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ABSTRACT
Background. Studies had shown that autophagy was closely related to nonalcoholic
fat liver disease (NAFLD), while N6-methyladenosine (m6A) was involved in the
regulation of autophagy.However, themechanismofm6A related autophagy inNAFLD
was unclear.
Methods. The NAFLD related datasets were gained via the Gene Expression Omnibus
(GEO) database, and we also extracted 232 autophagy-related genes (ARGs) and 37
m6A. First, differentially expressed ARGs (DE-ARGs) and differentially expressed
m6A (DE-m6A) were screened out by differential expression analysis. DE-ARGs
associated with m6A were sifted out by Pearson correlation analysis, and the m6A-
ARGs relationship pairs were acquired. Then, autophagic genes in m6A-ARGs pairs
were analyzed for machine learning algorithms to obtain feature genes. Further, we
validated the relationship between feature genes and NAFLD through quantitative real-
time polymerase chain reaction (qRT-PCR), Western blot (WB). Finally, the immuno-
infiltration analysis was implement, and we also constructed the TF-mRNA and drug-
gene networks.
Results. There were 19 DE-ARGs and four DE-m6A between NAFLD and normal
samples. The threem6A genes and five AGRs formed them6A-ARGs relationship pairs.
Afterwards, genes obtained frommachine learning algorithms were intersected to yield
three feature genes (TBK1, RAB1A, and GOPC), which showed significant positive
correlation with astrocytes, macrophages, smooth muscle, and showed significant
negative correlation with epithelial cells, and endothelial cells. Besides, qRT-PCR and
WB indicate that TBK1, RAB1A and GOPC significantly upregulated in NAFLD.
Ultimately, we found that the TF-mRNA network included FOXP1-GOPC, ATF1-
RAB1A and other relationship pairs, and eight therapeutic agents such as R-406 and
adavosertib were predicted based on the TBK1.
Conclusion. The study investigated the potential molecular mechanisms of m6A
related autophagy feature genes (TBK1, RAB1A, and GOPC) in NAFLD through
bioinformatic analyses and animal model validation. However, it is critical to note that
these findings, although consequential, demonstrate correlations rather than cause-
and-effect relationships. As such, more research is required to fully elucidate the
underlying mechanisms and validate the clinical relevance of these feature genes.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease, with
a worldwide prevalence of approximately 25%. It is characterized by the accumulation of
excessive triglycerides and other lipids in the hepatocytes (Powell, Wong & Rinella, 2021).
NAFLD is a progressive disease that can progress from simple steatosis to steatohepatitis
and eventually lead to cirrhosis or hepatocellular carcinoma (Kanwal et al., 2018). Owing
to the current rapid changes in lifestyles, NAFLD is a public health issue and poses a great
clinical and economic burden on the patient. Moreover, it has become the most prevalent
liver disorder in China. China has been reported to have the fastest-growing prevalence of
NAFLD in the world, with 314.58 million NAFLD individuals projected by 2030. It is also
estimated that the population of NAFLD will increase from 80 million to 110 million in the
USA by 2030 (Estes et al., 2018; Zhou et al., 2020a). However, the harmfulness and severity
of NAFLD have not been paid enough attention. Currently, there are no standardised
proposals by any country to address NAFLD at national and global levels (Lazarus et al.,
2022).

NAFLD is a series of diseases involving excessive liver fat deposition, often accompanied
by various metabolic disorders, there is a lack of specific therapeutic drugs (Rong et
al., 2022). Non-pharmacological therapies that involve changes in diet and lifestyle are
generally used, or indirect regulation and improvement of specific pathogenic factors, key
links in the onset of the disease, and related metabolic disorders. For example, diosgenin
(improving mitochondrial function), pomegranate (anti-inflammatory), curcumin
(antioxidant) (Chen et al., 2023; Zamanian et al., 2023; Beheshti Namdar et al., 2023). The
latest research shows that the interaction and regulation between serum metabolites
and intestinal flora may help naringenin’s therapeutic effect on NASH (Cao et al., 2023),
and related studies targeting the intestinal-liver axis and regulating intestinal flora are
constantly emerging (Zhai et al., 2023; Wang et al., 2023). On the other hand, another
research evaluated disease-related circRNA and competitive endogenous RNA networks
as potential biomarkers for NAFLD using functional gain and loss methods, reflecting the
important role of targeted biomarker research in the progression of NAFLD (Zeng et al.,
2024). Thus, we urgently need to elucidate the potential mechanisms of NAFLD.

