
Wood identification based on macroscopic
images using deep and transfer learning
approaches
Halime Ergun

Department of Computer Engineering, Seydişehir Ahmet Cengiz Faculty of Engineering,
Necmettin Erbakan University, Konya, Turkey

ABSTRACT
Identifying forest types is vital for evaluating the ecological, economic, and social
benefits provided by forests, and for protecting, managing, and sustaining them.
Although traditionally based on expert observation, recent developments have
increased the use of technologies such as artificial intelligence (AI). The use of
advanced methods such as deep learning will make forest species recognition faster
and easier. In this study, the deep network models RestNet18, GoogLeNet, VGG19,
Inceptionv3, MobileNetv2, DenseNet201, InceptionResNetv2, EfficientNet and
ShuffleNet, which were pre-trained with ImageNet dataset, were adapted to a new
dataset. In this adaptation, transfer learning method is used. These models have
different architectures that allow a wide range of performance evaluation. The
performance of the model was evaluated by accuracy, recall, precision, F1-score,
specificity and Matthews correlation coefficient. ShuffleNet was proposed as a
lightweight network model that achieves high performance with low computational
power and resource requirements. This model was an efficient model with an
accuracy close to other models with customisation. This study reveals that deep
network models are an effective tool in the field of forest species recognition. This
study makes an important contribution to the conservation and management of
forests.

Subjects Agricultural Science, Data Mining and Machine Learning, Natural Resource
Management, Forestry
Keywords Wood identification, Transfer learning, ShuffleNet

INTRODUCTION
The identification and classification of wood species serve as crucial steps towards
understanding their biological diversity, ecological role, economic value, and cultural
significance. Accurate identification is also necessary for the appropriate use of wood
(Wheeler & Baas, 1998). While identifying the species is relatively straightforward when
organs such as flowers, leaves, or seeds are present, it becomes a challenging task once the
wood is processed. The identification relies solely on the macroscopic or microscopic
characteristics of the wood (Khalid et al., 2008). Macroscopic structure refers to the
features observable to the naked eye or under low magnification, while microscopic
structure denotes the cell-level characteristics observable under high magnification.
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Sometimes, identification at the genus level is sufficient for diagnosing the type of wood.
However, there are instances where species-level identification is necessary. For instance,
while trade for certain wood species may be banned or restricted, other species within the
same genus may be freely traded (such as Dalbergia spp., Pterocarpus spp.) (Gasson, 2011;
Shou et al., 2014; Snel et al., 2018). Furthermore, species-level identification is needed when
gathering information about structures of cultural and historical value (Hwang et al.,
2016). Microscopic methods are preferred in such cases; however, some wood species
cannot be distinguished from each other microscopically (Tuncer, 2020). Therefore, the
work on improving methods for diagnosing wood species continues, with image
processing techniques showing significant advancements due to emerging technologies.

Traditional methods for diagnosing the type of wood involve examining its macroscopic
or microscopic structure. The microscopic technique examines the wood’s anatomy using
light or electron microscopy. It identifies cell types, measures cell wall thickness,
determines cell sizes and shapes, analyzes cell contents, and examines the wood’s cell wall
chemistry. The macroscopic method observes the wood’s physical and anatomical features
with the naked eye or a hand magnifier. It identifies properties such as color, density,
hardness, odor, grain, fibers, pores, luster, texture, resin, grain structure, cracks, knots, and
more. This reveals the wood’s natural and unique qualities, which can vary depending on
factors like age, growth conditions, cutting time, drying method, processing, decay level,
and staining or varnishing. Although these methods are considered the most reliable, they
are time-consuming, labor-intensive, and require expertise in wood anatomy. As a result,
there is a growing demand for new and different diagnostic methods (Dormontt et al.,
2015). In an era where quick and easy access to information is expected, new technologies
need to be developed for industries working with wood materials and for maintaining
environmental balance.

