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ABSTRACT
Background. The neurotoxic effects of lead in children can have long-lasting and
profound impacts on the developing nervous system. This study aimed to identify a
reliable and easily accessible biomarker to monitor neurological impairment in lead-
poisoned children.
Methods. We analyzed hematological data from 356 lead-poisoned children, compar-
ing themwith age and gender-matched healthy controls.Multivariate logistic regression
and receiver operating characteristic (ROC) analysis were employed to identify and
evaluate potential biomarkers for neurological damage.
Results. Significant changes in erythrocyte parameters were observed in lead-poisoned
children.Upon further analysis, increasedmean corpuscular hemoglobin concentration
(MCHC) and red cell distribution width-standard deviation (RDW-SD) interaction
values were found to be significantly associated with neurological impairment. The
MCHC*RDW-SD interaction model demonstrated an AUC of 0.76, indicating its
effectiveness in reflecting neurological damage. Additionally, the MCHC*RDW-SD
Interaction value showed weak or no correlation with other erythrocyte parameters,
suggesting its independence as an indicator.
Conclusion. Our findings propose the increased MCHC*RDW-SD interaction value
as a robust and independent biomarker for detecting neurological impairment in lead-
poisoned children. This underscores the potential of utilizing specific erythrocyte pa-
rameters for screening the neurotoxic effects of lead exposure in pediatric populations.

Subjects Biochemistry, Hematology, Neurology, Pediatrics, Environmental health
Keywords Mean corpuscular hemoglobin concentration, Lead-poisoned,
Neurological symptoms, Child, Red cell distribution

INTRODUCTION
Historically, several small workshops in Wenzhou, including those specializing in
paint, electroplating, and copper processing, have been significant sources of lead
contamination. Lead exposure can have harmful effects, including impeding physical
development, disrupting the hematopoietic system, altering immune responses, and
affecting neuronal activity (Nain & Kumar, 2020; Vorvolakos, Arseniou & Samakouri, 2016;
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Zhang et al., 2016). Lead poisoning can damage the hematopoietic system, affecting cerebral
hemodynamics and mitochondrial function. This may disrupt brain autoregulation
mechanisms, potentially leading to neurological damage (Kallianpur et al., 2016; Wan et
al., 2020). Children are particularly vulnerable to lead due to their developmental stage and
behaviors like hand-to-mouth actions. Long-term effects of lead exposure in children, such
as cognitive and behavioral issues, are serious and often irreversible. Studies indicate that
lead’s neurotoxicity may increase the risk of criminal behavior in adulthood (Ahmad et al.,
2020; Wright et al., 2021). Considering this, it is imperative to undertake early screening
and intervention measures to protect children from neurological destruction caused by
lead toxicity. Since 2010, our hospital has treated over 3,000 children with lead poisoning,
many exhibiting neurological symptoms such as irritability, headaches, and memory
impairments.

Analyzing erythrocyte parameters such as red cell distribution width (RDW), mean
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and MCHC has
been effective in detecting various diseases, including cancer, injury, periodontitis, and
venous thromboembolism (Bruserud, Aarstad & Tvedt, 2020; Canet et al., 2015; França
et al., 2019; Vayá & Suescun, 2013). These parameters are also useful in identifying
neurological impairments, although most studies have focused on adults (Gong et al.,
2019; Kallianpur et al., 2016; Lee et al., 2017; Oh et al., 2020; Wan et al., 2020). Research on
pediatric neurological conditions is more challenging due to children’s limited cooperation
and the variable reliability of traditional neurological tests (Hobart, 2006).

In this study, we discovered that a higher MCHC*RDW-SD interactions value
indicates the presence of neurological damage in children poisoned by lead. We propose
that MCHC*RDW-SD interactions value could be a promising marker for screening
neurological damage in children affected by lead poisoning.