Autophagy could maintains intracellular environmental homeostasis in response to
external stimuli (Hazari et al., 2020), which is especially relevant to livermetabolism (Byrnes
et al., 2022). Studies have shown that the dysregulation of autophagy is one of the
important causes of NAFLD. Thus, the inhibition of autophagy can lead to an increase
in the lipid droplet content of hepatocytes (Cheng et al., 2019). On the other hand, N6-
methyladenosine (m6A) is the most pervasive internal modification of mRNA, which
includes writers, erasers and readers (He et al., 2019). m6A affects the expression of target
genes to maintain cellular functions and physiological processes by regulating mRNA
processing, translation, degradation and splicing (Liu & Gregory, 2019; Liu et al., 2017).
Currently, researchers have reported that the m6A modification plays an important role in
the development of cancers and metabolic diseases (Yang et al., 2019; Li et al., 2020), and
also in fatty liver disease (Luo et al., 2019). Importantly, it was reported that the autophagy
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gene is closely associated with the m6A gene and fat mass and obesity (FTO), that the m6A
demethylase can influence autophagy by decreasing the expression of ATG5 and ATG7
genes (Wang et al., 2020). Moreover, m6A writer methyltransferase like 3 (METTL3)
and the m6A readers YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) are
negatively regulated autophagy pathway in NAFLD (Peng et al., 2022). Other studies also
report that METTL3 regulates the m6A modification of lipid metabolism in hepatic cells
and autophagy in cardiomyocytes (Xie et al., 2019). Considering the strong association
between the m6A regulator and autophagy, we hypothesised that m6A-related autophagy
genes may have important significance in NAFLD.

In this study, we aimed to screen the potential key m6A-related autophagy genes in
NAFLD through comprehensive researches, and used bioinformatics tools to explore their
potential function on NAFLD, including corresponding relationship with clinical features,
immune features and transcription factor (TF) regulatory network. Further, the NAFLD
animal model was built for the expression validation of key genes in silico. We make the
case that the study could provide new biomarkers and a theoretical basis for the clinical
diagnosis and treatment of NAFLD.

MATERIALS & METHODS
Data retrieved
The training set GSE66676 and validation set GSE130970 were downloaded via the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds) database, in which
the GSE66676 contained 33 NAFLD samples and 34 normal samples (samples type:
liver wedge biopsy) (Xanthakos et al., 2015), and GSE130970 validation set contained 72
NAFLD samples and three normal samples (samples type: liver biopsy) (Hoang et al.,
2019). Additionally, 232 autophagy-related genes (ARGs) were extracted from the human
autophagy database (HADb) (Chen et al., 2022) (http://www.autophagy.lu/), and 37 m6A
were obtained from the literature (Li et al., 2022).

Differentially expressed ARGs and differentially expressed m6A genes
were obtained using differential analysis
Based on the NAFLD and normal samples in the GSE66676 dataset, differentially expressed
ARGs (DE-ARGs) and differentially expressed m6A genes (DE-m6A) were sifted out
by limma package (v3.46.0) (Wang et al., 2021) setting P < 0.05. Meanwhile, volcano
maps were plotted for the obtained results. Heat maps were drawn using the pheatmap
package (v1.0.12) (Zhang et al., 2021a) to visualize the expression patterns of DE-ARGs
and DE-m6A.

Construction of an m6A-ARGs co-expression network
Pearson correlation analysis was applied to analyse the relationships between DE-ARGs
and DE-m6A using the cutoff Pearson correlation coefficient (PCC) >0.7 and P < 0.05, in
which the gene selected were defined as the m6A-related autophagy genes (m6A-ARGs).
The co-expression network of m6A-ARGs was drawn using the Cytoscape software.
Then, WoLF-PSORT (https://wolfpsort.hgc.jp/) was used to predict the protein subcellular
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localization (PSL) encoded by the m6A-ARGs. Finally, gene ontology (GO) and Kyoto
Encyclopaedia of Genes And Genomes (KEGG) enrichment analysis of the m6A-ARGs
were performed via the enrichGO and enrichKEGG functions in clusterprofiler R package
(v3.18.1) for functionality annotations (Yu et al., 2012).

Screening and validation of feature genes
Support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF)
are increasingly used to predict disease-associated feature genes. We narrowed down the
feature genes using SVM-RFE and RF on the m6A-ARGs using Caret R package (v6.0-92).
The resultant genes obtained were intersected to obtain the feature genes. Further, we
used the rank sum test setting the threshold P < 0.05 to evaluate the expression levels of
the feature genes between NAFLD and normal samples in the GSE66676 and GSE130970
datasets, respectively. Finally, gene set enrichment analysis (GSEA) of the feature genes
was performed setting the GO and KEGG as reference gene sets, where the correlation
coefficient of the average expression of all genes in all samples and feature genes was
calculated as the ranking standard, and then the gseGO (parameter settings: OrgDb =
org.Hs.eg.db, ont = ‘ALL’, pvalueCutoff = 0.05, pAdjustMethod = ‘BH’) and gseKEGG
(parameter settings: organism = ‘hsa’, pvalueCutoff = 0.05, pAdjustMethod = ‘BH’)
functions in the clusterProfiler R package (v3.18.1) were conducted to perform GSEA
analysis on the sorted genes. The entries that meet the conditions of |NES | >1, P < 0.05
and FDR <0.25 were considered to have significant meaning to be selected.

