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ABSTRACT
Objective. Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus
(DM) that is closely related to aging. In this study, we found co-differential genes
between DKD and aging and established a diagnostic model of DKD based on these
genes.
Methods. Differentially expressed genes (DEGs) in DKD were screened using GEO
datasets. The intersection of the DEGs of DKD and aging-related genes revealed
DKD and aging co-differential genes. Based on this, a genetic diagnostic model for
DKD was constructed using LASSO regression. The characteristics of these genes
were investigated using consensus clustering, WGCNA, functional enrichment, and
immune cell infiltration. Finally, the expression of diagnostic model genes was analyzed
using single-cell RNA sequencing (scRNA-seq) in DKD mice (model constructed by
streptozotocin (STZ) injection and confirmed by tissue section staining).
Results. First, there were 159 common differential genes between DKD and aging,
15 of which were significant. These co-differential genes were involved in stress,
glucolipid metabolism, and immunological functions. Second, a genetic diagnostic
model (including IGF1, CETP, PCK1, FOS, and HSPA1A) was developed based on
these genes. Validation of these model genes in scRNA-seq data revealed statistically
significant variations in FOS, HSPA1A, and PCK1 gene expression between the early
DKD and control groups. Validation of these model genes in the kidneys of DKDmice
revealed that Igf1, Fos, Pck1, and Hspa1a had lower expression in DKDmice, with Igf1
expression being statistically significant.
Conclusion. Our findings suggest that DKD and aging co-differential genes are
significant in DKD diagnosis, providing a theoretical basis for novel research directions
on DKD.

Subjects Bioinformatics, Diabetes and Endocrinology, Internal Medicine, Nephrology, Data
Mining and Machine Learning
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INTRODUCTION
Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). Over the
past two decades, the incidence and mortality rates of this disease have increased rapidly
(Xiong & Zhou, 2019). In addition, the prognosis is poor. DKD is a principal factor in
the development of end-stage renal disease (Atkins & Zimmet, 2010). DKD is responsible
for 34%–36% of fatalities among various types of chronic kidney diseases (Thomas,
2019). However, the understanding of the pathogenesis of DKD remains incomplete, and a
definitive cure is yet to be discovered. Therefore, a deeper understanding of its pathogenesis
and treatment methods is necessary to enhance its diagnosis and therapy.

Studies have indicated that aging is a significant contributor to the development of DKD,
and can increase the prevalence of nephrosclerosis (Alicic, Rooney & Tuttle, 2017). Cellular
senescence (cellular aging) is a critical factor in aging (Xiong & Zhou, 2019). Hyperglycemia
stimulation in both in vitro or in vivo (DKD rats and mice) experiments has been found
to accelerate cellular senescence in various types of renal cells, including proximal tubular
epithelial cells (Kitada et al., 2014; Tsai et al., 2018; Verzola et al., 2008), endothelial cells
(D’Onofrio et al., 2016), mesangial cells (Cao et al., 2019), and podocytes (Verzola et al.,
2008), as well as shorten telomere length (Verzola et al., 2008). These findings suggest a
strong correlation between aging and DKD.

In addition, hyperglycemia can promote the formation of the senescence-associated
secretion phenotype (SASP) (Prattichizzo et al., 2018). This refers to the secretome
produced by senescent cells. The SASP encompasses interleukins, chemokines,
inflammatory factors, and growth factors (Vicente et al., 2016). SASP not only promotes
cell senescence but also damages the immune system function, resulting in persistent
inflammation and fibrosis (Xiong & Zhou, 2019). In addition, cellular senescence affects
somatic cells, such as kidney cells, and causes cumulative alterations in the immune system.
These changes result in immunosenescence (immune aging), which is characterized
by a decline in adaptive immunity and an increase in low-level chronic inflammation
(Barbé-Tuana et al., 2020). Immunosenescence also alters the quantity and functionality
of immune cells, such as T and B lymphocytes, macrophages, and mast cells (Yang & Mou,
2017).

There is accumulating evidence suggests that the immune system plays a crucial role
in DKD, challenging the traditional view that DKD is solely caused by metabolic and
hemodynamic changes. The infiltration of immune cells is usually detected in renal
samples at various phases of DKD (Klessens et al., 2017). Immune cells establish a pro-
fibrotic microenvironment for renal cells by releasing cytokines and pro-fibrotic factors
(Pérez-Morales et al., 2019). Owing to the activation of numerous signaling pathways,
such as nuclear factor-kappa B (NF-κB), tumor necrosis factor-β (TGF-β), and mitogen-
activated protein kinase (MAPK), chronic and continuing inflammation eventually leads
to progressive renal fibrosis (Tang & Yiu, 2020). Moreover, some studies have explored
the potential protective effects of anti-inflammatory therapy in DKD (Pérez-Morales et al.,
2019). These findings provide evidence that inflammation promotes DKD.

Du et al. (2024), PeerJ, DOI 10.7717/peerj.17046 2/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.17046


Therefore, cellular senescence may contribute to DKD by exacerbating immune
dysregulation. Immune cell alterations during immunosenescence play a significant role
in the pathological progression of DKD (Barbé-Tuana et al., 2020).

Therefore, aging and DKD are inextricably linked and both present a similar low-level
chronic inflammation state. This suggests a common genetic background between the two.
However, few studies have integrated both the genetic background factors. This study aimed
to conduct integrative research on type 2 DKD and aging by analyzing their co-differential
genes. A genetic diagnostic model of DKD was developed by differentially expressed gene
(DEG) analysis (Ritchie et al., 2015) and LASSO regression analysis (Tibshirani, 1997).
Additionally, this study used consensus clustering analysis (Wilkerson & Hayes, 2010),
WGCNA (Langfelder & Horvath, 2008), functional enrichment analysis (Consortium, 2019;
Kanehisa & Goto, 2000), PPI network analysis (Szklarczyk et al., 2019), and immune cell
infiltration analysis (Rusk, 2019) to investigate the biological mechanisms of DKD and
aging co-differential genes, with a particular focus on understanding the mechanism of
immune cells. Finally, the expression of these co-differential genes was verified using
single-cell RNA sequencing (scRNA-seq) data from patients with early DKD and qRT-PCR
tests on DKD mouse kidneys.

