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ABSTRACT
The use of pesticides to control pests, weeds, and diseases or to regulate plant growth
is indispensable in agricultural production. However, the excessive use of these
chemicals has led to significant concern about their potential negative impacts on
health and the environment. Phosmet is one such pesticide that is commonly used on
plants and animals against cold moth, aphids, mites, suckers, and fruit flies. Here, we
investigated the effects of phosmet on a model organism,Daphnia magna using acute
and chronic toxicity endpoints such as lethality, mobility, genotoxicity, reproduction,
and gene expression. We performed survival experiments in six-well plates at seven
different concentrations (0.01, 0.1, 1, 10, 25, 50, 100 mM) as well as the control in
three replicates. We observed statistically significant mortality rates at 25 µM and
above upon 24 h of exposure, and at 1 µM and above following 48 h of exposure.
Genotoxicity analysis, reproduction assay and qPCR analysis were carried out at
concentrations of 0.01 and 0.1 mMphosmet as these concentrations did not show any
lethality. Comet assay showed that exposure to phosmet resulted in significant DNA
damage in the cells. Interestingly, 0.1 mMphosmet produced more offspring per adult
compared to the control group indicating a hormetic response. Gene expression
profiles demonstrated several genes involved in different physiological pathways,
including oxidative stress, detoxification, immune system, hypoxia and iron
homeostasis. Taken together, our results indicate that phosmet has negative effects
on Daphnia magna in a dose- and time-dependent manner and could also induce
lethal and physiological toxicities to other aquatic organisms.

Subjects Agricultural Science, Ecology, Molecular Biology, Toxicology, Ecotoxicology
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INTRODUCTION
Pesticides are commonly used agrochemicals to protect plants from pests such as insects,
weeds, fungi, and bacteria, and increase agricultural productivity. Many of these
chemicals are designed to disrupt the physiological activities of specific targets by
causing dysfunction and reducing viability. However, the intensive use of pesticides on
crops and seeds results in their leaching into the environment through various ways,
which has become a major concern for both consumers and the environment
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(Ghasemzadeh, Sinaei & Bolouki, 2015). Several pesticides including organophosphates
could induce toxicity at very low concentrations particularly on aquatic organisms
(Karthick Rajan et al., 2023; Maggio, Janney & Jenkins, 2021; Maggio & Jenkins, 2022)
Pesticides can enter the body of non-target organisms, including humans and animals, and
pose health risks such as serious nervous system disorders, cancer, thyroid problems (Bilal
et al., 2021; Buchanan et al., 2010; Tsaboula et al., 2016).

Organophosphates are a wide group of pesticides commonly used in agriculture and
household applications. Phosmet is a non-systemic, phthalimide-derived
organophosphate used to control moths, aphids, mites, suckers and fruit flies in plants and
animals (Vasamsetti et al., 2021). Phosmet is a neurotoxic insecticide that acts by inhibiting
acetylcholinesterase, an enzyme necessary for the transmission of nerve impulses (Kaur
et al., 2022). Understanding the environmental fate and accumulation capability of
phosmet is of critical importance to determine its possible adverse effects. According to the
US Environmental Protection Agency (US EPA) 2010 report, the main exposure routes for
phosmet are the runoff and entrainment of surface water. Phosmet has low solubility in
water and according to the pesticide regulation database in 2010, the maximum phosmet
concentration was reported to be up to 0.20 and 0.63 µg/L in groundwater and surface
water, respectively (United States Environmental Protection Agency (US EPA), 2010). In the
same report, it was indicated that peak model-estimated environmental concentrations in
surface water resulting from different phosmet could be up to 245 µg/L (United States
Environmental Protection Agency (US EPA), 2010). Phosmet has a low persistency and
medium to low mobility with KFoc 482–757 mL/g in soil which results in high risk to
soil-dwelling organisms (European Food Safety et al., 2021). Phosmet residues have also
been detected in different sources including fruits, potato, olive oil and honey (El-Nahhal,
2020; Gomez-Ramos et al., 2020; Jara & Winter, 2019). Acute exposure to phosmet is
highly toxic to freshwater fish and invertebrates, and chronic exposure has been shown to
have adverse effects on the growth and survival of freshwater fish (United States
Environmental Protection Agency (US EPA), 2010). Phosmet has been reported to be toxic
to Daphnia magna (D. magna; 48 h EC50: ~0.01 mg/L), sunfish (96 h LC50: 0.07 mg/L),
catfish (96 h LC50: 11 mg/L) and rainbow trout (96 h LC50: ~0.24 mg/L) (United States
Environmental Protection Agency (US EPA), 2010). In a recent study on zebrafish, phosmet
was observed to cause phenotypic abnormalities such as bradycardia, spinal curvature and
growth retardation after 96 h of exposure (Vasamsetti et al., 2021). In the same study,
transcriptomic analysis showed that phosmet affected different metabolic pathways
including calcium signaling pathway, regulation of actin cytoskeleton, cardiac muscle
contraction, and drug metabolism (Vasamsetti et al., 2021). In several studies onD. magna,
it has been demonstrated that other organophosphate insecticides including malathion
and chlorpyrifos cause mortality, developmental abnormalities, DNA damage as well as
altering reproduction (Knapik & Ramsdorf, 2020; Palma et al., 2009a; Toumi et al., 2015).