The limitations of these traditional methods underscore the need for more practical,
faster, and cheaper alternatives in diagnosing wood types. One such alternative involves
computer vision techniques compatible with widely used devices like smartphones.
Consequently, various studies have been conducted in the area of wood type recognition
and classification using computer vision techniques (Martins et al., 2013; Yadav et al.,
2013, 2015; Rosa Da Silva et al., 2017; Fabija�nska, Danek & Barniak, 2021). These studies
have used macroscopic or microscopic images of wood samples. Macroscopic images are
10–15× magnified photographs of wood surfaces, while microscopic images are
photographs of wood samples magnified between 25–100× under a microscope. The
species of wood are identified by applying feature extraction and classification processes on
these images. The drawback of these methods, however, is the need for specialized
equipment to capture the images (Filho et al., 2014).

In the process of wood species recognition through image processing, a two-stage model
is typically employed: feature extraction and classification. During the feature extraction
phase, a variety of methods can be utilized to convert images into numerical data. One
such method is the Gray Level Co-occurrence Matrices (GLCM). This technique calculates
pixel gray level differences that reflect the texture properties of the image. The features
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derived from the image are then used as input in the classification stage (Khalid et al., 2008;
Piuri & Scotti, 2010; Mallik et al., 2011; Martins et al., 2013; Yadav et al., 2013).

In the classification phase, wood samples are trained using different algorithms, and a
statistical model is built. This model classifies new examples according to wood species.
Among these algorithms are multilayer artificial neural networks (Yusof & Rosli, 2013;
Zhao, Dou & Chen, 2014; Ibrahim et al., 2018) and support vector machines (Turhan &
Serdar, 2013; Martins et al., 2013; Filho et al., 2014; Barmpoutis et al., 2018), and methods
like KNN. These methods have their pros and cons, and their performance depends on the
dataset and feature extraction method (Fabija�nska, Danek & Barniak, 2021).

However, traditional methods for identifying and classifying wood species often require
examination of the wood’s anatomical structure, which can be time-consuming and
require expertise. Deep learning, on the other hand, employs artificial neural networks that
learn from and make predictions based on data. Thus, they can analyze data, learn from it,
and make predictions. As a result, deep learning techniques are yielding faster and more
effective results in this field. These techniques can also learn to identify new types of wood.
The model can be updated with new data and cover a broader range of wood species.
However, deep learning techniques require a substantial amount of data for accurate wood
type diagnosis. To make accurate predictions, images of a wide variety of wood types are
needed. Gathering and labeling this data can be challenging. Deep learning techniques can
be affected by factors like image quality, lighting, angle, background, etc. These factors can
lead to image degradation or misinterpretation.

Sun et al. (2021) developed a transfer learning approach to wood species identification
using a limited data set. Linear discriminant analysis (LDA) and k-nearest neighbours
(KNN) were used as classification methods to enhance the features obtained from the
ResNet50 model (Sun et al., 2021).

However, Fabija�nska, Danek & Barniak (2021), using a macroscopic data set of 14
species of corals and angiosperms common in Europe, developed a method that now uses
an evolutionary encoder network and a sliding window layout. This study shows that a
method that now uses a sliding window layout with an evolutionary encoder network can
diagnose wood species with high accuracy, regardless of the spatial resolution of the
images.

A study by Kırbaş&Çifci (2022) compared the transfer learning performance of various
deep learning architectures on a WOOD-AUTH dataset comprising 12 wood species.
The study evaluated the transfer learning performance of ResNet50, Inceptionv3,
Xception, and VGG19. The results show that the Xception model achieves the highest
accuracy (Kırbaş & Çifci, 2022). In a related study, researchers proposed a wood
recognition approach utilizing ResNet50 to extract the textile properties of wood, applying
global average pooling (GAP) to decrease attribute numbers and boost model
generalizability. Extreme learning machine (ELM) algorithm was then implemented for
classification. ELM is a one-layer advanced neural network capable of learning properties
from images without adjusting the parameters of hidden layer or backward spread.