MATERIALS & METHODS
Data mining
The datasets containing gene expression profiles (GSE96804, GSE30528, GSE30529,
and GSE131882) were downloaded from the GEO Database (https://www.ncbi.nlm. nih.
gov/gds/). GSE96804 was used as an experimental dataset, containing human exon level
expression profiles of glomeruli from the kidneys of 41 patients with type 2DMcomplicated
with DKD and 20 normal controls (Pan et al., 2018). The GSE30528 and GSE30529
datasets from the GSE30122 dataset were used for validation. These datasets consist
of transcriptome analysis data for human glomeruli and renal tubules (Woroniecka et
al., 2011). In addition, the GSE30528 and GSE30529 datasets consisted of nine and ten
patients with DKD, respectively, and 13 and 12 controls, respectively. The GSE131882
dataset contained scRNA-seq data from three kidney samples of patients with type 2
DM complicated (aged 52, 57, and 74 years) with early DKD, as well as three control
samples (aged 54, 61, and 62 years) (Wilson et al., 2019). Next, the probes were annotated
using gene symbols. The average values of probes were computed when multiple probes
matched the same gene symbol. In addition, the Human Genomic Resources website
(https://genomics.senescence.info/) provided information on 307 genes that are considered
aging-related genes (Tacutu et al., 2018).

DEG analysis
DEGs between patients with DKD and normal controls were assessed on the retrieved gene
expression matrix of GSE96804 using the ‘‘limma’’ (version 3.50.1) package in R software
(version 4.1.1) (Ritchie et al., 2015; R Core Team, 2021). Genes with FDR (adjusted p-
value) < 0.05 were considered as DKD-DEGs. Genes with FDR <0.05 and |LogFC| > 1
were considered as significant DKD-DEGs. The volcano plot of GS96804 was created
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and visualized using ‘‘ggplot2’’ R package (version 3.4.4). Next, the co-differential genes
between DKD and aging were identified by intersecting DKD-DEGs and aging-related
genes. The intersection of significant DKD-DEGs and aging-related genes was used to
identify significant co-differential genes in both DKD and aging.

Gene functional enrichment analysis
We conducted gene set enrichment analysis (GSEA) (Subramanian et al., 2005) using
the ‘‘clusterProfiler’’ package (version 4.2.2) of the R software to determine whether the
aging biological process was enriched between the DKD and control samples (Yu et al.,
2012). This analysis was conducted using the gene expression data from GSE96804. GO
(Consortium, 2019) and KEGG (Kanehisa & Goto, 2000) enrichment analysis of genes were
also performed using ‘‘clusterProfiler’’. After filtration (FDR< 0.05), the relevant elements
were visualized using R. Visualization was based on the enrichment score, which was
calculated as follows: Enrichment score = GeneRatio/BgRatio. Some KEGG figures were
plotted using https://www.bioinformatics.com.cn (Tang et al., 2023).

Consensus clustering analysis
Consensus clustering of DKD samples was conducted using the expression matrix of aging-
related genes, which were differentially expressed in DKD patients compared to normal
controls. The cluster was operated using the ‘‘ConsensusClusterPlus’’ (version 1.58.0)
in R (Wilkerson & Hayes, 2010). The process began with the minimum category number
(k = 2) until the maximum value (k = 9) was obtained iteratively and incrementally.
After considering various factors, such as the consensus cumulative distribution function
(CDF), changes in the area under the CDF curve, tracking plots, and heatmaps of consensus
clustering, the optimal parameter can be chosen. DKD samples were categorized into several
groups based on their characteristics (aging and DKD co-differential DKD subtypes).
Moreover, the MSigDB hallmark gene sets, loaded via the ‘‘msigdbrs’’ package (version
7.5.1) in R (Liberzon et al., 2015), were used to perform ssGSEA to reveal variations in
hallmark pathways in different aging and DKD co-differential DKD subtypes (adjusted
p-value < 0.05). Subsequently, a heatmap was used to represent the data visually.

WGCNA co-expression analysis
The DKD gene expression data of samples in GSE96804 were evaluated, and samples were
categorized based on consensus clustering of aging and DKD co-differential DKD subtypes.
Next, co-expression analysis was conducted on the top 10,000 genes with the highestmedian
absolute deviations to exclude genes with minimal alterations. A co-expression network
was constructed using the ‘‘WGCNA’’ package (version 1.70-3) in R. This allowed the
identification of co-expression clusters (modules) consisting of closely related genes.
The eigengene of the module with phenotypes (aging and DKD co-differential DKD
subtypes) was analyzed using eigengene network methodology (Langfelder & Horvath,
2008). Subsequently, the key genes were summarized (screened by GS > 0.7 and MM >

0.8).

Du et al. (2024), PeerJ, DOI 10.7717/peerj.17046 4/27

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96804
https://www.bioinformatics.com.cn
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96804
http://dx.doi.org/10.7717/peerj.17046


Immune cell infiltration analysis
The ‘‘CIBERSORTx’’ (https://cibersortx.stanford.edu/) is an online analytical tool for
estimating the relative fraction of different immunocytes in blended cell colonies (Rusk,
2019). This tool was used to analyze the correlation between immune cell infiltration and
aging-related DEGs in DKD. This analysis was conducted using the LM22 dataset, which
contains data on 22 human hematopoietic cell phenotypes.

Protein-protein interaction networks (PPI)
PPI (Szklarczyk et al., 2019) network analysis was conducted on the genes using the
‘‘STRING’’ platform (https://cn.string-db.org/). The analysis was performed with medium
confidence (Interaction Score > 0.4).

