

New records of immature aquatic Diptera from the Foulden Maar Fossil-Lagerstätte, New Zealand, and their biogeographic implications (#93110)

1

First submission

Guidance from your Editor

Please submit by **29 Dec 2023** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

14 Figure file(s)

Download and review all files
from the [materials page](#).

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
- Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

New records of immature aquatic Diptera from the Foulden Maar Fossil-Lagerstätte, New Zealand, and their biogeographic implications

Viktor O Baranov ^{Corresp.}¹, Joachim T. Haug ^{2,3}, Uwe Kaulfuss ⁴

¹ Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, Andalucia, Spain

² Biocenter, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany

³ GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany

⁴ Department of Animal Evolution and Biodiversity, Georg-August Universität Göttingen, Göttingen, Lower Saxony, Germany

Corresponding Author: Viktor O Baranov
Email address: viktor.baranov@ebd.csic.es

Background. The fauna of immature aquatic dipterans is described from freshwater diatomites of the Foulden Maar Fossil-Lagerstätte, New Zealand. Among Chironomidae, one pupal morphotype is attributed to *Coelotanypus* (Tanypodinae), today absent from the New Zealand and previously unknown from the fossil record in Australasia. **Methods.** This study is based on examination of the 30 specimens of the immature diptera from Foulden Maar. **Results.** One pupal morphotype and one larval morphotype are placed into Chironominae and one additional morphotype into Chironomidae incertae sedis. Chaoboridae are represented by a pupal morphotype congeneric or very close to the extant *Chaoborus*, today globally distributed except for New Zealand. Additional specimens are likely larvae and puparia of brachyceran flies but cannot be identified to a narrower range. These finds document an aquatic dipteran fauna in New Zealand in the earliest Miocene and highlight Neogene extinction as a factor in shaping the extant Dipteron fauna in New Zealand. Immature aquatic dipterans were a common and likely ecologically important component of the early Miocene Foulden Maar lake. Preservation of larvae and pupae may have been promoted by diatomaceous microbial mats and the light color of the diatomite likely facilitated spotting of these minute fossils in the field.

1 New records of immature aquatic Diptera from the Foulden 2 Maar Fossil-Lagerstätte, New Zealand, and their 3 biogeographic implications

4

5 Viktor Baranov¹, Joachim T. Haug^{2,3}, Uwe Kaulfuss⁴

6

7 ¹Estación Biológica de Doñana-CSIC/Doñana Biological Station-CSIC, Seville, Spain8 ²Biocenter, Ludwig-Maximilians-University Munich, Germany9 ³GeoBio-Center, Ludwig-Maximilians-University Munich, Germany10 ⁴Department of Animal Evolution and Biodiversity, Georg-August-University Göttingen,

11 Germany

12

13 Corresponding Author:

14 Viktor Baranov

15 Estación Biológica de Doñana-CSIC / Doñana Biological Station-CSIC

16 Avd. Americo Vespucio 26, 41092 Seville, Spain

17 Email address: viktor.baranov@ebd.csic.es

18

19 Abstract

20 **Background.** The fauna of immature aquatic dipterans is described from freshwater diatomites of
21 the Foulden Maar Fossil-Lagerstätte, New Zealand. Among Chironomidae, one pupal
22 morphotype is attributed to *Coelotanypus* (Tanypodinae), today absent from the New Zealand
23 and previously unknown from the fossil record in Australasia.

24 **Methods.** This study is based on examination of the 30 specimens of the immature diptera from
25 Foulden Maar.

26 **Results.** One pupal morphotype and one larval morphotype are placed into Chironominae and
27 one additional morphotype into Chironomidae incertae sedis. Chaoboridae are represented by a
28 pupal morphotype congeneric or very close to the extant *Chaoborus*, today globally distributed
29 except for New Zealand. Additional specimens are likely larvae and puparia of brachyceran flies
30 but cannot be identified to a narrower range. These finds document an aquatic dipteran fauna in
31 New Zealand in the earliest Miocene and highlight Neogene extinction as a factor in shaping the
32 extant Dipteron fauna in New Zealand. Immature aquatic dipterans were a common and likely
33 ecologically important component of the early Miocene Foulden Maar lake. Preservation of
34 larvae and pupae may have been promoted by diatomaceous microbial mats and the light color of
35 the diatomite likely facilitated spotting of these minute fossils in the field.

36

37 Introduction

38 The isolation of New Zealand throughout geological time has resulted in an extremely unique
39 and highly endemic flora and fauna of this southern land mass (Hennig, 1960; Brundin, 1966;
40 Giribet & Boyer, 2010; Buckley, Krosch & Leschen, 2015). This uniqueness is particularly
41 visible in the insect fauna, which contains many unusual radiations, relictual or depauperate
42 lineages and unusual ecologies (Buckley, Krosch & Leschen, 2015; Macfarlane et al., 2010, and
43 references therein). For instance, 91% of the ~3200 species of true flies (Diptera) known from
44 New Zealand are endemic, illustrating just how unique the history of this biota is (Hennig, 1960;
45 Macfarlane et al., 2010).

46 True flies play an important role for both ecosystems and humanity, due to their role as
47 pollinators, decomposers of organic matter, parasitoids of agricultural pests and vectors of
48 diseases (Marshall, 2012). One of the most intriguing phenomena in the New Zealand fauna is
49 the absence of some highly mobile, widely distributed insect groups (Hennig, 1960). Such an
50 absence is even more perplexing when these groups are present in Australia (Colles, 1986). One
51 notable example is the group of phantom midges (Chaoboridae, Diptera). Globally distributed,
52 though species-poor, phantom midges are important ecosystem engineers and principal plankton
53 predators (Cook, 1956). Their absence from New Zealand freshwater ecosystems is apparently
54 one of the causes for the unusual composition of the local plankton communities (Chapman &
55 Green, 1987).

56 Another interesting case is the small, but highly endemic fauna of non-biting midges
57 (Chironomidae) of New Zealand (Freeman, 1959; Hennig, 1960; Brundin, 1966; Macfarlane et
58 al., 2010; Bothroyd & Forsyth, 2011). Non-biting midges are among the most widely distributed
59 free-living insects in the world, with their representatives inhabiting depths of Baikal lake to
60 1000 m, caves up to 980 m deep, mountain regions of the Himalayas over 5600 m altitude as
61 well as arctic wastes and continental Antarctica (Kohshima, 1984; Armitage, Cranston & Pinder,
62 1995; Ferrington, 2008; Andersen et al., 2016). Non-biting midges are important ecosystem
63 engineers, influencing flux of organic matter and energy in both aquatic and terrestrial
64 ecosystems, and they are important for carbon sequestering and water purification in freshwater
65 and brackish ecosystems (Armitage, Cranston & Pinder, 1995; Gratton, Donaldson & Zanden,
66 2008; Baranov, Kvifte & Perkovsky, 2016; Herren et al., 2017). In New Zealand non-biting
67 midges are represented by 149 species, 94% of them endemic (Macfarlane et al., 2010). This
68 relatively high diversity and diverse ecological adaptations among Chironomidae relative to

69 other dipteran groups suggest a long history of Chironomidae in New Zealand (Buckley, Krosch
70 & Leschen, 2015). However, numerous ingroups of Chironomidae (“genera” – see comment on
71 rankless taxonomy in the methods section) that are present in Australia are missing in New
72 Zealand (Hennig, 1960; Ashe & O’Connor, 2009; Borkent, 2014). Despite numerous studies
73 highlighting trans-Tasman biogeographic connections (Brundin, 1966; Cranston et al., 2010;
74 Krosch et al., 2011; Krosch et al., 2022), more paleontological data are needed to elucidate the
75 biogeographic history of non-biting midges and, indeed, the rest of the New Zealand dipteran
76 fauna.

77 Currently, the fossil record of New Zealand dipteran consists of a single larvae of *Dilophus*
78 *campbelli* Harris, 1983 (Bibionidae) from the Eocene, as yet formally undescribed (but
79 mentioned and to a degree figured) larvae, pupae and adults from two Miocene maar lakes
80 (Kaulfuss et al., 2015, 2018a) and several formally undescribed (but mentioned and to a degree
81 figured) representatives of Cecidomyiidae, Ceratopogonidae, Chironomidae and Mycetophilidae
82 from late Oligocene–early Miocene ambers (Schmidt et al., 2018). Additionally, there are
83 subfossil records such as larvae of *Corynocera duffi* Deevey, 1955 (Chironomidae) and
84 associated non-brachyceran dipteran larva from Holocene swamp deposits (Deevey, 1955). With
85 such a relatively sparse fossil record it is difficult to attain a good understanding of the
86 biogeographic history of Diptera in New Zealand.

87 The Foulden Maar Fossil-Lagerstätte in southern New Zealand preserves a diverse flora and
88 fauna that provides insights into the diversity and ecology of a rainforest/lake ecosystem in
89 southern Zealandia in the early Miocene (23mya) (Lee et al. 2016; Lee, Kaulfuss & Conran,
90 2022). Among the insect fauna from Foulden Maar are representatives of groups with aquatic or
91 semi-aquatic life cycles, including dragonflies (Odonata, cf. Aeshnidae), caddisflies
92 (Trichoptera), water scavenger beetles (Hydrophilidae), flies (Diptera) and alderflies (Sialidae),
93 the latter now absent from New Zealand, but present in Australia (Kaulfuss et al., 2015; Baranov
94 et al., 2022a). Although the Foulden Maar fossil biota presents a rare opportunity for deciphering
95 biogeographic connections of New Zealand’s flora and fauna (e.g. Lee, Kaulfuss & Conran,
96 2022), the aquatic insects of this Miocene lake ecosystem have been little studied.
97 Here, we describe new records of aquatic dipterans from the Foulden Maar fossil deposits and
98 discuss these with regard to their paleoecology and to biogeographic patterns in the extant
99 aquatic Diptera fauna of New Zealand. These records are allowing to further test existing

100 biogeographical hypothesis on fully or partially subgmerged New Zealand (Giribet & Boyer,
101 2010).

102

103 GEOLOGICAL SETTING

104 Foulden Maar is a partly eroded maar-diatreme volcano of the Dunedin Volcanic Group, an
105 intracontinental volcanic field in the east Otago region, South Island of New Zealand, which was
106 intermittently active between 25 and 9 mya (Scott et al., 2020). The Fossil Lagerstätte is located
107 on private farmland east of the township Middlemarch. The principle fossiliferous lithology is a
108 varved diatomite that accumulated in small maar lake over a period of at least 130.000 years.
109 Sedimentological and geophysical investigations indicate that the maar lake occupied a semi-
110 circular crater up to 2400 m in diameter and 350 m deep, and was disconnected from streams and
111 rivers by a rim of tephra deposited around the crater (Fox et al., 2015; Jones et al., 2017;
112 Kaulfuss, 2017). Lateral continuous, undisturbed lamination of the diatomite in combination with
113 the preservation of organic material and the absence of benthic organisms and bioturbation
114 suggest meromictic conditions, with a mixed, well-oxygenated upper water body and an anoxic
115 lower water column and lake floor unsuitable for aquatic life (Lindqvist & Lee, 2009). The
116 slopes of the lake basin were generally very steep but swampy, shallow water edges during later
117 stages of the lake's existence are evidenced by pollen from bur reeds, bulrushes, flaxes, jointed
118 rushes and sedges in the diatomite (Mildenhall et al., 2014a). Plant fossils in the diatomite
119 include palynomorphs, leaves, flowers, fruits, seeds and bark from plants of a diverse,
120 Lauraceae-dominated, warm-temperate to subtropical rainforest growing on fertile volcanic soils
121 around the lake, and a pollen signal from regional forests dominated by *Nothofagus* (southern
122 beech), *Casuarina*, podocarps and araucarians in the hinterland (Bannister, Conran & Lee, 2012;
123 Mildenhall et al., 2014a; Lee et al., 2016; Lee, Kaulfuss & Conran, 2022). The fossil fauna
124 recovered to date includes mygalomorph spiders (Selden & Kaulfuss, 2018), insects of the
125 groups Odonata, Blattodea, Hemiptera, Megaloptera, Coleoptera, Hymenoptera, Trichoptera and
126 Diptera (Kaulfuss et al., 2015; Baranov et al., 2022a), and larval to adult specimens of *Galaxias*
127 *effusus* Lee, McDowall & Lindqvist, 2007 in the Southern Hemisphere family Galaxiidae
128 (Teleostei) (Lee, McDowall & Lindqvist, 2007; Kaulfuss et al., 2020).

129 The age of the Foulden Maar biota is earliest Miocene (23 ma), Aquitanian, New Zealand local
130 stages late Waitakian–early Otaian, pollen zones: latest uppermost *Rhoipites waimumuensis*
131 Zone to lower early *Proteacidites isopogiformis* Zone (Mildenhall et al., 2014a).

132

133 **Materials & Methods**

134 **Studied Material**

135 The 30 immature individuals of flies described herein (Figs. 1–6, 8–14) were collected in mining
136 pit A (45.5269°S, 170.2191°E) at Foulden Maar (see Kaulfuss, 2017, fig. 1C), which exposes a
137 ca. 10 m thick succession of fossiliferous diatomite representing a depositional period of ca.
138 18.000 years. The site is registered as I43/f8503 in the New Zealand Fossil Record File
139 (<https://fred.org.nz/>). Specimens were found randomly distributed throughout the stratigraphic
140 section (no mass mortality layers were observed) and are always preserved on light-coloured
141 diatomaceous laminae, which resulted from diatom blooms in warm seasons. No specimens were
142 found in the dark, organic-rich laminae deposited in the cooler seasons.

143 All individuals are pale to dark brown, strongly compressed (compacted) specimens, mostly
144 preserved as part and counterpart, although often only the part exhibits useful morphological
145 details, whereas the counterpart is a faint outline or impression only. One specimen, mounted on
146 a glass slide (Fig. 7), was recovered from the carbonaceous residue after dissolving the silica-
147 component of diatomite samples with hydrofluoric acid (N. Butterfield, 2022, pers. comm.). All
148 specimens are stored in the Museum of the Geology Department, University of Otago (OU);
149 identifiers provided below consist of an OU collection number followed by an original field
150 number in brackets.

151

152 **Imaging**

153 Specimens were photographed with a Canon T3 camera attached to a Nikon SMZ1000
154 stereomicroscope. Wetting the specimens in ethanol improved the contrast between specimens
155 and the diatomite matrix. The single slide-mounted specimen was imaged using a Keyence BZ-
156 9000 fluorescence microscope with either 4×, 20×, 40× or 100× objectives. We have conducted
157 observations using an emitted wavelength of 532 nm since it was the most compatible with the
158 fluorescence capacities of the fossil specimen (Haug et al., 2011). Stacks of images were

159 digitally computed to single in-focus images using CombineZP (GNU) or Photoshop CS5.1
160 software (Adobe Systems Inc.).

161

162 **Morphological terminology and identification**

163 In the course of our work we normally do not use Linnean ranks ('rankless taxonomy')
164 (Baranov, Schädel & Haug, 2019; Baranov et al., 2022b; Haug et al., 2020). Ranks (or
165 "categories" sensu Mayr, 1942, p. 102) are arbitrary constructs of the human-imposed structure
166 that does not hold 'comparative values' (Mayr, 1942, p. 291, line 3). In our view such arbitrary
167 constructs do not contribute to facilitation of the understanding of phylogenetic relationships
168 between the organisms, including both species and higher phylogenetic groups, instead we are
169 using rankles hierarchy of the monophyletic groups (Haug et al., 2020).

170

171 The morphological terminology is based on Marshall et al. (2017) and Borkent & Sinclair
172 (2017), and specifically follows Borkent (2012) for culicomorphan pupae anatomy. In this paper
173 we describe morphotypes, i.e., distinct morphological groups of organisms. Members of each
174 morphotype are here assumed to represent the same species, although this is often impossible to
175 ascertain for the fossils. Most of the fossils dealt with herein are pupal exuviae (integument left
176 after the eclosion of the adult fly) but for convenience we treat all pupae fossils and their
177 integuments as "pupae".

178 Specimens were identified using the keys provided by Wiederholm (1986), Langton (1991),
179 Sæther (1970, 1997), Roback (1971), Forsyth (1971), Cook (1956), Colles (1983) and
180 Winterbourn, Gregson & Dolphin (1989).

181

182 **Results**

183 **Systematic paleontology**

184

185 DIPTERA Linnaeus, 1758

186 CHIRONOMIDAE Newman, 1838

187 TANYPODINAE Thienemann & Zavřel, 1916

188 COELOTANYPUS Kieffer, 1913

189 *COELOTANYPUS* sp.

190 Material: specimens OU46609 (191), OU46626 (208), OU45541 (137), OU44933 (28),
191 OU44930 (23), OU46641 (223) (Figs. 1–3).

192 Pupa. Habitus. Medium-sized. All specimens preserved in dorso-ventral aspect, thus precluding
193 detailed observation of head and legs. Body length 4.5–5.4 mm ($n = 2$); abdomen length 2.9–3.7
194 mm ($n = 2$); length of thorax 1.6–1.7 mm ($n = 2$), body differentiated into presumably 20
195 segments, ocular segment plus 19 post-ocular segments (Figs. 2A, B); anterior part of body
196 composed of head and thorax, visible as single semi-circular structure; thorax with wings and
197 ambulatory appendages (legs) (Figs. 1A–F, 2A–B); ocular segment and post-ocular segments 1–
198 5 (presumably) forming a distinct capsule (head capsule); mouthparts located ventrally and thus
199 not available for observation (Figs. 1A–F). Pupal cuticle of the head with prominent frontal
200 apotome (frontal protrusion of the head), apparently bearing a pair of strong frontal setae (only
201 right one is visible), sitting on the short tubercle (Fig. 3A).

202 Thoracic segments forming a single semi-globose structure closely enveloping the head of the
203 pupa. Prothorax bears thoracic horns (modified first spiracle) (Figs. 2A–B, 3A, C, D), these
204 mostly cylindrical, 4.7 times as long as wide, with a total length of 400 μm ($n=1$, only one horn
205 was preserved in a good condition) (Figs. 3C, D). Widest point of thoracic horn at base of
206 plastron plate (surface for retention of the air film, providing a gas exchange interface), overall
207 shape of the horn tapers slightly towards the base (Figs. 3C, D). Plastron plate ovoid, 90 μm long
208 and almost 90 μm wide. (Figs. 3C, D). Thorax is very wrinkly, bearing no distinct sclerotized
209 protrusions (i.e. thoracic combs, *sensu* Saether, 1980). Wings and their cuticular sheath barely
210 visible, hidden under the body, only points of the wing attachment to the mesothorax discernible
211 (Figs. 2A, B).

