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ABSTRACT
Proteins are considered indispensable for facilitating an organism’s viability, repro-
ductive capabilities, and other fundamental physiological functions. Conventional
biological assays are characterized by prolonged duration, extensive labor requirements,
and financial expenses in order to identify essential proteins. Therefore, it is widely
accepted that employing computational methods is the most expeditious and effective
approach to successfully discerning essential proteins. Despite being a popular choice in
machine learning (ML) applications, the deep learning (DL)method is not suggested for
this specific research work based on sequence features due to the restricted availability
of high-quality training sets of positive and negative samples. However, some DL works
on limited availability of data are also executed at recent times which will be our future
scope of work. Conventional ML techniques are thus utilized in this work due to
their superior performance compared to DL methodologies. In consideration of the
aforementioned, a technique called EPI-SF is proposed here, which employs ML to
identify essential proteins within the protein-protein interaction network (PPIN). The
protein sequence is the primary determinant of protein structure and function. So,
initially, relevant protein sequence features are extracted from the proteins within the
PPIN. These features are subsequently utilized as input for various machine learning
models, including XGB Boost Classifier, AdaBoost Classifier, logistic regression (LR),
support vector classification (SVM), Decision Tree model (DT), Random Forest
model (RF), and Naïve Bayes model (NB). The objective is to detect the essential
proteins within the PPIN. The primary investigation conducted on yeast examined
the performance of various ML models for yeast PPIN. Among these models, the RF
model technique had the highest level of effectiveness, as indicated by its precision,
recall, F1-score, and AUC values of 0.703, 0.720, 0.711, and 0.745, respectively. It is
also found to be better in performance when compared to the other state-of-arts based
on traditional centrality like betweenness centrality (BC), closeness centrality (CC), etc.
and deep learningmethods as well like DeepEP, as emphasized in the result section. As a
result of its favorable performance, EPI-SF is later employed for the prediction of novel
essential proteins inside the human PPIN. Due to the tendency of viruses to selectively
target essential proteins involved in the transmission of diseases within human PPIN,
investigations are conducted to assess the probable involvement of these proteins in
COVID-19 and other related severe diseases.

How to cite this article Saha S, Chatterjee P, Basu S, Nasipuri M. 2024. EPI-SF: essential protein identification in protein interaction net-
works using sequence features. PeerJ 12:e17010 http://doi.org/10.7717/peerj.17010

https://peerj.com
mailto:sovansaha12@gmail.com
mailto:bsubhadip@gmail.com
mailto:bsubhadip@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17010
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.17010


Subjects Bioinformatics, Computational Biology, Computational Science, Data Mining and
Machine Learning
Keywords Essential proteins, Protein-protein interaction network, Yeast, Human, Machine
learning, Sequence features, COVID-19

INTRODUCTION
Yeast and humans exhibit a remarkable degree of genetic similarity despite significant
anatomical and cellular disparities. The two species shared several thousand genes being
between them, even after undergoing distinct evolutionary paths for over a billion years
(Kachroo et al., 2022). The genetic information included inside these genes is responsible
for governing essential cellular activities. In the context of human biology, the malfunction
or disruption of these genes can lead to the manifestation of various diseases (Kachroo
et al., 2022). Scientists deploy system models to gain insights into biological processes
due to several key factors. These factors include preserving of the building blocks of
life, their simplicity of genetic manipulation, and standard protocols for replication and
validation in laboratory environments (Alberts, 2010; Hedges, 2002). Despite their ease of
use, yeast exhibits numerous fundamental cellular processes that are shared with humans,
making it an extensively utilized model organism for fundamental scientific investigations.
Numerous decades of extensive research pertaining to yeast have made a significant
contribution to the comprehension of crucial conserved cellular mechanisms. This has
consequently facilitated our comprehension of human biology and disorders such as cancer
(Duina, Miller & Keeney, 2014; Hoffman, Wood & Fantes, 2015). Thus, this work is initially
tested on Yeast PPIN followed by Human PPIN.