Elmas (2021) applied pre-trained convolutional neural networks such as AlexNet,
DenseNet201, ResNet18, ResNet50, ResNet101, VGG16, and VGG19 on a data set
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consisting of 24,686 wood bark images belonging to 59 wood species collected from
various regions of Turkey using the transfer learning method, and stated that the highest
accuracy value was obtained with DenseNet121 (Elmas, 2021).Miao et al. (2022) proposed
a convolutional neural network developed for wood type recognition from wood images in
their study. The model combines Inception and mobilenetV3 networks. The model was
tested with a large-scale data set containing 16 different wood types. The model achieved
96.4% accuracy (Miao et al., 2022).Wu et al. (2021) used deep learning methods for wood
identification based on longitudinal cross-section images in their study. The model
benefited from effective convolutional neural networks such as ResNet50, DenseNet121
and MobileNetv2. The model was evaluated with a data set containing 11 common wood
types. The model achieved 98.2% accuracy (Wu et al., 2021). These studies reveal that deep
learning techniques are more successful than traditional methods in the field of wood type
identification and classification.

There are some specific challenges in identifying wood species. The anatomical
structure of the species, the prevailing climate and soil conditions, forest density in the
region, the amount and direction of sunlight received, among other factors, can affect the
characteristics and classification of wood species. Another challenge is that large, public
data sets related to wood images are only available for a specific region. The transfer
learning method allows pre-trained convolutional neural networks to be used to extract
features from wood images. This reduces the need for more data to train the model and
increases the model’s generalization ability.

In this study, a transfer learning method was used that fine-tuned pre-trained
convolutional neural networks (CNN) models such as ResNet50, DenseNet121,
MobileNetv2 and ShuffleNetv2. This method transfers the information learned from
ImageNet, a comprehensive data set consisting of natural images, to our task of
determining wood types using macroscopic images. Most of the state-of-the-art models
examined did not report on different performance metrics that help gain more insight into
the proposed model and solution approach. The structure of CNN models is becoming
increasingly complex, hardware costs are rising and application efficiency is decreasing,
therefore lightweight deep learning model research is an inevitable trend. An attempt was
made to achieve a success close to more complex models by using a customized ShuffleNet
architecture with different parameters in the recognition of wood species.

MATERIALS AND METHODS
Recognition of wood species typically demands a cross-sectional review of wood features
by experts. These characteristics include vessel arrangement, pore direction, ray
parenchyma, fiber, and other surface information. The identification standards from the
IAWA list (Wheeler & Baas, 1998) are used to compare these features between wood
species (Sun et al., 2021).

Dataset
A dataset of macroscopic images was used for forest species detection and classification
(Cano Saenz et al., 2022). Ten species were chosen for analysis, ensuring a minimum of 800
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images for each category. In total, the dataset comprised 10,792 images of tropical forest
species. The training module employed a subset of 8,000 images chosen at random, while
the test group incorporated a maximum of 2,221 images. This equal allocation of the
training data will facilitate a more precise assessment of the model’s overall performance.
Detailed information regarding the types employed and the total number of images can be
found in Table 1.

The data set contains macroscopic images obtained using a scale that allows the
observation of pores, fibers and parenchyma. The data set includes more than 8,000 images
with a resolution of 640 × 480 pixels, containing 3.9 microns per pixel, and an area of (2.5 ×
1.9) square millimeters where anatomical features are displayed. Figure 1 shows
macroscopic images of species.

Table 1 The species and image numbers used in this study.

Tür Train Test Image number

1 Achapo 800 389 1,189

2 Cedro costeno 800 328 1,128

3 Chanul 800 201 1,001

4 Cipres 800 15 815

5 Cuangare 800 300 1,100

6 Eucalipto blanco 800 305 1,105

7 Guayacan amarillo 800 306 1,106

8 Nogal cafetero 800 129 929

9 Sajo 800 23 823

10 Urapan 800 225 1,025

Total 8,000 2,221 10,792

Figure 1 Macroscopic images of sample species. (A) Achapo, (B) Cedro Costeno, (C) Chanul, (D) Cipres, (E) Cuangare, (F) Eucalipto Blanco, (G)
Guayacan Amarillo, (H) Nogal Cafetero, (ı) Sajo, (I) Urapan (Cano Saenz et al., 2022). Full-size DOI: 10.7717/peerj.17021/fig-1
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Transfer learning
Transfer learning is a technique that allows a machine learning model to adapt and use the
information it learned for one task for another task. CNN models are layered artificial
neural networks that extract complex features from images. Training CNN models from
scratch can be difficult and time consuming. Therefore, using pre-trained networks, that is,
networks with previously calculated weights on a large data set (such as ImageNet), is more
common (Abu Al-Haija, 2022; Elmas, 2021; Katsigiannis et al., 2023).

