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ABSTRACT
The coupling effects created by transboundary and local factors on ecosystem services
are often difficult to determine. This poses great challenges for ecosystem protection
and management in border areas. To decrease uncertainty, it is crucial to quantify
and spatialize the impact multiple factors have on ecosystem services within different
scenarios. In this study, we identified key transboundary and local factors from a set
of 15 sorted factors related to four main ecosystem services. We employed a Bayesian
Network—Geographic Information System (BN-GIS) model to simulate 90 scenarios
with multiple factors combinations, quantifying and spatializing the coupling effects
on the main ecosystem services. These simulations were conducted in the Pu’er region,
which is situated alongside three countries, and serves as a representative border area
in southwest China. The results showed that: (1) The coupling effects of multiple
factors yield significant variations when combined in different scenarios. Managers
can optimize ecosystem services by strategically regulating factors within specific areas
through the acquisition of various probabilistic distributions and combinations of key
factors in positive coupling effect scenarios. The outcome is a positive coupling effect.
(2) Among the four main ecosystem services in the Pu’er region, food availability and
biodiversity were affected by key transboundary and local factors. This suggests that
the coupling of transboundary and local factors is more likely to have a significant
impact on these two ecosystem services. Of the 45 combination scenarios on food
availability, the majority exhibit a negative coupling effect. In contrast, among the 45
combination scenarios on biodiversity, most scenarios have a positive coupling effect.
This indicates that food availability is at a higher risk of being influenced by the coupling
effects of multiple factors, while biodiversity faces a lower risk. (3) Transboundary
pests & diseases, application of pesticides, fertilizer & filming , population density, and
land use were the key factors affecting food availability. Bio-invasion, the normalized
differential vegetation index, precipitation, and the landscape contagion index were the
key factors affecting biodiversity. In this case, focusing on preventing transboundary
factors such as transboundary pests & disease and bio-invasion should be the goal.
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(4) Attention should also be paid to the conditions under which these transboundary
factors combine with local factors. In the areas where these negative coupling effects
occur, enhanced monitoring of both transboundary and local factors is essential to
prevent adverse effects.

Subjects Ecology, Ecosystem Science, Natural Resource Management, Spatial and Geographic
Information Science
Keywords Coupling effect, Border areas, Transboundary and local factors, Ecosystem service,
BN-GIS

INTRODUCTION
The coupling effect (CE) is a widespread phenomenon in natural systems (Bae et al.,
2019; Nguyen et al., 2020). The concept refers to the mutual interactions between objects
or multiple bodies, which can lead to increasing or decreasing effects (Guo et al., 2020a;
Guo et al., 2020b; Hestand & Spano, 2018). In economic or geographical analysis, CEs are
characterized by the interaction of two or more factors that influence the performance of
the affected system (Song et al., 2017). Numerous studies have concentrated on the effects
of coupling or synergistic relationships between these factors or systems (Ariken et al., 2020;
Fang, Liu & Li, 2016).However, the impact ofmultiple factors on the systemunder different
scenarios is unknown. This creates substantial challenges for the systematic management
of the affected system. This phenomenon is also commonly observed when multiple factors
affect ecosystem services (ESs). An example of this is when food availability significantly
decreases in areas where both water pollution and surface pesticide contamination coexist
(Díaz et al., 2019). To effectively diminish uncertainty influence, it is crucial to precisely
quantify and spatialize the impact of these types of multiple factors on ecosystem services.

Factors selected for analysis of CEs on ESs are often local, such as the terrain (Ganasri
& Ramesh, 2016), soil (Velasquez & Lavelle, 2019), biology (Hu et al., 2012), climate
(Sintayehu, 2018), land use (Hasan et al., 2020; Montoya-Tangarife et al., 2017), or social
and economic factors (Turşie & Perrin, 2020). However, we must consider transboundary
factors such as international trade, poor control of immigration across borders, mass
transport, inappropriate land management, and bio-invasion (López-Hoffman et al., 2010;
Rodríguez-Labajos, Binimelis & Monterroso, 2009; Simberloff et al., 2013) in border areas.
The impacts of these factors on ESs vary in different combination scenarios. To determine
these variations, it is essential to construct a network representing the relationship between
ESs and the factors affecting them under different probability distributions. This will
demonstrate the complex mechanisms of multiple factors affecting ESs.

Some stochastic mathematical techniques have been developed to construct a network
for analyzing multiple factors under different probability distributions and how they affect
ESs. The Monte Carlo simulation based on the interval chance-constrained programming
(MC-ICCP) model has been used to study regional ecosystems under uncertain conditions
(Rosentreter et al., 2021). However, this method cannot characterize spatial heterogeneity
and show the interactions between multiple factors when paired together (Benke et al.,
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2018). Another method, back-propagation artificial neural network (BPANN), can
characterize the interactive relationship of said factors by establishing the network structure
between these elements and is usually a better fit. However, it may fail to explain the exact
relationship between independent and dependent variables (Benmessahel, Xie & Chellal,
2018).