Humans are gradually becoming afflicted with fatal diseases like COVID-19 (Song et
al., 2020), Ebola (Gao et al., 2022), and others for which a suitable course of therapy or
immunization is not yet accessible. Although it takes a long time to produce a vaccination
for a new disease, it is possible to experimentally test the efficacy of current medications
on these disorders. However, money and labor are needed for experimental validation. So,
computational methodologies are adopted to detect potential drug targets for repurposing
(Saha et al., 2024; Saha et al., 2022c). This will aid the medical science community in
finding current medications linked to these targets. One of the most important resources
in the field of bioinformatics is the protein-protein interaction network (PPIN), which
may retrieve pertinent biological data like unidentified protein functions (Saha et al., 2014;
Saha et al., 2019; Saha et al., 2018a; Sengupta et al., 2022), possible protein interactions
(Kovács et al., 2019), etc. PPIN is often described as an assemblage of proteins and their
interconnections. The illness is hypothesized to be spread via these proteins and their
interactions. Not all proteins are essential. Pathogens often focus on human proteins in
the PPIN that have a higher degree of connections. This allows for a greater number of
proteins to be transferred via a single protein (Saha et al., 2021; Saha et al., 2018b). These
target proteins are called as essential proteins (Saha et al., 2021; Saha et al., 2022b; Saha et
al., 2018b) in a PPIN. They function as targets for drugs and are also considered to be the
highly efficient functional modules of the PPIN (Saha et al., 2021; Saha et al., 2022c; Saha
et al., 2018b). As a result, identifying essential proteins in PPIN is crucial for identifying
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prospective therapeutic targets (Saha et al., 2022c) linked to various illnesses. The same
mechanism has been also applied in several diseases like COVID-19 (Saha et al., 2022b;
Saha et al., 2022c) and others.

Although there have been substantial advances in biological research for detecting
essential proteins, these techniques are not always successful, especially in complex
PPIN. Therefore, computational methods (Banik et al., 2022; Sengupta et al., 2019) became
popular in this area. In the work of Banik et al. (2022), a rule-based refinement approach
was implemented for essential protein identification. This refinement was executed by using
protein complex and local interaction density information derived from the neighborhood
protein properties in PPIN. In another work of Sengupta et al. (2019), a novel protein
prediction approach was presented, which combined several centrality metrics of PPIN
to identify both hub (essential) and non-hub (non-essential) proteins. Similarly, fields
like protein functions (Fei et al., 2020) and protein domains (Wang et al., 2013) were also
immensely employed to identify essential proteins in PPIN. However, the majority of
current prediction approaches either base their model on ML classifiers like a support
vector machine (SVM) classification (Hwang et al., 2009), logistic regression (Jha, Das &
Saha, 2023; Saha et al., 2022a), the Decision Tree model (Jha, Das & Saha, 2023; Saha et al.,
2022a), the Random Forest model (Jha, Das & Saha, 2023; Saha et al., 2022a), AdaBoost
classifier (Jha, Das & Saha, 2023; Saha et al., 2022a), and XGBoost (Jha, Das & Saha, 2023;
Saha et al., 2022a) or centrality-based metrics like connect-between (Hahn & Kern, 2005),
connect-close (Hahn & Kern, 2005), between-close (Hahn & Kern, 2005).

In order to identify essential proteins, Xu et al. (2022) introduced an efficient method
called iMEPP that executed a maximization technique on key biological data such as
gene expression, PPIN, and Gene Ontology (GO) activities. Zhong et al. (2015) combined
centrality-based criteria with sub-cellular localization and fed them to an SVM-RFE
model for essential protein identification. Later, the XGBGEMF model was proposed as
an upgraded approach, producing a better subset of important proteins using ranking
features (Zhong et al., 2018). However, all these methodologies lack automated feature
learning techniques that were embedded in the proposed node2vec algorithm (Grover &
Leskovec, 2016). For the determination of the proteins’ degree of essentiality, a DL model
was used. A novel method called DeepEP was proposed by Zeng et al. (2019), which used a
convolutional neural network (CNN) to extract feature data from gene expression profiles
that were taken as input in form of the images. In order to forecast essential proteins,
it additionally employed node2vec for PPIN-based topological information extraction.
This information was combined with the earlier feature information. Using other relevant
resources, such as co-expression level and co-expression pattern acquired from the RNA-
seq data, a dynamically formed PPIN was built in another study by Shang, Wang & Chen
(2016) and utilized to identify essential proteins. The accuracy of RNA-seq data was found
to be higher than that of conventional microarray gene expression data (Shang, Wang &
Chen, 2016). Employing only topological aspects of PPIN using various network centrality
measures is not guaranteed to produce an appropriate forecast of essential proteins due to
the recent increase in the number of noisy proteins in a PPIN. Therefore, gene expression
data or subcellular localization are used as features for training and testing in other ML or
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DL-based approaches. The drawback of subcellular localization is that it cannot adequately
cover a large PPIN’s abundance of proteins. Gene expression, however, is subject to several
experimental restrictions and time series that may change throughout time.