Pearson’s correlation test
The Pearson’s correlation test was performed on GSE96804 gene expression data using
‘‘hmisc’’ package in R (version 5.1-1) to identify the co-differential genes associated with
DKD and aging.

LASSO regression analysis to develop diagnosis model
The LASSO regression analysis (Tibshirani, 1997) was conducted using the ‘‘glmnet’’
(version 4.1-4) package in R (Engebretsen & Bohlin, 2019) to develop aging-related
diagnostic gene markers for DKD. The training set consisted of the expression of aging-
related DKD differential genes in the GSE96804 database. The minimum partial likelihood
deviance was determined as lambda using ten-fold cross-verification. Next, the GSE30528
and GSE30529 datasets were merged as a validation set to verify the diagnosis model and
calculate its diagnostic effectiveness in distinguishing DKD from normal patients. The
receiver operator characteristic (ROC) curve was plotted using ‘‘ROCR’’ (version 1.0-11)
package in R (Sing et al., 2005). Afterwards, AUC was calculated.

Single cell analysis
The ‘‘Seurat’’ package (version 4.3) in R was used for GSE131882 data analysis. Screening
and analysis were conducted on cells with ≥ 500 spotted genes and genes with ≥3 covered
cells. Data was standardized using the ‘‘SCTransform’’. UMAP was used to reduce
dimensionality and visualize the scRNA-seq data. Subsequently, cluster cell subtypes
were annotated based on renal cell type-specific differentially expressed genes (Wilson et
al., 2019). Gene expression was analyzed and visualized using violin plots.

Animal models
The C57BL/6J mouse strain is well known for its sensitivity to metabolic syndromes. It is
suitable for the establishment of a mouse model of DKD via intraperitoneal injection of
streptozotocin (STZ). To minimize the number of experimental animals, six pathogen-free
wild-type male C57BL/6J mice (age: 6–8 weeks, weight: 19 ± 1 g) were purchased from
Lanzhou Animal Research. Mice were randomly allocated to two groups using a simple
randomization method. The study on mice was approved by The Second Hospital of
Lanzhou University Institutional Ethical Committee (D2019-149) and strictly followed
the guidelines established by the Care and Use Guide of Laboratory Animals of the
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National Research Council (US) Committee and the Regulations of Laboratory Animals of
China. The mice were kept in a controlled environment in the laboratory, with a ambient
temperature of (20 ± 2) ◦C, ambient humidity of 40–70%, besides a 12 h light/dark
cycle. Specific pathogen-free food and water were provided every two days. Mice in the
DKD group were fed a high-fat-diet. At ten-weeks-old, the right kidney of the DKD mice
were removed after administering tribromoethanol anesthesia. At 12 weeks of age, STZ at
50mg/(Kg bw)/day was administered intraperitoneally for five days. The established criteria
for euthanizing DKD mice involved administering an anesthesia overdose before the end
of the experiment. This was based on the condition that, once the mice reached 22 weeks of
age, the fasting blood glucose of their tail vein consistently exceeded ≥11.1 mmol/L more
than three times. Mice in control group were fed a standard-diet and euthanized at 22
weeks of age using an overdose of anesthesia. At 12 weeks of age, control mice received daily
intraperitoneal administration of normal saline solution for five days. After confirming
that the mice experienced cardiopulmonary arrest, kidney tissues were promptly removed
and rapidly frozen in liquid nitrogen for at least 10 min. Subsequently, they were stored in
a refrigerator at −80 ◦C.

Histological and histopathological analyses
Mouse kidneys were fixed in 4% paraformaldehyde, embedded in paraffin, then cut
into 4 µm-thick histological sections. These sections were subsequently stained with
hematoxylin and eosin (H&E), Masson’s Trichrome, and Periodic Acid-Schiff (PAS) using
the SolarBio kit.

Quantitative reverse-transcription PCR (qRT-PCR)
Approximately 50 mg of the kidney tissue was collected from each sample. The tissue
was then mixed with TRIzol reagent (Invitrogen) on ice and pulverized using a tissue
grinder. RNA extraction was performed using chloroform, isopropanol, and 80% ethanol.
Ultraviolet spectrophotometry was used for nucleic acid quantification, and A260/A280
was measured. Reverse transcription was completed by the GoScript Reverse Transcription
System (Promega A5000). A 20 ul reaction volume containing 1 ug RNA was used to
complete the reverse transcription at 42 ◦C for 15 min, followed by 70 ◦C for 15 min.
Enzyme-free EP tubes and pipette tips were used throughout the procedure. Then, qRT-
PCR was performed on the ABI7500 system using the qPCR Kits GoTaq® qPCR and
qRT-PCR Systems of Promega (A6001). β-actin was used as the control for normalization.
The annealing temperature was set at 60 ◦C. Primer sequences are shown in Table 1.

Statistical analysis
Data were analyzed using R (version 4.1.1; R Core Team, 2021) and SPSS software (version
26). The qRT-PCR data were analyzed using the Kolmogorov–Smirnov test to determine if
the data followed a normal distribution. Homogeneity test of variance was also performed.
Student’s t -test or Mann–Whitney test was used based on these outcomes. Differences
were considered statistically significant at p< 0.05.
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Table 1 Primer sequences information of RT-qPCR.