212 Abdomen (posterior trunk). Abdominal cuticle extremely wrinkly. First unit of abdomen with
213 very strongly pigmented scar (Figs. 1A–F, 2A, B). Setae of abdominal units not preserved, but
214 sturdy teca of some of them can be seen on some abdominal tergites. Abdominal tergites 3 and
215 4 bearing teca of five dorsal setae each, abdominal tergite 5 with at least one pair of teca of
216 dorsal setae (Fig. 2A). Traces of lateral setae on abdominal units 2–6 not discernible. Abdominal
217 unit 8 with traces of bases of some lateral setae. Trunk end (abdominal unit 9 plus remnants of
218 abdominal unit 10) bears anal lobes (paddles) (Fig. 2A), these semi-circular, broadly rounded,
219 1.6 times longer than wide. Anal lobes bearing a fringe of soft, short setae, only small number of
220 which are preserved (Figs. 2A, B, 3D).

221

222 Taxonomic attribution. These specimens are representatives of Chironomidae based on the
223 following combination of pupal characters: thoracic horn with strong plastron plate; strongly
224 sclerotized arches from the anterior parts of the abdominal tergites; terminus of trunk without
225 articulated terminal paddles (Figs. 2A, 3D). Within Chironomidae, this morphotype most closely
226 resembles representatives of the extant group *Coelotanypus* Kieffer (Tanyopodinae) based on the
227 following combination of characters: thoracic horn mostly cylindrical, with ovoid plastron plate;
228 plastron of the thoracic horn occupying about 10% of the internal volume of the entire structure;
229 sac of the thoracic horn not perforated (Fig. 3C); thoracic comb absent (Fig. 3A), abdominal unit
230 one with a strong longitudinal, sclerotized mark (scar) present on the tergite (Fig. 2A); no lateral
231 filaments visible on abdominal units 2–6 without fringe of setae; anal lobes broadly rounded,
232 with numerous lateral setae, forming a fringe (Fig. 3D). Anal lobes completely confluent and
233 with overlapping inner edges (Fig. 3A) (Fittkau & Murray, 1986).

234

235 Remarks. *Coelotanypus* has so far not been recorded from New Zealand, but *Coelotanypus*
236 *wirthi* Freeman, 1961 has been reported from Australia (Freeman, 1961; Ashe & O'Connor,
237 2009; Cranston, 2019). There are no extant representatives of Tanyopodinae with morphologically
238 similar pupae in New Zealand, but Forsyth (1971) reported a number of species of
239 “*Anatopynia*”, of which some share a certain degree of similarity with this fossil morphotype. In
240 particular, “*Anatopynia*” *antarctica* (Hudson, 1892) shares with the new fossil morphotype the
241 broad, rounded shape of the anal lobes and the general structure of the thoracic horn (Forsyth,
242 1971: fig. 2). However, “*A.*” *antarctica* has prominent distal protruding points on the anal lobes,
243 which are absent from the new morphotype from Foulden Maar. Additionally, the inner edges of
244 the anal lobes are overlapping in the new morphotype (Fig. 3A), which is characteristic for
245 representatives of *Coelotanypus*, but not for any of the representatives of “*Anatopynia*” recorded
246 from New Zealand (Forsyth, 1971; Fittkau & Murray, 1986). The overall shape of the anal lobes
247 and thoracic horns is most similar to *C. scapularis* (Loew, 1866), distributed in the modern
248 Nearctic and Neotropics (Roback, 1974; Ashe & O'Connor, 2009).

249

250 CHIRONOMINAE Macquart, 1838

251

252 Chironominae morphotype 1
253 Material: OU47058 (252), OU46654 (236), OU46645 (227), OU46627 (209), OU46625 (207),
254 OU46620 (202), OU45553 (149), OU45543 (139), OU47051 (245) (Figs. 4–6)
255 Pupa. Habitus. Medium-sized, coma-shaped (in lateral aspect). Most of the specimens preserved
256 in dorso-ventral aspect, thus precluding detailed observation of head and legs. Body length 4.7–
257 6.2 mm (mean = 5.6 mm, sd = 430 μ m) (n = 8); abdomen length 3.6–4.5 mm (mean = 4.2 mm,
258 sd = 355 μ m) (n = 8); length of thorax 1.3–2.3 mm (mean = 1.6 mm, sd = 330 μ m) (n = 8), body
259 differentiated into presumably 20 segments, ocular segment plus 19 post-ocular segments (Figs.
260 4A–H, 5A–H, 6A–E); anterior part of body composed of head and thorax, visible as single semi-
261 circular structure; thorax bears wings and ambulatory appendages (legs) (Figs. 6A, B); ocular
262 segment and post-ocular segments 1–5 (presumably) forming a distinct capsule (head capsule);
263 mouthparts located ventrally and thus not discernible (Figs. 5A–H, 6A, B). Pupal cuticle of head
264 with prominent frontal apotome (frontal protrusion of the head). Frontal apotome bears a pair of
265 strongly curved, conical cephalic tubercles with a pair of strong frontal setae (Figs. 6A–C).
266 Thorax with three pairs of ambulatory appendages (fore-, mid- and hindlegs) on the pro-, meso-,
267 and metathorax, respectively. Thoracic segments forming a single semi-globose structure closely
268 enveloping the head of the pupa. Forelegs folded around dorsal side of the wing (Figs. 6A, B).
269 No traces of the thoracic horns were found, but specimen OU45543 (139) shows the presence of
270 the tracheal scar (place where trachea is passing through the thorax cuticle into the thoracic
271 horns). Mesothorax with a pair of wings and a pair of ambulatory appendages (midlegs). Midlegs
272 situated medially to forelegs, looping around wing, distal part of the loop lying on the abdomen,
273 beyond the distal end of the wing. (Figs. 6A, B). Metathorax with a pair of ambulatory
274 appendages (hindlegs); halteres not discernible. Hindlegs almost entirely hidden behind wings
275 (Figs. 6A, B).
276 Abdomen (posterior trunk). Made up of 9 visible abdominal units. Tergal armament most
277 complete and best preserved in specimens OU46654 (236), OU47051 (245) and OU47058 (252)
278 (Figs. 5B, G, H, 6A, B). Abdominal tergite 1 bare. Abdominal tergite 2 with fine shagreen
279 pattern and continuous row of hooks at posterior edge (Figs. 6A, B). Abdominal tergites 3–5 with
280 uniform shagreen and strong oval patch of longer, dark spines located on the median line of
281 tergite, touching the posterior edge of the segment. Tergite 6 apparently mostly bare, without
282 visible shagreen, bearing similar medio-posterior patch of strong, dark spines (Figs. 6A, B).

283 Tergites 7 and 8 mostly bare, without visible shagreen (Figs. 6A, B). Abdominal unit 8 bearing
284 two strong anal combs postero-laterally (Figs. 6D, E), these made up of 4 strong spines, the
285 outermost being the longest and the rest getting shorter towards the innermost spine each. Anal
286 lobes semi-circular, with strong fringe of at least 50 setae (difficult to count) on each lobe (Fig.
287 6D). No other setae are preserved on the abdomen of this morphotype. In specimen OU46645
288 (227), a part of a male hypopigium is visible through the cuticle of the genital sack. Strong, blunt
289 anal point visible, alongside a long, curving gonostyle, joined to a gonocoxite (Fig. 5D).

290

291 Taxonomic attribution

292 Specimens of this morphotype are representatives of Chironomidae based on the following
293 combination of pupal characters: strongly sclerotized arches from the anterior parts of the
294 abdominal tergites; terminus of trunk without articulated terminal paddles (Figs. 5A–H, 6A, D).
295 Within Chironomidae, this morphotype can be interpreted as an ingroup of Chironominae
296 because of the diagnostic combination of characters: abdominal tergite 8 with a strong anal
297 comb, anal lobes with a well-developed fringe of setae, gonostylus and gonocoxite conjoined
298 rigidly, no articulation visible (Fig. 5D) (Wiederholm, 1989). Unfortunately, all the specimens
299 are too poorly preserved for a more precise taxonomic attribution.

300

301 Chironominae morphotype 2

302 Material: OU47488 (268) (Fig. 7)

303

304 Larva. Habitus. A single specimen mounted on a glass slide (Figs. 7A–D). Larva with well-
305 preserved body and head capsule cuticle, with many microscopic details such as structure of
306 submentum or mandible apparent. Head capsule well developed, with complete sclerotization
307 and overall non-retractable. Ocular segment and post-ocular segments 1–5 (presumably) forming
308 a distinct capsule (head capsule). Head capsule without conspicuous labral fans and well-
309 developed epipharyngeal complex (only premandibles are visible of which). Head capsule bears
310 pair of mandibles. Mandibles with 'pronounced apical tooth and three internal teeth (Fig. 7 C-D).
311 Premandibles with three apical teeth visible. Mentum (part of labium) well pronounced, with 7
312 pairs of lateral teeth, with 1st part of the lateral teeth about 4 times shorter than second pair of
313 lateral teeth, with wide gap between them.

314 Head and thorax not conjoined together; no suction discs at the abdomen; abdominal cuticle well
315 preserved, but without visible setae; respiratory system lacking developed trachea or external
316 spiracles (apneustic type); thorax segments well distinguishable; prothorax and abdominal unit 9
317 with paired parapods; abdominal units 1 and 2 without parapods; group of strong, downward
318 pointing preanal setae absent on the trunk end (Ekrem et al., 2018).

319

320 Taxonomic attribution. This morphotype falls within Chironomidae based on the combination of
321 the following characters: larva with well-developed, complete and non-retractable head capsule;
322 head capsule without conspicuous labral fans and well-developed epipharyngeal complex; head
323 and thorax not conjoined together; no suction discs at the abdomen; respiratory system lacking
324 developed trachea or external spiracles (apneustic type); thorax segments well distinguishable;
325 prothorax and abdominal unit 9 with paired parapods; abdominal units 1 and 2 without parapods;
326 group of strong, downward pointing preanal setae absent on the trunk end (Ekrem et al., 2018).

327 Within Chironomidae, this larva falls within Chironominae based on the following combination
328 of characters: antenna not retractable, non-annulate, labrum without row of the overlapping
329 lamellae, premandible present, submentum with 15 teeth in three distinct groups, symmetrically
330 distributed on submentum (Wiederholm, 1983; Cranston, 2019).

331 The preservation of the head capsule is not conducive for further identification of the specimen
332 but the general habitus is highly reminiscent of that of *Chironomus* Meigen, currently
333 represented in New Zealand by at least six species (Boothroyd & Forsyth, 2011).

334

335 CHIRONOMIDAE Incertae Sedis

336 Chironomidae morphotype 1

337 Material: OU45549 (145), OU46608 (190) (Fig. 8)

338

339 Pupa. Both specimens are too poorly preserved for a detailed description (Figs. 8A–D).

340 Taxonomic attribution. These two specimens of pupae belong to a separate morphotype, which is
341 difficult to place due to the missing characters of the distal end of the abdomen, yet their overall
342 habitus is highly reminiscent of that of Chironomidae. Defining feature of this morphotype is a
343 strong, protruding spine on the posterior edge of tergite II (Figs. 8A–D).

344

345 CHAOBORIDAE Edwards, 1912
346 Chaoboridae morphotype 1
347 Material: Specimens OU47487 (163), OU46642 (224), OU46631 (213), OU46651 (233),
348 OU46653 (235) (Figs. 9–13).
349 Pupa. Habitus. Medium-sized, coma-shaped (in lateral aspect). Body length 5.2–6.0 mm ($n = 3$,
350 mean = 5.5 mm, $sd = 490 \mu\text{m}$); abdomen length 3.8–4.3 mm ($n = 3$, mean = 4.0 mm, $sd = 320$
351 μm); length of thorax 1.3–18.8 mm ($n = 4$, mean = 1.5 mm, $sd = 220 \mu\text{m}$), body differentiated
352 into presumably 20 segments, ocular segment plus 19 post-ocular segments (Figs. 13A, B);
353 anterior part of the body composed of head and thorax, visible as a single globose structure;
354 thorax bears wings and ambulatory appendages (legs) (Figs. 11A, B, 12A, B, 13A, B);
355 mouthparts located ventrally and short, ending before attachment of first ambulatory appendages
356 (forelegs) (Figs. 11A, B, 12A, B, 13A, B). Ocular segment recognizable by its appendage
357 derivative, clypeo-labral complex, and a pair of large compound eyes. Labrum and clypeus
358 present, but their shape obscured by deformation of the specimens, since all of the pupae are
359 preserved in lateral aspect (Figs. 11A, B, 12A, B). Antennae curved around the head, ending
360 beneath the head, at about mid-length to 0.8 of the length of the wings. Antennae attached to the
361 massive, rounded pedicellus (antennal element 2) (Figs. 11A, B, 12A, B). Maxilla recognizable
362 by maxillary palpus. Palpi are poorly preserved in the available specimens. Post-ocular segment
363 5 is recognizable by its appendages, forming the labium [conjoined left and right maxillae].
364 Labium mostly obscured in all specimens, with no details visible (Figs. 11A, B, 12A, B). Thorax
365 bears three pairs of ambulatory appendages (fore-, mid- and hindlegs) on the pro-, meso-, and
366 metathorax, respectively. Thoracic segments forming a single semi-globose structure, closely
367 enveloping the head of the pupa. Ambulatory appendages of the thorax folded around and under
368 the wings (Figs. 11A, B, 12A, B). Prothorax bears thoracic horns (modified first spiracle).
369 Thoracic horns (respiratory organs) absent on all the specimens. Prothorax bears first thoracic
370 appendages (forelegs). Forelegs running posteriorly, upwards anteriorly to the upper edge of the
371 eye and then downward to the apical edge of the wing (Figs. 11A, B, 12A, B, 13A, B).
372 Mesothorax bears a pair of wings and a pair of ambulatory appendages (midlegs). Midlegs
373 situated medially to foreleg, looping around the wing, distal part of the loop lying on the
374 abdomen, beyond the distal end of the wing. Distal parts of the midlegs loop again under the

375 wing (Figs. 11A, B, 12A, B, 13A, B). Hindlegs almost entirely hidden behind the coxae of the
376 fore- and midlegs and wings (Figs. 11A, B, 12A, B, 13A, B).
377 Abdomen (posterior trunk). Abdominal units 1–8 with setae of the pharate adult tergites visible
378 through the pupal cuticle. Setae radiating from the median line of the abdomen diagonally, so as
379 to form pointed bundles of setae at the postero-lateral part of tergites 1–8 (Figs. 11A, B, 13A,
380 B). Trunk end (abdominal unit 9 plus remnants of abdominal unit 10) bears hypopigium (male
381 genitalia) (only visible on specimen OU46653 (235)). Hypopigium consists of paired
382 gonocoxites (II) of abdominal unit 9 and paired gonostyli articulated at the distal end of the
383 gonocoxites (Figs. 13C, D). Gonocoxites ca. 250 µm, gonostyli ca. 430 µm. Gonostyli straight,
384 ending with short, rounded apical setae (megaseta) (Figs. 13C, D). Gonocoxites densely covered
385 with strong setae. No traces of anal lobes present on the trunk end (Figs. 13C, D).

386

387 Taxonomic attribution. We interpret this new morphotype as an ingroup of Chaoboridae based
388 on the specific combination of the following characters: Pupa: mouthparts short, not reaching
389 beyond coxae of anterior legs; bundles of the diagonally oriented setae visible on the tergites of
390 the abdominal units (the latter character is a autapomorphy of Chaoboridae) (Figs. 11A, B, 13A,
391 B) (Borkent & Grimaldi, 2004; Borkent, 2012). Some characters of the adult male were available
392 for examination through the cuticle of a pharate adult (inside the pupa) in specimen OU46653
393 (235) (Figs. 13C, D). However, the poor preservation does not allow for a closer taxonomic
394 attribution as characters of the adult legs and wings are not discernable in this specimen. All the
395 available specimens of Chaoboridae from Foulden Maar are missing anal lobes and thoracic
396 horns. These characters are crucial for diagnosis and taxonomic attribution of representatives of
397 Chaoboridae (Cook, 1956; Sæther, 1970). Therefore, we cannot attribute this new morphotype to
398 any ingroup of Chaoboridae, although the general shape of the pupa and shape of the
399 hypopigium are very similar to pupae of *Chaoborus* Lichtenstein (Cook, 1956; Sæther, 1970,
400 1997; Borkent, 2012). We thus suggest that the Chaoboridae morphotype from Foulden Maar is
401 either a representative of *Chaoborus* or closely related to it. To further validate this assumption,
402 we will require additional material with preserved anal lobes and thoracic horns. The loss of anal
403 paddles in pupae from the finely laminated Foulden Maar diatomite is likely due to the fragility
404 of the “paddle” attachments (anal lobe). A similar preservation is present at the Eocene
405 Kishenehn Formation, USA, and the Miocene McGrath Flats Formation, Australia, where

406 otherwise exquisitely preserved Chaoboridae pupae are frequently missing their anal “paddles”
407 (anal lobes) (Baranov et al., 2022b; McCurry et al., 2022).

408

409 **BRACHYCERA (?)**

410 Material: OU44944 (43), OU44981 (90), OU44982 (91), OU44996 (105), OU45559 (155),
411 OU46644 (226), OU46652 (234), OU46655 (237) (Fig. 14)

412 The examined material contains eight specimens, seemingly immatures of a holometabolous; all
413 share similar dark-brown or reddish-brown colours (Figs. 14A–H). All specimens have at least
414 11 body units and some have their supposed tergites split in half, giving an impression of the
415 post-eclosion pupal exuvia (Figs. 14C, D, H). Tergites are split in the middle. Some specimens
416 have strong setae on the edges of the tergites (Figs. 14B, D, F). Specimens OU44944 (43) and
417 OU44996 (105) are more of a spindle-shape and have of an overall appearance of dipteran
418 larvae, rather than pupal exuvia or puparia (Figs. 14A, G). Unfortunately, there are no diagnostic
419 characters allowing for a closer taxonomic placement of these specimens. Based on the habitus
420 similarity, we hypothesize that these specimens represent larvae and puparia (larval last stage
421 exuvia, covering a pupa of brachyceran flies) of brachyceran flies, likely representatives of
422 Cyclorrhapha (i.e. see Ferrar, 1987, vol 2 fig. 6.155 (p. 568)).