A Bayesian network (BN) combined with a geographic information system (GIS) is
able to quantify and spatialize the CEs of ESs when using multiple factors in different
scenarios. BN is a semi-quantitative statistical model in which the qualitative part of the
process analyzes the multifaceted relationship between selected factors and the resulting
consequences on the affected systems. Quantitative part refers to the quantification of the
presentation of the probability distribution status of each node in the network (Chen &
Pollino, 2012). By establishing a BN, we are able to adjust the probability distribution of
nodes and observe changes in the probability and expected values of ESs in response to
these adjustments. This is especially true when multiple factors affect ESs. The variation
seen in ESs when these factors coupling differs from the sum of their individual effects.
It is critical to calculate the exact values in order to determine the magnitude of the CEs.
This provides precise direction for decision makers when creating specific management
plans (Guo et al., 2020a; Guo et al., 2020b). Moreover, the spatial heterogeneity of the CEs
in different scenarios can be visualized with the BN-GIS model, which is helpful in the
management of ESs.

The CEs of key transboundary and local factors on ESs in border areas will lead to great
differences and uncertainties of ESs in the region with the change of the probability of
occurrence of each factor. Based on the BN-GIS model, this study constructs the BN of
various factors and ESs, sets the arrangement and combination scenarios of key factors
under different occurrence probabilities, and quantifies the changes of ESs under different
scenarios, so as to reveal and quantify the above CEs. The border area examined in this study
is the Pu’er region, which typically shares its borders with three countries in southwestern
China.

MATERIALS & METHODS
Overview of the study area
Location of the Pu’er region
The Pu’er region (99◦09′–102◦19′E, 22◦02′–24◦50′N) is in Yunnan Province, China. It
covers an area of 45,000 km2 and includes nine counties and one district. It is located
in the southwestern part of Yunnan Province in Southwest China (Fig. 1) and shares
the same border with Myanmar, Laos, and Vietnam. Its sub counties, Lancang, Ximeng,
and Menglian have a border with Myanmar with a length of 486 km. Jiangcheng County
borders Laos and Vietnam. The China-Laos border and the China-Vietnam border within
Jiangcheng County are 116 km and 67 km in length, respectively. The Pu’er region has two
national ports and one provincial port: Simao Port, Mengkang Port, and Menglian Port.
In 2013, the total cargo volume of these three ports was 374,000 tons. In 2019 this reached
1,049,000 tons, marking a significant increase in the total cargo volume (China Association
of Port-of-Entry, 2014; China Association of Port-of-Entry, 2020).
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Figure 1 Map showing the location of the Pu’er region.
Full-size DOI: 10.7717/peerj.17015/fig-1

The estimated value of ESs in the Pu’er region administration
The Pu’er region has a subtropical climate influenced by monsoons. The warm, humid
air from the Indian Ocean brings a significant amount of precipitation because of the
southwest monsoon. Due to ample sunlight and humidity, the forest coverage rate in
the Pu’er region is 74.59% (Ma et al., 2020). In 2015, the total value of the ESs in the
district was 742.87 billion yuan; the value per unit area was estimated to be 0.163.7 billion
yuan/km2 and the per capita value was 280.52 thousand yuan. Ren et al. (2021) reported
that the value of the Pu’er region ranked first in Yunnan Province in terms of the total ES
value. Provisioning services account for 3.71% of the total value at 27.53 billion yuan/year.
Regulating services account for 95.13% at a value of 706.82 billion yuan/year. Cultural
services account for 1.16% at a value of 8.64 billion yuan/year.

Transboundary factors and their CEs with local factors
By the end of 2018, the fall armyworm (Spodoptera frugiperda), originally found in
Myanmar, had infested the Pu’er region on a large scale. This insect caused significant
damage to farmland, resulting in reduced yields of major crops such as maize (Wu, Jiang
& Wu, 2019). This reduction was further affected by a strengthened southwest monsoon
in southwest Yunnan. The fall armyworm (S. frugiperda), yellow-spined bamboo locust
(Ceracris kiangsu Tsai), and red imported fire ant (Solenopsis invicta Buren), which possess
strong dispersal abilities, have harmed agriculture and human welfare in many counties in
the Pu’er region through their direct impact as transboundary pests and carriers of disease
(Chen, Zhang & Chen, 2022; Xiao, Zhou & Quan, 2009; Zhang et al., 2019).

In addition, as cross-border trade increases between Yunnan Province and the
neighboring countries (ASEAN Secretariat, 2020), plants, animals, and microorganisms
have been brought into the Pu’er region during trade and cultural exchanges. This has
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posed a greater threat of bio-invasion to the local ecosystem (Zong, Du & Huang, 2020).
Road construction development has exacerbated the situation (Xie et al., 2021). This is an
example of the CEs’ ability to impact biodiversity (Yin et al., 2020).

Research idea
In this study, we define the term CE as a synthesis of transboundary and local factors that
can either increasing or decreasing their total impact on ESs. As a result, CEs have different
influence when compared to the effects caused by a single factor alone.

The hypothesis of the study is that the CE of multiple factors under different
occurrence probabilities and different combination scenarios will cause great changes
in the corresponding ES. Then, we can quantify this coupling effect by observing the values
changes of the ES under different occurrence probabilities and different permutation
combinations of its key factors.