Fine-tuning CNN is a transfer learning method that allows a machine learning model to
adapt and use the information it learned for one task for another task. Instead of starting
the CNN’s weights with random values, it makes more sense to use a pre-trained weight
set. This weight set provides a better starting point than random values, even if it comes
from a different problem. Changing the last layer (classifier) and retraining enabled the
fine-tuning of the weights of the CNN with backpropagation. In addition, this approach
allows us to choose how many layers will be fine-tuned. Usually, the first layers are basic
filters that detect low-level general features such as edges and colours. These filters are
useful for most image classification tasks (De Geus et al., 2021; Sanida et al., 2023). The
most common type of transfer learning is to replace the fully connected layer and transfer
all layers.

Making wood categorization from macroscopic images is distinct from the problem in
the ImageNet data set. In this study, networks trained for 1,000 classes were fine-tuned for
10 classes. The fine-tuning process is carried out separately for each model. Each model
was launched using its weights trained with the ImageNet data set. The last layer of the
model has been replaced with 10 classes output layer. The weights of this layer are initiated
randomly. During the fine adjustment procedure, all layers of the model have continued to
be trained. Thus, the classification layers of the networks have been re-trained for 10
classes.

The convolutional layers of the network extract various features from the input image.
The last learnable layer and the last classification layer use these features to classify the
image. To retrain a pre-trained network to classify new images, these two layers are
redesigned to be suitable for the new data set. Replacing these two layers is an important
step to adapt a pre-trained network to a new task. However, this is not enough. In addition,
the weights of the other layers of the network need to be fine-tuned. This allows the
network to better fit the new data set and achieve higher accuracy. The network is
fine-tuned by training the last layers with or without freezing them. This adapts the
network’s higher-level features to the new task. Alternatively, all layers of the network can
be trained, thus updating both low- and high-level features of the network. However, this
approach requires more computational power and data (Katsigiannis et al., 2023).

The last layer with learnable weights is usually a fully connected layer. This layer is
replaced with a new layer that has the same number of outputs as the number of classes in
the new data set. For some networks, such as SqueezeNet, the last layer with learnable
weights is a 1-by-1 convolutional layer. In this case, it is replaced with a new convolutional
layer that has the same number of filters as the number of classes. In this study, different
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deep learning architectures that achieve successful results for various image classification
tasks are used. These include: layered residual networks (ResNet), a complex image
recognition system based on convolutional neural networks (Inceptionv3), a crossbreed
architecture for deep convolutional neural networks (Xception), a multi-layer visual
perception network (VGGNet), image recognition and classification with deep
convolutional neural networks (GoogLeNet), a lightweight and efficient convolutional
neural network for mobile devices (MobileNetv2), densely connected convolutional
networks (DenseNet201), and a convolutional neural network that combines Inception
modules with residual connections (InceptionResNetv2). The models are:

� VGGNet: A deep learning model with 41 or 47 layers that uses very small (3 × 3)
convolution filters. It consists of 13 or 16 convolution layers, three fully connected
layers, pooling, activation function, dropout and classification layer.

� ResNet: A deep learning model with 18, 50 or more layers that uses a technique called
residual learning. This technique allows the network to be deeper and prevents gradient
vanishing. The ResNet model consists of many residual blocks that are connected to
each other. A residual block adds its own output to the input data and passes it to the
next layer (He et al., 2016).

� GoogLeNet: A CNN model with 22 layers that uses inception modules to increase the
network depth and width while reducing the parameters (Szegedy et al., 2015).

� MobileNetv2: A CNN model with 88 layers that uses inverted residual blocks with
linear bottlenecks to reduce the computational cost and increase the accuracy (Sandler
et al., 2018).

� DenseNet201: A CNN model that uses dense connections to increase the information
flow and parameter efficiency (Huang et al., 2017). This structure ensures that each layer
is connected to all previous layers.