423 **Discussion**

424 **Paleontological significance and paleoecology**

425 Fossil deposits in southern New Zealand document the presence of various lentic habitats and
426 associated freshwater faunas during the early and middle Miocene (e.g. Douglas, 1986; Pole,
427 Douglas & Mason, 2003; Lee et al., 2016; Kaulfuss et al., 2018a, 2020). Previously reported
428 fossils of the groups Odonata, Megaloptera, Coleoptera, Diptera and Trichoptera provide a
429 glimpse of the aquatic insect fauna in these paleo-habitats (Kaulfuss et al., 2015, 2018a, b;
430 Schmidt et al., 2018; Baranov et al., 2022a), but the diversity, biogeography and ecological role
431 of individual groups remain to be explored in detail. Our study gives insights into the aquatic
432 dipteran fauna in a small, isolated maar lake in southern New Zealand in the earliest Miocene (23
433 mya), shortly after maximum marine inundation of most land area at ~25 mya. The larvae and
434 pupae described here from the Foulden Maar diatomite indicate the presence of a dipteran fauna
435 consistent in its taxonomic richness with the diversity of merolimnic flies recorded in other
436 Paleogene and Neogene lacustrine deposits: Kishenehn Formation, Eocene, USA, 8 morphotypes

437 (Baranov et al., 2022b), McGrath Flats, Miocene, Australia, 5 morphotypes (McCurry et al.,
438 Messel, Eocene, Germany, 8 morphotypes (Paleobiology Database, 2023), Randecker
439 Maar, Miocene, Germany, one morphotype (Paleobiology Database, 2023).
440 Among the non-brachycerans, non-biting midges (Chironomidae) include *Coelotanypus* sp. in
441 Tanypodinae, two separate morphotypes in Chironominae and a further non-biting midge
442 morphotype of uncertain identity. The only non-biting midge fossils previously reported from
443 New Zealand are four adult specimens of *Bryophaenocladius* Thienemann (Orthocladiinae) from
444 late Oligocene amber (Schmidt et al., 2018). Phantom midges (Chaoboridae) are represented by a
445 pupal morphotype congeneric or closely related to the widespread and speciose extant group
446 *Chaoborus*. These pupae are the first fossil record of phantom midges from New Zealand.
447 Intriguingly, phantom midges are absent in the extant fauna of New Zealand (see below). Adult
448 life stages of non-biting and phantom midges have not yet been found in the Foulden Maar
449 diatomite. The presence of immature aquatic brachycerans in the Foulden Maar paleo-lake is
450 documented by eight larvae and puparia of uncertain systematic position. Rare isolated wings of
451 adult brachyceran flies (either representatives of Muscidae or Acalyptrata) have previously been
452 reported from the fossil site (Kaulfuss et al., 2015), but affiliation of these with any of the
453 immature aquatic specimens cannot be established due to incomplete preservation.
454 The comparatively small sample of identifiable insects (n=253) from Foulden Maar includes a
455 relatively high proportion of immature aquatic dipterans (16%), suggesting that these life stages
456 were a common component in this limnic paleo-ecosystem. Of these, non-biting pupae are most
457 common (63% of immature dipterans), followed by the brachyceran-type (20%) and by phantom
458 midge pupae/larvae (17%). Together with other Crustaceans forms, they likely provided a food
459 source for fish, in particular for *Galaxias effusus*, which is commonly found as larvae, juvenile
460 and adult specimens in the diatomite (Lee, McDowall & Lindqvist, 2007; Kaulfuss et al., 2020).
461 The most common type of coprolite at Foulden Maar is most likely derived from *Galaxias*
462 *effusus* and consists of mineral grains, plant material and common euarthropodan fragments
463 (Kaulfuss, 2013). The latter are yet to be studied in detail and it is currently not known if non-
464 biting or phantom midge remains are present in these coprolites. In any case, the occurrence of
465 euarthropodan remains in these coprolites conforms to a diet of aquatic and terrestrial insects
466 observed in most extant *Galaxias* species in New Zealand (McDowall, 2010). Immature
467 dipterans are also commonly preyed on by various groups of aquatic eurthropodan aimals such as

468 water mites, dragonflies and damselflies larvae, aquatic bugs and beetles (e.g. Armitage,
469 Cranston & Pinder, 1995; Martin & Gerecke 2009; Ferrington, 2008; Klecka & Boukal, 2012).
470 Although this probably was the case in the Foulden Maar lake, the available fossil data are
471 insufficient for establishing specific predator-prey relations.
472 Assuming the ecology of the Chaoboridae midges from Foulden Maar concurs with that of extant
473 relatives (e.g. Macdonald, 1956; Rudstam, 2009; Hare & Carter, 1986), its larvae may have been
474 abundant in the pelagic and littoral zones of the maar lake, feeding on small eucrustaceans (e.g.
475 of the groups Copepoda and Cladocera), benthic organisms and dipteran and other insect larvae,
476 and possibly also ingesting readily available phytoplankton. As in extant species of *Chaoborus*,
477 late stage larvae (3rd and 4th instar), probably exhibited diurnal vertical migration, preying in the
478 epilimnion at night and migrating into deeper, oxygen-depleted zones of the monimolimnion or
479 sediment to avoid fish predators during day (Macdonald, 1956; Hare & Carter, 1986).

480

481 Chironominae morphotype 2 is closely resembling larvae of the extant species of *Chironomus*
482 and probably had a similar ecology, inhabiting soft sediments and relying on acquisition of food
483 by bioirrigation, pumping water containing organic particles through their burrows in the
484 sediment (Hamburger, Dall & Lindegaard, 1994). Tanypodinae is represented at Foulden Maar
485 by specimens of the group *Coelotanypus*. Extant representatives inhabit fine-grained sediments,
486 where they rely heavily on bioirrigation for food acquisition (Boesel, 1974; Matisoff & Wang,
487 1998). The larvae also prey on other bioirrigating animals, such as worms of the group
488 Tubificidae (Soster & McCall, 1989) and are capable of utilising other sources such as
489 suspended organic particles and detritus (Boesel, 1974; Matisoff & Wang, 1998).

490 The immature dipterans at Foulden Maar are primarily exuviae of pupae, left after eclosion of the
491 adult, terrestrial stage. Pupae of both non-biting and phantom midges are short-lived, lasting only
492 for several hours to several days, but are ecologically important in providing large amounts of
493 organic matter in pulses to the higher order consumers in lakes and rivers (Lehmann et al., 1998;
494 Wagner, Volkmann & Dettinger-Klemm, 2012).

495

496 **Biogeography**

497

498 *Chironomidae*

499 The major ingroups (“subfamilies”) of Chironomidae originated between the mid-Triassic and
500 the early Cretaceous (Cranston, Hardy & Morse, 2012) when Zealandia was connected to the
501 great Southern landmass of Gondwana. Morphology-based studies recognised trans-Antarctic
502 relationships among Southern non-biting midges and argued for vicariance origin via break-up of
503 Gondwana. For instance, Brundin (1965) detected an “old Antarctic element of Southern lands”
504 for some groups of Southern temperate non-biting midges and suggested a Mesozoic orogenic
505 belt corresponding to present New Zealand, Western Antarctica and Western Patagonia as centre
506 of evolution. Divergence dates from phylogenetic studies correlate with a vicariance origin for
507 some South American and Australian groups but indicate a more complex history for non-biting
508 midges of New Zealand (Cranston et al., 2010; Krosch & Cranston, 2013; Krosch et al., 2017).
509 Some nodes separating Australian and New Zealand Tanypodinae and other ingroups of
510 Chironomidae have been dated at ca. 50 mya and are indicative of Eocene dispersal, possibly via
511 an archipelago connection provided by the Lord Howe Rise and/or the Norfolk Ridge northwest
512 of New Zealand (Krosch et al., 2017; Krosch & Cranston, 2013). These reconstructed ancestral
513 nodes post-date the separation of New Zealand from Gondwana at ~80 mya but they pre-date the
514 Oligocene “drowning”, a period of near-complete (or complete, according to some authors)
515 submergence of the New Zealand landmass 25–23 mya (Cooper & Cooper, 1995; Mildenhall et
516 al., 2014b; Kamp, Vincent & Tayler, 2015; Wallis & Jorge, 2018). The non-biting midge fauna
517 described here from a 23 million-year-old freshwater lake is contemporaneous or slightly
518 younger than the late Oligocene maximum marine transgression. Together with specimens of
519 *Bryophaenocladius* reported from late Oligocene (Duntroonian, 27.3–25.2 my) New Zealand
520 amber (Schmidt et al., 2018), they argue for the presence of freshwater habitats and associated
521 non-biting faunas during near-complete Oligocene inundation.
522 For the other non-biting midges, which could not be identified to a narrower range, from Foulden
523 Maar it impossible to establish closer biogeographic relationships. The only non-biting midge in
524 our study that could be identified to a more precise level is a representative of *Coelotanypus*
525 (Tanypodinae). This is the first fossil record of *Coelotanypus* for the Australasian region and
526 documents local post-early Miocene extinction, as *Coelotanypus* is not present in New Zealand
527 today. Earliest representatives of Tanypodinae originated in the late Jurassic to earliest
528 Cretaceous, followed by divergence of further ingroups (“tribes”) during the Cretaceous (Krosch
529 et al., 2017). Most extant species of *Coelotanypus* occur in America and two disjunct species are

530 known from South Africa and Australia, respectively (Roback, 1974). Relationships among the
531 American species suggest an origin and diversification of *Coelotanypus* in the region of South
532 America, followed by dispersal into Central America and the Caribbean and, relatively recently,
533 into North America (Roback, 1974). No species of *Coelotanypus* are known from the Palearctic
534 and Oriental regions. The known distribution is compatible with ancient southern vicariance and
535 the find of *Coelotanypus* in the early Miocene of New Zealand further supports such an origin.
536 However, our knowledge of *Coelotanypus* in South America is only fragmentary (Roback, 1974)
537 and zoogeographical studies have suggested that species of *Coelotanypus* may eventually be
538 discovered in the Palearctic and Oriental realms and other insufficiently sampled regions,
539 perhaps even worldwide (Ashe, Murray & Reiss, 1987). The only other fossil records of
540 *Coelotanypus* are from Oise amber (Doitneau & Nel, 2007) and Baltic amber (Seredszus &
541 Wichard, 2007, 2010), and these indicate a palearctic distribution in the Eocene and a complex
542 biogeographic history of *Coelotanypus*.

543

544 *Chaoboridae*

545 Previously, *Corethrella novaezealandiae* Tonnoir, 1927 had been reported as the sole phantom
546 midge from New Zealand, but this species is now generally accepted as a representative of
547 Corethrellidae (frog biting midges; = sister group to Chaoboridae + Culicidae) (Wood &
548 Borkent, 1989). Despite their (otherwise) cosmopolitan distribution no phantom midges are
549 present in the New Zealand (Chapman & Green, 1987; Borkent, 2014). The neighbouring
550 landmass of Australia has a small, but distinct fauna of Chaoboridae with seven extant species
551 (Colless, 1986; Borkent, 2014) and fossil records from the Early Cretaceous and the Miocene
552 (Jell & Duncan, 1986; McCurry et al., 2022).

553 Chaoboridae is an ancient group of Diptera with the oldest record dating back to the Triassic
554 (Ladinian–Carnian, Madygen Formation in Kyrgyzstan; Lukashevich, 2022). Chaoboridae has a
555 rich fossil record, including some of 41 species, which is almost exclusively from the Holarctic
556 realm and suggests an East Asian origin of the group (Kalugina & Kovalev, 1985; Ogawa, 2007;
557 Borkent, 2014). More complete fossil material of the *Chaoborus*-like fossils from Foulden Maar
558 is needed for detecting possible relationships to other, extant or extinct species. For now, these
559 fossils demonstrate that phantom midges were present in New Zealand freshwater habitats by the
560 earliest Miocene. Yet, it is unclear whether this reflects an ancient vicariance origin or pre-

561 Miocene arrival from Australia or elsewhere. Likewise, there is no clear indication for a possible
562 cause of the post-early Miocene extinction of phantom midges in New Zealand. Phantom midges
563 are generally very adaptable animals with larvae successfully developing in a broad range of
564 stagnant and slowly flowing water bodies, of which there is currently no lack in New Zealand
565 (Colless, 1983, 1986; Chapman & Green, 1987) and very likely has not been since at least the
566 Eocene and probably since its separation from Gondwana in the Cretaceous (Buckley, Krosch &
567 Leschen, 2015, and references therein on pp. 7–8). It stands to reason that there is a great
568 potential for phantom midges to thrive in aquatic habitats of New Zealand, and their absence
569 from the region cannot be explained by a lack of suitable habitats. This record of the
570 Chaoboridae from the modern New Zealand fauna is certainly extremely important for the
571 critical re-evaluation of the submerged vs non-submerged New Zealand hypothesis.

572

573 **Taphonomy**

574 Immatures of the groups Chironomidae and Chaoboridae may be common in Mesozoic and
575 Cenozoic lacustrine settings, concurring with their aquatic lifestyle (e.g. Sinichenkova &
576 Zherikhin, 1996; Johnston & Borkent, 1998; Baranov et al., 2022b; McCurry et al., 2022).
577 However, in Cenozoic maar lakes with well-documented insect faunas (>4000 studied
578 specimens) immature aquatic midges (and other groups of aquatic insects) are typically absent,
579 or only present in small numbers. This has been attributed to supposed unfavourable limnic
580 conditions in these small but deep lakes or taphonomic biases, which favour the preservation of
581 larger and more compact adult insects in the profundal sediments that are usually excavated for
582 fossils (Lutz, 1991, 1997; Wedmann, 2000; Wedmann, Poschmann & Hörschemeyer, 2010;
583 Wedmann et al., 2018; Wappler, 2003). At the Eocene Eckfeld Maar, for instance, the study of
584 ~4600 insects yielded only two pupae and several larval cases of Chironomidae, and no
585 chaoborid midges were found (Wappler, 2003). No aquatic stages of non-biting or phantom
586 midges were reported from the rich insect faunas of the Oligocene Enspel Maar (Wedmann,
587 Poschmann & Hörschemeyer, 2010) and the Paleocene maar of Menat (Wedmann et al., 2018).
588 Immature non-biting or phantom midges body fossils are also absent in the ‘oilshales’ of the
589 Messel Maar, although their remains are frequently encountered in fish coprolites, indicating
590 ecologically important populations in this Eocene maar lake (Richter & Baszio, 2001; Richter &
591 Wedmann, 2005; Wedmann & Richter, 2007). Exceptions appear to be the Miocene maar lakes

592 at Öhningen and Randeck, where aquatic insects including immature Diptera have been reported
593 as being relatively common (Heer, 1865; Joachim, 2010).

594 At Foulden Maar, the proportion of immature aquatic dipterans is comparatively high, which
595 may reflect preferential conditions for the preservation of small aquatic insects in this Miocene
596 lake. Several taphonomic studies have highlighted the role of diatom mats in the exceptional
597 preservation of fossil biotas (Harding & Chant, 2000; O'Brien, Meyer & Harding, 2008; Iniesto
598 et al., 2016; Olcott et al., 2022). Diatomaceous microbial mats may facilitate fossilisation by
599 entrapping and transporting macrobiota through the water column quickly and by stabilising the
600 sediment surface on the sea/lake floor (Harding & Chant, 2000; Olcott et al., 2022).

601 Additionally, extracellular polymeric substances secreted by diatomaceous mats may form a
602 chemical microenvironment (microbial sarcophagus) that enables fossilisation by delaying decay
603 and inducing biomimicry of euarthropods, vertebrates and plants (Iniesto et al., 2016;
604 O'Brien, Meyer & Harding, 2008; Olcott et al., 2022). At Foulden Maar, all euarthropodan
605 fossils are preserved in laterally continuous, light-coloured laminae essentially composed of
606 siliceous diatom frustules. The dominating species is *Encyonema jordaniforme* Krammer, 1997,
607 a pennate and likely mucilaginous diatom that flourished in the upper water column of lake
608 Foulden and formed annual diatom blooms over the lake's estimated life span of 130.000 years
609 (Harper et al., 2019). Centric diatoms are present as minor constituents in the lake sediment
610 (Kaulfuss, 2017). Although taphonomic processes for the Foulden Maar biota are yet to be
611 studied in detail, it is likely that diatomaceous mats essentially composed of *E. jordaniforme*
612 might have provided a taphonomic pathway for the preservation of small aquatic larvae/pupae
613 and other macrobiota in the diatomite.

614 Sediment colour might also have an impact on the apparent proportion of aquatic dipterans and
615 other small euarthropods in fossil deposits. The Cenozoic maars at Eckfeld, Messel, Enspel and
616 Menat, where immature non-biting or phantom midges are absent or rare, are primarily made of
617 dark, organic-rich clay and mudstones, which makes spotting small fossils of similarly dark
618 colour difficult. For Messel Maar, Wedmann & Richter (2007) argued that phantom midge
619 larvae are likely present in the sediment, but their weakly sclerotised, translucent body cannot be
620 seen in the organic shales. At Foulden Maar, the light-coloured (white to beige) diatomaceous
621 laminae exhibit a pronounced colour contrast to embedded, typically brown or black fossil
622 organisms. This contrast likely facilitates spotting of small euarthropods such as dipteran pupae

623 in the field, and it might be one factor for the relatively high abundance of aquatic dipterans
624 relative to most other maar-type Lagerstätten. The other two other Cenozoic maar lakes with a
625 relatively high abundance of immature aquatic Diptera also consist of or at least include light-
626 coloured lithologies. At the mid-Miocene Öhningen Maar, many insects were recovered from
627 white limestones (“Weißer Schieferstein”) and light-grey marlstones (“Kesselstein”) (Rasser et
628 al., 2023). Similarly, the main insect-bearing lithologies with immature aquatic dipterans at the
629 mid-Miocene Randecker Maar appear to be calcareous and marly laminites and limestones of
630 lighter colour (Westphal, 1963; Joachim 2010; Rasser et al., 2013).

