsHXK10 are solely expressed in flowers (Zheng et al., 2020). The metabolic
processes of sucrose and its subsequent breakdown into hexoses play a crucial role in
controlling the storage and utilization of carbon, as well as other signaling pathways related
to sugar. The intricate metabolic processes work together to uphold the balance of energy
within cells and guarantee the organized progression of biochemical reactions in plants.

Glycosyltransferase-catalyzed polysaccharide synthesis mechanism
Glycosyl transferases (GTs) are essential enzymes involved in glycosylation and are pivotal
in the creation of glycosidic linkages. The control of polysaccharide production in plants
is achieved by the regulation of GTs. This regulation encompasses various processes,
including gene expression, protein modification, and enzyme activity regulation (Tan et
al., 2023). The availability and activity of nucleotide sugar donors, which are generated in
the cytosol and transferred to the Golgi apparatus, significantly affect GTs activity. These
donors are used by GTs to create polysaccharides. Within the realm of plants, multiple
transcription factors have been recognized as crucial controllers of GTs gene expression
(Lu et al., 2023). These transcription factors selectively attach to distinct DNA sequences
located in the promoter regions of GTs genes, and they have the ability to either stimulate
or inhibit the expression of these genes. Furthermore, GTs activity can be influenced
by post-translational changes such as phosphorylation, acetylation, and glycosylation,
which can either enhance or limit the enzyme’s activity. Environmental factors such as
temperature, light, and nutrition availability also influence the control of GTs activity
and the production of polysaccharides (Tan et al., 2023). Nucleotide sugar transporters
facilitate the transportation of UDP monosaccharides and GDPmonosaccharides from the
cytoplasm of plants to the Golgi apparatus. Through the action of GTs, monosaccharide
residues are moved from active nucleotide sugars to elongated polysaccharide chains (Lu et
al., 2023). This process involves dehydration and condensation, resulting in the formation
of polysaccharides. These polysaccharides are subsequently transported to various plant
regions for storage using secretory vesicles (Zhang et al., 2023).

Glycosylation is vital for the production of secondary metabolites. GTs play a crucial
role in transferring sugar groups from donor molecules to receptor molecules, leading to
the creation of different glycoside chemicals (Fig. 1). There are two basic forms of GTs
that play a role in polysaccharide biosynthesis: one has a single transmembrane domain,
while the other has numerous transmembrane domains (Zabotina, Zhang & Weerts, 2021).
Annotating GT family genes associated with plant polysaccharide synthesis has been
performed in the CAZY database (http://www.cazy.org/) (Tan et al., 2023). Within this
group, the GT1 family has the highest number of members and the most varied range of
functions. The GT1 family, referred to as UDP-glycosyltransferases (UGT), predominantly
facilitates the transfer of uridine diphosphate (UDP) sugars to particular receptors,
including proteins, antibiotics, nucleic acids, plant hormones, and other substances (Lu et
al., 2023).

The catalytic processes of glycosyltransferases can be categorized into two groups,
retention and inversion, based on the stereochemical heterogeneity of glycosylation
substrates and products (Fig. 6). The configurational inversion catalytic process entails
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Figure 6 Method of glycosyltransferase catalyzing monomer transfer.
Full-size DOI: 10.7717/peerj.17052/fig-6