Correlation analysis of feature genes and clinicopathological
characters
Based on the GSE66676 dataset, we analysed the correlation between feature genes and
clinicopathological characters. The expression levels of the feature genes in different
clinical states (borderline nonalcoholic steatohepatitis (NASH), definite NASH, NAFLD,
not NASH, no NAFLD) were analysed using the Wilcoxon test. A box plot was drawn to
visualize the results.

The mice model of NAFLD was constructed
Male C57/12 mice (12 weeks old) which were purchased from Guangdong Vital River
Laboratory Animal Technology Co., Ltd. (Guangdong, China), were housed in animal care
facilities with controlled temperature (21∼25 ◦C) and humidity (40∼70%), and light-dark
cycles were 12 h. Twenty mice were randomly divided into normal group (n= 10) and
NAFLD group (n= 10). The NAFLD group were fed 60% high fat diet (HFD), the
other group with normal diet ,and the weight of these mice were monitored weekly,
and their food intake were recorded accordingly. Mice do not suffer during the feeding
process, after feeding for 12 weeks, they were euthanized painlessly (cervical dislocation
under anesthesia 2% isoflurane), their liver tissue was taken out for examination. To
ensure the successful establishment of a high-fat model, we conducted a pre-experiment
before the formal experiment. The animal experiment was approved by the ethical review
committee of The SecondAffiliatedHospital ofNanchangUniversity, the approval number:
NCULAE-20221031008. All of the animal procedures in this study were in accordance with
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the Laboratory animal-Guideline for ethical review of animal welfare promulgated by
Standardization Administration of China and with the ARRIVE guidelines.

Hematoxylin-eosin staining
The liver sample was dealed according to the hematoxylin-eosin (HE) staining General
processing procedure, Liver sectionmorphological differences between normal andNAFLD
groups in C57 mice were observed by HE staining.

Quantitative reverse transcriptase-PCR
qPCR verified the expression of RAB1A, TBK1, GOPC genes in two groups of male C57
mice. Using the Trizol method to extract the total RNA of liver tissue according to the
manufacturer’s instructions, the concentration of each RNA sample was detected. Then,
the total RNA was converted to complementary deoxyribonucleic acid (cDNA) according
to the the reverse transcription reagent kit. The quantitative PCR kit TB Green was used
for cDNA for real-time PCR detection with the procedure: denaturation temperature
96 ◦C, annealing temperature 57 ◦C, extension temperature 72 ◦C for detection. Primers
of qRT-PCR were listed in Table 1.

Western blotting detected the liver RAB1A, TBK1, GOPC
protein content of C57 mice in the two group
The same weight of liver sample each group was taken and lysed with RIPA buffer to
extracted the total proteins, which were quantified by using a microplate reader. Adding 1
µl of 5XSDS-PAGEprotein loading buffer per 4µL of protein sample before polyacrylamide
gel electrophoresis, the subsequent routine western blot experimental steps are carried out,
after the membranes were washed and successively incubated with the primary antibodies
and the secondary antibody. The membrane was scanned on the Odyssey Li-COR CLx
infrared laser scanner to obtain the content of RAB1A, TBK1, GOPC of rat liver.

Immune infiltration analysis
Body immunity plays an important role in the occurrence and development of diseases.
Immune infiltration analysis was performed on the GSE66676 dataset, whereas xCell was
used to observe the percentage distribution of immune cell types in each sample. Then,
immune cells with differential distribution between NAFLD and normal samples were
screened using the Wilcoxon test, and they were taken Spearman correlation analysis with
feature genes by setting P < 0.05 and |cor | >0.3. A scatter plot was drawn to visualize the
results.

Construction of TF-mRNA network
TFs are a group of protein molecules that can be combined with specific sequences of genes
to ensure that feature genes are expressed at a specific time and space. Differential TF-
feature gene (TF-mRNA) relationship pairs were extracted from the hTFtarget database
(https://ngdc.cncb.ac.cn/databasecommons/database/id/6946), and we also constructed a
TF-mRNA regulatory relationship network according to the above relationship pairs.
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Table 1 Primers of q-PCR.