In addition, when there is a difference between the amount of change generated by the
multi-factor CE on the corresponding ES and the sum of the amount of change generated
by the single factor on the corresponding ES, we can use this difference to estimate whether
the CE will have a positive or negative effect on the corresponding ES.

To investigate the CEs of the key factors on ESs in the Pu’er region, we divided the
analysis into three steps, as illustrated in Fig. 2.

In the first step, according to the ecological and environmental characteristics of the
Pu’er region (Pu’er Municipal Environmental Protection Bureau, 2020), we identified four
main types of ESs: food availability (provisioning services), tourism & recreation (cultural
services), soil conservation (regulating services), and biodiversity (supporting services).
We identified the main factors (transboundary and local) of each type of ES based on a
literature review and by consulting local experts. The logical relation network applicable to
the BN was simulated using these factors.

In the second step, each node (including each factor and ES) was evaluated and gridded
as described in both the ‘Valuation of ESs and factors’ section and obtained the conditional
probability table (CPT) according to BN baseline training (Feng et al., 2021). We used the
sensitivity analysis of the BN to determine the key factors and their influencing pathway
on each corresponding role in the ES.

In the third step, we estimated the CEs of transboundary and local key factors on
ESs. Initially, we estimated the expected value (which is a better fit than probability) for
each ES under each key factor by adjusting its probability distribution in the BN. In this
way, we obtained the individual influence of each key factor on the corresponding ES.
Next, we permuted the transboundary and local key factors in different combinations
and simultaneously adjusted the probability distribution of these factors in different
combination scenarios. This allowed us to determine the expected value variations (EVVs)
of the ESs under multiple factors coupling. Within the same combination scenario, we
calculated the total effect by summing the EVVs of the ESs under the influence of each
key factor. Ultimately, the CEs were calculated as the difference between the of the ESs
under multiple factors coupling and the total effect. Based on the changing circumstances
in which ESs are affected by CEs, it is essential to advocate for positive CEs and pay special
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1The basic geographic information
associated with the ESs, such as natural
and cultural tourism, land-use type,
topography, protected area, and others
are shown in Appendix A, Fig. A1.

The ecological & environmental characteristics of the Pu'er region

Food availability

(provisioning)

Soil conservation

(regulating)

Biodiversity

(supporting)

The main ES in the Pu'er region

literature
review

experts
consulting

transboundary 
factors (TF) 

local 
factors (LF)

cultural
interaction

transboundary 
pests & diseases

economic 
transactions

land use type

population 
density

precipitation

… …

Factors sorting
gridded data of 

each factor and ES

Logical relation network

Tourism & Recreation

(cultural)

Key factors & their influencing 

pathway affecting the ES

sensitivity
analysis by Netica

Coupling effect of the transboundary & local 

key factors on ES in the Pu'er region

conditional 

probability table

The 1st step

The 2ndstep

The 3rd step

baseline training 

by Netica

expected value variation （EVV） of ES 

under multiple factors coupling

the sum of EVV of ES under 

each key factor
minus

directed 

acyclic graph

Bayesian Network

Figure 2 The technical process of the study.
Full-size DOI: 10.7717/peerj.17015/fig-2

attention to negative CE impacts, especially when formulating corresponding management
measures. From a spatial perspective, regions with adverse CEs should be the primary focus
for intervention strategies.

Logical relation networks
Selection of the main types of ESs in the Pu’er region
Based on the characteristics1 of the Pu’er region (Pu’er Municipal Environmental Protection
Bureau, 2020), four main types of ESs (Costanza et al., 1997; Xie et al., 2015) were selected
to represent all of the ESs in the study area. The following items were considered:
• Food availability (FA)
Farmland accounts for 12.4% of the total area (Pu’er Municipal Environmental Protection

Bureau, 2020); it is the main source for food production. Food availability is the main
category within the provisioning services.
• Tourism & recreation (TR)
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The Pu’er region has plentiful tourism resources. According to the Institute of
Geographic Sciences and Natural Resources, Chinese Academy of Sciences (https:
//www.resdc.cn/), the Pu’er region contains 397 natural and cultural tourist attractions.
Tourism & recreation represent the main source of cultural services.
• Soil conservation (SC)
This region has a complex geographical topography with high mountains and deep

valleys. The Ailao Mountain, Wuliang Mountain, Weiyuan River, Xiaohei River, and Amo
River experience different degrees of deterioration and soil and water loss. The strategic
environmental assessment of the Pu’er region also showed that soil conservation is the
main tool used to assess ecological areas. Soil conservation represents the main regulating
service in the study area.
• Biodiversity (BD)
Forest covers 74.59% of the Pu’er region. The region contains two national, five

provincial, and seven county level nature reserves. It represents one of the most abundant
and biodiverse regions in China (Myers et al., 2000). Biodiversity is the main supporting
service in the study area.

Factor sorting
After determining themain ESs in the Pu’er region, we chose 15 factors, as shown in Table 1
(all abbreviations for ESs and factors mentioned later are included). Transboundary factors
are marked as T and local factors are marked as L (see Appendix A: Table A1 for a
detailed description of these factors). Transboundary factors refer to the factors that cross
geographical or political boundaries and originate from ecological, economical, societal,
and cultural elements. These have direct and indirect impacts on ecosystem services (Liu
et al., 2020;Mason et al., 2020). As can be seen from Table 1, cultural exchanges, economic
and trade exchanges, land use, population, and other factors impact the various types of
ESs, indicating that there is a complex logical network structure between these factors and
the ESs.