MATERIALS & METHODS
Patients
This study involved 356 children with lead poisoning (LP) and an equal number of
age- and gender-matched healthy controls (HC), all of whom visited our hospital from
January 1, 2015, to December 31, 2017. Participants for the LP group were selected based
on two criteria: (i) a diagnosis of lead poisoning with a blood lead level of 100 µg/L
or greater and (ii) being under 14 years of age. The LP group excluded patients with
blood-related genetic diseases, such as hemoglobin genetic disorders, thalassemia, sickle
cell anemia, or hemophilia, neurological symptoms caused by other heavy metals, such as
mercury, cadmium, or chromium, and acute bacterial infection. Although initially, 360
lead-poisoned children were enrolled, three were excluded due to acute bacterial infection,
and one due to hemophilia, thus resulting in a final LP group of 356 patients. We assessed
neurological impairment through a retrospective review of medical records, employing
the Ten Question Questionnaire for initial screening and subsequent detailed clinical and
neurological examinations by pediatric specialists (Abuga et al., 2022; Durkin, Hasan &
Hasan, 1995). We also recorded demographic and lead exposure information, including
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age, gender, symptoms, and types of lead exposure, for the LP patients. The HC group
comprised healthy children with blood lead levels <100 µg/L and no health issues detected
in routine check-ups.

MATERIALS AND METHODS
Peripheral venous bloodwas drawn from each child into two separate blood collection tubes
for the measurement of hematology and blood lead levels. The Sysmex XE5000 hematology
analyzer (Sysmex, Kobe, Japan) was used to automatically measure hematology parameters
from whole blood. Additionally, the lead level in whole blood was semi-automatically
determined by the Bohui BH2101s atomic absorption spectrometer (Bohui, Beijing,
China). Briefly, the atomic absorption spectrometer was preheated for commissioning.
The instrument’s software automatically set the parameters to optimal conditions. A
standard curve (r ≥ 0.9950) was then constructed based on the absorbance values of the
corresponding calibration solution. Finally, we added 40 µl of whole blood to 0.36 ml of
diluent, mixed them well, and measured the blood lead concentration after half an hour at
room temperature.

Development of predictive models
In our study dataset, we included both hematology indicators with significant differences
identified in this research and biochemical indicators with significant differences from
another study previously published by our authors (Ye et al., 2021), both derived from the
same cohort of participants, as continuous attributes. Additionally, types of lead exposure
and neurological symptomswere included as categorical attributes. Neurological symptoms
were used as the outcome variable, while all others served as independent variables. During
data processing, we performed integer encoding on categorical variables for subsequent
analysis. The dataset was randomly split into a training set (80%) and a validation set
(20%). We selected three models for prediction: Random Forest, support vector machine
(SVM), and generalized linear model (GLM), all trained using the full range of available
features. The outcome variable for these models was the status of neurological damage in
children with lead poisoning, classified based on clinical assessments and diagnostic results.
Model performance was evaluated on the validation set by calculating the confusion matrix
and receiver operating characteristic (ROC) curve, to select the best predictive model.
We further utilized the recursive feature elimination (RFE) method in conjunction with
the best predictive model to identify the most critical features for predicting neurological
damage in lead-poisoned children. The final selection of features was based on their
importance scores in the model. All analyses and model building were conducted in the R
environment, using packages such as scikit-learn, randomForest, and e1071. We provided
a detailed summary and coefficient analysis of the final logistic regression model, along
with an ROC curve to demonstrate its performance. The best cut-off point for the indicator
with optimal sensitivity and specificity was identified, followed by risk stratification and
subgroup analyses.
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Statistical analysis
Data analysis was conducted using RStudio 4.3.0 (RStudio Team, 2023) andMedCalc 11.4.2
(https://www.medcalc.org/). Distribution normality was assessed using the Kolmogorov–
Smirnov test, with results presented as mean ± SD for normally distributed data and
median (inter-quartile range) for skewed data. Differences between the LP and HC groups
were evaluated using independent Student t-tests for normally distributed variables and the
Mann–Whitney U-test for non-parametrically distributed variables. Categorical variable
differences were analyzed using the χ2 test. Statistically significant indicators were further
analyzed with machine learning techniques. Spearman correlation analysis was employed
to evaluate the independence of these indicators. Statistical significance was set at a P-value
of less than 0.05.

The Medical Ethics Committee of the Second Affiliated Hospital of Wenzhou Medical
University, Yuying Children’s Hospital of Wenzhou Medical University granted Ethical
approval to carry out the study within its facilities (Ethical Application Ref: 2022-K-106-
02).