Forward primer Reverse primer

Tbk1 (mouse) TGTTCTAGAGGAGCCGTCCA GGTGCACTATGCCGTTCTCT
Rab1a (mouse) ATCGTTTCCCGTGGTTGGTT ACACTGGTTGTGCTGTGTGA
GOPC (mouse) CACTCTGTGGAGGATCTGGAAA CTCGCCCCATAAACTTCAGC

Drug forecast analysis
To predict potential therapeutic drugs associated with feature genes, we uploaded the
feature genes into the Drug-Gene Interaction database (DGIdb) (http://www.dgidb.org).
Default parameters were used to analyse the interaction between drugs and feature genes.
The results were visualized using Cytoscape.

Statistic analysis
Statistical analysis was carried out through R software. Differences between different groups
were compared via the Wilcoxon test. P < 0.05 was considered as significant difference.

RESULTS
Identification of DE-ARGs and DE-m6A
The flowchart of data analysis is shown in Fig. 1. A total of 19 DE-ARGs was observed
between NAFLD samples and normal samples, of which 15 were upregulated and four
were downregulated DE-ARGs (Fig. 2A, Table 2). We also sifted out four DE-m6As (two
up-regulated DE-m6As and two down-regulated DE-m6As) by differential expression
analysis (Fig. 2B, Table 3).

m6A-ARGs co-expression network
Using the Pearson correlation analysis of DE-ARGs and DE-m6A (Fig. 3A), a total of three
m6A genes, namely PCIF1, HNRNPA2B1 and SRSF10, and five ARGs, namely ATG4D,
ATG5, TBK1, GOPC and RAB1A were obtained as the m6A-ARGs with PCC >0.7 and
P < 0.05. The co-expression network visualized the interactions of PCIF1-ATG5, SRSF10-
GOPC, HNRNPA2B1-ATG4D and other relationship pairs (Fig. 3B). Afterwards, the
detected protein localization-distribution results in WoLF-PSORT analysis was displayed
in Fig. 3C, in which the proteins encoded by TBK1 and ATG5 were presented in the
cytoplasm, while those encoded by RAB1A and ATG4D were found in the extracellular
matrix. Additionally, GOPC-encoded proteins were located in the nucleus. The enrichment
analysis revealed that all genes in the m6A-ARGs co-expression network was involved in
10 GO pathways, such as macro-autophagy and selective autophagy (Fig. 3D). Autophagy
can affect the development of NAFLD by reducing the degradation of intracellular lipid
droplet closure and lysosomal fusion. Likewise, the results of KEGG analysis indicated that
various m6A-ARGs were associated with the pathway of autophagy-animal, and the top10
enriched KEGG terms were showed in Fig. 3E.

Identification of feature genes
We respectively gained four and three genes via SVM-RFE and RF algorithms (Figs.
4A–4B), and they were intersected to yield three feature genes (TBK1, RAB1A and GOPC)
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Figure 1 Flowchart of overall study design.
Full-size DOI: 10.7717/peerj.17011/fig-1

(Fig. 4C). According to the literature, TBK1 inhibitors alleviate the pathological response
of NAFLD, suggesting that TBK1 is associated with NAFLD (Oral et al., 2017; Huh et al.,
2020). Ras-related protein RAB1A is a member of the cellular G-protein Ras superfamily,
which plays a role in protein transport and membrane remodeling. GOPC encodes a Golgi
protein that had a PDZ structural domain, and Golgi proteins have been reported to play a
role in intracellular protein transport and degradation. Nevertheless, the expression trends
of three feature genes were the same in the GSE66676 (left) and GSE130970 (right) datasets,
and they were significantly increased in NAFLD compared with normal samples (Fig. 4D).

The expression of feature genes are higher in rats with NAFLD (n =

10) than normal group (n =10)
HE was used to verify the successful construct an in vivo model of NAFLD (Fig. 5A), the
mRNA expression of TBK1, RABA1, GOPC were all significantly increased in the NAFLD
group compared with the normal group (Fig. 5B). Meanwhile, the protein expression of
TBK1, RABA1, GOPC were also increased in the NAFLD group than the normal group
(Figs. 5C–5D), the result showed that the three feature genes may play an important role
in NAFLD.
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Figure 2 Identification of differentially expressed autophagy related genes (DE-ARGs) and differen-
tially expressed m6A genes (DE-m6A). (A) Volcano plot (top) and heat map (bottom) of DE-ARGs be-
tween NAFLD and normal samples in GSE66676, red represents up-regulation, blue represents down-
regulation. (B) Volcano plot (top) and heat map (bottom) of DE-M6A genes in GSE66676. For A–B, P <
0.05 was set as significant differences. The rows in the heat map represent the expression patterns of each
gene in samples from different sources (green: Normal; orange: NAFLD), and the columns represent the
expression patterns of different genes in each sample (blue: downregulation; red: upregulation), where the
cluster tree on the left represents the genes with similar expression patterns were clustered.