It should be noted that the transboundary pests and diseases factor was distinguished
from the species invasion factor. This was due to the fact that transboundary pests and
diseases had a greater impact on farmland ecosystems, while other types of species invasion
(such as invasive species like Mexican sunflower (Tithonia diversifolia) which is spread
along roads and during cultural exchanges) mainly affect biodiversity.

Establishment of the logical network from correlations of the factors and the
ESs
To characterize the logical network between the factors and the ESs with more accuracy,
we invited five experts for the criteria and carried out three rounds of consultations with
these experts. We identified the factors of each ES using the Delphi method (Vogel et al.,
2019), and combined logical networks built by experts with the existing literatures (Dang
et al., 2019; Feng et al., 2021) to establish the influencing pathways of each factor on the
corresponding ES which reveals the relationship of network.
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Table 1 Transboundary and local factors affected the main ESs in the Pu’er region.

Main ESs Factors (Abbreviation, Transboundary/Local Factor)

Food
availability
(FA)

economic transactions (ET, T); cultural interaction (CI, T);
transboundary pests and diseases (PD, T); land use (LU,
L); population density (POP, L); application of pesticide,
fertilizer, and filming (AP, L); standardized precipitation
index (SPI, L); transportation accessibility (AC, L); slope
(SLO, L); precipitation (PRE, L); temperature (TEM, L).

Tourism &
recreation
(TR)

economic transactions (ET, T); cultural interaction (CI,
T); transportation accessibility (AC, L); slope (SLO, L);
population density (POP, L); land use (LU, L); protected
area coverage (PRO, L).

Soil
conservation
(SC)

economic transactions (ET, T); cultural interaction (CI,
T); slope (SLO, L); transportation accessibility (AC, L);
population density (POP, L); temperature (TEM, L);
precipitation (PRE, L); land use (LU, L); standardized
precipitation index (SPI, L); protected area coverage (PRO,
L).

Biodiversity
(BD)

economic transactions (ET, T); cultural interaction (CI,
T); transboundary pests & diseases (PD, T); bio-invasion
(INV, T); land use (LU, L); population density (POP,
L); transportation accessibility (AC, L); slope (SLO, L);
precipitation (PRE, L); temperature (TEM, L); protected
area coverage (PRO, L); normalized differential vegetation
index (NDVI, L); landscape contagion index (CON, L).

Key factors and establishment of their influencing pathways
Valuation of ESs and factors
The data used in this study were selected (see Appendix A, Table A1), and we have selected
2020 as a reference point in our analysis. Some data of the ESs and factors, such as BD, SC,
and INV were evaluated based on cumulative data over multiple years or were simulated
from public datasets (see Appendix B).

To facilitate training at each node in the BN, we gridded and divided the territory of the
Pu’er region into over 1,000 square units of equal size.

Building BN-GIS model for the quantification of the ESs and factors
BN is a graphical probabilisticmodel with two important components. The first component
is the directed acyclic graph (DAG), which links the child nodes to the parent nodes using
a set of arrows representing the causal relationships between connected nodes (Landuyt,
Broekx & Goethals, 2016). TheDAG is the part of BN used for qualitative analysis, which can
reveal the logical relation networks of the study. The second component is the conditional
probability tables (CPTs) of each node, which quantify the relationship among the variables
and specify the state of the parent node in order to determine the degree of belief for a
particular state (Forio et al., 2020; Pollino et al., 2007). The CPTs are the part of BN used for
quantitative analysis, which is calculated by the baseline training. It supports the sensitivity
analysis and the probability distribution adjustment of each node in the network (van der
Gaag, 1996).
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In this study, we established the BN-GIS model using Netica software, which is a specific
program used widely in the construction and simulation of BN (Johnson, Low-Choy &
Mengersen, 2012; Smith et al., 2007). We used GIS mainly for assisting in the acquisition
of baseline training sample data and for the spatial display of the simulation results (Guo
et al., 2020a; Guo et al., 2020b; Jensen & Nielsen, 2007).

Sensitivity analysis for identifying the key factors and their pathway
After baseline training, the conditional probabilities of the nodes were calculated. The
sensitivity analysis was used to calculate the reduction in the variance of the real value of
the target node, which was based on the conditional probability of each node in relation to
other nodes (Pearl, 1988).

The main ESs of the Pu’er region were set as target nodes. The main ESs comprise
continuous variable nodes. The degree to which other nodes influenced the target nodes
was estimated according to the magnitude of the variance reduction (Wu et al., 2021). This
was then used to select the key factors. We identified the factor nodes by withdrawing the
ES nodes. The factor nodes with the top 25% variance reduction values were determined
to be the key factors using the quartile method (Langford, 2006).

The influencing pathways of each key factor were determined by using the key factor
nodes as the starting points and the corresponding ESs nodes as the ending points in the
logical relation network.