Gene Forward/Reverse sequences

Forward ATGGTGAAGACCGTGTCAGG
Fos

Reverse GTTGATCTGTCTCCGCTTGGA
Forward CGCAAGCTGAAGAAATATGACA

Pck1
Reverse GATGACTGTCTTGCTTTCGATC
Forward GAGGGGCTTTTACTTCAACAAGIgf1
Reverse TACATCTCCAGTCTCCTCAGAT
Forward GGTGCTGACGAAGATGAAGGAGATCHspa1a
Reverse CTGCCGCTGAGAGTCGTTGAAG
Forward CTACCTCATGAAGATCCTGACCβ-

actin Reverse CACAGCTTCTCTTTGATGTCAC

RESULTS
Gene expression analysis and enrichment analysis of DKD vs control
GSEA of all genes in the GSE96804 dataset revealed that aging-related pathways were
significantly enriched in DKD samples compared to control samples (Figs. 1A–1B). A total
of 12,245 genes with FDR < 0.05 were identified as DKD-DEGs when compared to the
control group. DKD-DEGs contained 6,369 upregulated and 5,876 downregulated genes.
Genes with FDR < 0.05 and |LogFC| > 1 were identified as significant DKD-DEGs, with
306 significantly upregulated and 338 significantly downregulated DKD-DEGs. Genes were
visualized using a volcano plot (Fig. 1C). Each gene was represented by a dot, and significant
DKD-DEGs were colored in red or blue. A total of 159 DKD and aging co-differential
genes were identified by the intersection of 12245 DKD-DEGs and 307 aging-related genes
(Fig. 1D). GO enrichment analysis revealed that biological processes associated with aging
(cellular senescence, replicative senescence, regulation of cellular senescence, positive
regulation of cellular senescence, and negative regulation of cellular senescence), stress
(response to oxidative stress and cellular response to chemical stress), apoptosis (regulation
of apoptotic signaling pathway), and nutritional metabolism (regulation of carbohydrate
metabolic process and response to nutrient levels) were enriched by the co-differential
genes associated with DKD and aging (Fig. 1E). The minimum enrichment score for these
biological processes was 7.33. The maximum enrichment score was 56.92 (replicative
senescence). KEGG enrichment analysis also revealed pathways related to aging (cellular
senescence, longevity regulating pathway-multiple species, longevity regulating pathway),
apoptosis, metabolism (insulin signaling pathway, insulin signaling pathway, insulin
resistance, endocrine resistance, growth hormone synthesis, lipid and atherosclerosis, fluid
shear stress and atherosclerosis, neurotrophin signaling pathway, adipocytokine signaling
pathway), and several signaling pathways related to inflammation, apoptosis or metabolism
(FoxO, MAPK, PI3K-Akt, AGE-RAGE, HIF-1, Ras, ErbB, and P53) (Fig. 1F).
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Figure 1 Gene expression and enrichment analysis for diabetic kidney disease (DKD) vs healthy con-
trol in GSE96804. (A–B) Gene set enrichment analysis (GSEA) results for all gene expressions. (A) Kyoto
Encyclopedia of Genes and Genomes (KEGG) GSEA (longevity regulating pathway—multiple species).
(B) ene Ontology (GO) GSEA (Aging). (C) Volcano plot: red represents significantly upregulated differen-
tially expressed genes (DEGs), and blue represents significantly downregulated DEGs. (Above the dotted
line, p-value < 0.05) (D) Venn diagram shows the 12,245 DEGs intersected with 307 aging-related genes.
(E–F) GO analysis of biological process (BP), cellular component (CC), and molecular function (MF), and
KEGG pathway results enriched by DKD and aging co-differential genes.

Full-size DOI: 10.7717/peerj.17046/fig-1

Characterization of aging and DKD co-differential DKD subtypes
Consensus clustering analysis was conducted to cluster DKD samples into three aging
and DKD co-differential DKD subtypes (groups 1–3), based on the expression of 159 co-
differential genes that were associated with DKD and aging in 41 DKD samples (Figs. 2A–
2D). The three DKD subtypes were labeled as group 1 (n= 20), group 2 (n= 19), and group
3 (n= 2), which had distinct gene expression patterns of co-differential genes. Analysis
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Figure 2 Consensus clustering analysis results for DKD samples and their characterization. (A) Con-
sensus cumulative distribution function (CDF) plots for every k. (B) Line chart of the relative alterations
in the areas under the CDF curves. (C) Tracking plots displaying consensus clusters at every k. (D) Con-
sensus matrix plots representing the consensus values when k = 3. (E) t-SNE plots confirm the classifica-
tion accuracy of the three aging and DKD co-differential DKD subtypes. (F) Heatmap of the differences in
the enrichment score of hallmark pathways between groups 1 and 2 by ssGSEA (red represents upregula-
tion and blue represents downregulation).

Full-size DOI: 10.7717/peerj.17046/fig-2

of the t-SNE plots revealed significant variances in whole-genome expression among the
samples from the three groups (Fig. 2E). The sample size of group 3 was insufficient;
hence, it was not included in the subsequent study. In groups 1 and 2, the expression
levels of significant co-differential genes associated with DKD and aging showed marked
heterogeneity (Fig. 2F). Furthermore, different subtypes exhibited distinct differences in
several biological processes associated with DKD development. Group 1 exhibited lower
metabolism of bile acids and fatty acids and downregulation of genes encoding pancreatic
beta cells and peroxisomes than group 2. In contrast, the genes encoding for inflammatory
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response, apoptosis, angiogenesis, cell cycle, and epithelial-mesenchymal transition were
upregulated (Fig. 2F).

Identification of co-expressed gene modules
AWGCNA co-expression network was established by analyzing all 10,000 gene expressions
from 41 DKD samples in GSE96804. The dataset was verified and two missing values were
identified and removed (cut height = 95) (Fig. 3A). All missing values belonged to group
3 of the aging and DKD co-differential DKD subtypes. After removing them, no members
of group 3 remained. The sample dendrogram was clustered using 10,000 gene expression
profiles. However, as shown in Fig. 3B, the dendrogram result was identical to the consensus
clustering result, which was based only on 159 DKD and aging co-differential genes. As
shown in Fig. 3C, we set 3 as the power of soft-thresholding. Co-expression modules were
created using dynamic tree cut. Subsequently, at a height cut of 0.25, 11 modules were
merged into 10modules and unique colors were assigned (Fig. 3D). As shown in Fig. 3E, the
turquoise module was most associated with aging and DKD co-differential DKD subtypes,
implying that genes in the turquoise module were highly involved in the grouping of
co-differential DKD subtypes. The features of the turquoise module genes are shown in
Fig. S1. A total of 49.58% of the turquoise module genes were DKD-DEGs. 73 turquoise
module genes were aging-related, accounting for 23.78% of all 307 aging-related genes.
Five genes (FOS, EGR1, PTGS2, IGF1, and PLCG2) were identified from the intersection
of the turquoise module genes and significant DKD-DEGs.