D. magna is an aquatic model organism that has been widely used in toxicological
analyses (Jordão et al., 2016; Shaw et al., 2008). As a model organism, D. magna offers
several advantages, such as short life-cycle, small size and completed genome sequence
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(Ebert, 2005). Although phosmet has been reported to have some negative effects on
different organisms, the chronic toxicity levels of these effects on reproduction have not yet
been demonstrated. Moreover, organisms may respond to toxicants via different molecular
mechanisms at transcriptional level. Determining acute and chronic effects and gene
regulation profiles upon phosmet exposure is critical to establish relevant guidelines for
toxicity tests and safety regulations. In this context, we aimed to determine the effects of
phosmet on survival, reproduction, and gene expression levels on D. magna.

MATERIALS AND METHODS
Chemicals
Phosmet was purchased from Sigma-Aldrich (purity > 99%). To prepare stock solutions,
phosmet was dissolved in dimethylsulfoxide (DMSO; Sigma). The final concentration of
DMSO in the assay was 0.1% (v/v).

Daphnia magna culture, maintenance and exposure
D. magna ephippia used were purchased from MicroBioTests Inc. (Daphtoxkit, Gent,
Belgium). D. magna ephippia were first washed with tap water, then, using standard fresh
water, they were incubated for 72–90 h at 20–22 �C and under continuous 6000 Lx
illumination. The standard fresh water included 67.75 mg/L NaHCO3, 294 mg/L CaCl2,
123.25 mg/L MgSO4 and 5.75 mg/L KCl. Using an air pump, the standard fresh water was
aerated for 30 min by bubbling air through a tube connected to an air pump. Neonates
(<24 h) were fed with a suspension of Spirulina microalgae 2 h before being exposed to
phosmet. For prolonged exposures, organisms were kept at a temperature of 22 ± 1 �C and
a photoperiod cycle of 14/10 h light/dark and fed once daily with a mixture of Spirulina
microalgae and yeast. The feeding ratios for Spirulina microalgae and yeast were adjusted
to 1–2 × 105 and 1 × 105 cells/mL/day, respectively to ensure a stable and proper feeding.
Half of the exposure water was changed on alternate days and concentration of the
pesticide was kept constant throughout the experiments.

Survival analysis
For the survival assay, D. magna neonates (<24 h) were exposed to phosmet in 6-well
plates with 10 organisms in each well in triplicates. Ten mL of standard fresh water
containing 0.1% v/v DMSO (solvent control) or different concentrations of phosmet (0.01,
0.1, 1, 10, 25, 50, 100 µM) were used in the assay. Mortality rates were recorded at 24 and
48 h. When the organisms were examined under the microscope, they were considered
dead if they were immobile and no movement was observed in their organs.

Comet assay
D. magna neonates (<24 h) were exposed to DMSO (solvent control), 0.01 or 0.1 mM
phosmet. At 24 h, 20 organisms for each group were pooled in 1 mL of phosphate buffered
saline (PBS; containing 20 mm EDTA and 10% DMSO) and homogenized according to
alkaline Comet assay modified from Cavalcante, Martinez & Sofia (2008) to obtain a single
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cell suspension. The cell suspension was centrifuged in cold PBS (4 �C) at 10,000 rpm for
30 s and the pellet was retained. Single-cell gel electrophoresis was performed according to
Singh et al. (1988). The slides were neutralized in ice-cold 0.4 M Tris buffer (pH 7.5),
stained with 80 ml ethidium bromide (20 mg/mL), and examined at X400 magnification
under a fluorescence microscope (Carl Zeiss Aksiostar Plus). For each sample, 100 cells
were utilized and scored based on Collins (2004) to classify nucleoids according to tail
formation. Assignment of nucleoids to one of five groups was as follows: 0 for DNA with
no visible tail (no damage) and as four for almost all DNA in the tail (maximum damage).
For comparison, the damage frequency (DF%), the arbitrary unit values (AU), and genetic
damage index (GDI) were determined as defined by Pitarque et al. (1999) and Collins
(2004). The experiments were performed in triplicate.

Chronic toxicity
For the chronic toxicity, D. magna neonates (<24 h) were used and exposure was carried
out in 250 mL crystallization dish containing 100 mL of standard water with final
concentrations of 0.1% v/v DMSO (solvent control), 0.01 or 0.1 mM phosmet. For each
concentration, 10 organisms were used and the experiments were performed in triplicates.
The reproduction assay was performed until all animals were dead and the number of
offspring was recorded daily and removed from the dishes. The lifespan analysis was
performed until all animals were dead. The number of live animals were recorded every
day and dead organisms were removed from the dishes.