Application of Netica
In this study, Netica was used to integrate the logical relationship networks of the four
ecosystem services into a DAG and to preprocess prior data for the generation of CPTs.
These CPTs, along with the DAG, collectively form the Bayesian network for the ESs.
Netica was also used for sensitivity analysis of the four ESs to identify the key factors and
influencing pathways. Furthermore, it allows for the adjustment of probability distributions
of different factors to obtain posterior probabilities for the ESs.

CEs of the key transboundary factors and local factors
Methodology for the determination of CEs
The formula for CEs is shown in Eq. (1), which was developed based on the physical
chemistry of the multiple factors effect (Hestand & Spano, 2018).

1ESCT −
n∑
1

1ESTf


> 0 (Positive coupling )
= 0 (No coupling )
< 0 (Negative coupling )

(1)

In Equation (1): when a group of factors f1, f2. . . fn (n ≥2) acts together on an ES, the
CEs on the ES is expressed as CT(f1,f2...fn); the individual action of each factor on this ES is
Tf1 , Tf2 . . .Tfn .

The variation of CT(f1,f2...fn) is 1ESCT . The total ES variation, with Tf1 , Tf2 . . .Tfn , is∑n
11ESTf .1ESCT and

∑n
11ESTf are related as shown in Eq. (1).

A positive result indicates that the CEs can increase the total effect of each factor on
the corresponding ES, while a negative result indicates that the CEs can decrease the total
effect of each factor on the corresponding ES.
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Variations of the expected value of ESs
Using BN can establish a quantitative correlation between multiple factors and the
corresponding ES. When we adjust the parametric probability of a factor in a certain
state, that of its corresponding ES in each state will also change. This is considered the ES’s
response to a single factor. When we simultaneously adjust the parametric probability of
multiple factors in a certain state, the parametric change of the ES in each state is seen as
a response to the CEs of multiple factors. When this response is applied to each unit in a
geographic space, there are EVVs of the ESs.

Therefore, when the high state probability of the factors is adjusted to 100 simultaneously,
1ESCT is the mean value of the EVV of the corresponding ES for each grid of the study
area under the CE of multiple factors.

∑n
11ESTf is the sum of the mean values of the EVV

of the ES for each grid of the study area affected by each factor in the same group above,
when one adjusts the highest probability of each factor to 100.

Several permutation and combination scenarios of transboundary and local key factors
were used to calculate the CE of multiple factors in different scenarios. Using this approach,
we can identify which positive CEs should be promoted and which negative CEs should be
closely monitored or addressed through the implementation of appropriate management
measures. In this way, managers can develop effective strategies for the various scenarios
in which ESs are influenced by CEs.

The expression of spatial variation of the EVVs with that of ESs in the main
scenarios
Spatial variations of ESs in some scenarios can effectively illustrate the ecological risk and
ESs management needs of each region. The EVVs of ESs were calculated in each grid in the
Pu’er region using Netica software withmultiple factors combination scenarios. These grids
were expressed spatially using GIS to present the spatial heterogeneity of the corresponding
ES. By depicting the spatial heterogeneity of the EVVs of ESs, we can pinpoint potential
areas where negative CEs can occur. This can assist managers in adjusting management
strategies for specific locations.

RESULTS
Logical relation network of the main ESs
The logical relation network of the main ESs in the Pu’er region was established after
consulting with experts at three different times (Fig. 3).

Key factors and their pathways
Baseline training
Once the DAGs of the nodes had been properly established, we integrated four logical
relation networks into the initial network structure of BN. After evaluating and gridding
each node in the network, the CPT of each node in the network (Fig. 4) was estimated
using baseline training.

Figure 4 shows that the nodes of FA, TR, SC, and BD had high probability distributions
(4.58%, 31.5%, 34.9%, and 21.7%, respectively), moderate probability distributions
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Figure 3 Logical relation network s of the main ESs in the Pu’er region. (Refer to Table 1 for abbrevia-
tions.)

Full-size DOI: 10.7717/peerj.17015/fig-3
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The distribution shown in each box is the value of the quantified factors distributed for that parameter,
with the expected value±the standard deviation shown below the distribution. The arrow connecting the
two nodes means that the two nodes are causally related, which is fully consistent with the linkages be-
tween the nodes in Fig. 3. (Refer to Table 1 for abbreviations.).

Full-size DOI: 10.7717/peerj.17015/fig-4
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Table 2 Results of BN sensitivity analysis.a

FA TR SC BD

Node
(T/L)

Variance
reduction
(%)

Node
(T/L)

Variance
reduction
(%)

Node
(T/L)

Variance
reduction
(%)

Node
(T/L)

Variance
reduction
(%)