Full-size DOI: 10.7717/peerj.17011/fig-2

Enrichment and clinical correlation analyses of feature genes
TBK1 was enriched in 1,861 GO pathways, such as the catalytic step 2 spliceosome, and
it was enriched to 150 KEGG pathways, including fatty acid degradation, protein export
and so on (Fig. 6A). RAB1A was enriched in 1,408 GO pathways, including antigen
processing and presentation of peptide antigen viaMHC class I, and 108 KEGG pathways,
including the proteasome pathway (Fig. 6B). A total of 2,068 GO pathways were enriched
by GOPC, including the ribonucleoprotein complex biogenesis, and 149 KEGG pathways
were obtained, including nucleocytoplasmic transport (Fig. 6C). Furthermore, the box
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Table 2 Lists for the differentially expressed autophagy related genes (DE-ARGs) between NAFLD and normal samples in GSE66676.

logFC AveExpr t P .value adj. P .val B

CDKN1B 0.155991255 7.791996413 3.009818825 0.00363408 0.381531286 −2.054356556
ATG4D −0.126722986 6.893206907 −2.881078481 0.005258718 0.381531286 −2.309982934
HSPA5 0.367701476 10.80340176 2.63104235 0.010464713 0.381531286 −2.782569957
ITGB4 −0.12442223 5.509958325 −2.596851071 0.011461408 0.381531286 −2.844637478
GOPC 0.150314626 7.564719096 2.55511884 0.012794154 0.381531286 −2.919533697
EIF2AK3 0.188627977 6.914901924 2.540104874 0.013306904 0.381531286 −2.946245686
IKBKB 0.084903034 7.375056448 2.503880459 0.01462123 0.381531286 −3.010181302
RHEB 0.199168958 7.335165 2.501335584 0.01471782 0.381531286 −3.014645578
HSP90AB1 0.199743343 10.09404822 2.46475225 0.016171234 0.381531286 −3.078420713
PPP1R15A −0.159745345 6.108658464 −2.426477422 0.017828565 0.381531286 −3.144337995
TBK1 0.175433344 7.21801386 2.342607025 0.02200197 0.42803833 −3.285855566
RAB1A 0.204874846 9.768151338 2.201047573 0.031037081 0.509247311 −3.515394688
WIPI1 0.138979281 7.753411242 2.186279158 0.032145563 0.509247311 −3.538653978
MAPK9 0.142781973 7.815001148 2.171171147 0.033315245 0.509247311 −3.562311787
HDAC6 0.112872637 8.079616328 2.116973775 0.037822661 0.5215983 −3.646038191
DNAJB9 0.239011167 7.756817388 2.081609315 0.041041743 0.5215983 −3.699700039
BECN1 0.102938592 7.101400105 2.056883887 0.043430886 0.5215983 −3.736758985
ATG5 0.122487529 7.607437523 2.037567537 0.045379987 0.5215983 −3.765446156
IFNG −0.085846797 3.768942053 −2.028600253 0.046310129 0.5215983 −3.778684503

Table 3 Lists for the differentially expressed m6A (DE-m6A) genes between NAFLD and normal samples in GSE66676.

logFC AveExpr t P .value adj. P .val B

CDKN1B 0.155991255 7.791996413 3.009818825 0.00363408 0.381531286 −2.054356556
ATG4D −0.126722986 6.893206907 −2.881078481 0.005258718 0.381531286 −2.309982934
HSPA5 0.367701476 10.80340176 2.63104235 0.010464713 0.381531286 −2.782569957
ITGB4 −0.12442223 5.509958325 −2.596851071 0.011461408 0.381531286 −2.844637478
GOPC 0.150314626 7.564719096 2.55511884 0.012794154 0.381531286 −2.919533697
EIF2AK3 0.188627977 6.914901924 2.540104874 0.013306904 0.381531286 −2.946245686
IKBKB 0.084903034 7.375056448 2.503880459 0.01462123 0.381531286 −3.010181302
RHEB 0.199168958 7.335165 2.501335584 0.01471782 0.381531286 −3.014645578
HSP90AB1 0.199743343 10.09404822 2.46475225 0.016171234 0.381531286 −3.078420713
PPP1R15A −0.159745345 6.108658464 −2.426477422 0.017828565 0.381531286 −3.144337995
TBK1 0.175433344 7.21801386 2.342607025 0.02200197 0.42803833 −3.285855566
RAB1A 0.204874846 9.768151338 2.201047573 0.031037081 0.509247311 −3.515394688
WIPI1 0.138979281 7.753411242 2.186279158 0.032145563 0.509247311 −3.538653978
MAPK9 0.142781973 7.815001148 2.171171147 0.033315245 0.509247311 −3.562311787
HDAC6 0.112872637 8.079616328 2.116973775 0.037822661 0.5215983 −3.646038191
DNAJB9 0.239011167 7.756817388 2.081609315 0.041041743 0.5215983 −3.699700039
BECN1 0.102938592 7.101400105 2.056883887 0.043430886 0.5215983 −3.736758985
ATG5 0.122487529 7.607437523 2.037567537 0.045379987 0.5215983 −3.765446156
IFNG −0.085846797 3.768942053 −2.028600253 0.046310129 0.5215983 −3.778684503
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Figure 3 Collection of m6A-related autophagy genes (m6A-ARGs). (A) Pearson correlation heatmap
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Genomes (KEGG) enrichment analysis of all genes in the m6A-ARGs co-expression network.