631

632

633

634 **Conclusions**

635 Our study of immature aquatic dipterans from the Foulden Maar provides new data on the fossil
636 history of aquatic dipterans on the isolated landmass of New Zealand. From a earliest Miocene
637 (~23 ma) lacustrine deposit, we identified several larval morphotypes of flies, including non-
638 biting midges (of the ingroups Chironominae and Tanypodinae (*Coelotanypus*)) and phantom-
639 midges (Chaoboridae) as well as several putative pre-imaginal morphotypes of Brachycera.
640 Although widely distributed elsewhere, the groups *Coelotanypus* and Chaoboridae have no
641 extant representatives in New Zealand today, indicating that Neogene extinction of some
642 ingroups of Diptera played a role in shaping the extant dipteran fauna in New Zealand. A relative
643 high abundance of aquatic pupae is likely the result of taphonomic pathways provided by
644 diatomaceous mats and, perhaps, of the light sediment colour, which facilitated spotting of small
645 fossils such as Diptera pupae in the field. Overall the New Zealand fossil record of merolimnic
646 and other dipterans is still poorly known.

647 **Acknowledgements**

648 We thank the Gibson family for allowing access to the Foulden Maar site, Nick Butterfield,
649 University of Cambridge, for providing a glass-mounted chironomid larva and Jeffrey Robinson,
650 University of Otago, for providing OU collection numbers.

651

652

653

654

655 **References**

656 Andersen, T., Baranov, V., Hagenlund, L. K., Ivković, M., Kvifte, G. M. & Pavlek, M. 2016.

657 Blind flight? A new troglobiotic orthoclad (Diptera, Chironomidae) from the Lukina Jama –

658 Trojama cave in Croatia. PLoS ONE 11(4): e0152884.

659 <https://doi.org/10.1371/journal.pone.0152884>

660

661 Armitage, P.D., Cranston, P.S. & Pinder, L.C.V. (Eds) 1995. The Chironomidae. Biology and

662 Ecology of Non-biting Midges. Chapman & Hall, London, 572 p.

663

664 Ashe, P. & O'Connor, J. P. 2009. A World Catalogue of Chironomidae (Diptera). Part 1.

665 Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanyponidae,

666 Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogenetoninae. Irish Biogeographical

667 Society/The National Museum of Ireland. 445 pp.

668

669 Ashe, P., Murray, D.A. & Reiss, F. 1987. The zoogeographical distribution of Chironomidae

670 (Insecta: Diptera). Annales de Limnologie 23(1): 27–60.

671

672 Bannister, J.M., Conran, J.G. & Lee, D.E. 2012. Lauraceae from rainforest surrounding an early

673 Miocene maar lake, Otago, southern New Zealand. Review of Palaeobotany and Palynology,

674 178, 13–34. doi:[10.1016/j.revpalbo.2012.03.015](https://doi.org/10.1016/j.revpalbo.2012.03.015)

675

676 Baranov, V. A., Kvifte, G. M. & Perkovsky, E. E. 2016. Two new species of fossil *Corethrella*

677 Coquillett from Late Eocene Rovno amber, with a species-level phylogeny for the family based

678 on morphological traits (Diptera: Corethrellidae). Systematic Entomology, 41(3), 531-540.

679

680 Baranov, V., Schädel, M. & Haug, J. T. 2019. Fly palaeo-evo-devo: immature stages of

681 bibionomorphan dipterans in Baltic and Bitterfeld amber. PeerJ 7: e7843.

682 [http://doi.org/10.7717/peerj.7843](https://doi.org/10.7717/peerj.7843)

683

684 Baranov, V., Haug, C., Fowler, M., Kaulfuss, U., Mueller, P., & Haug, J. T. 2022a. Summary of
685 the fossil record of megalopteran and megalopteran-like larvae, with a report of new specimens.
686 *Bulletin of Geosciences*, 97(1), 89-108.

687

688 Baranov, V. A., Haug, J. T., Greenwalt, D. E., & Harbach, R. 2022b. Diversity of culicomorphan
689 dipterans in the Eocene Kishenehn Konservat-Lagerstätte (Montana, USA) and its
690 palaeoecological implications. *Palaeontologia Electronica*, 25(1), 1-30.

691

692 Boothroyd, I. & Forsyth, D. 2011. Checklist of New Zealand Chironomidae (Diptera). National
693 Centre for Aquatic Biodiversity and Biosecurity 1–7. Available at
694 <https://niwa.co.nz/sites/niwa.co.nz/files/import/attachments/chirolist.pdf> (accessed 3 August
695 2023).

696

697 Boesel, M. W. 1974. Observations on the Coelotanypodini of the northeastern states, with keys
698 to the known stages (Diptera: Chironomidae: Tanypodinae). *Journal of the Kansas
699 Entomological Society*, 417-432.

700

701 Borkent, A. 2012. The pupae of Culicomorpha—morphology and a new phylogenetic tree.
702 *Zootaxa*, 3396(1), 1-98.

703

704 Borkent, A. 2014. World catalog of extant and fossil Chaoboridae (Diptera). *Zootaxa*, 3796(3),
705 469-493.

706

707 Borkent, A. & Grimaldi, D. A. 2004. The earliest fossil mosquito (Diptera: Culicidae), in mid-
708 Cretaceous Burmese amber. *Annals of the Entomological Society of America*, 97(5), 882-888.

709

710 Borkent, A. & Sinclair, B. J. 2017. Key to Diptera families – larvae. In Kirk-Spriggs, A. H. &
711 Sinclair, B. J., eds *Manual of afrotropical Diptera. Volume 1: Introductory chapters and keys to*
712 *Diptera families*. South African National Biodiversity Institute, Suricata, Pretoria, pp. 375–405.

713

714 Brundin, L. 1965. On the real nature of transantarctic relationships. *Evolution* 19: 496–505.

715

716 Brundin, L. 1966. Transantarctic relationships and their significance as evidenced by chironomid
717 midges. *Kungliga Svenska Vetenskapsakademiens Handligar* 4(1): 1–472. Almqvist & Wiksell,
718 Stockholm.

719

720 Buckley, T. R., Krosch, M. & Leschen, R. A. 2015. Evolution of New Zealand insects: summary
721 and prospectus for future research. *Austral Entomology*, 54(1), 1-27.

722

723 Chapman, M. A. & Green, J. D. 1987. Zooplankton ecology. In: Viner, A. B., ed. *Inland waters*
724 of New Zealand. DSIR bulletin 241, Wellington, New Zealand, pp. 225–263.

725

726 Colless, D. H. 1983. Geographic variation in an Australian species of *Chaoborus* (Diptera:
727 Culicidae). *Australian Journal of Zoology*, 31(1), 15-27.

728

729 Colless, D.H. 1986. The Australian Chaoboridae (Diptera). *Australian Journal of Zoology*
730 Supplementary Series, 34 (124), 1–66.

731

732 Cook, E. F. 1956. The Nearctic Chaoborinae (Diptera: Culicidae). University of Minnesota,
733 Agricultural Experiment Station.

734

735 Cooper, A. & Cooper, R.A. 1995. The Oligocene bottleneck and New Zealand biota: Genetic
736 record of a past environmental crisis. *Proceedings of the Royal Society B* 261: 293–302.

737

738 Cranston, P. S. 2019. Identification guide to genera of aquatic larval Chironomidae (Diptera) of
739 Australia and New Zealand. *Zootaxa* 4706(1): 71–102. <https://doi.org/10.11646/zootaxa.4706.1.3>

740

741 Cranston, P.S., Hardy, N.B., Morse, G.E., Puslednik, L. & McCluen, S.R. 2010. When molecules
742 and morphology concur: the ‘Gondwanan’ midges (Diptera: Chironomidae). *Systematic*
743 *Entomology* 35(4): 636–648. <https://doi.org/10.1111/j.1365-3113.2010.00531.x>

744

745

746 Cranston, P.S., Hardy, N.B. & Morse, G.E. 2012. A dated molecular phylogeny for the
747 Chironomidae (Diptera). *Systematic Entomology* 37: 172–188. <https://doi.org/10.1111/j.1365-3113.2011.00603.x>

749

750

751 Deevey, E. S. 1955. Paleolimnology of the upper swamp deposit, Pyramid Valley. *Records of the*
752 *Canterbury Museum*, 6(4), 291–344.

753

754 Doitteau, G. & Nel, A. 2007. Chironomid midges from the early Eocene amber of France
755 (Diptera: Chironomidae). *Zootaxa* 1404: 1–66. <https://doi.org/10.11646/zootaxa.1404.1.1>

756

757 Douglas, B.J. 1986. Lignite resources of Central Otago. *New Zealand Energy and Development*
758 Committee Publication P104. NZERDC, Auckland.

759

760 Ekrem, T., Stur, E., Orton, M. G. & Adamowicz, S. J. 2018. DNA barcode data reveal
761 biogeographic trends in Arctic non-biting midges. *Genome* 61(11): 787–796.
762 <https://doi.org/10.1139/gen-2018-0100>

763

764 Ferrington, L. C. 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in
765 freshwater. *Hydrobiologia* 595: 447–455.

766

767 Ferrar, P. 1987. A guide to the breeding habits and immature stages of Diptera
768 Cyclorrhapha (Vol. 8, pp. 1-2). Copenhagen: EJ Brill/Scandinavian Science Press.

769

770 Fittkau, E. J. & Murray, D. 1986. The pupae of Tanypodinae (Diptera: Chironomidae). In:
771 Wiederholm, T. (ed.): Chironomidae of the Holarctic region: Keys and diagnoses. Part 2. Pupae.
772 *Entomologica Scandinavica Supplement* 28: 31–113.

773

774 Forsyth, D. J. 1971. Some New Zealand Chironomidae (Diptera). *Journal of the Royal Society of*
775 *New Zealand*, 1(2): 113–144.

776

777 Fox, B.R.S., Wartho, J., Wilson, G.S., Lee, D.E., Nelson, F.E. & Kaulfuss, U. 2015. Long-term
778 evolution of an Oligocene/Miocene maar lake from Otago, New Zealand. *Geochemistry,*
779 *Geophysics, Geosystems*, 16, 59–76. doi:10.1002/2014GC005534

780

781 Freeman, P. 1961. The Chironomidae (Diptera) of Australia. *Australian Journal of Zoology* 9:
782 611–737.

783

784 Freeman, P. 1959. A study of the New Zealand Chironomidae (Diptera, Nematocera). *Bulletin of*
785 *the British Mueum (Natural History), Entomology* 7: 395–437.

786

787 Giribet, G. & Boyer, S. L. 2010. ‘Moa’s Ark’or ‘Goodbye Gondwana’: is the origin of New
788 Zealand’s terrestrial invertebrate fauna ancient, recent, or both? *Invertebrate Systematics*, 24(1),
789 1–8.

790

791 Gratton, C., Donaldson, J. & Zanden, M. J. V. 2008. Ecosystem linkages between lakes and the
792 surrounding terrestrial landscape in northeast Iceland. *Ecosystems*, 11, 764–774.

793

794 Hamburger, K., Dall, P. C., Lindegaard, C. & Nilson, I. B. 1994. Survival and energy
795 metabolism in an oxygen deficient environment. Field and laboratory studies on the bottom
796 fauna from the profundal zone of Lake Esrom, Denmark. *Hydrobiologia* 432: 173–188.

797

798 Harding, I.C. & Chant, L.S. 2000. Self-sedimented diatom mats as agents of exceptional fossil
799 preservation in the Oligocene Florissant lake beds, Colorado, United States. *Geology* 28(3): 195–
800 198.

801

802 Hare, L. & Carter, J.C.H. 1986. The benthos of a natural West African lake, with emphasis on
803 the diel migration and lunar and seasonal periodicites of the *Chaoborus* populations (Diptera,
804 Chaoboridae). *Freshwater biology* 16: 759–780.

805

806 Harper, M.A., Van De Vijver, B., Kaulfuss, U. & Lee, D.E. 2019. Resolving the confusion
807 between two fossil freshwater diatoms from Otago, New Zealand: *Encyonema jordanii* and
808 *Encyonema jordaniforme* (Cymbellaceae, Bacillariophyta). *Phytotaxa* 394(4): 231–243.
809

810 Harris, A. C. 1983. An Eocene larval insect fossil (Diptera: Bibionidae) from North Otago, New
811 Zealand. *Journal of the Royal Society of New Zealand*, 13(3), 93–105.
812

813 Hamburger, K., Dall, P. C. & Lindegaard, C. 1994. Energy metabolism of *Chironomus*
814 *anthracinus* (Diptera: Chironomidae) from the profundal zone of Lake Esrom, Denmark, as a
815 function of body size, temperature and oxygen concentration. *Hydrobiologia*, 294, 43-50.
816

817 Haug, J. T., Schädel, M., Baranov, V. A. & Haug, C. 2020. An unusual 100-million-year old
818 holometabolous larva with a piercing mouth cone. *PeerJ* 8: e8661
819 <https://doi.org/10.7717/peerj.8661>
820

821 Haug, J. T., Haug, C., Kutschera, V., Mayer, G., Maas, A., Liebau, S., Castellani, C., Wolfram,
822 U., Clarkson, E. N. K. & Waloszek, D. 2011. Autofluorescence imaging, an excellent tool for
823 comparative morphology. *Journal of Microscopy*, 244(3), 259-272.
824

825 Heer, O. 1865. *Die Urwelt der Schweiz*. Friedrich Schultheß, Zürich, 622 pp.
826

827 Hennig, W. 1960. Die Dipteren-Fauna von Neuseeland als systematisches und
828 tiergeographisches Problem. *Beiträge zur Entomologie* (= Contributions to Entomology) 10(3–
829 4): 221–329. <https://doi.org/10.21248/contrib.entomol.10.3-4.221-329>
830

831 Herren, C. M., Webert, K. C., Drake, M. D., Jake Vander Zanden, M., Einarsson, Å., Ives, A. R.
832 & Gratton, C. 2017. Positive feedback between chironomids and algae creates net mutualism
833 between benthic primary consumers and producers. *Ecology*, 98(2), 447–455.
834

835 Hudson, G. V. 1892. *An Elementary Manual of New Zealand Entomology*. West, Newman and
836 Co., London, 128 pp.

837

838 Iniesto, M., Buscalioni, A.D., Guerrero, M.C., Benzerara, K., Moreira, D. & López-Archilla, A.

839 2016. Involvement of microbial mats in early fossilization by decay delay and formation of

840 impressions and replicas of vertebrates and invertebrates. *Scientific Reports* 6: 25716.

841

842 Jell, P. A. & Duncan, P. M. 1986. Invertebrates, mainly insects, from the freshwater, Lower

843 Cretaceous, Koonwarra fossil bed (Korumburra Group), South Gippsland, Victoria. *Memoir of*

844 *the Association of Australasian Palaeontologists* 3: 111–205.

845

846 Joachim, C. 2010. Biodiversität und Palökologie fossiler Insekten des Randecker Maar (Unter-
847 Miozän, SW-Deutschland). *Documenta naturae* 179: 1–109.

848

849 Johnston, J. E. & Borkent, A. 1998. *Chaoborus* Lichtenstein (Diptera: Chaoboridae) pupae from

850 the middle Eocene of Mississippi. *Journal of Palaeontology* 72: 491–493.

851

852 Jones, D. A., Wilson, G. S., Gorman, A. R., Fox, B. R. S., Lee, D. E. & Kaulfuss, U. 2017. A

853 drill-hole calibrated geophysical characterisation of the 23 Ma Foulden Maar stratigraphic

854 sequence, Otago, New Zealand. *New Zealand Journal of Geology and Geophysics* 60(4): 465–

855 477. <https://doi.org/10.1080/00288306.2017.1369130>

856

857 Kalugina, N.S. & Kovalev, V.G. 1985. Jurassic Diptera of Siberia. Izdatelstvo Nauka, Moscow
858 (USSR Academy of Sciences, Moscow, 198 pp.)

859

860 Kamp, P.J.J., Vincent, K.A. & Tayler, M.J.S. 2015. Cenozoic sedimentary and volcanic rocks of

861 New Zealand: A reference volume of lithology, age and paleoenvironments with maps (PMAPs)

862 and database. Ministry of Business, Innovation and Employment, New Zealand, unpublished

863 Petroleum Report PR4885, 335 pp.

864

865 Kaulfuss, U. 2013. Geology and paleontology of Foulden Maar, Otago, New Zealand. PhD
866 thesis, University of Otago, 321 pp.

867

868 Kaulfuss, U. 2017. Crater stratigraphy and the post-eruptive evolution of Foulden Maar, southern
869 New Zealand. *New Zealand Journal of Geology and Geophysics* 60: 410–432.

870

871 Kaulfuss, U., Lee, D. E., Barratt, B. I. P., Leschen, R. A. B., Larivière, M.-C., Dlussky, G. M.,
872 Henderson, I. M. & Harris, A. C. (2015). A diverse fossil terrestrial arthropod fauna from New
873 Zealand: evidence from the early Miocene Foulden Maar fossil lagerstätte. *Lethaia* 48(3), 299–
874 308.

875

876 Kaulfuss, U., Lee, D. E., Wartho, J. A., Bowie, E., Lindqvist, J. K., Conran, J. G., Bannister, J.
877 Mildenhall, D. C., Kennedy, E. M. & Gorman, A. R. 2018a. Geology and palaeontology of
878 the Hindon Maar Complex: a Miocene terrestrial fossil Lagerstätte in southern New Zealand.
879 *Palaeogeography, Palaeoclimatology, Palaeoecology* 500, 52–68.

880 <https://doi.org/10.1016/j.palaeo.2018.03.022>

881

882 Kaulfuss, U., Brown, S.D.J., Henderson, I.M., Szwedo, J. & Lee, D.E. 2018b. First insects from
883 the Manuherikia Group, early Miocene, New Zealand. *Journal of the Royal Society of New
884 Zealand* 49(4): 494–507.

885

886 Kaulfuss, U., Lee, D.E., Robinson, J.H., Wallis, G.P. & Schwarzhans, W.W. 2020. A Review of
887 *Galaxias* (Galaxiidae) Fossils from the Southern Hemisphere. *Diversity* 12(5), 208.
888 doi.org/10.3390/d12050208

889

890 Klecka, J. & Boukal, D.S. 2012. Who Eats Whom in a Pool? A Comparative Study of Prey
891 Selectivity by Predatory Aquatic Insects. *PLoS ONE* 7(6): e37741.
892 doi:10.1371/journal.pone.0037741

893

894 Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. *Nature*
895 310(5974), 225–227.