RNA extraction and gene expression analysis
RNA extraction was performed using the RNeasy Mini Kit (Cat. no.: 74104; Qiagen, Venlo,
Netherlands) according to the mechanical lysis protocol provided by the manufacturer.
For this, 20–25 D. magna neonates (<24 h) were exposed to 0.01, 0.1 mM phosmet or the
solvent control. Following exposure, organisms were pooled together, flash-frozen in
liquid, nitrogen and kept at −80 �C until further analysis. The RNA extraction was
performed using the mechanical lysis protocol provided by the RNeasy Mini Kit (Qiagen,
Hilden, Germany). The RNA concentrations were measured using a NanoDrop ND-100
UV-Vis spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) and
cDNA was synthesized using qScript cDNA synthesis kit (Quanta Biosciences, USA)
according to the manufacturer’s instructions. qPCR was carried out with a
Rotor-Gene Q (Qiagen, Inc., Hilden, Germany), using a LightCycler FastStart DNA
Master SYBR Green I Kit (Roche Molecular Biochemicals, Mannheim, Germany),
according to the manufacturer’s instructions. The thermocycling conditions were as
follows: one cycle of initial denaturation at 95 �C for 10 min, followed by 40 quantification
cycles of denaturation at 95 �C for 10 s, primer annealing at primer-specific
temperatures for 10 s, and primer extension at 72 �C for 25 s. The relative gene
expressions were calculated according to the ΔΔCt method, as described by Schmittgen &
Livak (2008). Normalization was performed using the reference gene actin (act1).
The experiments were conducted with at least four replicates. Primer sequences for the
analyzed genes were given in Table 1.
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Statistical analysis
The statistical analyses were performed using GraphPad Prism 8 software (GraphPad
Software, San Diego, CA, USA). Outliers were identified and excluded from the results.
One-way ANOVA followed by Dunnett’s test was used for multiple comparisons. For 50%
lethal concentration (LC50), nonlinear regression analysis was performed. For comet
assay, the obtained data sets were first tested for normality (Shapiro–Wilk test) and
homogeneity (Levene’s test) tests before statistical analysis and then subjected to one-way
ANOVA. The difference was accepted significant when the p value was < 0.05 (�p < 0.05;
��p < 0.01; ���p < 0.001; ����p < 0.0001).

RESULTS
Acute toxicity in D. magna upon exposure to phosmet
Survival assay was performed to determine whether various concentrations of phosmet can
cause acute toxicity. Our results showed that phosmet causes mortality in a dose- and
time-dependent manner. We found that exposure of D. magna for 24 h did not show any
lethality in response to 0.01 and 0.1 µM phosmet, while 1 µM phosmet decreased mobility
in organisms. Mobility of organisms was significantly decreased, while movement was
observed in their organs in response to 10 µM phosmet. However, we did not observe any

Table 1 The primer sequences used for qPCR.

Gene symbol Gene name Forward primer (5′–3′) Reverse primer (5′–3′)