Study of key genes in co-expression gene module
A total of 247 key genes (GS> 0.7 andMM> 0.8) were selected from the turquoise module
genes (Fig. 3F). The GO enrichment results revealed that these key genes were significantly
enriched in the aging pathway (adjusted p= 0.00006740). Additionally, these genes
were closely related to the extracellular matrix (ECM) and collagen (ECM organization,
ECM structural constituent and its tensile strength, collagen-containing ECM, collagen
trimer, and integrin binding), basement membrane, and immunity (myeloid leukocyte
activation, cell chemotaxis, leukocyte migration, leukocyte chemotaxis, IgG binding, and
immunoglobulin binding) (Fig. 3G). The KEGG pathway results with the minimum
adjusted p-value also showed a significant relationship between key genes and ECM
(ECM-receptor interaction) and immunity (complement and coagulation cascades and
phagosome). Additionally, KEGG revealed that these key genes were associated with PI3K-
Akt, AGE-RAGE in DM complications, and lipids (Fig. 3H). The minimum enrichment
scores for GO and KEGG were 3.61 and 2.32, respectively.

Immune-related features of DKD and co-differential DKD subtypes
GSEA of the GSE96804 gene set revealed that immune-related pathways were significantly
enriched in DKD samples compared to those in control samples (Figs. 4A–4B). Immune
cell infiltration analysis of the GSE96804 data using ‘‘CIBERSORTx’’ revealed significant
differences in immune infiltration between the DKD and normal control samples (Fig. 4C).
Memory B lymphocytes, CD8+T lymphocytes, macrophages (M0, 1 and 2), and resting
mast cells were significantly increased in DKD compared to normal control samples.
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Figure 3 Weighted gene correlation network analysis (WGCNA) and key gene analysis. (A) Sample
clustering of 41 patients with DKD in the GSE96804 dataset. The two outliers shown in this figure were
removed before the next step. (B) Clustering dendrogram of the remaining samples. Aging and DKD co-
differential DKD subtypes are related to the sample dendrogram. (C) Analysis of network topology for
various soft-thresholding powers. (D) Clustering dendrogram of genes of the remaining samples, together
with the assigned original module colors and the final merged module colors. (E) Heatmap illustrations
of the relationships between merged modules and traits of aging and DKD co-differential DKD subtypes.
(F) Scatter plot of module membership (MM) and gene significance (GS) of the turquoise module. (G–H)
Analysis of key WGCNA genes (in the turquoise module, and met the conditions of MM > 0.8 and GS >

0.7). (G) GO analysis results of key WGCNA genes. (H) KEGG enrichment analysis of key WGCNA genes.
Full-size DOI: 10.7717/peerj.17046/fig-3
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Figure 4 Visualization of immune-related analyses. (A–B) GSEA results of all GSE96804 gene sets. (A)
Immune-related results of KEGG GSEA. (B) Immune-related results of GO GSEA. (C) The composition
of 22 types of infiltrating immune cells in the DKD and control samples. (D) Box plots depicting the vari-
ances in immune cell infiltration in DKD and control samples. (E) Heatmap showing immune-infiltrating
cells with significant differences between the DKD and control samples. (F) Box plots depicting the differ-
ences in immune cell infiltration between aging and DKD co-differential DKD subtypes (group 1 vs. group
2). (G) Heatmap showing immune-infiltrating cells with significant differences between aging and DKD
co-differential DKD subtypes (group 1 vs. group 2). Red and blue represent up- and downregulation, re-
spectively. ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001; ∗∗∗∗p< 0.0001, Student’s t -test.

Full-size DOI: 10.7717/peerj.17046/fig-4

Du et al. (2024), PeerJ, DOI 10.7717/peerj.17046 12/27

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96804
https://doi.org/10.7717/peerj.17046/fig-4
http://dx.doi.org/10.7717/peerj.17046


Activated mast cells and neutrophils showed a significant decrease in DKD (Figs. 4D–4E).
Immune cell infiltration differed significantly between the aging and DKD co-differential
DKD subtypes. The number of plasma cells, M1, activated natural killer (NK) cells, and
dendritic cells in the resting phase was reduced in group 1 compared with group 2, while
macrophage M2 was markedly increased (Figs. 4F–4G).

Analysis of significant co-differential genes associated with DKD and
aging
The intersection of 644 significant DKD-DEGs (FDR < 0.05 and |LogFC| > 1) and 307
aging-related genes resulted in the identification of 15 genes (Fig. 5A). These genes (FOS,
HSPA1A, HSPA1B, MXD1, JUN, PTGS2, EGR1, PCK1, EGF, CETP, KL, SST, IGF1,
SLC13A1, and PLCG2) were identified as significant co-differential genes associated with
DKDand aging (Table 2). The expression levels of all geneswere significantly downregulated
(LogFC < −1) (Figs. 5B–5C). PPI network analysis indicated a close interaction between
the proteins encoded by DKD and aging significant co-differential genes (Fig. 5D).
Furthermore, Pearson’s correlation test revealed strong positive correlations between DKD
and aging significant co-differential genes (Fig. 5E). In addition, KEGG (Fig. 5F) and GO
(Fig. 5G) enrichment analysis revealed that DKD and aging significantly co-differential
genes were involved in the biological process of regulating stress (temperature, chemical
stress, and oxidative stress), aging, glucolipid metabolism, and glycosylation (AGE-RAGE
pathway in DM complications, lipid and atherosclerosis, and response to fructose and
lipopolysaccharide), as well as immune-related signaling pathways (apoptosis, TNF,
MAPK, IL-17, Ras, NF-κB, Toll-like receptor, PI3K-Akt, and T cell and B cell receptor).
The minimum enrichment scores for KEGG and GO enrichment analyses of DKD and
aging significant co-differential genes were 9.9 and 5.31, respectively.