896

897 Krammer, K. 1997. Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten
898 Taxa. Teil 2. Encyonema part, Encyonopsis and Cymbellopsis. *Bibliotheca Diatomologica* 37: 1–

899 469.

900

901 Krosch, M. N., Baker, A. M., Mather, P. B. & Cranston, P. S. 2011. Systematics and
902 biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). Molecular
903 Phylogenetics and Evolution 59(2), 458-468.

904

905 Krosch., M. & Cranston, P.S. 2013. Not drowning, (hand)waving? Molecular phylogenetics,
906 biogeography and evolutionary tempo of the 'Gondwanan' midge *Stictocladius* Edwards
907 (Diptera: Chironomidae). Molecular Phylogenetics and Evolution 68: 595–603.

908

909 Krosch, M.N., Cranston, P.S., Bryant, L.M., Strutt, F. & McCluen, S.R. 2017. Towards a dated
910 molecular phylogeny of the Tanypodinae (Chironomidae, Diptera). Invertebrate Systematics, 31:
911 302–316.

912

913 Krosch, M. N., Silva, F. L., Ekrem, T., Baker, A. M., Bryant, L. M., Stur, E. & Cranston, P. S.
914 2022. A new molecular phylogeny for the Tanypodinae (Diptera: Chironomidae) places the
915 Australian diversity in a global context. Molecular Phylogenetics and Evolution 166, 107324.

916

917 Langton, P.H. 1991. A key to pupal exuviae of West Palaearctic Chironomidae. Privately
918 published, Huntingdon, Cambridge.

919

920 Lee, D.E., McDowall, R.M. & Lindqvist, J.K. 2007. *Galaxias* fossils from Miocene lake
921 deposits, Otago, New Zealand: the earliest records of the Southern Hemisphere family
922 Galaxiidae (Teleostei). Journal of the Royal Society of New Zealand, 37(3), 109–130.

923

924 Lee, D. E., Kaulfuss, U., Conran, J. G., Bannister, J. M. & Lindqvist, J. K. 2016. Biodiversity
925 and palaeoecology of Foulden Maar: an early Miocene Konservat-Lagerstätte deposit in southern
926 New Zealand. Alcheringa: An Australian Journal of Palaeontology, 40, 525–541.

927

928 Lee, D. E., Kaulfuss, U. & Conran, J. G. 2022. Fossil treasures of Foulden Maar. A window into
929 Miocene Zealandia. Otago University Press, Dunedin, 216 pp.

930

931 Lehman, J. T., Halat, K., Betz, B., Ndawula, L. M. & Kiggundu, V. 1998. Secondary production
932 by the lake fly *Chaoborus* in Lake Victoria, East Africa: implications for trophic dynamics of the
933 modern lake. *Environmental Change and Response in East African Lakes*, 135-145.

934

935 Lindqvist, J.K. & Lee, D.E. 2009. High-frequency paleoclimate signals from Foulden Maar,
936 Waipiata Volcanic Field, southern New Zealand: An Early Miocene varved lacustrine diatomite
937 deposit. *Sedimentary Geology*, 222, 98–110. doi:10.1016/j.sedgeo.2009.07.009

938

939 Loew, H. 1866. *Diptera Americae septentrionalis indigena. Centuria septima*. Berliner
940 *Entomologische Zeitschrift* 10: 1–54.

941

942 Lukashevich, E. D. 2022. The oldest occurrence of Chaoboridae (Insecta: Diptera). *Russian*
943 *Entomological Journal* 31(4): 417–421.

944

945 Lutz, H. 1991. Autochthone aquatische Arthropoda aus dem Mittel-Eozän der Fundstätte Messel
946 (Insecta: Heteroptera; Coleoptera; cf. Diptera-Nematocera; Crustacea: Cladocera). *Courier*
947 *Forschungsinstitut Senckenberg* 139: 119–125.

948

949 Lutz, H. 1997. Taphozönosen terrestrischer Insekten in aquatischen Sedimenten – ein Beitrag zur
950 Rekonstruktion des Paläoenvironments. *Neues Jahrbuch für Geologie und Paläontologie*,
951 *Abhandlungen* 203(2): 173–210.

952

953 Macdonald, W.W. 1956. Observations on the Biology of Chaoborids and Chironomids in Lake
954 Victoria and on the Feeding Habits of the Elephant-Snout Fish (*Mormyrus kannume* Forsk.).
955 *Journal of Animal Ecology* 25: 36–53.

956

957 Macfarlane, R.P., Maddison, P.A., Andrew, I.G., Berry, J.A., Johns, P.M., Hoare, R.J.B.,
958 Larivière, M.-C., Greenslade, P., Henderson, R.C., Smithers, C.N., Palma, R. L., Ward, J. B.,
959 Pilgrim, R. L. C., Towns, D. R., McLellan, I., Teulon, D. A., Hitchings, T. R., Eastop, V. F.,
960 Martin, N. A., Fletcher, M. J., Stufkens, M. A. W., Dale, P. J., Burckhardt, D., Buckley, T. R. &

961 Trewick, S. A. 2010. Phylum Arthropoda subphylum Hexapoda: Protura, springtails, Diplura, and
962 insects. In: Gordon, D.P. (Ed.), New Zealand Inventory of Biodiversity. Kingdom Animalia.
963 Chaetognatha, Ecdysozoa, Ichnofossils vol. 2. Canterbury University Press, Christchurch, pp.
964 233–467.

965

966 Marshall, S., Kirk-Spriggs, H. A., Mullerm B. S., Paiero, M. S., Yau, T. & Jackson, M. D. 2017.
967 Key to Diptera families - Adults. In Kirk-Spriggs, A. H. & Sinclair, B. J. (eds) Manual of
968 afrotropical Diptera. Volume 1: Introductory chapters and keys to Diptera families. South
969 African National Biodiversity Institute, Suricata, Pretoria, pp. 267–355.

970

971 Marshall, S. A. 2012. Flies: The Natural History and Diversity of Diptera. Richmond Hill:
972 Firefly Books.

973

974 Martin, P. & Gerecke, R. 2009. Diptera as hosts of water mite larvae – an interesting relationship
975 with many open questions. Lauterbornia 68: 95–103.

976

977 Matisoff, G. & Wang, X. 1998. Solute transport in sediments by freshwater infaunal
978 bioirrigators. Limnology and Oceanography 43: 1487–1499.

979

980 Mayr, E. 1942. Systematics and the Origin of Species. New York: Columbia University Press.

981

982 McCurry, M. R., Cantrill, D. J., Smith, P. M., Beattie, R., Dettmann, M., Baranov, V., Magee,
983 C., Nguyen, J. M. T., Forster, M. A., Hinde, J., Pogson, R., Wang, H., Marjo, C. E., Vasconcelos,
984 P. & Frese, M. 2022. A Lagerstätte from Australia provides insight into the nature of Miocene
985 mesic ecosystems. Science Advances 8 (1) eabm,1406.

986

987 McDowall, R.M. 2010. *New Zealand Freshwater Fishes. An Historical and Ecological
988 Biogeography*. Springer, Dordrecht, 449 pp.

989

990 Mildenhall, D. C., Kennedy, E. M., Lee, D. E., Kaulfuss, U., Bannister, J. M., Fox, B. & Conran,
991 J. G. 2014a. Palynology of the early Miocene Foulden Maar, Otago, New Zealand: Diversity
992 following destruction. *Review of Palaeobotany and Palynology*, 204, 27–42.
993

994 Mildenhall, D.C., Mortimer, N., Bassett, K.N. & Kennedy, E.M. 2014b. Oligocene
995 paleogeography of New Zealand: maximum marine transgression. *New Zealand Journal of*
996 *Geology and Geophysics* 57(2): 107–109.
997

998 O'Brien, N.R., Meyer, H.W. & Harding, I.C. 2008. The role of biofilms in fossil preservation,
999 Florissant Formation, Colorado. *Geological Society of America Special Paper* 435: 10–31.
1000

1001 Ogawa, J.R. 2007. Phylogeny of the “Chaoboriform” genera. Doctor of Philosophy thesis,
1002 Oregon State University, Oregon,
1003 xiv + 256 pp.
1004

1005 Olcott, A.N., Downen, M.R., Schiffbauer, J.D. & Selden, P.A. 2022. The exceptional
1006 preservation of Aix-en-Provence spider fossils could have been facilitated by diatoms.
1007 *Communications Earth & Environment* 3, article 94: 1–10.
1008

1009 Paleobiology Database. 2023. Available at <https://paleobiodb.org/#/>. Accessed 1 July 2023. Data
1010 were downloaded using the group names “Diptera”, “Ephemeroptera”, “Trichoptera”,
1011 “Plecoptera”, “Odonata” and the following parameters: time intervals = Eocene, Oligocene,
1012 Miocene.
1013

1014 Pole, M., Douglas, B. & Mason, G. 2003. The terrestrial Miocene biota of southern New
1015 Zealand. *Journal of the Royal Society of New Zealand* 33(1): 415–426.
1016

1017 Rasser, M.W., Spiske, M., Battenstein, M., Lehmkuhl, A., Ambrosius, R., Hanewinkel, A. &
1018 Müller, J. 2023. Neues von der Fossillagerstätte Öhninger Maar (Mittel-Miozän, Hegau).
1019 *Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins*, 105: 285–302.
1020

1021 Rasser, M.W., Bechly, G., Böttcher, R., Ebner, M., Heizmann, E.P.J., Höltke, O., Joachim, C.,
1022 Kern, A.K., Kovar-Eder, J., Nebelsick, J.H., Roth-Nebelsick, A., Schoch, R.R., Schweigert, G. &
1023 Ziegler, R. 2013. The Randeck Maar: Palaeoenvironment and habitat differentiation of a
1024 Miocene lacustrine system. *Palaeogeography, Palaeoclimatology, Palaeoecology* 292: 426–453.
1025

1026 Richter, G. & Baszio, S. 2001. Traces of a limnic food web in the Eocene Lake Messel – a
1027 preliminary report based on fish coprolite analyses. *Palaeogeography, Palaeoclimatology,*
1028 *Palaeoecology* 166: 345–368.
1029

1030 Richter, G. & Wedmann, S. 2005. Ecology of the Eocene Lake Messel revealed by analysis of
1031 small fish coprolites and sediments from a drilling core. *Palaeogeography, Palaeoclimatology,*
1032 *Palaeoecology* 223: 147–161.
1033

1034 Roback, S.S. 1971. The adults of the subfamily Tanypodinae (= Pelopiinae) in North America
1035 (Diptera: Chironomidae). *Monographs-Academy of Natural Sciences of Philadelphia* 17: 1–410.
1036

1037 Roback, S. S. 1974. The immature stages of the genus Coelotanypus (Chironomidae:
1038 Tanypodinae: Coelotanypodini) in North America. *Proceedings of the Academy of Natural
1039 Sciences of Philadelphia* 126: 9–19.
1040

1041 Rudstam, L.G. 2009. Other Zooplankton. In: Likens, G. E. (ed.), *Encyclopedia of Inland Waters*,
1042 Elsevier, pp. 667–677.
1043

1044 Sæther, O.A. 1970. Nearctic and Palaearctic. *Chaoborus* (Diptera: Chaoboridae). *Bulletin of the
1045 Fisheries Research Board of Canada*, 174:1-57.
1046

1047 Sæther, O.A. 1997. Diptera Chaoboridae, phantom midges, p. 149-161. In Nilson, A. (ed.),
1048 *Aquatic Insects of North Europe, part 2*. Apollo Books, Stenstrup.
1049

1050 Soster, F. M. & McCall, P. L. 1989. Predation by *Coelotanypus* (Diptera: Chironomidae) on
1051 laboratory populations of tubificid oligochaetes. *Journal of Great Lakes Research*, 15(3), 408-
1052 417.

1053

1054 Schmidt, A. R., Kaulfuss, U., Bannister, J. M., Baranov, V., Beimforde, C., Bleile, N., et al.
1055 2018. Amber inclusions from New Zealand. *Gondwana Research*, 56, 135–146.

1056 <https://doi.org/10.1016/j.gr.2017.12.003>

1057

1058 Scott, J.M., Pontesilli, A., Brenna, M., White, J.D.L., Giacalone, E., Palin, J.M. & le Roux, P.J.
1059 2020. The Dunedin Volcanic Group and a revised model for Zealandia's alkaline intraplate
1060 volcanism. *New Zealand Journal of Geology and Geophysics*, 62(4), 510–529.

1061 <https://doi.org/10.1080/00288306.2019.1707695>

1062

1063 Selden, P.A. & Kaulfuss, U. 2018. Fossil arachnids from the earliest Miocene Foulden Maar
1064 Fossil-Lagerstätte, New Zealand. *Alcheringa: An Australasian Journal of Palaeontology*, 43,
1065 165–169. <https://doi.org/10.1080/03115518.2018.1450446>

1066

1067 Seredszus, F. & Wichard, W. 2007. Fossil chironomids (Insecta, Diptera) in Baltic amber.
1068 *Palaeontographica Abt. A* 279: 49–91.

1069

1070 Seredszus, F. & Wichard, W. 2010. Overview and descriptions of fossil non-biting midges in
1071 Baltic amber (Diptera: Chironomidae). *Studia dipterologica* 17, 121–129.

1072

1073 Sinichenkova, N.N. & Zherikhin, V.V. 1996. Mesozoic lacustrine biota: Extinction and
1074 persistence of communities. *Paleontological Journal* 30(6): 710–715.

1075

1076 Tonnoir, A.L. 1927. Descriptions of new and remarkable New Zealand Diptera. *Records of the*
1077 *Canterbury Museum* 3: 101–112.

1078

1079 Wagner, A., Volkmann, S. & Dettinger-Klemm, P. M. A. 2012. Benthic–pelagic coupling in lake
1080 ecosystems: the key role of chironomid pupae as prey of pelagic fish. *Ecosphere*, 3(2), 1-17.

1081

1082 Wallis, G.P. & Jorge, F. 2018. Going under down under? Lineage ages argue for extensive

1083 survival of the Oligocene marine transgression on Zealandia. *Molecular Ecology* 27: 4368–4396.

1084

1085 Wappler, T. 2003. Die Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel.

1086 Mainzer Naturwissenschaftliches Archiv, Beiheft 27: 1–234.

1087

1088 Wedmann, S. 2000. Die Insekten der oberoligozänen Fossillagerstätte Enspel (Westerwald,

1089 Deutschland). – Systematik, Biostratinomie und Paläoökologie. Mainzer Naturwissenschaftliches

1090 Archiv, Beiheft 23: 1–154.

1091

1092 Wedmann, S. & Richter, G. 2007. The ecological role of immature phantom midges (Diptera:

1093 Chaoboridae) in the Eocene Lake Messel, Germany. *African Invertebrates*, 48(1): 59–70.

1094

1095 Wedmann, S., Uhl, D., Lehmann, T., Garrouste, R., Nel, A., Gomez, B., Smith, K. & Schaal,

1096 S.F.K. 2018. The Konservat-Lagerstätte Menat (Paleocene; France) – an overview and new

1097 insights. *Geologica Acta*, 16(2): 189–213.

1098

1099 Wedmann, S., Poschmann, M. & Hörnschemeyer, T. 2010. Fossil insects from the Late

1100 Oligocene Enspel Lagerstätte and their palaeobiogeographic and palaeoclimatic significance.

1101 *Palaeobiodiversity and Palaeoenvironments*, 90: 49–58.

1102

1103 Westphal, F. 1963. Ein fossilführendes Jungtertiär-Profil aus dem Randecker Maar (Schwäbische

1104 Alb). *Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins*, 45: 27–43.

1105

1106 Wiederholm, T. 1989. Chironomidae of the Holarctic region. Keys and diagnoses. Part III. Adult

1107 males. *Entomologica Scandinavica Supplement* 34:1–532.

1108

1109 Wiederholm, T. 1986. Chironomidae of the Holarctic region. Keys and diagnoses. Part II. Pupae.

1110 *Entomologica Scandinavica Supplement* 28: 1–482.

1111

1112 Wiederholm, T. 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae.

1113 *Entomologica Scandinavica Supplement* 19: 1–447.