the active hydrogen of the acceptor molecule being captured by the basic amino acid of
the GTs. Subsequently, the oxygen anion attacks the acceptor molecule’s carbon from
the opposite side of the donor molecule, resulting in the formation of an oxocarbenium
ion-like transition state (Wang et al., 2019). After the phosphate group is removed, the
catalytic process of configurational inversion is finished, matching the mechanism used by
glycoside hydrolases to break glycosidic bonds (Sun et al., 2021). The precise mechanism
of the configuration-preserving type has not been completely comprehended. The initial
proposal of the double-replacement process for the creation of glycosyl-enzyme covalent
intermediates was substantiated by employing chemical interventions with sodium azide
to rectify a mutated variant of α3-galactosyltransferase (α3GalT) (Franceus & Desmet,
2020). In the absence of definitive experimental evidence supporting alternative covalent
intermediates, the SNi ’internal return’ catalytic mechanism was also suggested. This
mechanism suggests that the nucleophilic attack and departure of the leaving group
take place on the same side of the sugar group, resulting in the formation of a brief
oxocarbenium-like transition state. Subsequently, the acceptor C-O glycosidic link
is formed and the C-O bond between the sugar group and the phosphate group is
cleaved, so concluding the catalytic process of configuration retention (Mahajan et al.,
2021). Ultimately, additional experimental evidence is required to determine whether the
configuration-preserving GTs may be executed using various catalytic methods.
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PROSPECT
Further exploration of polysaccharide synthesis mechanism in tuber
plants
The progressive advancement of detection techniques and analytical equipment has
facilitated thorough examination of the polysaccharide production pathway in several
metabolic pathways of tuber plants. This study provides a comprehensive overview of the
genetic mechanisms governing the production of starch, cellulose, pectin, and fructan in
tuber plants. Additionally, it examines the catalytic mechanism of crucial enzymes involved
in these processes. This overview provides a fundamental basis for future research on the
control of plant polysaccharide synthesis, which may lead to the advancement of novel
technologies andmethodologies for the production and application of these vital chemicals.

The continuous development of detection techniques and analytical equipment has
enabled comprehensive investigation of the polysaccharide synthesis pathway in several
metabolic pathways of tuber plants. This study offers a thorough examination of the genetic
pathways that regulate the synthesis of starch, cellulose, pectin, and fructan in tuberous
plants. Furthermore, it investigates the catalytic mechanism of essential enzymes engaged
in these activities. This overview serves as a foundational framework for future study on
the regulation of plant polysaccharide synthesis, potentially resulting in the development
of innovative technologies and approaches for the production and utilization of these
essential compounds.

Studies in tuber plants of potatoes (Odgerel & Banfalvi, 2021), yams, and taro (Rinaldo,
2020), have demonstrated that heterologous expression, in vitro enzymatic catalysis, gene
knockout, and RNA interference techniques can clarify themechanism and catalytic activity
of key enzymes in polysaccharide synthesis. These techniques provide a foundation for the
directional synthesis of target polysaccharides in tuber plants (Tang et al., 2022).

Further research could focus on examining the impact of epigenetic pathways on the
regulation of polysaccharide biosynthesis. Epigenetic alterations, such as DNAmethylation
and histone modification, have been demonstrated to have pivotal functions in governing
gene expression. Hence, understanding the significance of epigenetic control in this
mechanism could pave the way for the creation of innovative technologies to enhance the
synthesis of these crucial molecules.

Subsequent investigations could prioritize the analysis of how epigenetic mechanisms
affect the control of polysaccharide production. Epigenetic changes, such as DNA
methylation and histone modification, play a crucial role in controlling gene expression.
Therefore, comprehending the importance of epigenetic regulation in this process could
lead to the development of cutting-edge technologies to improve the production of these
vital compounds.

Environmental and developmental variables exert an influence on the manufacture of
polysaccharides in tuber plants. Plant hormones, such as gibberellins (GA) and abscisic
acid (ABA), are known to have important functions in controlling plant growth and
development. Gaining insight into the indirect impact of these factors on polysaccharide
production could pave the way for innovative strategies to optimize their production.

Xu et al. (2024), PeerJ, DOI 10.7717/peerj.17052 17/29

https://peerj.com
http://dx.doi.org/10.7717/peerj.17052


Polysaccharides are multifunctional substances that have a wide array of uses in the fields
of food and beverage manufacturing, pharmaceutical research, and material engineering.
Enhanced comprehension of the genetics underlying polysaccharide biosynthesis in tuber
plants may facilitate the formulation of novel approaches to enhance their production
for targeted purposes. Increasing the production of starch or cellulose can result in the
creation of innovative food products. Improving the synthesis of polysaccharides with
targeted characteristics can be beneficial for pharmaceutical research and development.

In summary, identifying the areas for future research will assist in filling the knowledge
gaps about the genetic pathways involved in polysaccharide production in tuber plants.
These study fields have the potential to reveal new possibilities for the manufacture and
exploitation of these significant chemicals..