Development of a genetic diagnostic model for DKD
The LASSO method was used to screen for significant co-differential genes associated with
DKD and aging. Based on this, a genetic diagnostic model with five co-differential genes
(FOS, HSPA1A, IGF1, CETP, and PCK1) was developed (Figs. 6A–6C). The AUC value of
the validation set was 0.876 (Fig. 6D), indicating that the model had an excellent diagnostic
performance. The box plots showed the predicted values of the LASSOmodel for DKD and
normal controls separately in the training and validation sets (Figs. 6E–6F), demonstrating
the strong discrimination ability of this model.

Annotation and analysis of cluster subtypes of single-cell data
After screening the scRNA-seq data of GSE131882, there were 16,504 cells with an average
of 1,301 genes and 13,726 counts per cell in three kidney samples from early DKD patients
and three from normal controls. UMAP analysis revealed significant changes in single-cell
data between patients with early DKD and controls (Fig. 7A). Eleven renal cell types and
leukocytes were annotated based on renal cell type-specific DEGs (Figs. 7B–7C, Table 3).
Subsequently, the four leukocyte subtypes were classified using marker genes (Table 3).
The classification results suggested that only one T lymphocyte and six monocytes were
present in control kidney samples. Meanwhile, 47 T lymphocytes, 24 B lymphocytes, 31
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Figure 5 Analysis of DKD and aging significant co-differential genes. (A) Venn diagram showing
the significant DEGs (for DKD and control) intersecting with aging-related genes. (B) Volcano plot
only shows aging-related gene expression in GSE96804; blue dots display DKD and aging significantly
co-differential genes (above the dotted line, FDR <0.05). (C) Box plots of DKD and aging significant co-
differential genes. ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001; ∗∗∗∗p< 0.0001, Student’s t -test. (D) Protein-protein
interaction (PPI) network analysis of proteins encoded by DKD and aging significant co-differential genes.
(E) Pearson’s correlation between DKD and aging significant co-differential genes in DKD samples. The
larger the squares, the greater is the r-value (Pearson’s correlation coefficient). ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001. (F–G) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology
(GO) analysis results of biological processes (BP), cellular components (CC), and molecular functions
(MF) enriched by DKD and aging significant co-differential genes.

Full-size DOI: 10.7717/peerj.17046/fig-5

monocytes, and 14 plasma cells were detected in the early DKD kidney samples (Fig. 7D).
These findings demonstrated that immune cells were significantly increased in patients
with early DKD.

Changes in expression of model genes in single-cell RNA-Seq data
The expression of aging-related diagnostic model genes (FOS, HSPA1A, IGF1, CETP, and
PCK1) was analyzed in all cells from the kidney samples. The results revealed that the
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Table 2 Diabetic kidney disease (DKD) and aging co-differential genes.

Abbreviation Full name

CETP Cholesteryl ester transfer protein
EGF Epidermal growth factor
EGR1 Early growth response 1
FOS Fos proto-oncogene
HSPA1A Heat shock protein family A (Hsp70) member 1A
HSPA1B Heat shock protein family A (Hsp70) member 1B
IGF1 Insulin like growth factor 1
JUN Jun proto-oncogene
KL Klotho
MXD1 MAX dimerization protein 1
PCK1 Phosphoenolpyruvate carboxykinase 1
PLCG2 Phospholipase C gamma 2
PTGS2 Prostaglandin-endoperoxide synthase 2
SLC13A1 Solute carrier family 12 member [sodium/chloride] 3
SST Somatostatin

Figure 6 Establishment of DKD genetic diagnostic model. (A–C) LASSO regression analysis to screen
for better DKD and aging co-differential genes for DKD diagnosis. (D) ROC curves for assessing the diag-
nostic efficacy of the LASSO model in GSE30528 and GSE30529 datasets. (E) Box diagram of the LASSO
diagnostic model-predicted values in the GSE96804 dataset. (F) Box diagram of the LASSO diagnostic
model-predicted values in the GSE30528 and GSE30529 datasets.

Full-size DOI: 10.7717/peerj.17046/fig-6
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Figure 7 Single-cell analysis of patients with early DKD. (A) UMAP plots of comparisons between early
DKD patients and control samples. (B) Cell clusters are recognized by renal cell type-specific DEGs. (C)
UMAP plots of cell clusters. (D) Stacked bar graph of immune cell subtypes in early DKD and control
groups. (E) Violin plot of the expression of five DKD diagnostic model genes in all cells. (F) Violin plot of
five DKD diagnostic model gene expression in podocytes (PODO), endothelium (ENDO), mesangial cell
(MES), and proximal convoluted tubule (PCT) cell types.

Full-size DOI: 10.7717/peerj.17046/fig-7

differences in the gene expression of FOS, HSPA1A, and PCK1 between the early DKD and
control groups were statistically significant (Fig. 7E). The above statistical analyses were
also performed independently for podocyte (PODO), endothelium (ENDO), mesangial
cell (MES), and proximal convoluted tubule (PCT) cell types (Fig. 7F). The results revealed
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Table 3 Cell-type-specific differentially expressed genes for cell types annotation of single cell data.