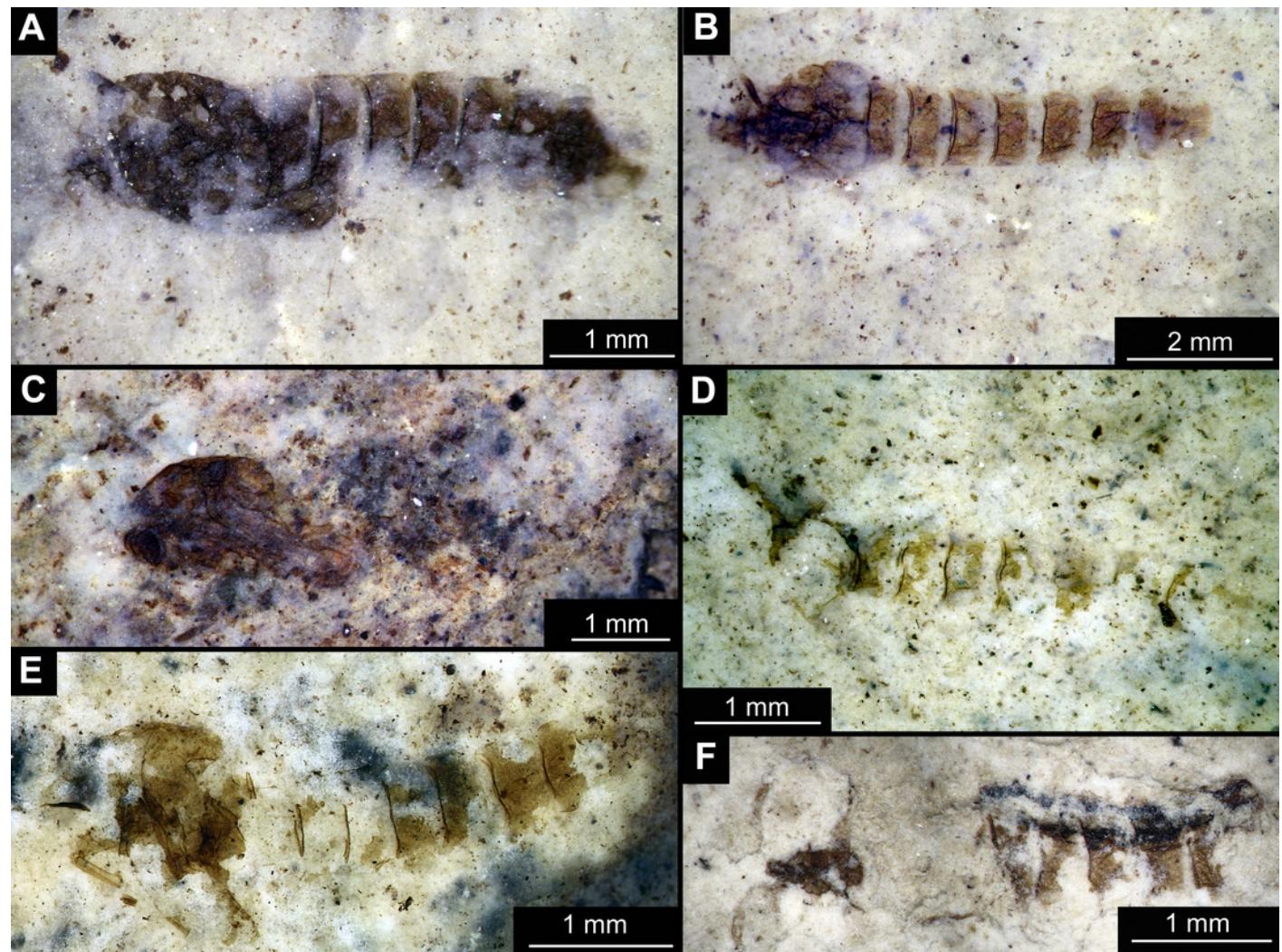
1114

1115 Winterbourn, M. J., Gregson, K. L. & Dolphin, C. H. 1989. Guide to the aquatic insects of New.

1116 Entomological Society of New Zealand Bulletin 9: 1–95.

1117

1118 Wood, D. M. & Borkent, A. 1989. Manual of Nearctic Diptera, 3, Phylogeny and classification


1119 of the Nematocera. Agriculture Canada Monograph 32: 1333–1370.

1120

Figure 1

Figure 1: Habitus of representatives of pupae morphotype cf. *Coelotanypus* from Foulden Maar.

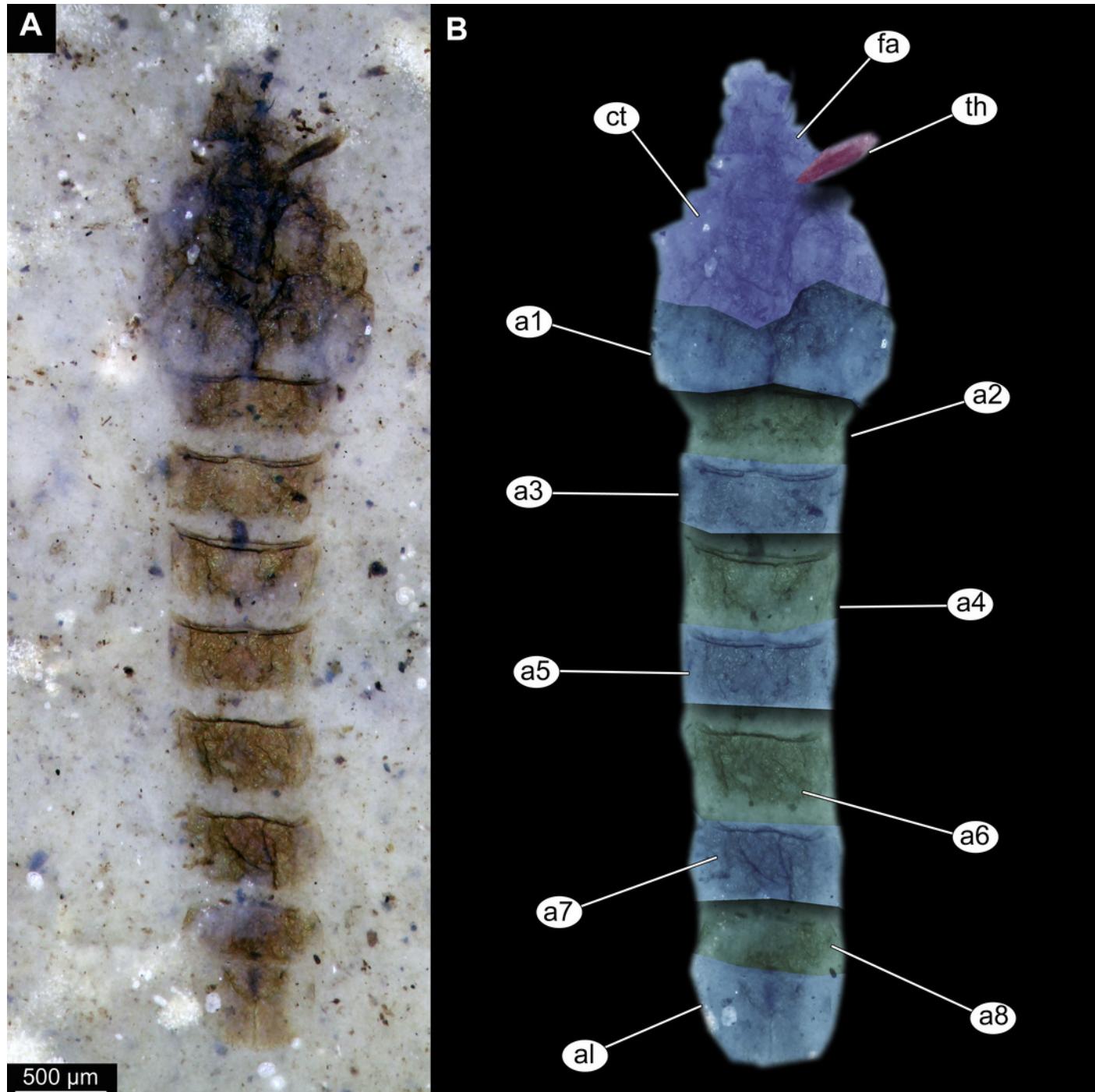

(A) Specimen OU46609 (191); (B) Specimen OU46626 (208); (C) Specimen OU46641 (223); (D) Specimen OU45541 (137); (E) Specimen OU44933 (28); (F) Specimen OU44930 (23).

Figure 2

Figure 2: Pupae of morphotype cf. *Coelotanypus*, specimen OU46626 (208).

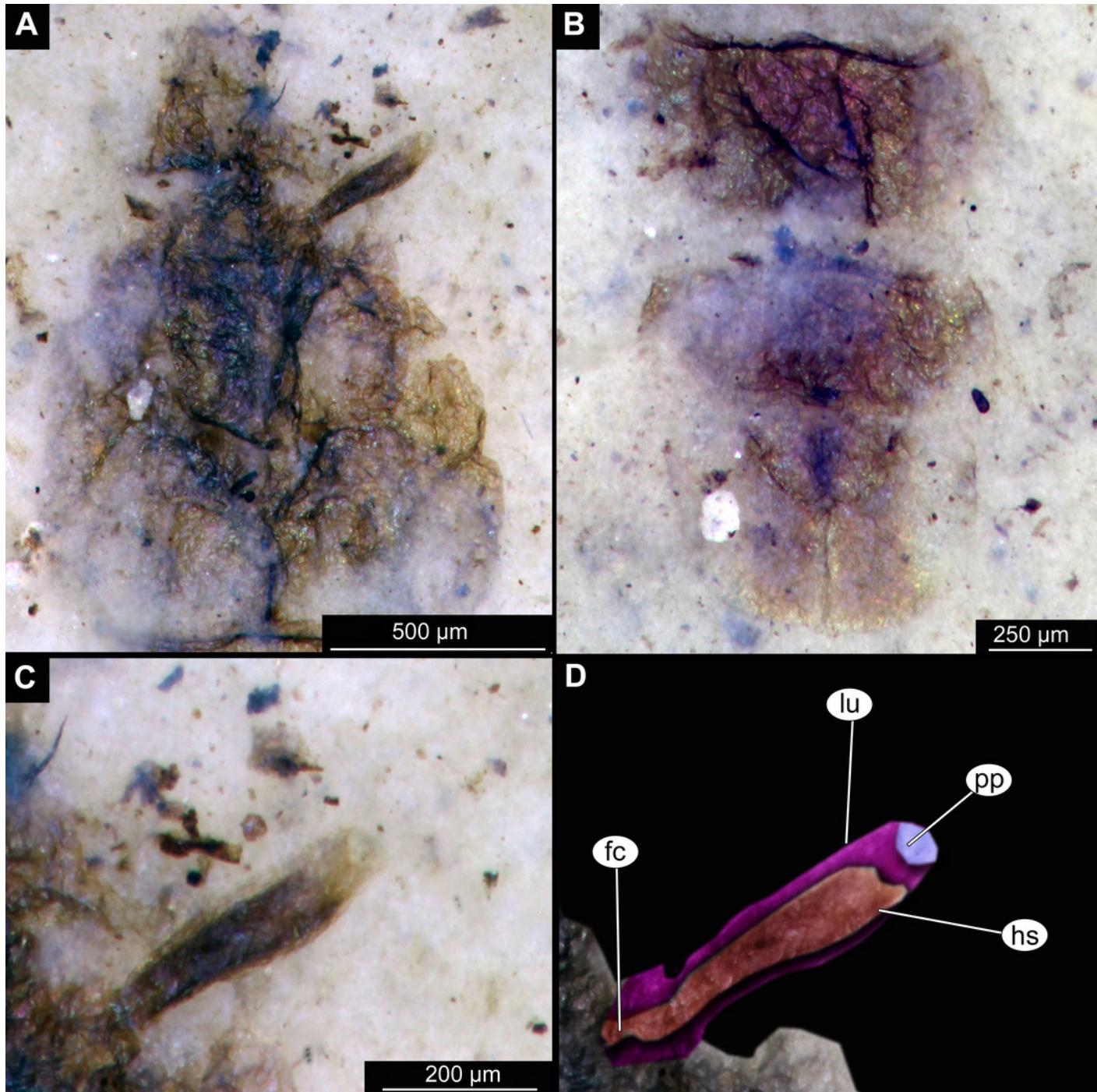

(A) Habitus, unmarked; (B) Habitus, marked. Abbreviations: *a1-a8*, abdominal units 1 through 8; *al*, anal lobes; *ct*, cephalothoracic cuticle (cuticle covering head and thorax); *fa*, frontal apotome; *th*, thoracic horn (respiratory organ).

Figure 3

Figure 3: Pupae of morphotype cf. *Coelotanypus*, specimen OU46626 (208).

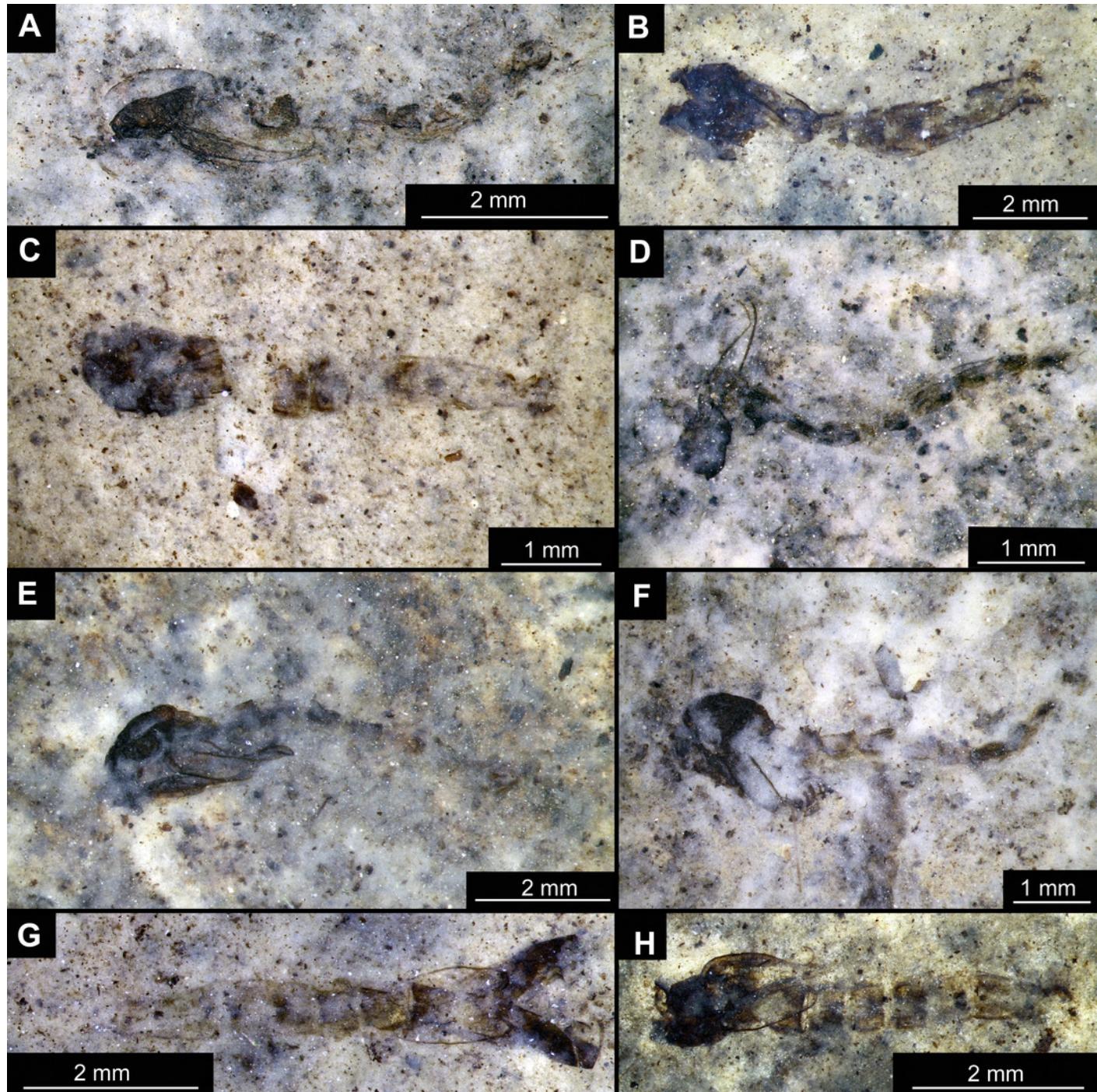

(A) Head and thorax; (B) Anal lobes; (C) Thoracic horn (respiratory organ), unmarked; (D) Thoracic horn, marked. Abbreviations: *fc*, felt chamber; *hs*, horn sack, *lu*, lumen of the horn; *pp*, plastron plate.

Figure 4

Figure 4: Chironominae morphotype 1, pupal exuviae, habitus overview.

(A) Specimen OU45543 (139); (B) Specimen OU47058 (252); (C) Specimen OU45553 (149);
(D) Specimen OU46645 (227); (E) Specimen OU46627 (209); (F) Specimen OU46620 (202);
(G) Specimen OU46654 (236); (H) Specimen OU47051 (245).

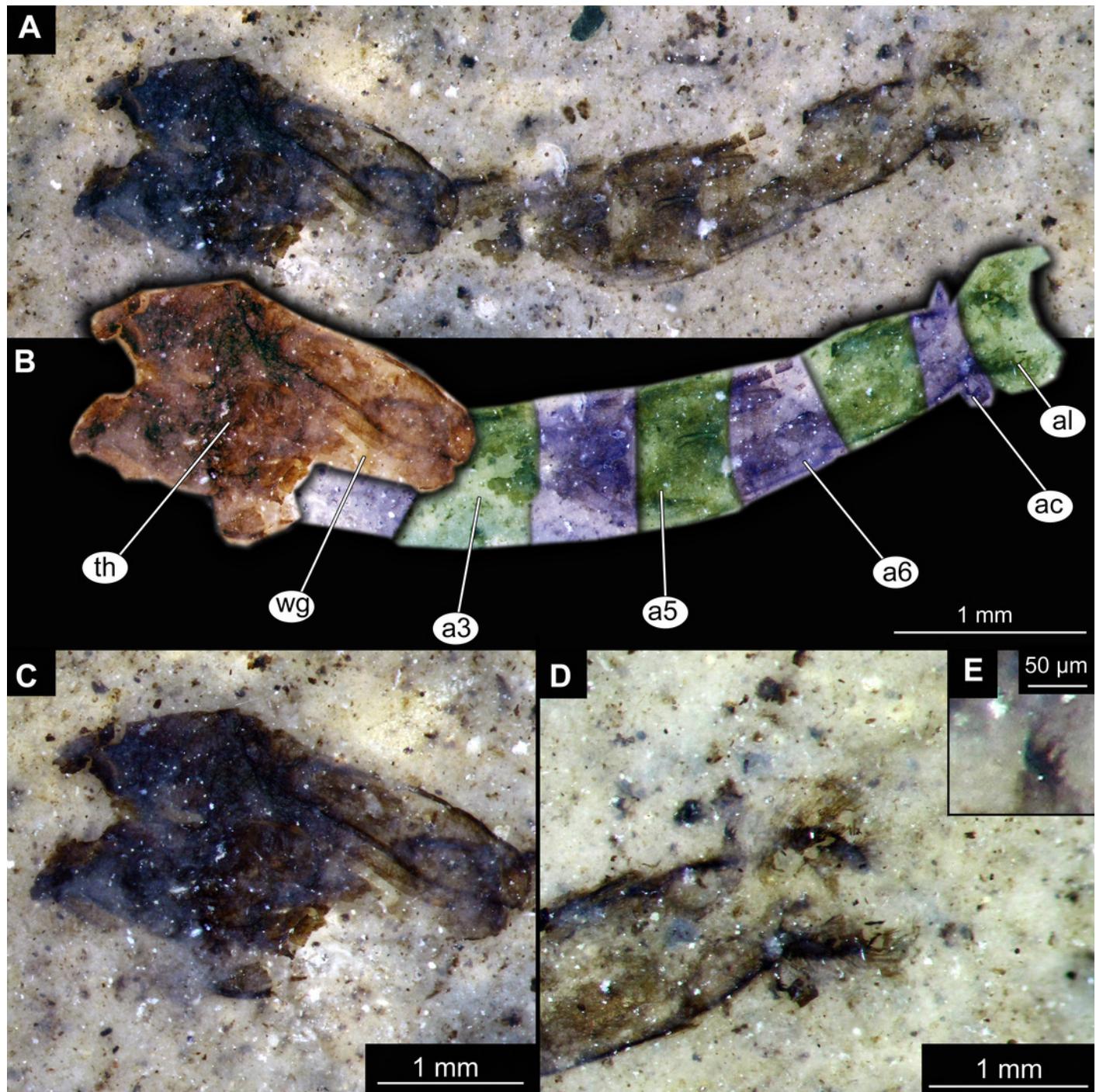


Figure 5

Figure 5: Chironominae morphotype 1, specimen OU47058 (252), pupal exuvium.