RESULTS
This study thoroughly analyzed 356 children with lead poisoning and an equal number of
healthy controls matched by age and gender. The median age for both groups was 4.0 years,
with an inter-quartile range of 6.0 years. Males were the majority, comprising 72.11% (257)
of each group. The mean blood lead level in the poisoned group was significantly higher
at 186.47 µg/L, compared to 40.26 µg/L in the control group. Notably, 78.65% of the
lead-exposed children exhibited neurological symptoms such as irritability, hyperactivity,
headaches, and memory impairments. The sources of lead exposure were varied, including
contaminated water (17.98%), traditional skin care products containing lead (23.88%),
environmental pollution (21.07%), and parental occupational exposure (17.13%). In
17.98% of cases, exposure came from multiple sources, and 32.86% of the cases had
unidentified sources of lead exposure.

A comparative analysis of hematology parameters indicated that children exposed
to lead had significantly lower values of monocytes, basophil, hemoglobin, red blood
cell count (RBC), hematocrit (HCT), MCH, MCHC, mean platelet volume (MPV), and
platelet volume distribution width (PDW), and higher white blood cell count (WBC),
neutrophils, eosinophil, red cell distribution width coefficient of variation (RDW-CV),
RDW-SD, platelet, and plateletcrit (PCT) levels compared to healthy children (Table 1).
These hematological differences, combinedwith biochemical indicators showing significant
differences from another study previously published by our authors (Ye et al., 2021), which
also utilized the same cohort of participants, were used to develop predictive models.
The results from three different machine learning models indicated that the generalized
linear model (GLM) algorithm was the most effective for classifying the presence of
neurological impairment (Accuracy 0.84, Kappa 0.43, Table 2), incorporating variables
such as MCHC, RDW-SD, RDW-CV, globulin, types of lead exposure, indirect bilirubin,
and total bilirubin. Further assessment of the association between biomarkers and outcome
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Table 1 Hematologic parameters of the lead-poisoned children and the healthy controls.

Parameters HC (N = 356) LP (N = 356) P

WBC,×109/L 7.97± 2.59 8.57± 3.01 <0.05*

Neutrophils,×109/L 3.43± 1.84 3.88± 1.67 <0.05*

Lymphocytes,×109/L 3.66± 1.56 4.06± 2.14 0.06
Monocytes,×109/L 0.44± 0.17 0.34± 0.19 <0.05*

Eosinophil,×109/L 0.25± 0.22 0.26± 0.32 0.20
Basophil,×109/L 0.04± 0.03 0.03± 0.02 <0.05*

Hemoglobin, g/L 131.17± 9.13 124.32± 10.72 <0.05*

RBC,×1012/L 4.78± 0.36 4.65± 0.34 <0.05*

HCT, % 0.39± 0.03 0.37± 0.03 <0.05*

MCV, fL 81.29± 4.50 80.24± 6.40 0.08
MCH, pg 27.54± 1.74 26.85± 2.39 <0.05*

MCHC, g/L 338.68± 8.41 334.49± 10.61 <0.05*

RDW-CV, % 12.68± 0.86 13.54± 1.21 <0.05*

RDW-SD, fL 37.47± 2.29 43.52± 4.97 <0.05*

Platelet,×109/L 317.97± 68.47 338.63± 89.55 <0.05*

PCT, % 0.28± 0.06 0.29± 0.07 0.29
MPV, fL 9.04± 0.86 8.75± 1.20 <0.05*

PDW, % 15.53± 1.22 14.78± 1.95 <0.05*

Blood lead, µg/L 40.26± 15.60 186.47± 74.31 <0.05*

Notes.
Data are mean± standard deviation.
*A statistically significant difference.
Abbreviations: WBC, white blood cell count; RBC, red blood cell count; HCT, hematocrit; MCV, mean corpuscular vol-
ume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red blood cell
distribution width; CV, Coefficient of variation; SD, standard deviation; PCT, Plateletcrit; MPV, mean platelet volume;
PDW, platelet volume distribution width.

Table 2 Classification report of the machine learning algorithms for classifying neurological damage.