mt-1 metallothionein 1 TTGCCAAAACAATTGCTCAT CACCTCCAGTGGCACAAAT

mt-a metallothionein a GAGCGCCATGCCAAAATCCC TCGTCGTTGTAAAATCCGCCT

mt-b metallothionein b TGGAACCGAATGCAAATGCG CGGACTTGCATGGACAACTG

mt-c metallothionein c AAAGTGTGCCCTCGTTGTCA CTTACAGTCGTCCCCACACG

cat catalase TGGCGGAGAAAGCGGTTCAGC GTGCGTGGTCTCTGGGCGAA

gst glutathione S transferase TCAGGCTGGTGTTGAGTTTG GAGCAAGCATTTGTCCATCA

dap1 death associated protein 1 ATGGCCTTGGCTGCCTCTGGA GCGGGGGACGTTTGCCATTT

hsp70 heat shock protein 70 CGACGGCGGGAGATACGCAC CCACGGAAAAGGTCGGCGCA

hsp90 heat shock protein 90 CCCTCTGTGACACTGGTATTGGCA GCCCATGGGTTCTCCATGGTCAG

NOS1 nitric oxide synthase 1 ACGCAACTCGGTGACAGCGG AGGCGTGAGCGGCCAGTAGA

NOS2 nitric oxide synthase 2 GGCACCCGCTTGTTGGCACT GCGTGCCCCTCACTTGAGCC

CYP4 cytochrome P450 4 AGCCGAGCACCAACAGCGAA GCGGGCCGGTCAGAATCACC

CYP314 cytochrome P450 314 TCTTGGGTCGGCGTCTGGGA TCGCGGGTGTCAACGCCTTC

hr96 nuclear hormone receptor 96 GCGGAGACAAGGCTTTAGGTT AGGGCATTCCGTCTAAAGAAGGCT

magro magro GCATAGGACGTGAGATGGTTAG ACAAGAAGCTCGCATGGTTA

NPC1b Niemann Pick type C TCATAGGTGGACAGCAAGATTAC TAGCAGGCACACCAACATAG

SM3 sphingomyelinase 3 GCGCTCTTCCAGCTCTATTT GACGGATTTGCTCGCATTTG

hif1a hypoxia-inducible factor-1 GGTCCAGACCCAAGCAGCCAGGC GTCCAGGAGCAGCAGCCAGC

ftn3 ferritin-3 GGTGATGGCCTAGGAGTCTTT TGCTCCAAACTTTAGATGCTTT

man mannosidase GGTTCCCTGGAGTTTATGGTAG AGTCGTCGGTGAATCTGTTG

vtg1 vitellogenin-1 CCAGCGAATCCTACACCGTCAAG GAGCCGCACAGACCACAGAG
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significant lethality from 0.01 to 10 µM phosmet concentrations (Fig. 1A). We found a
significant mortality (44.4%) in response to 25 µM phosmet and the living organisms in
this group demonstrated less mobility and organ movement. Fifty and 100 µM doses
resulted in higher mortality (50.0% and 71.1%, respectively) and the living organisms did
not show any mobility but slight organ movement (Fig. 1A). Exposure of D. magna for
48 h for 1 and 10 µM doses resulted in significant mortality (63.3% and 88.9%,
respectively) (Fig 1B), while these doses did not show this effect after 24 h. Exposure to
25 µM phosmet caused 87.8% mortality, while exposure to 50 and 100 µM phosmet for
48 h resulted in 100% mortality (Fig. 1B). We also determined LC50 of phosmet at 24 and
48 h. We found that the LC50 value was 36.87 µM at 24 h, while it was 0.81 µM at 48 h
(Figs. 1C and 1D).

Phosmet causes DNA damage in D. magna
The mean values and standard deviations of the DNA damage indicators, DF%, AU and
GDI in D. magna upon exposure to 0.01 and 0.1 µM phosmet, and the control are
summarized in Table 2. The results showed that increasing concentrations of phosmet
caused significant DNA damage in D. magna compared to the control group. We observed
that 0.01 and 0.1 µM phosmet resulted in 53.33% and 63.67% DF%, respectively, while the
control group showed 37.33% DF%. Similarly, AU and GDI values increased in parallel
with the phosmet concentrations and significantly differed from the control group. AU
values were determined to be 75.00, 127.33, and 140.00 for the control, 0.01 and 0.1 µM
phosmet, respectively. Meanwhile, GDI values were determined to be 0.75, 1.27, and 1.40
for the control, 0.01 and 0.1 µM phosmet, respectively (Table 2).

The effects of phosmet on reproduction
In order to evaluate the chronic effects of phosmet on D. magna, we performed
reproduction and lifespan analyses. As 0.01 and 0.1 µM phosmet concentrations did not
show significant mortality in acute toxicity experiments, we considered these
concentrations to be suitable for the physiological and gene expression analyses.
We conducted reproduction and lifespan analyses until all Daphnids were dead during
which the number of offspring and dead organisms were recorded daily, and removed
from the dishes. The average of all replicates for the total number of offspring that one
single Daphnia produced over the exposure period were calculated and statistically
analyzed. The results indicated that 0.01 µM phosmet did not show any effect on
reproduction, while 0.1 µM phosmet resulted in significantly higher offspring per adult
compared to the control group (Fig. 2). The control and 0.01 µM exposure groups started
producing progeny at 7th day, while 0.1 µM exposure group did not give offspring until day
24 (Fig. S2). Interestingly, although 0.1 µM phosmet started producing progeny very late
compared to the other groups, the average total number of offspring per adult was
significantly higher.
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Figure 1 Phosmet resulted in mortality. Daphina magna neonates (<24 h old) were exposed to
phosmet (0.01, 0.1, 1, 10, 25, 50, 100 µM) in six-well plates with 10 organisms in each well in triplicates.
Mortality rates were recorded at 24 h (A) and 48 h (B). LC50 of phosmet was determined at 24 h (C) and
48 h (D). Statistical analyses were performed using one-way ANOVA followed by Dunnett post-test and
nonlinear regression. The difference was accepted significant if p values < 0.05. n = 3. Phosmet cause
mortality in a dose- and time-dependent manner with a significant lethality starting with 25 and 1 µM at
24 and 48 h, respectively. �p < 0.05; ���p < 0.001; ����p < 0.0001.

Full-size DOI: 10.7717/peerj.17034/fig-1

Table 2 DNA damage in Daphnia magna in response to phosmet.