Cell types Abbreviations Marker gene

Proximal convoluted tubule PCT CUBN, SLC5A, ALDOB
Complement factor H CFH CFH
Loop of Henle LOH SLC12A1
Distal convoluted tubule DCT SLC12A3, SLC12A2
Distal convoluted tubule/connecting tubule DCT/CT SLC8A1
Collecting duct-principal cell CD-PC AQP2
Collecting duct- intercalated cell A CD-ICA AQP6, KIT, ATP6V0D2
Collecting duct- intercalated cell B CD-ICB SLC26A4
Podocyte PODO NPHS1, NPHS2
Endothelium ENDO PECAM1, FLT1
Mesangial cell MES ITGA8, PDGFRB
Leukocyte LEUK PTPRC
T lymphocyte T_cell CD247, CD96, CD28
Monocytes Monocytes FCGR2A, CSF1R, CSF2RA, CD86
B lymphocyte B_cell MS4A1, PAX5
Plasma cells Plasma CD38, SDC1

that FOS expression increased significantly in PODO of early DKD. In addition, HSPA1A
levels significantly decreased. The expression of FOS and HSPA1A in ENDO was markedly
increased in early DKD. In MES, the expression of HSPA1A increased in early DKD. FOS,
HSPA1A, and PCK1 expression in PCT was significantly higher in early DKD patients than
in controls. These findings suggested that FOS, HSPA1A, and PCK1 may affect early DKD
injury.

Histopathology of the DKD and control mice
The DKD mouse model (Fig. 8A) was established by injecting STZ and feeding the mice a
high-fat diet. In the kidney histology section of DKD mice, some pathological alterations
were observed in the kidney histological section of DKD mice (Fig. 8B). Hematoxylin and
eosin staining revealed diffuse mesangial expansion, including mesangial cell proliferation,
mesangial matrix hyperplasia, nodular changes, and tubular cell hypertrophy. Masson’s
Trichrome staining revealed a significant quantity of blue-stained collagen accumulated
in the glomeruli, which suggested fibrosis. PAS staining revealed glycogen deposition,
mesangial cell proliferation, and thickened basement membrane in the glomeruli.

Expression of diagnostic model genes in DKD mouse model
Four of the five genes in the aging-related diagnostic model (Igf1, Hspa1a, Fos, and Pck1)
were identified in mice. The mean expression of all these genes was reduced in DKD mice
compared with that in the control, and the reduction in Igf1 expression was statistically
significant (Fig. 8C, Table S1).
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Figure 8 Mouse experiments and results. (A) Schematic of the experimental process of the DKD
mouse model and control mice. (B) Kidney histological sections from DKD and normal control mice
stained with Hematoxylin and Eosin (H&E), Masson’s Trichrome, and Periodic Acid-Schiff (PAS).
Diffuse mesangial expansion with mesangial cell proliferation, mesangial matrix hyperplasia, glomerular
hypertrophy, nodular changes, and collagen deposition can be seen in the kidneys of DKD mice. (C)
qRT-PCR results of DKD mice compared with those of control mice. No significance (ns); ∗p < 0.05,
Student’s t -test (applied in most of the data) or Mann–Whitney test (only applied to Hspa1a data).

Full-size DOI: 10.7717/peerj.17046/fig-8
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DISCUSSION
In this study, DKD and aging co-differential genes and DKD and aging significant co-
differential genes were comprehensively analyzed. Based on these genes, a diagnostic
model for DKD was developed.

Aging is a significant risk factor for DKD (Alicic, Rooney & Tuttle, 2017). High glucose
stimulation has been shown to accelerate cellular senescence in several types of kidney
cells (Cao et al., 2019; D’Onofrio et al., 2016; Kitada et al., 2014; Tsai et al., 2018; Verzola
et al., 2008). Through whole-gene GSEA, GO, and KEGG enrichment analyses, we found
that aging-related pathways were significantly enriched, demonstrating that aging plays
an important role in the pathogenesis and progression of DKD at the genetic level.
We established aging and DKD co-differential DKD subtypes based on heterogeneity
in the expression of DKD and aging co-differential genes. Subsequently, we observed
that different aging and DKD co-differential DKD subtypes had significant differences
in whole-genome expression and biological processes closely associated with both aging
and DKD development, such as glucolipid metabolism and epithelial-mesenchymal
transition. Furthermore, subtype categorization based on co-differential genes yielded
results similar to those of the whole-gene-based WGCNA dendrograms. These findings
suggest that integrative research on aging and DKD is important for the development of
novel diagnostic and therapeutic strategies.

Through an integrative study of aging and DKD, co-differential genes were obtained
by gene intersection. These DKD and aging co-differential genes, as well as DKD and
aging significant co-differential genes, are involved in not only aging, but also various
biological processes, including stress, apoptosis, glucolipid metabolism, glycosylation, and
several immune-related signaling pathways. These biological processes are similar to those
involved in the pathophysiology of DKD. This suggests that these genes may play a decisive
role in DKD progression and could serve as novel markers for DKD diagnosis.

Therefore, a genetic diagnostic model for DKD has been developed based on these
genes. ROC curves demonstrated the excellent diagnostic efficiency of this model. The
expression of these model genes was validated using single-cell sequencing data and mouse
models. In our DKD mouse model, kidney histopathology revealed increased glycogen
deposition, mesangial proliferation, thickened basement membrane, and increased fibrous
collagen, all of which are pathological hallmarks of DKD (Alicic, Rooney & Tuttle, 2017).
The expression levels of FOS, HSPA1A, PCK1, and IGF1 differed between the two assays.

In line with our findings, previously published studies have shown that FOS, HSPA1A,
PCK1, and IGF1 are directly or indirectly associated with DKD. FOS and HSPA1A are
closely associated with immunity.

IGF1, which encodes insulin-like proteins and activates the type I IGF receptor, is a
component of the growth hormone-IGF-somatostatin system that plays a critical role in
DKD (Segev et al., 2004). Research has indicated that IGF1 can inhibit apoptosis and DNA
damage in high glucose-stimulated mesangial cells (Kamenický et al., 2014). Consistent
with our study, significantly decreased serum IGF1 and decreased renal Igf1 RNA levels
were found in db/db mice with DKD in a previous study (Segev et al., 2007). A lifestyle
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intervention trial also found that low IGF1 levels predicted DM onset in patients with
prediabetes (Meyer et al., 2022). However, unlike our study, which demonstrated low IGF1
expression in DKD patients, some studies have reported that IGF expression increases
with DKD progression (Dong et al., 2019). Elevated IGF-1 levels may be associated with
adverse renal outcomes in patients with DKD (Mohebi et al., 2023). However, studies have
also demonstrated that IGF1 expression varies with stage of DM (Mohebi et al., 2023).
Moreover, both low and high normal levels of IGF-I may be associated with insulin
resistance (Friedrich et al., 2012). These results may explain the inconsistent data obtained
from different experiments. At the same time, these findings also suggest that the treatment
strategy for DKD patients with high IGF1 gene expression should differ from those with
low IGF1 gene expression.