� InceptionResNetv2: A convolutional neural network that combines inception modules
with residual connections. It is a deep neural network with 164 layers. It offers the
advantages of both inception and ResNet techniques (Szegedy et al., 2017).

� Inception: Inception is based on applying filtering and pooling operations
simultaneously in convolutional layers. It works modularly. InceptionV3 is an improved
version of GoogLeNet with 48 layers that uses factorized convolutions and label
smoothing to increase performance (Szegedy et al., 2016).

� Xception: Xception network offers two different approaches, depthwise convolution
and pointwise convolution, in addition to the improvements in Inception V3 (Chollet,
2017).

� ShuffleNet: ShuffleNet is a type of convolutional neural network that is very efficient
and fast for mobile devices. It uses two new techniques, pointwise group convolution
and channel shuffle, to reduce the computation and memory requirements while
maintaining high accuracy (Zhang et al., 2018). ShuffleNetv2 is a CNN model with 50
layers that uses channel shuffle and split operations to increase the speed and
performance (Ma et al., 2018).
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EfficientNet: EfficientNet is a CNN model that uses compound scaling to balance the
network depth, width and resolution, which provides better efficiency and accuracy
(Tan & Le, 2019). B0 to B7 are different variants of EfficientNet with different scales and
parameters; where B0 is the base model and B7 is the largest and most complex model.

Proposed method
ShuffleNet is a convolutional neural network optimized for speed and memory. ShuffleNet,
a lightweight CNN architecture, has convolutional layers, group convolutional layers,
depthwise convolutional layers, channel shuffle layers, pooling layers and fully connected
(FC) layers in its network structure (Zhang et al., 2018). Group convolution layer performs
the operation of using different convolution filter groups on the same input data.
Depthwise convolutional layers have less parameters than convolutional layers. This
reduces overfitting in the model and makes it a useful model for mobile applications.
Channel shuffle layer reshapes the output channel size as (g,c) with g group convolution
layer and gxc channels inside, transposes it and flattens it as the input of the next layer.
Pooling layer reduces the input size while preserving the perceived features (Zhang et al.,
2018; Toğaçar & Ergen, 2022). Channel shuffle increases the information flow by shuffling
the channels in different groups. Thanks to these techniques, ShuffleNet achieves similar
performance with more complex models while requiring less parameters and computation
power.

The choice of an architecture for transfer learning depends on various factors such as
the size and similarity of the source and target data sets, the complexity and accuracy of the
pre-trained model, and the available computation resources. For example, a complex and
accurate model such as ResNet50 or DenseNet121 can be chosen if the target data set is
small and similar to the source data set, and most of the layers can be frozen except the last
ones. A simple and efficient model such as MobileNetv2 or ShuffleNetv2 can be chosen if
the target data set is large and different from the source data set, and most of the layers can
be fine-tuned or even trained from scratch. A light and fast model such as ShuffleNetv2 or
modified ShuffleNet that can achieve similar performance to more complex models while
requiring less memory and power can be chosen if the computation resources are limited.

Some modifications were made to the ShuffleNetv2 architecture and it was retrained.
The last layer of ShuffleNetv2 was changed. Instead of 1 × 1 convolution, global average
pooling and fully connected layer, the last layer used 1 × 1 convolution, global max pooling
and fully connected layer. The reason for this was that max pooling had more
discriminative power than average pooling. Max pooling selects the highest value from
each feature map, while average pooling takes the average of each feature map (Ma et al.,
2018). In this way, max pooling preserves important features while discarding noise and
unnecessary information. This means that the maximum pooling emphasizes certain
features, regardless of the location of the properties. The average pooling, however,
preserves the essence of the features and gives a smoother appearance. This suggests that
the difference between average pooling and maximum pooling may vary depending on the
data set, network architecture, and training parameters.
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Leaky ReLU was used as the activation function. Such a modification was stated to help
the model prevent dead neurons and learn better (Ma et al., 2018). A dead neuron is a
neuron that has zero output for any input and therefore cannot learn anything. This
happens when the neuron’s weights are negative and the gradient of ReLU is zero. As a
result, the neuron cannot be updated by backpropagation and remains dead.