Full-size DOI: 10.7717/peerj.17011/fig-3

plot revealed that the expressions of TBK1, RAB1A and GOPC in borderline NASH, define
NASH, NAFLD, not NASH and no NAFLD were significantly different (Fig. 6D).

Immune micro environment analysis
The percentage distribution of eight immune cells, such as astrocytes, chondrocytes,
and epithelial cells, were all dramatically different between NAFLD and normal samples
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model. The abscissa indicates the number of feature genes in RFE analysis, the ordinate represents the ac-
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genes shared by two models. (D) Box plots of the expression levels of three feature genes between normal
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Full-size DOI: 10.7717/peerj.17011/fig-4

(Fig. 7A). Correlation analysis revealed that RAB1A, TBK1 and GOPC were significantly
positively correlated with astrocytes, macrophages and smooth muscle but negatively
correlated with epithelial cells and endothelial cells (Figs. 7B–7G).

TF-mRNA regulatory relationship network
The GOPC, RAB1A and TBK1 was related to 37, 33 and 54 TF-mRNA pairs, respectively,
and the TF-mRNA network included FOXP1-GOPC, ATF1-RAB1A, AR-TBK1 and other
relationship pairs (Fig. 8).

Drug sensitivity analysis
For the predicted therapeutic agents from the DGIdb database, data on GOPC and RAB1A
was absence. Based on TBK1, we finally predicted eight therapeutic agents, namely R-406,
adavosertib, chembl-1997335, PF-00562271, CYC-116, TAE-684, cenisertib and entrectinib
(Fig. 9).
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Figure 5 The mRNA and protein expression of TBK1, RAB1A and GOPC in animal model. (A)
Hematoxylin-eosin (HE) staining image as the pathological evidence for treatment of NAFLD. (B)
Quantitative reverse transcriptase-PCR (qRT-PCR) showed the mRNA expression of the three feature
genes were significantly higher in NAFLD rats (n = 10) than in normal rats (n = 10). (C–D) Western
blotting (WB) showed that the three feature genes was significantly higher in NAFLD rats (n= 5) than in
normal rats (n= 5). * P < 0.05, *** P < 0.001.

Full-size DOI: 10.7717/peerj.17011/fig-5

DISCUSSION
M6A RNA methylation regulators play a role in preventing age-related and diet-induced
development of NAFLD by improving inflammatory and metabolic phenotypes (Peng
et al., 2022; Qin et al., 2021). However, knowledge of the biological role of m6A-related
autophagy genes in the development of NAFLD is lacking. Recently research has shown
autophagy is associated with the development of NAFLD, four autophagy-related lncRNAs
were be found may participate in the occurrence of NAFLD (Cao et al., 2022). In this
study, we explored differentially expressed m6A genes and autophagy genes in NAFLD
and constructed an m6A-autophagy genes co-expression network using machine learning
algorithms (SVM-RFE and RF) to filter out signature genes (Chen & Ishwaran, 2012; Sanz
et al., 2018). Three feature genes, namely TBK1, RAB1A and GOPC were selected as the
biomarkers of NAFLD.

TANKBindingKinase 1 (TBK1), a protein-coding gene, is a critical kinase thatmodulates
inflammation and autophagy. It was reported that the abnormal expression of TBK1 is
related to obesity, diabetes, even and NAFLD (He et al., 2020; Xu et al., 2018). That is, as a
member of the non-canonical IKK family, TBK1 is considered a by-product of activating
the NF- κB signalling pathway in the liver (Zhao et al., 2018). Blocking the IKK ε and TBK1
pathways can significantly reduce the inflammatory factors produced by pro-inflammatory
cells such as TNF- α and MCP-1, thereby improving insulin sensitivity and reducing liver
steatosis (Reilly et al., 2013). TBK1 can reduce the thermogenesis and catabolism of the
mitochondria by inhibiting the activity of AMPK, resulting in energy storage and ultimately
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Figure 6 Functionality and correlations with clinicopathological characters of three feature genes
in the GSE66676 dataset. (A–C) Gene set enrichment analysis (GSEA) of three feature genes (left: GO;
right: KEGG). (A) TBK1. (B) RAB1A. (C) GOPC. Each figure shows partial enrichment entries (top 10).
The figure contains three parts. The top of the figure refer to the enrichment score (ES) of each gene.
A particularly obvious peak on the left is the ES value on the phenotype of the gene set. Each line in the
middle of the figure represents a gene in the gene set and its ranking position in the gene list. The bottom
of the figure shows a matrix of gene-phenotype correlations. (D) Box plots of the expression of TBK1,
RAB1A, GOPC in different clinical states (borderline nonalcoholic steatohepatitis (NASH), definite
NASH, NAFLD, not NASH, and no NAFLD. ***p< 0.001, **p< 0.01, *p< 0.05).