FA 100 TR 100 SC 100 BD 100
AP(L) 1.7300 AC(L) 20.8000 PRE(L) 7.8600 INV(T) 1.5000
POP(L) 1.3400 LU(L) 0.9100 SLO(L) 1.1600 NDVI(L) 0.9640
LU(L) 0.8730 PRO(L) 0.3720 LU(L) 1.0600 PRO(L) 0.0710
PD(T) 0.5380 POP(L) 0.0735 PRO(L) 0.6410 CON(L) 0.0527
AC(L) 0.0721 INV(T) 0.0730 NDVI(L) 0.1000 PD(T) 0.0278
ET(T) 0.0693 CI(L) 0.0546 POP(L) 0.0782 PRE(L) 0.0130
SLO(L) 0.0602 SC 0.0426 TR 0.0234 TEM(L) 0.0129
SPI(L) 0.0573 FA 0.0391 CON(L) 0.0209 AC(L) 0.0080
CON(L) 0.0303 CON(L) 0.0263 SPI(L) 0.0107 LU(L) 0.0071
SC 0.0071 SLO(L) 0.0181 FA 0.0077 POP(L) 0.0038
CI(T) 0.0069 NDVI(L) 0.0123 AC(L) 0.0057 ET(T) 0.0007
NDVI(L) 0.0049 ET(T) 0.0041 ET(T) 0.0030 FA 0.0003
TR 0.0045 BD 0.0030 BD 0.0009 SC 0.0002
PRE(L) 0.0015 AP(L) 0.0000 CI(T) 0.0005 SPI(L) 0.0002
TEM(L) 0.0004 SPI(L) 0.0000 AP(L) 0.0000 SLO(L) 0.0001
BD 0.0002 PD(T) 0.0000 INV(T) 0.0000 TR 0.0001
INV(T) 0.0001 TEM(L) 0.0000 PD(T) 0.0000 CI(T) 0.0000
PRO(L) 0.0000 PRE(L) 0.0000 TEM(L) 0.0000 AP(L) 0.0000

Notes.
aThe quartile method (Langford, 2006) was used to screen the key factors. In this study, the non-ES nodes with the greatest
change reduction in the top 25% were selected as the key factors affecting the corresponding ES. These factors are shown in
bold in the table.

(77.4%, 42.0%, 48.4%, and 40.8%, respectively), and low probability distributions (18.0%,
26.5%, 16.6%, and 37.6%, respectively).

Key factors and the main influencing pathways
After the sensitivity analysis of each main ES, the variance reduction of each node to the
corresponding ES was calculated (Table 2). After eliminating the ES node of FA, TR, SC,
and BD, we used the quartile method (Langford, 2006) to identify the key factors of each
ES. There are four key factors for each ES (see abbreviations in bold in Table 2). The
influencing pathway of the key factors was then determined (Fig. 5). There are three key
influencing pathways of FA and four main influencing pathways of TR, SC, and BD.

As shown in Fig. 5, the key factors for FA and BD include both local and transboundary
factors, while SC and TR consist solely of local key factors.

CEs of the transboundary and local key factors
We chose FA and BD with their key factors as targets to analyze the CEs, as they contained
both transboundary and local key factors.
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Figure 5 Key factors andmain influencing pathways. The pathway with the same lowercase letter in
each graph is a main influencing pathway affecting the corresponding ES. For example, in (A) POP→ LU
→ FA is the influencing pathway of FA marked as the letter ‘‘b’’. (Refer to Table 1 for abbreviations.)

Full-size DOI: 10.7717/peerj.17015/fig-5

CEs on FA
The key transboundary factor of FA was PD. The key local factors were AP, POP, and LU.
Because POP and LU were on the same key pathway (pathway ‘‘b’’ in Fig. 5A) and POP
was the parent node of LU, this study selected POP in FA as the main node in pathway ‘‘b’’
to calculate the CEs of the factors.

The transboundary factor PD was combined with the local factors AP and POP. The CE
values of the factors on FA were calculated under each combination scenario. As shown
in Fig. 6, the number of scenarios with a positive CE is significantly less than those with
a negative CE. The highest positive CE is about twice as small as the negative CE. This
indicates that FA is more likely to be affected by a large negative CE.

CEs on BD
The key transboundary factor of BD was INV. The key local factors were CON, PRO, and
NDVI. Because PRO and NDVI were on the same key pathway (pathway ‘‘a’’ in Fig. 5D)
and PRO was the parent node of NDVI, this paper selected PRO as the main node in
pathway ‘‘a’’ of BD to be used in the calculation of the CEs of the factors.

The transboundary factor INV was arranged and combined with the local factors CON
and PRO. The CE values of the factors on BD were calculated for each combination
scenario. As shown in Fig. 7, the number of scenarios with a positive CE is higher than
the number of scenarios with a negative CE. The highest positive CE was greater than the
number of negative CEs. This indicated that BD was more likely to be affected by a large
positive CE.
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Figure 6 CEs on FA in different combination scenarios. The letters H, M, and L in the brackets repre-
sent the high/medium/low states of the factors’ probability distribution, which are shown in the factors’
boxes in Fig. 4. When the probability distribution state was (H), it meant that the probability of this factor
in the H state was 100%. The expected value of FA after baseline training was 3.44e−4. (Refer to Table 1
for abbreviations).

Full-size DOI: 10.7717/peerj.17015/fig-6

Figure 7 CEs on BD in different combination scenarios. The letters H, M, and L in brackets had the
same meaning expressed in Fig. 6. The expected value of BD after baseline training was 27,576.8. (Refer to
Table 1 for abbreviations).