Damage frequency (%) Arbitrary unit (AU) Genetic damage index (GDI)

Control 37.33 ± 0.88a 75.00 ± 6.65a 0.75 ± 0.06a

0.01 µM 53.33 ± 0.87b 127.33 ± 3.17b 1.27 ± 0.03b

0.1 µM 63.67 ± 0.81c 140.00 ± 2.64b 1.40 ± 0.02b

p value *** *** ***

Notes:
DF, Damage frequency; AU, Arbitrary Units; GDI, Genetic Damage Index (mean value ± sd). The differences between
groups were considered statistically significant if the p value was <0.05.
*** p < 0.001
Groups with different letters are significantly different from each other.
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The effects of phosmet on gene expression profiles
To determine the possible molecular mechanisms behind the phosmet toxicity, we further
analyzed the expression levels of stress response genes following 24 h exposure to phosmet.
The analyzed genes are involved in key pathways such as heat shock proteins, metal
response, oxidative stress, immune and apoptotic pathway. We found that the
metallothionein gene mt-1 was significantly downregulated in response to 0.01 µM
phosmet (Fig. 3A). We found that an immune response gene, nitric oxide synthase 1
(NOS1) and stress response gene, gst were repressed by both 0.01 and 0.1 µM phosmet
concentrations (Figs. 3B and 3C). We also determined the expression profiles of other
stress biomarkers CYP genes. CYP4 was strongly repressed upon exposure to 0.01 and 0.1
µM (Fig. 3D), while CYP314 was downregulated by only 0.01 µM phosmet (Fig 3E).
Interestingly, other stress response genes such as mt-a, mt-b, mt-c, hsp70, hsp90, catalase
(cat), and death associated protein 1 (dap1) were not affected by any dose (Supplemental
File 1).

The expression of genes involved in lipid metabolism were also investigated. We found
that nuclear hormone receptor 96 (hr96), and Niemann Pick type C (NPC1b) were
significantly downregulated by both 0.01, 0.1 µM phosmet (Figs. 4A and 4C). Meanwhile,
magro was repressed by only 0.01 µM phosmet (Fig. 4B), while sphingomyelinase 3 (SM3)
was significantly downregulated in response to 0.1 µM group (Fig. 4D). Interestingly,
another lipid metabolism related gene, mannosidase (man) did not show any expression
changes by any concentration (Supplemental File 1). We also investigated the expression of
a reproduction related gene, vitellogenin-1 (vtg1), and found that although vtg1 expression
was induced, the increase was not significant (Supplemental File 1). To observe possible
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Figure 2 Phosmet increased reproduction. Daphnia magna neonates (<24 h old) were exposed to
phosmet (0.01 and 0.1 µM) and number of offspring was recorded daily until all Daphnids were dead.
For each concentration, 10 organisms were used and experiments were performed in triplicates.
The average of all replicates for the total number of individuals that one single Daphnia produced over
the exposure period was taken. Statistical analyses were performed using one-way ANOVA followed by
Dunnett post-test and the difference were accepted significant if p values < 0.05. n = 3.0.1 µM exposure
group started to give offspring later than the control and 0.01 µM groups, however, the average number of
offspring per adult was significantly higher. An asterisk (�) indicates p < 0.05.

Full-size DOI: 10.7717/peerj.17034/fig-2
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negative effects on respiration, we determined the expression of genes related to respiration
and iron homeostasis. We observed a significant downregulation of hypoxia-inducible
factor-1 (hif1) and ferritin-3 (ftn3) in response to both 0.01 and 0.1 µM (Figs. 4E and 4F).

Figure 3 Phosmet changed the expression of genes involved in stress response and xenobiotic
metabolism. Daphnia magna neonates (<24 h old) were exposed to 0.01 and 0.1 mM phosmet for
24 h, and the expression levels of mt-1 (A), NOS1 (B), gst (C), CYP4 (D), and CYP314 (E) were deter-
mined using qPCR. Statistical analyses were performed using one-way ANOVA followed by Dunnett
post-test and the difference were accepted significant if p values < 0.05. n ≥ 4. All the genes were sig-
nificantly downregulated by phosmet. �p < 0.05; ��p < 0.01. Full-size DOI: 10.7717/peerj.17034/fig-3
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Figure 4 Phosmet decreased the expression of genes associated with lipid metabolism and
respiration. D. magna neonates (<24 h old) were exposed to 0.01 and 0.1 mM phosmet for 24 h, and
the expression levels of hr96 (A),magro (B),NPC1b (C), SM3 (D), hif1a (E), and ftn3 (F) were determined
using qPCR. Statistical analyses were performed using one-way ANOVA followed by Dunnett post-test
and the difference were accepted significant if p values < 0.05. �p < 0.05; ��p < 0.01. n ≥ 4.

Full-size DOI: 10.7717/peerj.17034/fig-4
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DISCUSSION
The excessive and inappropriate use of organophosphates cause them to end up in
different compartments of the environment including surface, groundwater, and soil (Bilal
et al., 2021; Rahman et al., 2021). Understanding the impacts of these compounds
including phosmet is of vital importance to take the necessary measurements by the
regulatory organizations. Hence, in the present study, we investigated the impacts of
phosmet on several parameters including survival, reproduction and gene expression to
better understand its negative impacts.