(A) Habitus, unmarked; (B) Habitus, marked; (C) Cephalothoracic cuticle; (D) Anal lobes.

Abbreviations: *a3-a6*, abdominal units three through six; *ac*, anal comb; *al*, anal lobes; *th*, thorax; *wg*, wings.

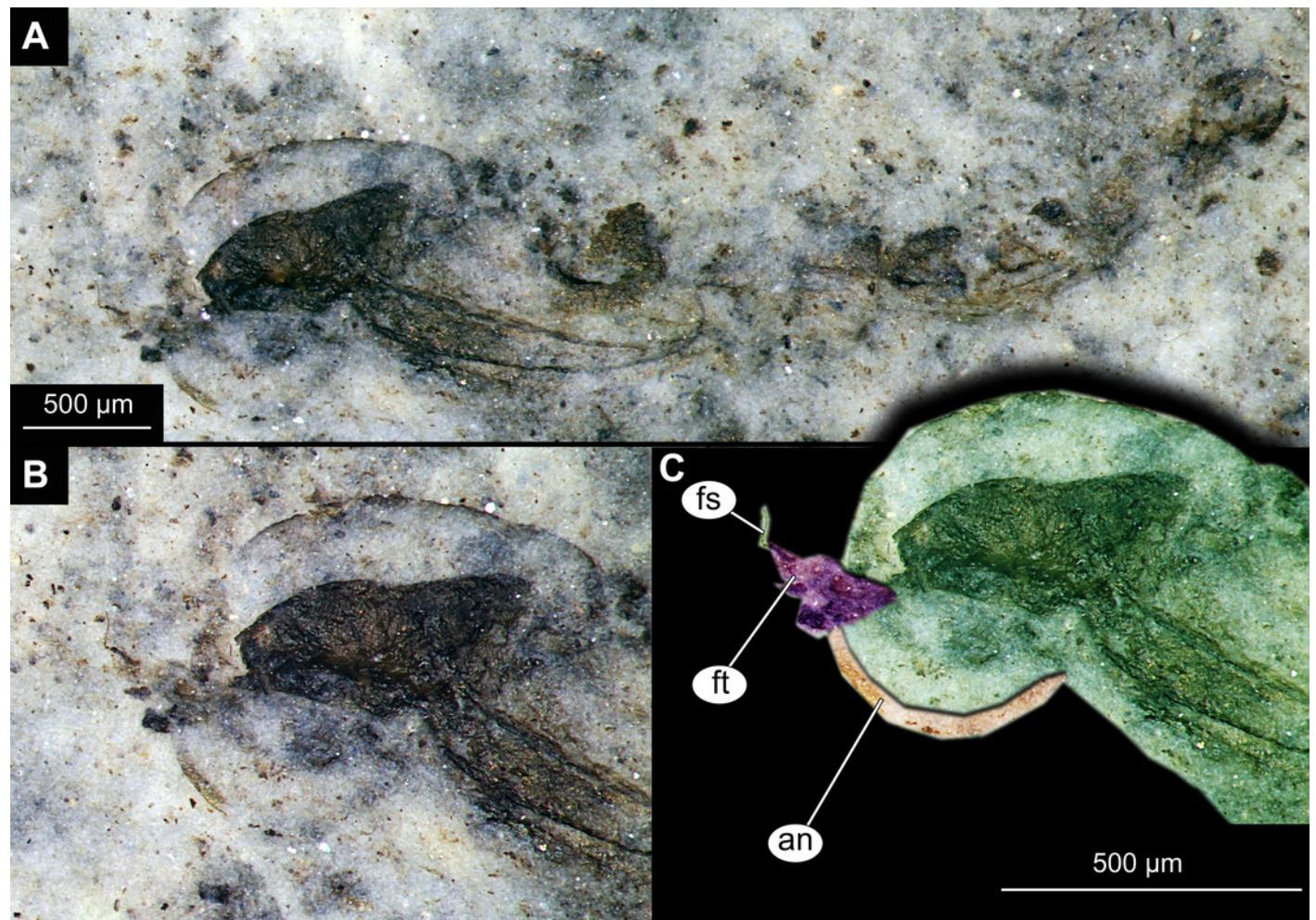


Figure 6

Figure 6: Chironominae morphotype 1, specimen OU45543 (139), pupal exuvium.

(A) Habitus; (B) Cephalothoracic cuticle, unmarked; (C) Cephalothoracic cuticle, marked.

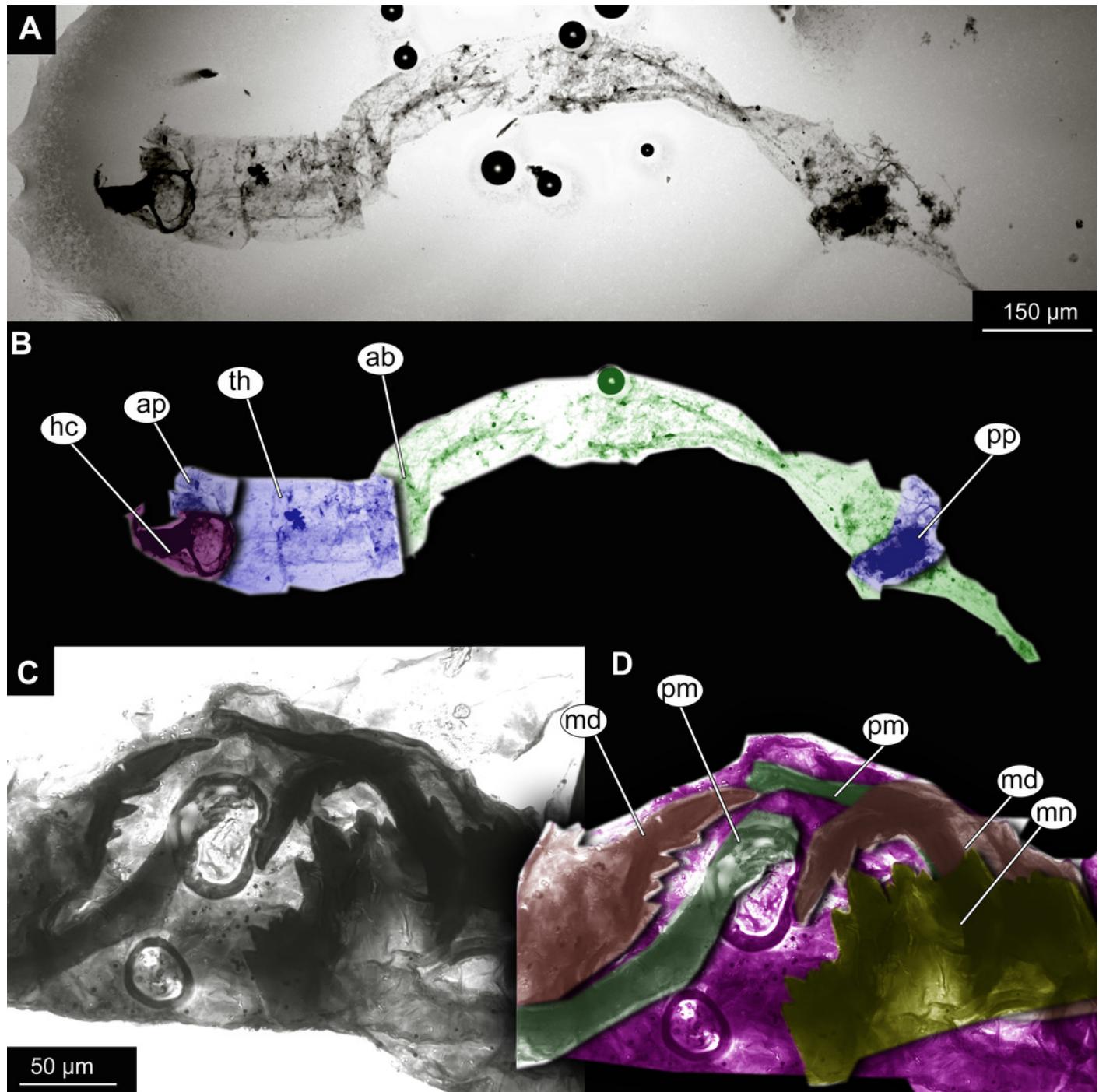

Abbreviations: *an*, antenna; *fs*, frontal setae.; *ft*, frontal tubercles.

Figure 7

Figure 7: Larval cuticle of Chironominae morphotype 2, specimen OU47488 (268), extracted from the laminated diatomite.

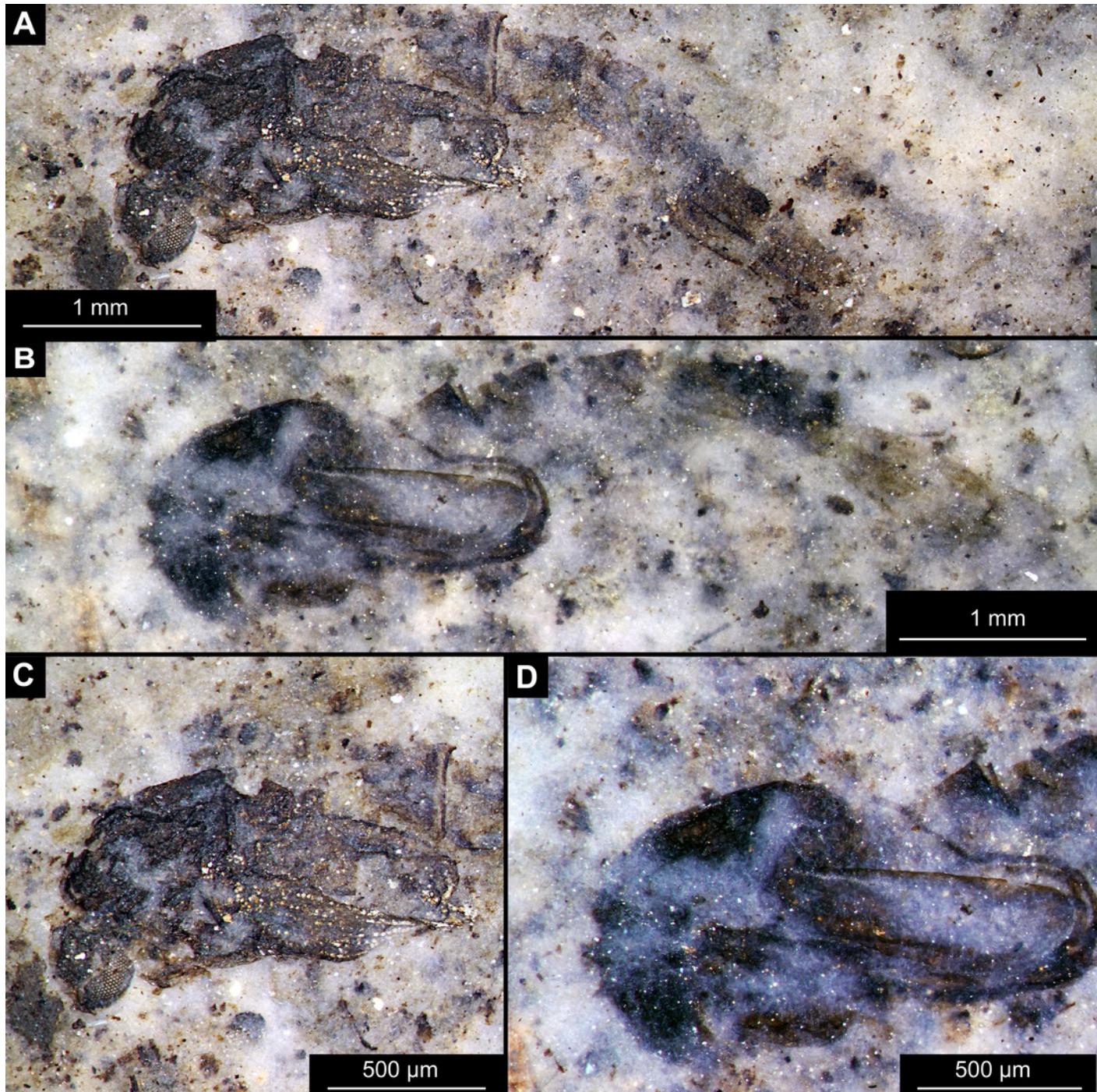

(A) Habitus, unmarked; (B) Habitus, marked; (C) Mouthparts, unmarked; (D) Mouthparts, marked. Abbreviations: *ap*, anterior parapods; *ab*, abdomen, *hc*, head capsule; *md*, mandible; *mn*, mentum; *pm*, premandibles; *pp*, posterior parapods; *th*, thorax.

Figure 8

Figure 8: Chironomidae morphotype 1, pupae, habitus overview.

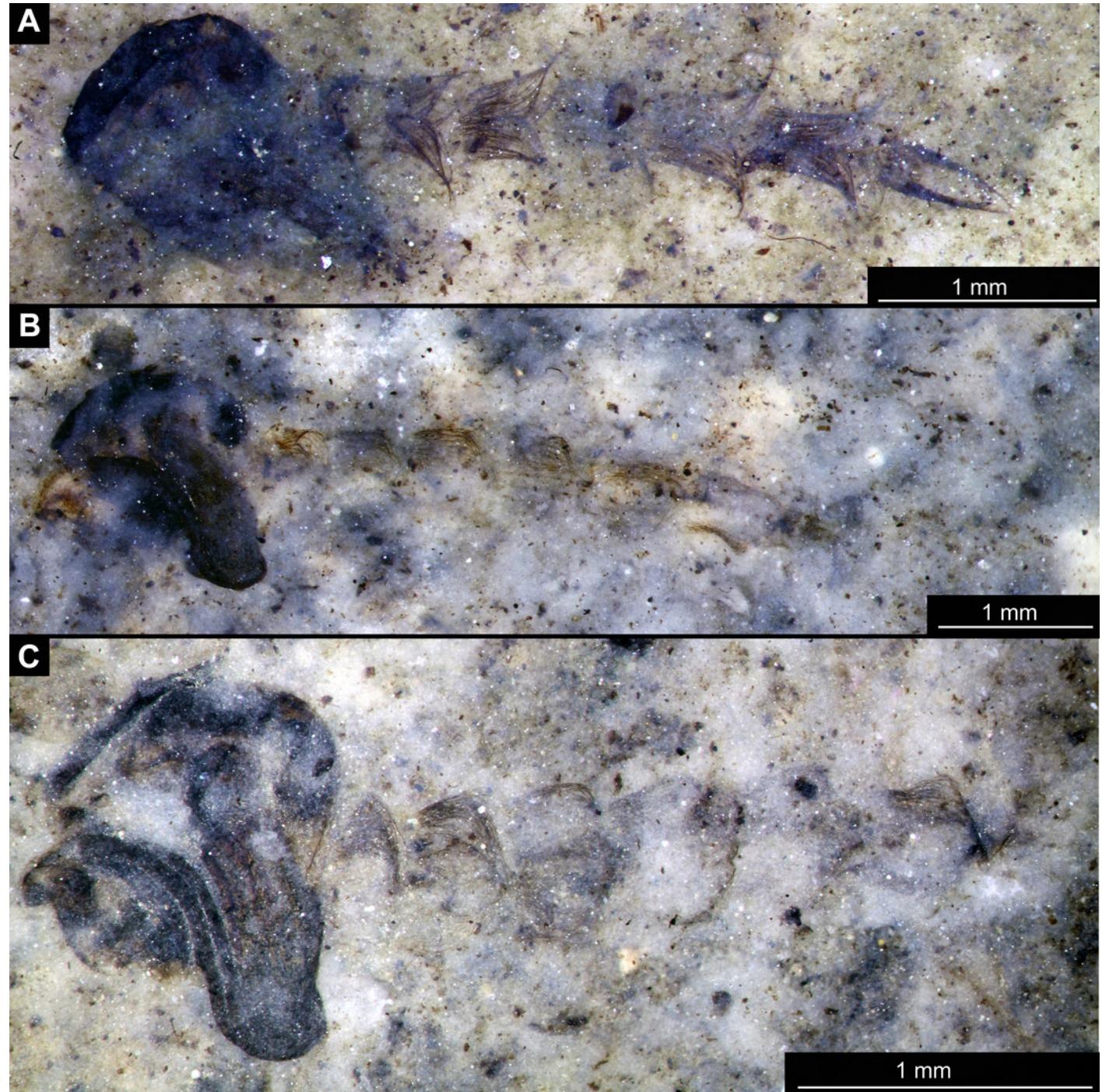

(A, C) Specimen OU45549 (145); (B, D) Specimen OU46608 (190). (A) Habitus; (B) Habitus; (C) Thorax and head; (D) Thorax and head.

Figure 9

Figure 9: Chaoboridae morhoptype 1, pupae, habitus overview.