The proposed method EPI-SF is constructed based on topological information and gene
expression pattern. Since protein sequence is one of the most pertinent areas to examine for
the discovery of essential proteins (Wu et al., 2021), the proposed approach first retrieves
all of the protein sequences of yeast PPIN, which are then utilized to compute the following
attributes: (1) Pseudo amino acid composition (PAAC) (order 1, traditional), (2) physico-
chemical properties (PCP) and (3) amino acid composition (AAC). These features are
supplied as training and test set inputs for a variety of machine learning models, including
the XGB Boost Classifier (Chen & Guestrin, 2016), AdaBoost Classifier (Freund & Schapire,
1996), logistic regression (LR) (Bacaër, 2011), SVM classification (Cortes & Vapnik, 1995),
the Decision Tree (DT) model (Mitchell, 1997), Random Forest (RF) model (Breiman,
2001), and Naïve Bayes (NB) model (Hand & Yu, 2001) to predict essential proteins.
In this case, the Scikit-Python library is utilized. The technique is afterwards applied to
identify novel essential proteins in human PPIN, which are later verified against the existing
literature to determine their potential as therapeutic targets for COVID-19 and related
human disorders. In Fig. 1, the entire process is highlighted. The major contribution of
this work is the inclusion of substantial physiologically pertinent protein sequence features
during the training and testing of MLmodels. Based on the results of the initial experiment
on yeast, a prediction on the human PPIN is implemented. Further investigation has
revealed that the anticipated proteins are also involved in various diseases.

METHODOLOGY
Data collection
UniProt (The UniProt Consortium, 2017) andBioGrid (Stark et al., 2006) databases are used
in this study. UniProt is a significant central repository of proteins, protein interactions,
protein functions, subcellular localization, protein domain, etc. BioGrid consists of physical
and genetic interactions of many organisms like Saccharomyces cerevisiae, Drosophila
melanogaster, etc. All machine learning models are initially deployed on yeast PPIN
(extracted from BioGrid) to predict essential proteins. Yeast PPIN consists of 5,616
proteins and 52,833 interactions. Additionally, the Munich Information Center for Protein
Sequences (MIPS) (Mewes et al., 2006), Saccharomyces Genome Database (SGD) (Cherry
et al., 1998), the Database of Essential Genes (DEG) (Zhang, Ou & Zhang, 2004), and the
Synthetic Gene Database (SGDB) (Mallick et al., 2016) are used to retrieve 1,199 essential
and 4,026 non-essential proteins/genes from the yeast PPIN to create the positive and
negative data samples that will be used to train and test the ML models. All the datasets are
downloaded as on 1st May 2023. The estimation of prediction performance on the yeast
PPIN is conducted, followed by the execution of the most effective model on the Human
PPIN acquired from UniProt. According to the UniProt database, the analysis is based
solely on a subset of human proteins, specifically those that have undergone a rigorous
review process. This subset consists of 204,961 proteins. In both cases, protein sequences
obtained from UniProt are utilized for the extraction of ML features (Fig. 1).
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Figure 1 Methodology of EPI-SF. EPI-SF is initially tested on the yeast PPIN (marked in red). The
best-performing model, i.e., the Random Forest (RF) model, is then applied to Human PPIN (marked in
green) to identify essential human proteins. The identified essential human proteins are further validated
by the DisGeNET database and the work Gordon et al. (2020), Barman et al. (2022), and Saha et al. (2021).

Full-size DOI: 10.7717/peerj.17010/fig-1

Formation of positive and negative samples
A total of 1,199 and 4,026 essential and non-essential yeast genes/proteins are considered
from the published papers (Cherry et al., 1998; Mallick et al., 2016; Mewes et al., 2006;
Zhang, Ou & Zhang, 2004) for positive and negative classifications. These proteins are
mapped with yeast PPIN proteins obtained through UniProt. The positive sample set
consists of 1,199 essential proteins. To create a balanced dataset, a group of 1,199 non-
essential proteins is randomly selected from the larger pool of 4,026 non-essential proteins,
which forms the negative sample set. Consequently, the combined positive and negative
protein samples amount to 2,398, as depicted in Fig. 2.

Sequence feature extraction
Protein sequences from both positive and negative samples are downloaded from UniProt.
To calculate feature values, they are passed into Pfeature (Pande et al., 2022). The protein
sequences of the yeast PPIN are used to analyze three types of sequence features. They are
(1) pseudo amino acid composition (PAAC) (order 1, traditional) (Pande et al., 2022), (2)
physico-chemical properties (PCP) (Pande et al., 2022), and (3) amino acid composition
(AAC) (Pande et al., 2022). In AAC, there are twenty descriptors (see Table S1), while in
PCP and PAAC, there are thirty (see Table S2) and twenty-one descriptors (see Table S3),
respectively (available online). The feature values of 2,398 proteins are also available online.