Survival assay data demonstrated that phosmet administration leads mortality in a
dose- and time-dependent manner, as evidenced by phosmet concentrations higher than
10 µM causing significant lethality in D. magna upon exposure to 24 h. At 48 h exposure,
even 1 µM phosmet caused significant mortality, while high concentrations (50 and
100 µM) killed all the organisms. We also observed that the living organisms in lethal
concentrations of phosmet show a decrease in organ movement and mobility. Similarly, it
has been shown that phosmet induces developmental toxicity in a time- and
dose-dependent manner, as well as an abnormal touch-evoked response and swimming
indicating a teratogenic effect of phosmet on zebrafish embryos (Vasamsetti et al., 2020).
In another study on zebrafish, it was indicated that phosmet caused phenotypic
abnormalities such as bradycardia, spinal curvature and growth retardation after 96 h of
exposure, and a concentration of 25.2 µM phosmet caused statistically significant mortality
in all 24, 48, 72 and 96 h of exposure (Vasamsetti et al., 2021). Supporting our results, in an
in vitro study, it was found that phosmet affected cellular viability in a concentration- and
time-dependent manner (Guinazu et al., 2012). We further determined LC50 of 36.87 µM
and 0.81 µM for phosmet at 24 and 48 h, respectively. It was previously shown that the
effective dose (EC50) of phosmet on D. magna after 48 h of exposure was 0.018 µM
(United States Environmental Protection Agency (US EPA), 2010). On zebrafish embryos,
LC50 of phosmet has been determined to be 7.95 ± 0.30 mg/L (~25.05 µM) at 96 h
(Vasamsetti et al., 2020). In an acute oral toxicity study, LC50 of phosmet has been found
as ~77.2 and ~74.4 µM for Scaptotrigona bipunctata and Tetragonisca fiebrigi, respectively
(Dorneles, de Souza Rosa & Blochtein, 2017). Altogether, we speculated that the time of
exposure and the type of organism could change the effective level of phosmet and at
higher concentrations, it could show teratogenic activity and lethal effect on organisms.

Environmentally relevant concentrations of a chemical may show a realistic exposure
scenario to better reveal the long term effects at physiological and molecular level. In the
present study, we performed genotoxicity, reproduction, and gene expression analyses
with 0.01 and 0.1 µM phosmet, as these concentrations are relevant to its reported doses in
different environmental compartments (United States Environmental Protection Agency
(US EPA), 2010) and did not resulted in significant mortality in our acute toxicity
experiments. Comet assay is an efficient technique used to detect DNA damage based on
single strand breaks or structural DNA changes (Hilgert Jacobsen-Pereira et al., 2018).
Several studies have used comet assay and shown that increase in DNA damage in
D.magna was associated with exposure to several pesticides such as malathion
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(Knapik & Ramsdorf, 2020), triclosan and carbendazim (Silva et al., 2015, 2017, 2019).
Other studies have also indicated that different compounds including 17a-ethinylestradiol
(Rodrigues, Silva & Antunes, 2021), diclofenac, ibuprofen and naproxen (Gómez-Oliván
et al., 2014) could induce single strand DNA breaks. In the present study, we demonstrated
that even the lowest concentration of phosmet was able to promote significant DNA
damage in D. magna cells. We also observed that increase in the concentration resulted in
increase in the level of DNA damage. Although, it has been indicated that phosmet is
unlikely to be genotoxic in vivo (Anastassiadou et al., 2021), its genotoxicity and mutagenic
activity have been previously shown in Salmonella and Saccharomyces assays (Vlcková
et al., 1993). Taken together, we reason that phosmet is genotoxic to D. magna and the
observed DNA damage in the cells could be due to oxidative stress produced by ROS (Lee,
Kim & Choi, 2009).

We further performed reproduction assay and interestingly, we observed a very low
number offspring after 21 days. We speculated that this observation may be an evidence of
suboptimal nutritional conditions which could potentially induce intraspecific variations
in D. magna. Consequently, this lead us to analyze the reproduction parameter until all
Daphnids were dead and we observed that the 0.1 µM phosmet group (the second lowest
sub-lethal concentration) gave significantly higher offspring per adult compared to the
control group. The hormetic response refers to a phenomenon where exposure to low
levels of stressors can induce a response in an organism, resulting in improved resistance
or adaptability (Calabrese & Baldwin, 2002). Similarly to our study, it has been shown that
exposure to chlorpyrifos increased the offspring number per adult in Daphnia carinata
compared to control which is an evidence of hormesis (Zalizniak & Nugegoda, 2006).
Although hormesis has been recognized and reported for various toxicants over the time,
there are limited reports on hormesis involving organophosphates (Stark & Vargas, 2003).
We speculated that the hormetic effect of phosmet in our case could be due to induced
intraspecific variations as well as molecular responses against oxidative stress and damage.
However, the mechanism behind this remains unknown and requires further analyses.
Because, it is essential to recognize that relying solely on the number of offspring is
insufficient for drawing conclusions about sensitivity to a specific toxicant. We also found
that 0.1 µM exposure group started to give offspring very late (24th day) compared to the
control and 0.01 µM exposure groups (7th day). Reproduction parameters, such as brood
size and body length of adults could be important indicators for the difference between
phosmet exposure and the control. Previously, it has been shown that exposure to
chlordane and endosulfan, organochlorine insecticides, resulted in significant decrease in
the number of neonates, the mean brood size, and body size of adults as well as a delay in
the first brood of D. magna (Manar, Bessi & Vasseur, 2009; Palma et al., 2009b). It is
important to mention that the main drawback of this study is that we were unable to
measure the body size of adults during the chronic toxicity analysis. Taken together, we
suggest that even though individuals exposed to phosmet showed delayed reproduction,
the higher number of offspring reported in the present study could be related to a larger
body size of these individuals. However, to elucidate this, further experiments needs to be
conducted. In contrast to our findings, previous studies on other organophosphates such as
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chlorpyrifos and malathion have shown a significant decrease in the number of neonates
per adult upon exposure to pesticides (Palma et al., 2009a; Toumi et al., 2015).