Full-size DOI: 10.7717/peerj.17011/fig-6
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Figure 7 Immune correlation analysis. (A) Box plot for the proportions of immune cells subtypes in
NAFLD and normal samples from the GSE66676 dataset (xCell algorithm). (B) Correlation heat map of
eight differential expressed immune cells with feature genes. (C–G) Scatter plot for correlations of five sig-
nificant immune cells with feature genes. (C) Astrocytes. (D) Macrophages. (E) Smooth muscle. (F) Ep-
ithelial cells. (G) Endothelial cells.
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leading to obesity (Zhao et al., 2018). It has been reported that TBK1 is increased in palmitic
acid (PA)-treated liver cells (especially in liver Kupffer cells), suggesting its potential role
in the progression of NAFLD to NASH. Corresponding to it, TBK1 inhibitors can alleviate
PA-mediated lipid accumulation, inflammatory reaction and adipocyte apoptosis in
hepatocytes (Zhou et al., 2020b), indicating the vital indicative significance of TBK1 in the
progression of NAFLD.

RAB1A is notable for its role in vesicular trafficking and is generally considered to be
a housekeeping protein that regulates cell membrane dynamics (Yang et al., 2016). The
abnormal expression of RAB1A has been associated with many human diseases, such as
glucose homeostasis, Parkinson’s disease and various cancers (Zhang et al., 2021b; Coune
et al., 2011; Huang et al., 2021). Autophagy generally provides a protective function by
limiting tumour necrosis and inflammation, thereby reducing the damage of tumour cells
to the body. Studies have shown that the overexpression of RAB1A in cancer cells may
promote autophagy progression by effecting with optic nerve protein (OPTN, an autophagy
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receptor). The knockout of RAB1A not only prevents endoplasmic reticulum-Golgi
transport but also inhibits autophagy formation (Song et al., 2018). Meanwhile, RAB1A
interacts with C9orf72 to regulate the initiation of autophagy by regulating the transport
of the ULK1 autophagy initiation complex to phagocytic cells (Webster et al., 2016). A
recent study reported that RAB1A plays a role in autophagy by recruiting and directly
activating autophagy-specific VPS34 complex I (VPS34/VPS15/Beclin 1/ATG14L) (Tremel
et al., 2021). However, most existing studies on RAB1A are regarding its role in tumours,
with hardly any studies on its role in NAFLD. In this study, the samples in NAFLD groups
had a up-regulated levels of RAB1A, which might be used as a reference for future studies
on its role in NAFLD.

GOPC plays a role in intracellular protein trafficking and degradation. It also regulates
the intracellular trafficking of the ADR1B receptor and plays a role in autophagy (He et al.,
2004; Cheng et al., 2002). In this study, the abnormal up-regulation of GOPC expression
was observed in NAFLD, while, very few studies on GOPC exist, thus, we need more
experiments to explore its function in NAFLD. In our study, the TBK1, RABA1,GOPC
were confirmed higher expressed in NAFLD through rats models and in silico. Previous
studies have confirmed the importance of TBK1 in the development of NAFLD. Some
related pharmacological treatments refer to TBK1 in NAFLD have also been reported.
Although there are no studies research about RABA1 and GOPC in NAFLD, but we still
thought RABA1 and GOPCmay be plays important role in the occurrence of NAFLD. This
study provides some theoretical basis for in-depth research between RABA1 and GOCP
with NAFLD.