Full-size DOI: 10.7717/peerj.17015/fig-7

Spatial expression of the EVVs of the ESs in the main scenarios
In the transboundary and local factor combination scenarios for FA and BD, only the
scenarios with the largest and smallest CEs were screened out for spatial expression, as
shown in Fig. 8. PD (H) & AP (H) & POP (L) and PD (L) & AP (H) & POP (H) are the
maximum and minimum CE scenarios for FA, respectively. INV (H) & CON (H) & PRO
(M) and INV (M) & CON (L) & PRO (H) are the maximum and minimum CEs for BD,
respectively.

As seen in Fig. 8, the expected value of FA and BD in each grid shows strong spatial
heterogeneity in the Pu’er region. The CE on the ES is reflected in the expected values for all
grids in the Pu’er region. The heterogeneity patterns are helpful for all levels of ecological
management and can be used to adjust conservation strategies for different geographical
features within the region.

For example, in the heterogeneity patterns in Fig. 8B, the strongest negative CE on FA
occurs mainly in Lancang County and Mojiang County; this situation should be avoided
and prevented in these counties. The heterogeneity patterns in Fig. 8C, the region where
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Figure 8 Expected values of FA and BD in different scenarios in each grid. (A) and (B) were the spatial
expressions of the max and min CE scenarios on FA, respectively. (C) and (D) were the spatial expressions
of the max and min CE scenarios on BD, respectively. The colors from dark blue to red in each grid rep-
resent the expected value of FA (A & B) or BD (C & D) from min to max. (Refer to Table 1 for abbrevia-
tions.).

Full-size DOI: 10.7717/peerj.17015/fig-8

BD shows the strongest positive CE, appear mainly in Jingdong County, Simao District,
and Lancang County. This is information these counties should take account into when
considering conservation strategies.
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DISCUSSION
Using combination scenarios as precise support for ES management
The prevailing definitions of the CE in previous ES studies focused on the interactions
between objects or multiple entities (Hestand & Spano, 2018) and the interaction of
multiple factors that influence the performance of the affected system (Song et al., 2017).
In contrast, our study refines the definition of the CE as the effect stemming from the
simultaneous effects of multiple factors on ESs. The study revealed the specific scenarios
in which ESs exhibit positive or negative CE and highlighted the spatial heterogeneity
of these CEs (Benke et al., 2018; Rosentreter et al., 2021). It is easy for users to apply the
trained BN-GIS model to other border areas. The presence of CEs in the Pu’er region has
proven that these effects vary when the probability of the factors occurring changes. By
calculating the positive and negative CEs in different scenarios, we can devise pertinent
management strategies that promote positive CEs. We can also give particular attention to
regions exhibiting negative CEs.

Of the spatial heterogeneity observed among CEs on ESs when using 90 multiple factors
combination scenarios, FA was more likely to produce negative CEs when subjected to the
coupling of three key factors. This negative effect was higher than the positive CE value (Fig.
6), which poses a challenge to the farmland ecosystem and to agricultural development
in the Pu’er region. When PD and AP were high and POP was low, the three key factors
produced the highest positive CE on FA. This indicates that increasing the application of
pesticide, fertilizer, and filming could suppress the effect of transboundary pests & diseases
in areas with low population density. In addition, the results also showed that BD was
more likely to produce a positive CE when the three key factors were combined. Through
the combination scenarios of key factors that generate positive CEs, as seen in Fig. 7, local
managers could focus on improving inter-regional connectivity and increasing the size of
protected areas as appropriate. Figure 8 shows the spatial distribution characteristics of the
CEs of the key factors acting on FA and BD under the two extreme scenarios (scenarios
where positive and negative CEs are strongest). It illustrates that there were large spatial
differences in the CEs of key factors on the ESs in different scenarios. Managers could
develop control measures for these key factors based on such regional differences.

Transboundary factors vary regionally
This study places more emphasis on transboundary factors, rather than local factors. In
total, four transboundary factors were listed: INV, PD, ET, and CI (Figs. 3 and 5). ET, CI,
and PD are all parent nodes in the BN, while INV functions as both a child and parent node.
This distinction indicates that ET, CI, and PD are a source of transboundary risk, whereas
INV represents the interference pressure exerted on the ecosystem by these risks (Gong et
al., 2021). The sensitivity analysis conducted on the BN model revealed that ET and CI
were not key factors and therefore, their influence is limited. On the other hand, PD as a
source of risk for transboundary pests and diseases, effectively represents a refined form of
bio-invasion. This primarily affects agricultural production and subsequently affects ESs
such as FA. According to the results of this study, the risk of bio-invasion is still the main
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transboundary factor significantly impacting the local ecosystem. These results align with
existing research in this area (Facon et al., 2006; Gilioli et al., 2017; Yin et al., 2020).

The sensitivity analysis showed that ET and CI were not key factors of the four ESs in the
Pu’er region. However, it is worth noting that the Pu’er region may not be a typical border
area given the extensive transboundary social and ecological impacts associated with the
economic and cultural interactions that occur in the region. Therefore, itmay not be an ideal
region to use for analyzing the influences of ET andCI.Ala-Hulkko et al. (2019) investigated
the impact national borders have on ESs by restricting the food trade within nation-state
borders. Cultural interactions could promote tourism in border areas and contribute to the
conservation of BD (Dunets, Ivanova & Poltarykhin, 2019). Sometimes CI did not directly
affect the ESs. For example, Kiswahili is used as an intercultural communication tool for
Kenya-Uganda transboundary trade (Odhiambo, Losenje & Indede, 2022). With the aid of
CI, ET can indirectly impact the production and livelihood of individuals in border areas,
subsequently influencing local ESs (Ala-Hulkko et al., 2019). Besides cultural differences,
economic or other factors could lead to differences in environmental awareness between
the two types of residents living on both sides of the border but in the same natural
ecosystem. This could result in estimating the wrong value to be placed on some ecological
environments (Sagie et al., 2013).