Another critical point is that several pesticides may exert an endocrine disrupting effect
on organisms particularly at low concentrations and additive interactions with other
mechanisms (Petrelli & Mantovani, 2002). It has previously been shown that elevated ROS
due to oxidative stress may cause deleterious effects on ovarian tissue (Shokoohi et al.,
2019). We also suggested that exposure to phosmet may cause oxidative stress which in
turn leads to production of free radicals and ROS, and this may cause a delay in
reproduction. Taken together, we speculated that the negative effects of phosmet on
reproduction could be species-specific and other molecular mechanisms might also be
involved in response to phosmet.

Gene expression analysis is widely used as an efficient technique in determining the
molecular mechanisms and possible biomarkers behind the toxicity of various chemicals
including pesticides (Li et al., 2023; Salesa et al., 2022; Weil et al., 2009). Genetic
biomarkers may be associated with either protective processes or induction of detrimental
effects (Pradhan et al., 2020). Since we observed DNA damage and lethal effects of
phosmet, in this study, we further analyzed the expression profiles of several genes
involved in stress response pathways. Metallothioneins are small and cysteine-rich heavy
metal-binding proteins that are found in many organisms from invertebrates to mammals
and are associated with critical biological roles such as metal homeostasis and
detoxification, protection against oxidative stress and heavy metals, neuroprotection, and
anti-inflammatory mediators (Amiard et al., 2006; Pradhan et al., 2020; Rodríguez-
Menéndez et al., 2018; Ruttkay-Nedecky et al., 2013). Several studies have demonstrated
that decreased expression of metallothionein genes increase vulnerability of organisms to
different conditions including oxidative stress, metal toxicity and metabolic disorders
(Huang et al., 2021; Sato et al., 2010; Wu et al., 2019). Hence, in the present study,
repressed expression of mt-1 and NOS1 could be an indicator to the observed lethality,
physiological impacts, and neurotoxicity of phosmet to D. magna, as downregulation of
these genes could make D. magna more susceptible to environmental stressors.

Organisms have evolved sophisticated detoxification systems to overcome the adverse
effects of oxidative stress. cytochrome P450 (CYP) enzymes play role in the phase I
detoxification pathway, while gst encodes the phase II xenobiotic metabolizing enzyme
GST that uses the products of phase I reactions in formation of large endogenous
molecules subsequently eliminating toxic xenobiotics (Benson & Di Giulio, 2018;
Gunderson et al., 2018; Mukhopadhyay & Chattopadhyay, 2014). In the present study,
downregulation of gst in response to phosmet indicated a decrease in capability of
D. magna to excrete phosmet from the cells. Similarly, several other studies have also
demonstrated downregulation of gst in response to different compounds in various
organisms (Pradhan et al., 2020; Seyoum et al., 2021;Wang et al., 2018). We determined a
significantly repressed expression of CYP4 and CYP314 upon exposure to phosmet.
Of these, CYP4 is associated with metabolizing fatty acids and steroids and is particularly
used as indicator in insecticide resistance (Jarrar & Lee, 2019; Scharf et al., 2001), while
CYP314 is involved in the conversion of ecdysone to its active form (Shen et al., 2003).
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In another study performed on D. magna, it has been shown that CYP4 and CYP314 were
significantly downregulated in response to other pesticides, glyphosate and methidathion,
respectively (Le et al., 2010). Taken together, we speculated that exposure to phosmet could
cause oxidative stress which subsequently negatively affected fatty acid and steroid
metabolisms in D. magna (see subsequent parts). Although, we did not observe any
significant change in other stress response genes including catalase (cat), several
biochemical oxidative stress indicators including superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione (GSH), and CAT have been previously shown to be induced
in response to phosmet in rainbow trout (Muhammed & Dogan, 2021). We suggest that
further studies to measure the levels of such biomarkers could reveal the negative impacts
of phosmet on D. magna.