Data preprocessing
Prior to training and testing machine learning models, it is essential to conduct a
comprehensive study and evaluation of the acquired protein sequence feature values.
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Figure 2 Formation of the balanced dataset of yeast. The dataset contains a total of 2,398 proteins.
Full-size DOI: 10.7717/peerj.17010/fig-2

This is because the protein sequences obtained from UniProt are directly used as input for
the Pfeature server. As Pfeature calculates all features dynamically, it is possible that some
values may be omitted or overlooked owing to unavailability or delays in data fetching
during calculation. Therefore, all levels of data preparation are deemed crucial in this
study. It typically consists of four distinct processes, as seen in Fig. 3. To improve the
comprehension of data anomalies, an analysis of the whole data structure is performed in
the first stage, using statistical indicators such as mean, median, and mode. The presence
of missing data in the second step can result in models selecting an inaccurate pattern and
subsequently generating erroneous predictions instead of accurately identifying genuine
cases. The deletion of records with missing data will lead to data loss as well. The third stage
of the analysis is the identification of outliers or data points that exhibit significant deviation
from the overall dataset. During the concluding phase, any identified data inconsistencies
are addressed and rectified. The entire dataset is partitioned into an 80% training set and
a 20% test set for the purpose of implementing different machine learning models. This
is done after preprocessing the feature values of the yeast protein sequence. Yeast proteins
are categorized into two distinct classification labels: (1) zero and (2) one. The value of one
is used to indicate the presence of an essential protein in yeast, whereas the value of zero is
assigned to proteins that are non-essential.

Classification models
The utilization of the DL method in ML applications is widespread. However, for this
particular research focused on sequence characteristics, it is not recommended due to the
limited accessibility of high-quality training sets containing positive and negative samples.
But since some DL works on limited availability of data are also executed at recent times,
that will be our future scope of work. Several MLmodels have been generated and evaluated
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Figure 3 Data preprocessing phase of EPI-SF. Four steps, each with a specific function for preparing the
curated data, for use by the ML models.

Full-size DOI: 10.7717/peerj.17010/fig-3

using the training and test datasets derived from the features of yeast protein sequences.
In this work, XGB Boost Classifier (Chen & Guestrin, 2016), AdaBoost Classifier (Freund
& Schapire, 1996), LR (Bacaër, 2011), SVM (Cortes & Vapnik, 1995), DT model (Mitchell,
1997), RF model (Breiman, 2001), and NB model (Hand & Yu, 2001) are utilized for the
purpose.

The data categorization process in supervised machine learning involves the utilization
of a DTmodel, which employs a predetermined set of questions to classify the data. Initially,
a specific attribute is selected, followed by the formulation of a query. The structure bears a
resemblance to that of a tree, wherein the root node functions as the foundational element
of the tree. The subsequent sequence consists of decision nodes that are interconnected
by edges, with each edge indicating a distinct solution to the initial query. The terminal
nodes in the decision tree symbolize the ultimate decision or the predicted class labels. RF
model employs an ensemble learning technique that aims to enhance prediction accuracy
by utilizing an averaging strategy. This is achieved by training multiple DT classifiers on
different subsets of the dataset. DT has strong performance when used in conjunction with
AdaBoost, which is a prominent boosting ensemble model. In the AdaBoost algorithm, the
analysis of past errors is an ongoing process whereby the weights of data points that are
deemed to have been misclassified are incrementally increased. Another strategy based on
ensemble learning and Decision Trees is known as XGBoost. The framework employed in
this study utilizes a gradient-boosting approach.

In comparison to preceding algorithms, XGBoost presents the advantages of
regularization, parallel processing capabilities, and enhanced computational efficiency.
Furthermore, it has the capability to handle missing data and incorporates an internal
mechanism for prioritizing the significance of features. XGBoost has exhibited superior
performance compared to other algorithms across multiple datasets, making it a commonly
utilized tool in practical applications such as healthcare.

The LR model is a statistical technique that establishes a linear association between a
dependent variable and one or more independent variables. The underlying assumption
of the model is that the associations between the variables exhibit linearity, indicating that
alterations in the dependent variable are directly proportional to corresponding alterations
in the independent variable. Themodel aims to determine the line that optimally represents
the relationship between the variables by minimizing the sum of the squared discrepancies
between the observed and predicted values. SVM classify data points by utilizing a decision
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boundary, also known as a hyperplane. This is an additional supervised classification
model. The primary objective of the SVM algorithm is to optimize the separation between
the nearest data points of each class and the decision boundary. The NBmodel is a classifier
that can be applied to bothmulti-class and binary classification tasks, and it is based only on
the principles of probability as outlined in Bayes theorem. It operates under the assumption
of feature independence, which simplifies the calculations. It is known for its effectiveness
in various practical applications, such as sentiment analysis and spam filtering, despite its
inherent simplicity.