To improve the learning ability of the model for partial feature values (<0), it is
suggested to apply LeakyReLU activation function to the construction process of Shuffle
Net lightweight convolutional neural network (Song, Zhang & Long, 2023). The expression
of LeakyReLU activation function is given in Eq. (1).

LeakyReLU ¼ aix; x, 0
x; x � 0

:

�
(1)

Here, x is the input eigenvalue, a ∈ (0, 1) and when x < 0, the output value of the

LeakyReLU activation function is a x. When x ≥ 0, the output value of the LeakyReLU

activation function is x.

Evaluation metrics
In this section, various metrics are used to measure the performance of our models on our
data set. The metrics show how accurate, sensitive, specific, precise and balanced the model
is. They also measure how well the model predicts better than random guessing. These
metrics are based on the concepts of true positives (TP), false positives (FP), false negatives
(FN) and true negatives (TN). TP are the samples that are correctly classified as positive by
the model; FP are the samples that are incorrectly classified as positive by the model; FN
are the samples that are incorrectly classified as negative by the model; and TN are the
samples that are correctly classified as negative by the model (Toğaçar & Ergen, 2022;
Tharwat, 2020).

Accuracy: The ratio of the images that the model predicted correctly to the total images.
Error: The ratio of the images that the model predicted incorrectly to the total images.

Accuracy and Error show the overall performance of the model, but they do not reflect the
imbalance between the classes. For example, if one class has much more samples than the
other, the model can achieve high Accuracy by predicting that class more often, but it can
ignore the other classes.

Global Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (2)

Recall: The ratio of the images that the model predicted correctly to the images that
belong to the actual class. Precision: The ratio of the images that the model predicted
correctly to the images that the model assigned to that class.

precision ¼ TP
TP þ FP

; recall ¼ TP
TP þ FN

: (3)

F1-score: Score indicates how well the projected boundary of each class is aligned with
the actual boundary.
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F1‐score ¼ 2 � precision � recall
recall þ precision

; (4)

Specificity: The ratio of the images that the model predicted correctly to the images that
do not belong to the actual class.

Specificity ¼ TN
TN þ FP

: (5)

MCC: Matthews correlation coefficient. It takes values between −1 and +1. +1 means
perfect prediction, 0 means random prediction and −1 means inverse prediction.

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp : (6)

The popular metrics mentioned above (accuracy, recall, precision, etc.) do not fully
provide a result for data sets that are unevenly distributed. Basically, it evaluates by looking
at the correlation (phi-coefficient) relationship between real data and predicted data. MCC
criterion, which uses all the parameters in the confusion matrix as seen in Eq. (6).

EXPERIMENTAL RESULTS
In this study, RestNet18, GoogLeNet, VGG19, Inceptionv3, MobileNetv2, DenseNet201,
InceptionResNetv2, EfficientNetb0, ShuffleNet deep learning models were used for
transfer learning. These models were trained for a general-purpose visual recognition task
and learned high-level features to recognize different objects. The last layer of these models
was removed and a new layer with neurons equal to the number of forest species was
added. This new layer was initialized with random weights and trained with the forest
species data set. Thus, the model adapted the general features learned in the source domain
to the target domain.

The models in Table 2 are artificial neural networks that are used for visual processing
tasks such as image classification. The size and number of parameters of each model
indicate the complexity and efficiency of the model. The number of parameters specifies
the number of weights that the model can learn.

The classification accuracies of the fine-tuned models on the test images were calculated
(Table 3). No layer was frozen during the model execution. Data augmentation was not
applied. The mini batch size was set to 64. The learning rate was chosen low because
transfer learning does not require training for many epochs. Retraining updates the
network to learn and identify features associated with new images and categories. In most
cases, retraining requires less data than training a model from scratch. After the model was
retrained, a total of 2,221 test images were classified and the performance of the networks
was evaluated.

Different metrics can be used to compare the performance of image classification
models. To determine the model that shows the best performance according to any of these
metrics, it is necessary to train and test different models on the same data set. In this way, it
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is possible to compare the results of the models objectively. All these parameter values are
obtained for the same database and compared.