Algorithm Accuracy Kappa Variables

Random forest 0.83 0.41 MCHC, RDW-SD, Types of lead exposure,
RDW-CV, Globulin, Indirect bilirubin, Total protein

Support vector machine 0.82 0.37 MCHC, RDW-SD, Globulin, RDW-CV, Types of
lead exposure, Total bilirubin, WBC

Generalized linear model 0.84 0.43 MCHC, RDW-SD, RDW-CV, Globulin, Types of
lead exposure, Indirect bilirubin, Total bilirubin

Notes.
Abbreviations: WBC, white blood cell count; MCHC, mean corpuscular hemoglobin; RDW, red blood cell distribution
width; CV, Coefficient of variation; SD, standard deviation.

variables revealed that the coefficients for MCHC, RDW-SD, and types of lead exposure
were statistically significant (P-value < 0.05), suggesting a strong association of these
variables with neurological damage in children with lead poisoning Table 3.

To evaluate the effectiveness of various indicators in themodel for detecting neurological
damage in children with lead poisoning, receiver operating characteristic (ROC) analysis
was performed. The results are graphically illustrated in Fig. 1. The values of each indicator
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Table 3 Results of logistic regression analysis: assessing the association of biomarkers with outcome
variables.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 24.49 6.82 3.59 <0.05*

MCHC −0.06 0.02 −3.51 <0.05*

RDW-SD −0.16 0.05 −2.93 <0.05*

RDW-CV 0.20 0.23 0.84 0.40
Globulin 0.09 0.05 1.84 0.07
Types of lead exposure −0.30 0.10 −2.89 <0.05*

Indirect bilirubin 0.76 0.57 1.33 0.18
Total bilirubin −0.52 0.44 −1.18 0.24

Notes.
Abbreviations: MCHC, mean corpuscular hemoglobin; RDW, red blood cell distribution width; CV, Coefficient of varia-
tion; SD, standard deviation.

Figure 1 ROC analysis of the efficiency of indictors in reflecting the presence of neurological damage
in lead-poisoned children.

Full-size DOI: 10.7717/peerj.17017/fig-1

along with their corresponding sensitivity and specificity are as follows: The highest
performance was observed in the interactions model of MCHC, RDW-SD, and types of
lead exposure, with an AUC of 0.80 (sensitivity 76%, specificity 76%). The interactions
model of MCHC and RDW-SD showed a slightly lower AUC of 0.76 (sensitivity 80%,
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Figure 2 Comparison of the rate of neurological impairment in lead-poisoned children groups di-
vided byMCHC*RDW-SD Interactions cut-off value.

Full-size DOI: 10.7717/peerj.17017/fig-2

specificity 67%). For individual indicators, the AUC for MCHC was 0.70 (sensitivity 54%,
specificity 81%), and for RDW-SD, it was 0.68 (sensitivity 55%, specificity 78%).

According to the ROC analysis, a criterion value of 1.046094 for the Interactions
Model of MCHC and RDW-SD was identified to indicate neurological damage in children
with lead poisoning. It was observed that 89.4% (220/246) of the lead-poisoned children
with a higherMCHC*RDW-SD Interactions value (above 1.046094) exhibited neurological
symptoms, significantly more than 53.7% (58/108) of those with a lower value (χ2= 54.72,
p< 0.001, Fig. 2).

Spearman correlation analysis indicated that the MCHC*RDW-SD Interactions value,
apart from showing strong correlation with its parent indicators (MCHC and RDW-SD),
exhibited no or weak correlation (less than 0.5) with other variables (Fig. 3).

Our analysis primarily focused on the interactions model of MCHC and RDW-SD. The
rationale behind this focused approach, including the decision to exclude ‘Types of lead
exposure’ from this stage of the analysis, is further elaborated in the discussion section.

DISCUSSION
Accurately and early detecting neurological impairment in young children is challenging
due to their limited compliance and the unpredictable nature of traditional neurological
tests (Hobart, 2006). Our study finds that a significant 78.65% of children with lead
poisoning exhibit neurological damage, thus highlighting the urgency for effective screening
methods. Crucially, our study establishes a correlation between increasedMCHC*RDW-SD
interaction values and neurological damage in children with lead poisoning. The inherent
advantages of MCHC and RDW-SD as objective, easily accessible, and reproducible
hematological indicators lend them significant potential as reliable biomarkers for screening
neurological damage in children affected by lead.
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Figure 3 Spearman correlation of MCHC*RDW-SD interactions value and other parameters in lead-
poisoned children.