The ET and CI in the Pu’er region had less impact on the ESs mainly because: (1) The
total border trade volume was low; for example, the trade volume of the Simao port in
the past three years was minimal. The neighboring countries are less developed and China
exports to these countries. This leads to a relatively weak economic and trade impact on
China. (2) CI of neighboring countries in the Pu’er region wasmore impacted by the people
from neighboring countries engaging in agricultural labor in the Pu’er region. Therefore,
it had little influence on the tourism & recreation services in the Pu’er region. (3) The
influence of ET and CI often extend from the more developed side to the less developed
side of the border, such as when the ET and CI of the United States affects Mexico (Norman
et al., 2012), Western Europe affects Eastern Europe (Ala-Hulkko et al., 2019), and China
affects Southeast Asia and North Korea (Liu et al., 2020).

In addition, the influence of transboundary factors on ESs decreases with distance,
as seen in the PD. (Wu, Jiang & Wu, 2019). However, not all transboundary factors are
associated with spatial distance, as ET requiresmore consideration of the economic distance
of each location (Wang et al., 2020).

Uncertainty of the study and prospect
Although this study reveals important discoveries, it also has limitations. First, the CEs
of FA in the multiple factors combination scenarios have low interpretability because the
current data used to quantify factors was under-represented. Second, the BN-GIS model
can only provide the expected value of the ESs. This might be different from the true value
of the ESs when influenced by the CEs, as the model focused more on the change in the
conditional probability of each node. Third, the study focused on the analysis of the CEs
between the factors on a regional scale, possibly ignoring transboundary ecological risks
affecting the ESs on a smaller scale.
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Notwithstanding its limitations, this study is promising. This study did not consider the
factors of a single ES (Dang et al., 2019; Guo et al., 2020a; Guo et al., 2020b; Omer, Pascual
& Russell, 2010) but established a logical network of four types of ESs and their influencing
factors. It then analyzed the CEs of multiple key factors on the ESs. The advantage of this
approach was that it not only showed the relationship between transboundary and local
factors on different ESs but also reflected the complexity of the regional social ecosystem.
This makes the simulation more practical. The study also provided a tool for detecting the
spatial heterogeneity of the CE on the ES, which could aid local managers in developing
management strategies in different regions.

Future research on the trade-offs and synergies between ESs may in fact demonstrate
even greater impact. With limited resources, managers must seek to improve the overall
ESs rather than a single ES. This means meeting the needs of many stakeholders rather
than a single stakeholder. The experimental research results will hopefully serve as useful
feedback to guide improvements in ecological risk prevention and management in border
areas.

CONCLUSIONS
The study quantifies the CEs of key factors on ESs in border areas under different scenarios.
The results confirm the hypothesis of this study. The impact of transboundary and local
key factors on ESs varies greatly under different scenarios. This shows that even if the
factors remain the same, only changing the probability of occurrence of each factor can
make a huge difference in regional ESs. This poses a great challenge to regional ecological
management. Managers should not only identify the factors that affect an ES, but also
determine whether the combination of factors under different probability of occurrence
has a positive or negative impact on the ES. The positive coupling effect of multiple
factors can effectively improve the corresponding ESs. Negative coupling will reduce the
corresponding ESs. Based on the method provided in this study, managers can determine
the occurrence probability and combination scenario conditions of positive CEs, and
guide the management and control of specific influencing factors. Managers can also
guide regions with low EVV to improve ESs by controlling the occurrence probability
of influencing factors in combination with the spatial pattern characteristics of EVV in
positive coupling scenarios.

In addition, the study also analyzed the CEs of transboundary factors and local factors
on ESs in border areas. It has a great guiding on the prevention and control of ecological
risks in border areas. The key transboundary factors affecting ESs vary across border
area. In the Pu’er region, it is noteworthy that PD and INV are pivotal factors among
the transboundary influences on ESs. It is imperative to remain vigilant regarding these
transboundary ecological risks. The Pu’er region, characterized by frequent trade with
neighboring countries, is less impacted by ET and CI. However, ET and CI on ESs should
not be considered less significant for other border regions. Typically, the effects of ET and
CI tend to radiate from the more developed side to the less developed side of the border.

In this study, while quantifying the multi factor CEs in the border area, there are still
some problems such as complex logical network structure and lack of interpretability

Qiao et al. (2024), PeerJ, DOI 10.7717/peerj.17015 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.17015


of model results. These problems still need to be further optimized and improved by
exploring the impact mechanism of ESs. In addition, the trade-offs between ESs in border
areas should also be valued and explored. This will be an important part of improving the
overall resource utilization efficiency in the region.
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