The modified ShuffleNet requires more training than other models because some
weights and biases are not transferred. Table 1 shows the effect of the changes made on the
model performance. Figure 2 presents the confusion matrix for the test images of the
ShuffleNet model that was changed with the proposed method. The confusion matrix is a
table that summarizes the prediction results for a classification problem. The confusion
matrix allows us to get an idea about the types that are misclassified by the classifier. The
total accuracy of the model is 92%, which means that it correctly predicts 92% of the test
data.

The model has a high accuracy for classes 1, 2, 3, 6 and 7, which are Achapo, Cedro
costeno, Chanul, Eucalipto Blanco and Guayacan Amarillo. The accuracy of these classes is
above 95% and there are very few misclassifications. The model has a low accuracy for class
4, which is Cipres. This class has only 71% accuracy and many misclassifications.
Species-level identification of wood types is more difficult than genus-level, because some

Table 2 The details of CNN models used in this study.

Model neural network Depth Size Parameters (Millions)

GoogLeNet 22 27 MB 7.0

Inceptionv3 48 89 MB 23.9

DenseNet201 201 77 MB 20.0

MobileNetv2 53 13 MB 3.5

RestNet18 18 44 MB 11.7

EfficientNetb0 82 20 MB 5.3

InceptionresNetv2 164 209 MB 55.9

ShuffleNet 50 5.4 MB 1.4

VGG19 19 535 MB 144.0

Table 3 The classification performance of CNN models used in this study.

Models Accuracy Error Recall Specificity Precision F1-score MCC

RestNet18 0.9568 0.0432 0.9675 0.9951 0.9382 0.9511 0.9471

GoogLeNet 0.9216 0.0784 0.9348 0.9912 0.8929 0.9061 0.9016

VGG19 0.8676 0.1324 0.9014 0.9851 0.8160 0.8361 0.8331

Inceptionv3 0.9572 0.0428 0.9672 0.9952 0.9234 0.9420 0.9389

MobileNetv2 0.9514 0.0486 0.9630 0.9945 0.9160 0.9356 0.9321

DenseNet201 0.9698 0.0302 0.9770 0.9966 0.9483 0.9607 0.9583

InceptionResNetv2 0.9734 0.0266 0.9734 0.9970 0.9606 0.9667 0.9638

EfficientNetb0 0.9644 0.0356 0.9720 0.9960 0.9261 0.9456 0.9433

ShuffleNet 0.9356 0.0644 0.9481 0.9927 0.8944 0.9161 0.9114

Modified ShuffleNet 0.9604 0.0308 0.9701 0.9906 0.9413 0.9527 0.9503
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wood types within the same genus can have very similar macroscopic features that are hard
to distinguish by human eye or computer vision techniques (Schweingruber & Baas, 2011).

DISCUSSION
Several pre-trained CNN models such as ResNet50, DenseNet121, MobileNetv2 and
ShuffleNetv2 were fine-tuned using a transfer learning method in this study. This method
enables the transfer of the knowledge learned from ImageNet, which is a large and diverse
data set of natural images, to the task of identifying wood types using macroscopic images
(Abu Al-Haija, 2022). Other transfer learning methods that can be applied for wood
species identification are feature extraction, where pre-trained models are used as feature
extractors and a new classifier is trained on top of them; or multi-task learning, where the
pre-trained models are trained on multiple related tasks simultaneously (Elmas, 2021).
The weights of the previous layers in the network can be optionally frozen by setting the
learning rates in those layers to zero (Katsigiannis et al., 2023). The parameters of the
frozen layers are not updated during training, which can significantly speed up the network
training. If the new data set is small, freezing weights can also prevent the network from
overfitting to the new data set. In general, if the data set is small or similar, fewer layers are
frozen or fewer weights are changed. If the data set is large or different, more layers are
frozen or more weights are changed. If the target data set is large, this means that there is
enough data to learn and avoid overfitting. Therefore, freezing more layers can speed up

Figure 2 Confusion matrix for ShuffleNet model. Full-size DOI: 10.7717/peerj.17021/fig-2
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the training process and reduce the computation cost without sacrificing much accuracy.
It can also prevent the model from forgetting the useful features learned from the source
data set; changing more weights can help the model adapt to the new domain (Sanida
et al., 2023).