Currently, the pathogenesis of NAFLD is yet to be wholly elucidated. The pathogenesis
of NAFLD involves a variety of factors, such as environmental factors, obesity, changes
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in microbiota and susceptibility to gene mutations, among which imbalance of pro-
inflammatory and anti-inflammatory cytokines within adipose tissue plays a key role in
the pathological process of NAFLD (Arab, Arrese & Trauner, 2018; Paredes-Turrubiarte
et al., 2016). In the study, immune infiltration analysis demonstrated that the different
proportions of astrocytes, naïve CD4+ T cells, chondrocytes, epithelial cells, iDC,
endothelial cells, macrophages and smooth muscle might be involved in NAFLD’s
pathogenesis.Macrophage is an important component of liver inflammation, with activated
macrophages secreting various pro-inflammatory cytokines, such as TNF- α, TGF- β1
and IL-6 (Paredes-Turrubiarte et al., 2016; Kakino et al., 2018). Notably, a recent study
demonstrated that macrophages can induce hepatic TBK1 activation and expression (Zheng
et al., 2021), which is consistent with our findings. Our study revealed that TBK-1, RAB-1A
and GOPC were positively correlated with macrophages. Additionally, M2 Kupffer cells
can promote the apoptosis of M1 Kupffer cells by secreting IL-10, consequently inhibiting
the development of NASH (Wan et al., 2014). Dendritic cells can reduce the inflammatory
reaction of NASH by clearing necrotic fragments and apoptotic bodies in the liver (Henning
et al., 2013). The current study demonstrated a negative correlation between iDCs and the
expression of TBK-1, RAB-1A and GOPC. The number of NKT cells is reduced in the
presence of moderate to severe fatty inflammation, and the upregulation of NKT cells in
the liver can relieve the hepatic steatosis induced by a high-fat diet. When NKT cells are
over-depleted, the metabolic changes subsequently lead to NASH progression (Tang et al.,
2022). In our study, TBK1, RAB1A and GOPC also showed a significant positive correlation
with the expression of astrocytes and smooth muscle. The study of a single inflammatory
factor and its interaction mechanism in NAFLD will aid in elucidating its pathogenesis in
NAFLD. Currently, pro-inflammatory factor-related inhibitors have entered the clinical
trial stage and are expected to become specific drugs for the treatment of NAFLD.

TFs are specific sites in the promoter sequence of target genes that regulate the expression
level of downstream genes on a pre-transcriptional level by binding to the specific sequence
motif (Zacksenhaus et al., 2017; Zhang, Najmi & Schneider, 2017). A large number of
related studies have reported that TFs play an important role in the transcriptional
regulatory network. Approximately 32 TFs can regulate ARGs to control autophagy in
NAFLD (Ueno & Komatsu, 2017; Di Malta, Cinque & Settembre, 2019). Notably, cAMP
response element-binding protein (CREB) and forkhead box O proteins are the most
representative TFs and can upregulate autophagy genes and influence glucose and lipid
metabolism (Seok et al., 2014; Xiong et al., 2012). In our study, 124 TF-mRNAs pairs of
feature genes were identified, among which CREB-1 was associated with the three feature
genes. Notably, CREB-1 has been reported to alleviate NAFLD via the CREB pathway (Xu
et al., 2022).

The therapeutic agents which target TFs could prevent the progression of NAFLD
into NASH. This study predicted eight therapeutic agents, which are based on TBK1,
for the treatment of NAFLD. R-406 is a spleen tyrosine kinase inhibitor that can inhibit
the SKY signalling pathway induced by LPS- and IFN- γ in macrophages. R-406 is also
upregulated in hepatocytes (Qu et al., 2018). Moreover, it reduces immune complex-
mediated inflammation through dose-dependently inhibited nitric-oxide release and
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M1-specific markers in M1-differentiated macrophage. It can also significantly relieve
liver inflammation, which could be a potential therapeutic approach for the treatment of
NASH (Kurniawan et al., 2018). However, studies on the other seven therapeutic agents
identified herein are scarce, remains to be further examined.

This study has certain shortcomings. Firstly, the sample size of the training set is
small, which requiring subsequent larger cohorts to verify the expression and diagnostic
performance of three feature genes. Secondly, further functional experiments in vivo and
in vitro targeting the feature genes are required for exploring the causality as well as exact
effect of the identified genes on the pathogenesis of NAFLD. Thirdly, the connections as
well as underlying regulatory mechanism of predicted TFs binding sites and m6A-related
autophagy genes are necessary to examine through more studies.

CONCLUSIONS
In conclusion, three m6A-related autophagy genes, namely TBK1, RAB1A and GOPC, were
considered to be relevant to NAFLD progression based on various bioinformatic analyses.
Differences of the expression levels of key genes between case and control samples were
examined through two online NAFLD-related cohorts and animal models. The strong
correlations of three key with smooth muscle, endothelial cells were explored as well.
The potential TF binding sites and drugs targeting three genes were predicted, which
initially provides a systematically comprehensive analysis of m6A-related autophagy genes
in NAFLD and predicts potential agents for the treatment of NAFLD. Nonetheless, further
exploration of m6A-related autophagy genes would aid in elucidating the mechanism of
occurrence in NAFLD, thereby improving NAFLD treatment options.
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