PCK1, a critical regulator of gluconeogenesis, is a key regulator of renal tubular cell
metabolism that can alter mitochondrial function (Verissimo et al., 2023). Furthermore,
PCK1 shows significantly higher expression in the kidneys than in other organs (Fagerberg
et al., 2014). Consistent with our DEG analysis and mouse qPCR results, previous studies
have shown that Pck1 expression is downregulated in STZ-induced DKD mice. Moreover,
overexpression of Pck1 has been found to improve proteinuria and collagen deposition
(Hasegawa et al., 2023). These results suggest that PCK1 plays a protective role in DKD
and could be a potential diagnostic and therapeutic target for future studies. In contrast,
some researchers have reported that Pck1 mRNA is significantly increased in the kidneys
of DKD db/db mice (Watanabe et al., 2018). This finding corroborated the conclusion of
our single-cell analysis of patients with early DKD, revealing that Pck1 expression levels
may vary at different stages of DKD, which requires further investigation.

FOS encodes c-Fos, a transcription factor subunit of activator protein 1 (AP-1).
AP-1 is one of the targets of the MAPK signaling cascade (Atsaves et al., 2019) and can
be activated by various DKD-related stimuli (Huang et al., 2014). Furthermore, AP-1
can affect inflammation through different mechanisms, such as regulating naive T cell
differentiation and regulating the activity of the innate immune system (Wagner & Eferl,
2005). Furthermore, some studies investigations have shown that AP-1 can also affect renal
fibrosis (Huang et al., 2014).

HSPA1A encodes heat shock protein 70 (HSP70), a type of molecular chaperone
involved in protein folding and remodeling (Rosenzweig et al., 2019). It is also effective
as an immunological adjuvant. Hsp70 can directly inhibit heat shock factor 1, which is a
vital component of the heat shock response. Moreover, intracellular Hsp70 downregulates
NF-κB activation and exhibits immunosuppressive activity. When Hsp70 is extracellular,
the reverse effect occurs (Tukaj, 2020). Previous research has indicated that serum HSP70
levels are higher in patients with DM with albuminuria than in those without albuminuria
(Nargesi et al., 2016), which is contrary to the trendof decreasedHSPA1Agene expression in
the kidneys of DKD patients that we investigated. Intracellular and extracellular HSP70 play
distinct roles in inflammation (Zhou et al., 2023), which may explain the different trends
in the kidney compared to the serum. However, in our single-cell analysis of patients with
early DKD, the expression ofHSPA1A in endothelial, mesangial, and proximal renal tubular
epithelial cells increased, whereas podocyte HSPA1A expression decreased. Other studies
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have shown contradictory results, suggesting that both intracellular and extracellular Hsp70
play a dual role in inflammation (Tukaj, 2020). Its complex and confusing relationship
with DKD warrants further investigation.

In contrast, studies have revealed that DKD shows a low-level of chronic inflammation
(Pérez-Morales et al., 2019). Immune disorders in patients with DKD were observed in
our study. Whole-gene GSEA also revealed significant gene enrichment in immune-
related pathways in patients with DKD compared to controls. Furthermore, immune cell
infiltration analysis revealed significant heterogeneity between DKD and normal tissues.
Similarly, scRNA-seq data analysis revealed that early DKD patients had significantly
higher levels of T lymphocytes, B lymphocytes, monocytes, and plasma cells than controls.
Consistent with our findings, many studies have demonstrated a promoting effect of
immunity on DKD development. Diabetic stress recruits leukocytes, such as macrophages
andmast cells, via danger-associatedmolecular patterns, resulting in kidney damage (Tesch,
2017). T cells, which are recruited to the kidneys of patients with DKD, also contribute to
the development of DKD (Chen et al., 2022).

Aging also causes low-level chronic inflammation (Barbé-Tuana et al., 2020), and
senescent cells may trigger an immunological response to DKD. Our findings revealed that
different aging andDKD co-differential DKD subtypes exhibited significant immunological
heterogeneity. ssGSEA revealed differences in genes encoding inflammatory responses
between these subtypes. Furthermore, a noticeable discrepancy in the immune cell
infiltration was observed. In addition, enrichment analysis of key WGCNA genes revealed
that these genes had a significant biological role in DKD pathogenesis and aging, as well as
a close relationship with immunity and inflammation.

These findings suggest that DKD progression may be linked to immunosenescence
and that aging plays a significant role in DKD immunological disorders. Moreover,
aging-targeted therapy may represent a novel treatment for immunological dysfunction in
patients with DKD. Our diagnostic model genes (IGF1, CETP, PCK1, FOS, and HSPA1A),
particularly IGF1, PCK1, FOS, and HSPA1A, are potential targets.

Our study has several limitations. First, our findings were based on analysis of the
mRNA expression levels of genes rather than protein levels. Second, owing to publication
bias of available data, a small sample size, and limitations of animal models, we plan to
conduct experiments in subsequent studies to validate the conclusions and address these
limitations.

CONCLUSIONS
This study identified the co-differential genes between DKD and aging, and developed a
DKD diagnostic model based on these genes. Our diagnostic model genes (IGF1, CETP,
PCK1, FOS, and HSPA1A), particularly IGF1, PCK1, FOS, and HSPA1A, are potential
diagnostic and therapeutic targets for DKD treatment. Additionally, DKD progression may
be linked to immunosenescence.
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