Revelatory effects from the synthesis of other glycoside metabolites
Glycosides are the main form in which plant flavonoid metabolites are often present.
Polysaccharides, being glycosides, are capable of undergoing hydrolysis. UGT enzymes
can alter the glycosylation process of flavonoids, resulting in the formation of diverse
flavonoid glycosides. An example of this is the upregulation of the coding gene Gm
UGT88A13 in soybean, which led to a large rise in the levels of isoflavones and flavonol
glycosides in soybean hairy roots (Johny et al., 2020). Another instance is the soybean
Gm UGT79A6 gene, which produces an enzyme called flavonol 3-O-glucoside (1–6)
rhamnosyl transferase. This enzyme enhances the amount of kaempferol 3-O-rutinoside in
immature soybean leaves by attaching sugar molecules to flavonols. UGTs have the ability
to utilize UDP-rhamnose as a source of sugar to produce flavonoid glycosides within
living organisms (Odgerel & Banfalvi, 2021). The Rice GSA1 gene has increased levels of
glycosyltransferase activity specifically for flavonoids and lignans. The overexpression of
GSA1 leads to a modification in the flavonoid content, which subsequently influences
the auxin level and the expression of genes connected to it in rice (Dong et al., 2020).
The UDP-glycosyltransferase CsUGT85A53 from Camellia sinensis has the ability to add
a glucose molecule to ABA, resulting in the formation of an inactive ABA-glycoside. This
process occurs both in laboratory conditions (in vitro) and in living plants (in planta) (Jing
et al., 2020).

Glycosylation is the final stage in the production of flavonoid glycosides, altering the
polarity of flavonoid molecules. Furthermore, it impacts the pharmacodynamic activity
and pharmacokinetics of flavonoids. GTs offer notable benefits, including precise control
over both the region and stereochemistry, as well as the ability to produce glycosidic
linkages in high yields. UGTs have the ability to facilitate the addition of sugar molecules
to terpenoids through a process called glycosylation. Presently, there is a significant focus
on the examination of terpenoids, including nerol, linalool, steviol, and saponins. An
example of this is that the transcription level of UGT85A84 in Osmanthus fragrans is
directly related to the accumulation of glycosides. The UGT85A84 protein variant has
the ability to facilitate the glycosylation process of linalool and linalool oxide, resulting
in the formation of a glycosylation conjugate of the aromatic molecule (Fu et al., 2022).
Glycosylation of these molecules facilitates the investigation of information inside plant
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polysaccharide production pathways and establishes a basis for comprehending the intricate
genetic systems of plants. Furthermore, it offers assistance in investigating the principles
governing plant life phenomena and examining the fundamental factors contributing to
the occurrence and progression of life.

CONCLUSIONS
Polysaccharides play a crucial role in various functions within tuber plants, including
energy storage, structural support, and protection against pathogens and environmental
stresses. The synthesis of these compounds begins with the conversion of photosynthetic
sugar metabolites. As plants undergo photosynthesis, they produce sugars from carbon
dioxide and water, which are then present in the form of starch, cellulose, and pectin in
plant tubers. These sugars are subsequently broken down to create precursor compounds
that selectively enter the polysaccharide synthesis pathway. Key enzymes, such as SUS,
INV, UGPase, FRK, and GTs, are essential in the process of polysaccharide polymerization.
The genetic mechanisms involved in tuber plant polysaccharide biosynthesis includes the
activity of enzymes responsible for polysaccharide synthesis, such as cellulose synthase,
starch synthase, and glycosyltransferases, which transfer sugars between donor and acceptor
molecules. This article provides a summary of the biosynthesis pathway of polysaccharides
and the role of key enzymes in tuber plants.

Comprehending the molecular process of polysaccharide synthesis in tuber plants
not only aids in understanding how important enzymes in polysaccharide synthesis are
regulated, but also serves as a theoretical basis for regulating metabolite synthesis in plant
cells. By integrating the biosynthetic traits, spatial distribution, and sensing capabilities
of tuber plant polysaccharides with other metabolic pathways, it is feasible to enhance
plant productivity and manufacture certain polysaccharides in a controlled manner.
The exploration of novel techniques for synthesizing and harnessing polysaccharides in
tuber plants holds great promise for various industries, including food and beverage
manufacturing, pharmaceutical research, and the creation of innovative materials.
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