There are many pre-trained models available for transfer learning, and each has its
advantages and disadvantages that need to be considered: When choosing these models,
factors such as size, accuracy and prediction speed should be taken into account. Size, the
importance of your model size will vary depending on where and how you plan to use it.
Accuracy, shows the generalization ability of the model. However, a low accuracy score on
ImageNet does not mean that the model will perform poorly on all tasks. Prediction speed
determines the performance of the model. These factors can vary depending on the
architecture of the model and the data set it was trained on. The model structure of CNNs
is becoming more and more complex, the hardware cost is increasing and the application
efficiency is decreasing, so lightweight deep learning model research is an inevitable trend
(Song, Zhang & Long, 2023).

Lightweight and computationally efficient models; MobileNetv2 and ShuffleNet are
good options when there are limitations on the model size. MobileNetV2 is good for
reducing network size and cost but contains subsampling bottlenecks (Pradipkumar &
Alagumalai, 2023). ShuffleNetv2 is a convolutional neural network optimized for speed
and memory. ShuffleNet has been reported to achieve ~13X real speed increase compared
to AlexNet CNNwhile maintaining similar accuracy levels (Abu Al-Haija, 2022). There are
studies that place the compression and excitation blocks after each stage of the Shuffle
Block to reduce the computation cost. New architectures based on ShuffleNets are being
designed (Tang et al., 2020; Pradipkumar & Alagumalai, 2023).

ShuffleNet is a good choice for wood species identification because it is designed to
reduce the computational complexity and increase the efficiency of convolutional neural
networks. It uses two techniques called group convolution and channel shuffle to achieve
this goal. These techniques reduce the number of parameters and operations while
increasing the feature diversity and information flow of the model. ShuffleNet has potential
advantages over other models such as mobileNetv2 for wood species identification.
ShuffleNet is faster and more accurate than MobileNetv2 in various tasks such as image
classification, object detection and face recognition (Zhang et al., 2018). Moreover, as our
experimental results also show, ShuffleNet can adapt better to different data sets and
transfer learning methods.

The limitations and challenges of this study are that collecting, processing and labelling
wood images is a laborious and time-consuming process. Also, situations such as the same
wood species looking different in different regions or different wood species resembling
each other can make identification difficult. There is no standard data set or evaluation
metric for wood species identification with deep learning. Therefore, it is hard to compare
or generalize the results of different studies. Most of the studies have used regional data
bases and focused on a limited number of species. There is a need for a more general
reference database (Ergun & Uzun, 2022).
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CONCLUSIONS
In this study, different deep learning architectures were used to identify wood species.
The architectures used include ResNet, Inceptionv3, Xception, VGGNet, GoogLeNet,
MobileNetv2, DenseNet201 and ShuffleNet. Metrics such as accuracy, sensitivity,
precision, F1-score, specificity and MCC were used to evaluate the performance. Deeper
and more complex models performed better. However, these models required more
computation power and time. The modified ShuffleNet reduces complexity and
computation costs while achieving the same level of success.

Machine and deep learning are powerful techniques that can be used to identify wood
species. However, these techniques need lightweight networks to work on mobile devices.
The results show that the modified ShuffleNet model achieves similar performance to
more complex models while requiring less computation power, making it suitable for
mobile applications. The study demonstrates the potential of deep learning techniques for
identifying wood types using macroscopic images. It also provides a benchmark for future
research in this field. In the next studies, feature extraction and transfer learning methods
can be compared; different types of data sets can be used, the degrees of similarity or
difference between different wood species can be examined; a more general reference data
set can be created; more user-friendly and accessible applications and tools can be designed
for wood species identification.

In future studies, it may be possible to improve the performance of wood species
identification by using different feature extraction methods and different transfer learning
methods (multi-task learning). Also, increasing the generalizability and reliability of wood
species identification by using larger, more diverse and quality data sets or creating
synthetic data sets is an important research topic.
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