Lipid molecules play an essential role in signaling, membrane composition, and energy
production (Anderson, Cole & Williams, 2004). Dysfunction of lipid metabolism may lead
to several problems including obesity, diabetes, and atherosclerosis (Joffe, Panz & Raal,
2001; McNeely et al., 2001; Watanabe et al., 2008). In the present study, we observed
significant downregulation of all the analyzed lipid related genes by phosmet exposure
exceptman which did not show significant expression change. Of these, hr96 is involved in
controlling energy metabolism through homeostasis and transport of triacylglycerols and
cholesterol by regulating several genes including NPC1b, SM3, magro and man (Sengupta
et al., 2017; Sieber & Thummel, 2012). NPC1b also plays role in cholesterol and fatty acid
homeostasis. Sphingomyelins is a type of lipid that is highly abundant in neonates and is
essential for the maturation of D. magna (Sengupta et al., 2017). magro is a key biomarker
of hr96 activation that plays critical role in hydrolysis of cholesterol esters and stimulation
of cholesterol clearance from the intestine of Drosophila melanogaster (Sengupta et al.,
2017; Sieber & Thummel, 2012). Downregulation of these genes suggests that exposure to
phosmet may inhibits fatty acid uptake in D. magna and this subsequently may result in
lipid accumulation in the cells. However, further analysis is needed to demonstrate
whether cells accumulate lipids. Other studies on D. magna have also demonstrated that
exposure to various environmental pollutants including plasticizers and per- and
polyfluorinated alkyl substances could cause such adverse effects (Seyoum & Pradhan,
2019; Seyoum et al., 2020). We also analyzed the expression of reproduction related gene,
vtg1 and found no significant change at any concentrations. Further analysis is needed to
reveal the reason behind the induced reproduction.

Hypoxic conditions could occur as a result of low level of oxygen and/or disruption of
heme biosynthesis due to environmental toxicants. hif1 is a transcription factor that plays a
critical role in cellular response to hypoxia through several adaptive responses such as
transcriptional activation of hypoxia-response element genes (Chang et al., 2019; Shiau
et al., 2014). Several studies have shown that hif1 was overexpressed in response to various
environmental pollutants to overcome hypoxia conditions (Eom et al., 2013; Seyoum et al.,
2021). However, in the present study, we found a significant repression of hif1 upon
exposure to phosmet. This indicates that D. magna may not be able to overcome hypoxic
environment which led to unfavorable and stressful conditions due to phosmet toxicity.
We also analyzed the expression of ftn3 and observed similar expression pattern with hif1.
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ftn3 encodes an iron homeostasis protein that is involved in an important storage and
detoxification of excess iron in living cells (Li et al., 2012). Iron is an essential nutrient in
critical biological processes such as DNA replication and ATP production. It is also used in
hemoglobin biosynthesis to provide the required oxygen transportation. Excess amount of
iron could induce severe damage due to reactive oxygen species production and oxidative
stress (Renassia & Peyssonnaux, 2019). This suggests that it is of crucial to maintain the
balance between hypoxia condition and the availability of iron in the cells. Taken together,
we speculated that the downregulation of ftn3 resulted in insufficient storage of iron in the
cells that could be used to avoid hypoxia.

The current study has provided significant insights into the adverse effects of phosmet
on D. magna, revealing alterations in immobilization, reproduction, and gene expression
profiles, alongside determining of genotoxicity and mortality. Notably, the determined
LC50 values were found to be higher than those reported in existing literature (United
States Environmental Protection Agency (US EPA), 2010). Additionally, our observations
unveiled a hormetic response exhibited by D. magna following exposure to phosmet.
While we have stated several possible explanations for these findings, it is of critical
importance to emphasize the potential intraspecific variations in sensitivity to phosmet,
associated with diverse genotypes and/or phases of population growth. The distinct
physiological and energetic states resulting from individuals at various population growth
phases, as well as genotype specificity may result in competition for limited food resources
(Del Arco, Rico & van den Brink, 2015; Lyberger & Schoener, 2023; Woo, East & Salice,
2020). This competition, in turn, can impact sensitivity of Daphnids to phosmet, leading to
both hormetic responses and elevated LC50 values. Nevertheless, a comprehensive
understanding of these dynamics requires further in-depth analyses.

CONCLUSIONS
The excess use of anthropogenic compounds, including pesticides, results in their release
into the environment and poses a serious threat to organisms and the ecosystems. Phosmet
is one such pesticide which is widely used to control pests such as moths, aphids, mites,
suckers and fruit flies. Elucidating the mechanisms of phosmet toxicity is of crucial to
avoid the potential negative impacts of this chemical. Our findings indicate that phosmet
treatment induces mortality, caused DNA damage, decreased mobility and organ
movement, and altered reproduction in D. magna. Transcriptional analyses showed that
phosmet can repress the expression of several genes involved in different signaling
pathways including oxidative stress, detoxification, immune system, hypoxia, and iron
homeostasis. This may be attributed to the observed mortality, immobility and DNA
damage. In conclusion, the present study demonstrates that exposure to phosmet is lethal
to D. magna in a dose- and time-dependent manner. This study also emphasizes the
significance of genotoxicity assays and transcriptomic analysis in analyzing environmental
pollutants. Further studies may be conducted to demonstrate the detailed effects of
phosmet on reproductive system using histopathological, proteomic, and transcriptomic
analyses.
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