Full-size DOI: 10.7717/peerj.17017/fig-3

Lead toxicity is known to increase the release of premature erythrocytes into circulation,
which have a diminished capacity for oxygen transport (Kiefer & Snyder, 2000; Nishiyama
et al., 2016). Adequate oxygenation is critical for cerebral metabolism and the repair of
neurological damage (Wang et al., 2020). Based on this understanding,we hypothesized that
erythrocyte abnormalities might be indicative of neurological damage in children with lead
poisoning. Indeed, our results identified a correlation between neurological impairment
symptoms in these children and abnormal erythrocyte indicators, notably elevated
MCHC*RDW-SD interaction values. This correlation suggests that these indicators,
reflecting individual erythrocytes’ hemoglobin concentration, could serve as a more precise
measure of cerebral oxygenation, especially considering the oxygen transport mechanism
through the blood–brain barrier (Kornhuber et al., 1987; Lee et al., 2017).

Numerous studies have established a correlation between abnormal hematological
indices and neurological damage in adult patients. For example, elevated mean corpuscular
hemoglobin concentration (MCHC) levels have been significantly associated with various
neurological and cognitive impairments in adults, as demonstrated in research studies
(Gong et al., 2019; Kallianpur et al., 2016; Lee et al., 2017; Oh et al., 2020). Furthermore,
abnormalities in red cell distribution width (RDW) have been linked to neurological
conditions in adults (Raymond et al., 2009). However, it’s crucial to recognize that
children’s hematological profiles are markedly different from those of adults (Chwalba et
al., 2018). Raymond et al. (2009) observed that while RDW levels are significantly lower
in lead-exposed adults, these levels are noticeably higher in 3- and 4-year-old children
exposed to lead, highlighting the differential impact of lead across age groups (Raymond
et al., 2009). Given that our study focused on pediatric participants with lead-induced
neurological damage, it raises the question of whether MCHC and RDW are as effective in
detecting neurological damage in children with lead poisoning as they are in adults.

Ying et al. (2024), PeerJ, DOI 10.7717/peerj.17017 8/13

https://peerj.com
https://doi.org/10.7717/peerj.17017/fig-3
http://dx.doi.org/10.7717/peerj.17017


In our model, the combination of MCHC, RDW-SD, and types of lead exposure was
found to be a strong predictor of neurological impairment in lead-poisoned children,
with an area under the curve (AUC) of 0.80. However, with the aim of identifying
objective hematological indicators, we excluded the variable of lead exposure types and
developed a model based solely on the interaction of MCHC and RDW-SD. This model
also demonstrated considerable predictive ability for neurological impairment (AUC
0.76). With the cut-off value for the MCHC*RDW-SD interaction set at 1.046094, we
observed a significantly higher proportion of neurological damage in children within the
high MCHC*RDW-SD interaction group (89.4%) compared to the low interaction group.
Furthermore, apart from MCHC and RDW-SD, no other erythrocyte parameters showed
more than a weak correlation (less than 0.5) with the MCHC*RDW-SD interaction value,
indicating its relative independence as an indicator. These findings suggest that an increased
MCHC*RDW-SD interaction value is a reliable marker for the presence of neurological
damage in children with lead poisoning.

As the premier children’s hospital in southern Zhejiang, our institution has become
the primary destination for consultations and treatment of lead-poisoned children, as
well as for routine physical examinations. This position has enabled us to conduct a large
case-control study with a substantial sample size. However, there are some limitations
to consider. First, our study does not represent a long-term clinical validation; while
adjustments and analyses were made for age and gender—factors known to influence
hematologic parameters in children (Bohn et al., 2020; Higgins et al., 2020; Tahmasebi et
al., 2020)—other potential confounders such as medication and nutritional status were
not considered. Second, the out-migration of workshops since 2018 has led to a decrease in
the number of new cases of lead-poisoned children, which may affect the contemporaneity
of our research data. Despite these limitations, our findings offer valuable insights for the
screening of neurological damage in lead-poisoned children, which can be applied in other
developing industrial regions.

CONCLUSIONS
In conclusion, our study identified a significant association between increased
MCHC*RDW-SD Interaction values and the commonly observed neurological impairment
in children with lead poisoning. The straightforward and reliable measurement of MCHC
and RDW-SD shows potential for use in the early detection of neurological damage in this
vulnerable group. However, further research is necessary to fully establish the potential of
these indicators in clinical screening protocols.
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