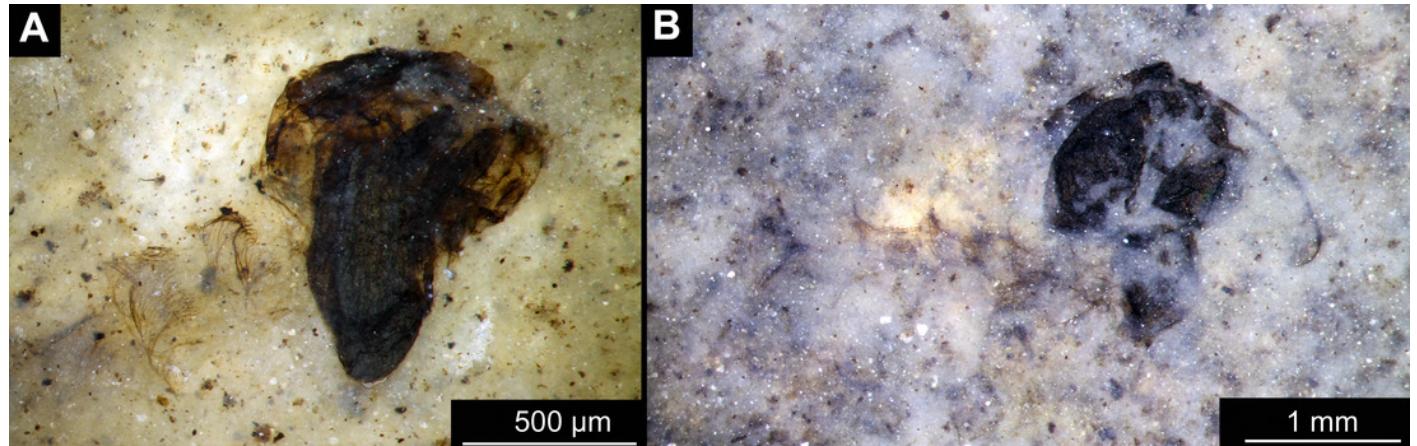

(A) Specimen OU46653 (235); (B) Specimen OU46651 (233); (C) Specimen OU46642 (224).

Figure 10

Figure 10: Chaoboridae morphotype 1, pupae, habitus overview.

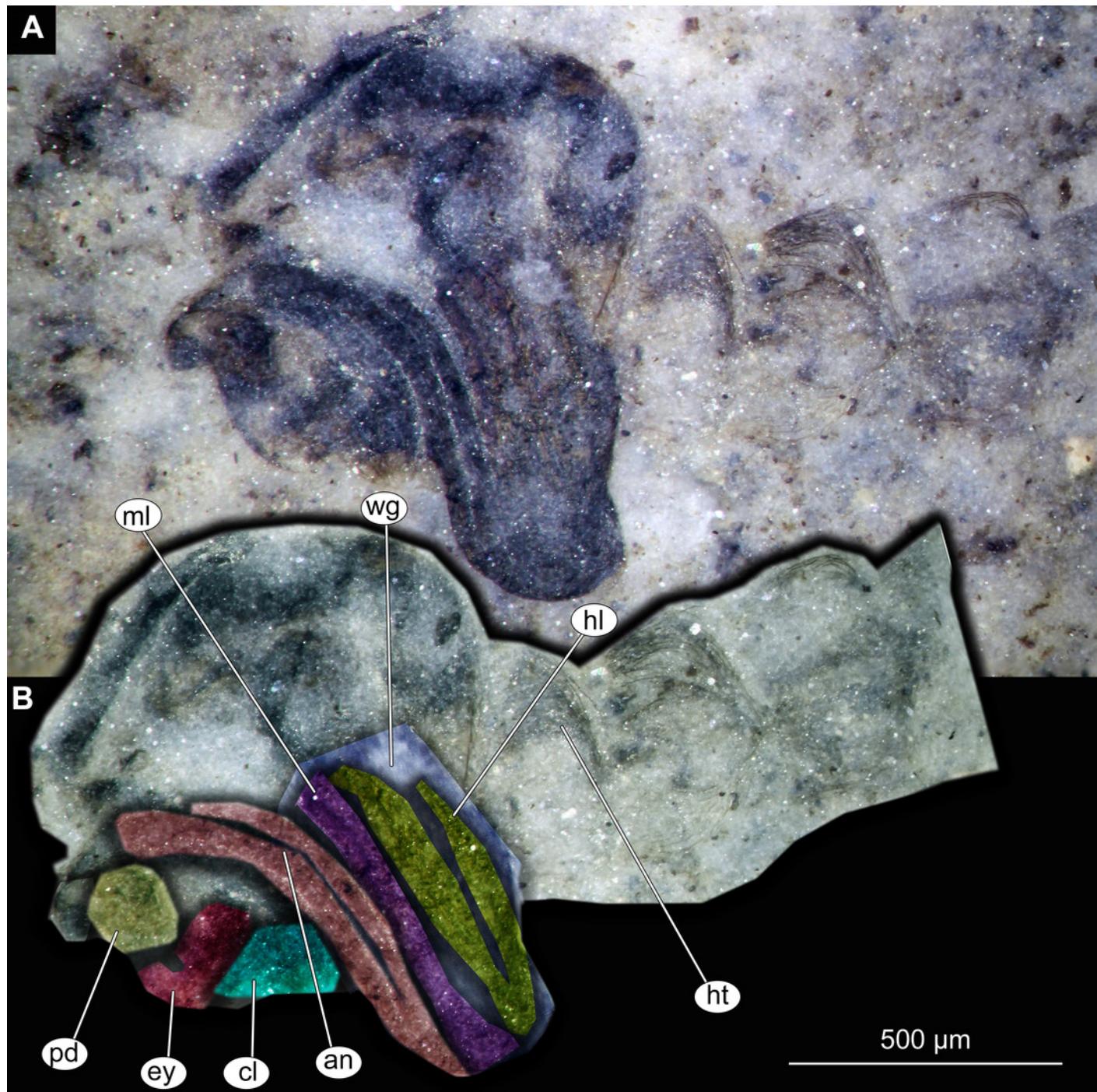

(A) Specimen OU47487 (163); (B) Specimen OU46631 (213).

Figure 11

Figure 11: Thorax and head of Chaoboridae morphotype 1, specimen OU46642 (224).

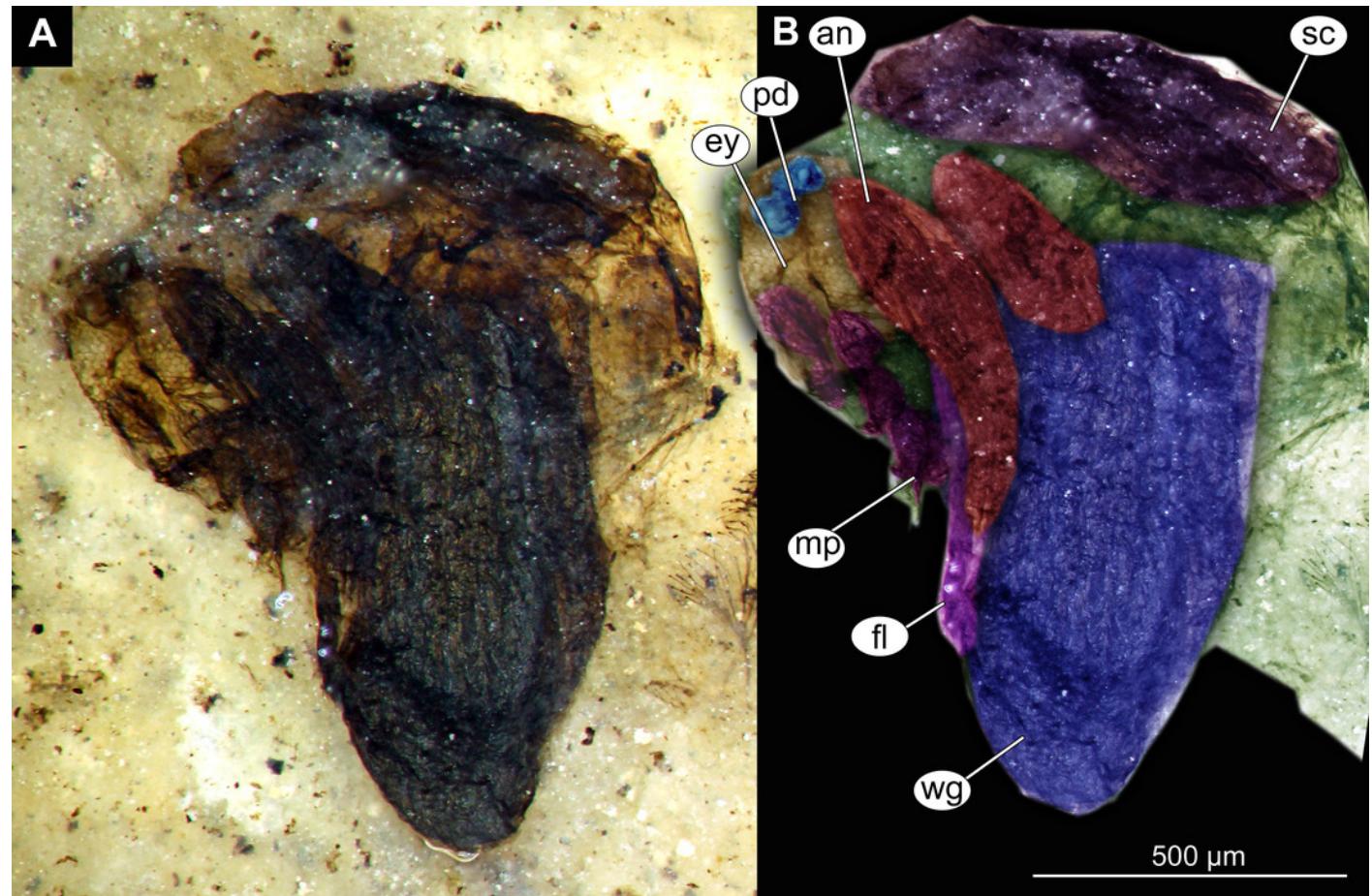

(A) Thorax and head, unmarked; (B) Thorax and head, marked. Abbreviation: *an*, antenna; *cl*, clypeus; *ey*, eye; *hl*, hind leg; *ht*, hair tufts of abdomen; *ml*, mid leg; *pd*, pedicellus; *wg*, wing.

Figure 12

Figure 12: Thorax and head of Chaoboridae morphotype 1, specimen OU47487 (163).

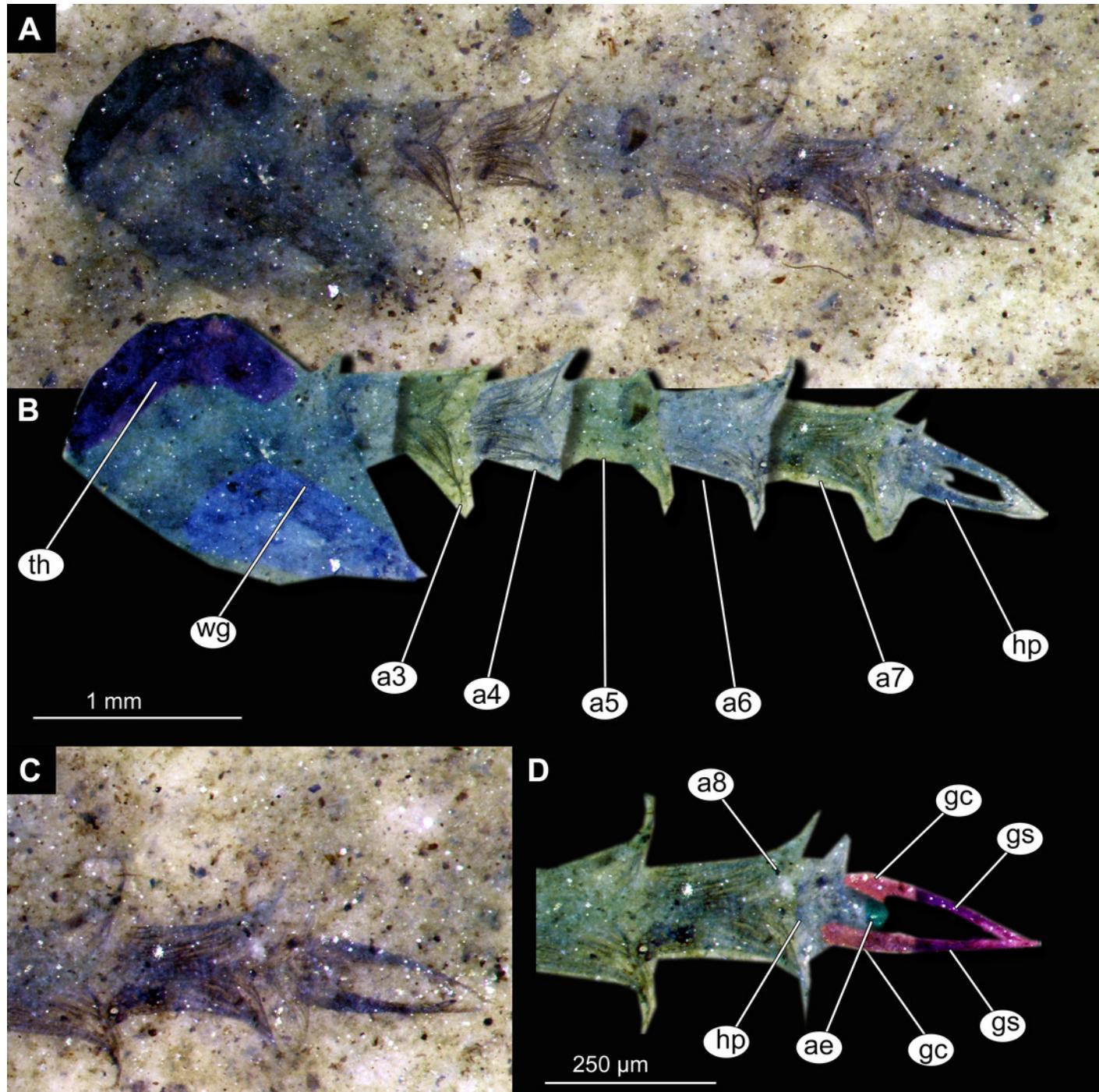

(A) Thorax and head, unmarked; (B) Thorax and head, marked. Abbreviation: *an*, antenna; *ey*, eye; *fl*, front leg, *mp*, maxilar palpi; *pd*, pedicellus; *sc*, scutellum; *wg*, wing.

Figure 13

Figure 13: Chaoboridae morphotype 1, specimen OU46653 (235).

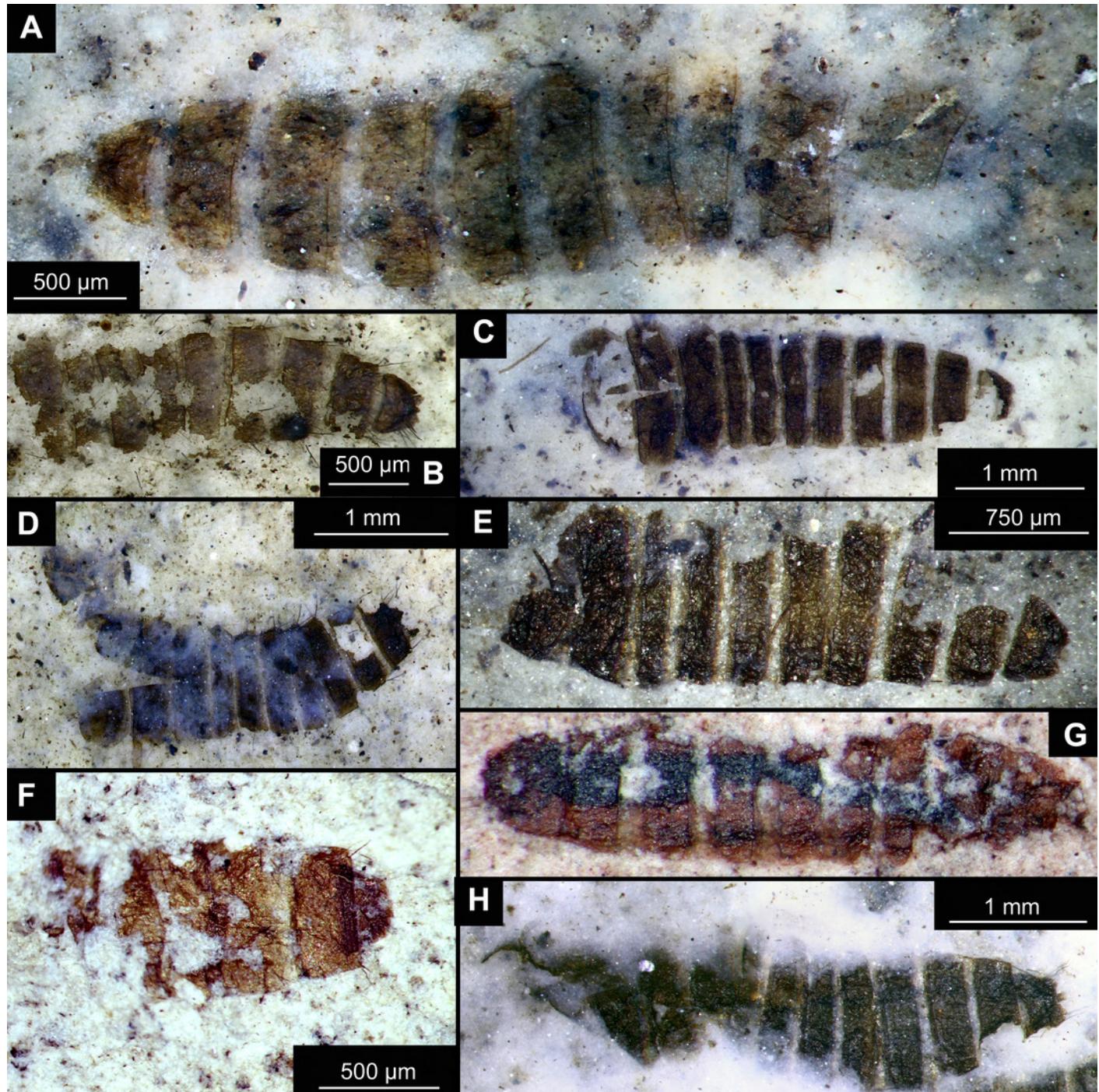

(A) Habitus, unmarked; (B) Habitus, marked; (C) Hypopigium visible through the cuticle, unmarked; (D) Hypopigium visible through the cuticle, marked. Abbreviations: *a3-a8*, abdominal units a3 through a8; *ae*, aedeagus of the hypopigium; *gc*, gonocoxite; *gs*, gonostylus; *hp*, hypopigium; *th*, thorax; *wg*, wing.

Figure 14

Figure 14: Presumed brachyceran larvae and puparia from Foulden Maar.

(A) Specimen OU44996 (105); (B) Specimen OU44982 (91); (C) Specimen OU46644 (226); (D) Specimen OU46652 (234); (E) Specimen OU45559 (155); (F) Specimen OU44981 (90); (G) Specimen OU44944 (43); (H) Specimen OU46655 (237).