Mapping of essential proteins of human with COVID-19 and DisGeNET
datasets
The computational methodology employed for identifying protein features in humans is
consistent with what has been previously mentioned in the case of yeast. According to EPI-
SF using the RFmodel, it is projected that 5,662 out of the total 204,961 human proteins that
have been examined are deemed essential (https://github.com/SovanSaha/EPI-SF-Essential-
protein-identification-in-protein-interaction-networks-using-sequence-features/blob/
2bbb2194072dc8cf1f24bc0128d2e7528daa7a9d/RF%20Model%20Predicted%20Ess%
20Human%20Proteins.xlsx). Since pathogens target only essential proteins in PPIN to
be potential baits (Saha et al., 2018b) hence, it is feasible to consider these identified
essential proteins as crucial targets for infections to facilitate the dissemination of diseases.
The 5,662 human proteins have been assigned to their respective 4,037 human genes
(available online) by UniProt-IDmapper. These genes are subsequently compared with the
COVID-19 human target genes identified in the studies conducted by Barman et al. (2022),
Saha et al. (2021), Saha et al. (2022b) and Gordon et al. (2020). A notable intersection of
1,191 genes, accounting for 30% of the total genes, has been observed (Fig. 4). This finding
underscores the involvement of these genes in susceptibility to COVID-19 infection and
subsequent transmission within the human body. Upon submission to the DisGeNET
database (Piñero et al., 2017), the remaining 2,846 genes, accounting for 70% of all genes,
yield a comprehensive report detailing their potential association with various human
disorders.

DisGeNET serves as the primary archive for genes and variations associated with human
diseases that are publically accessible. The available evidence from the DisGeNET database,
specifically the gene-disease association (https://github.com/SovanSaha/EPI-SF-Essential-
protein-identification-in-protein-interaction-networks-using-sequence-features/blob/
037ddeb7f5dea4f0242976202ba8517b97c7d10d/Evidences%20for%20Novel%20Gene-
Disease%20Association.xlsx) and variant disease association data (https://github.com/
SovanSaha/EPI-SF-Essential-protein-identification-in-protein-interaction-networks-
using-sequence-features/blob/a942c826e4cf2e4f1da8e3a545d2e11e9695b0de/Evidences%
20for%20Novel%20Variant%20Disease%20Association.xlsx), suggests that the 2,846
genes under investigation are of significant importance. The details of these two online
files are available online. Further exploration of these genes could potentially lead to the
identification of human therapeutic targets for various diseases. Hence, the aforementioned
set of 2,846 genes have potential as candidates for emerging as novel essential genes.
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Figure 4 The present study investigates the extent to which critical human genes revealed in previous
research overlap with the human targets associated with COVID-19.

Full-size DOI: 10.7717/peerj.17010/fig-4

Table 1 Performance indicator of MLmodels on the yeast dataset.

MLmodels Precision Recall F-Score AUC

XGBBoost (Chen & Guestrin, 2016) 0.653 0.740 0.694 0.735
AdaBoost (Freund & Schapire, 1996) 0.629 0.660 0.644 0.674
Logistic Regression (Bacaër, 2011) 0.656 0.712 0.683 0.698
SVM (Cortes & Vapnik, 1995) 0.646 0.740 0.690 0.702
Decision Tree (Mitchell, 1997) 0.593 0.615 0.588 0.595
EPI-SF using Random Forest 0.703 0.720 0.711 0.745
Naïve Bayes (Hand & Yu, 2001) 0.602 0.832 0.699 0.692

RESULTS & DISCUSSION
In the initial stage of the experiment, the suggested methodology is implemented on the
yeast dataset following the necessary data preprocessing procedures. The validation test set
is created by partitioning 20% of the data samples, while the remaining 80% are designated
as training sets. The proportion of training-validation set was consistently applied across
all machine learning algorithms, including Decision Tree, Random Forest, Naïve Bayes,
and others. The superior performance of EPI-SF using RF model is apparent based on the
data shown in Table 1 and Fig. 5. According to the findings on the yeast dataset (Table 2),
it has been observed that a significant number of machine learning models exhibit superior
performance compared to other conventional essential protein prediction methods such
as network-based and deep learning models. Upon evaluating the performance of several
machine learning models, as presented in Table 1, it turned out that the EPI-SF using
the RF model successfully predicts 5,662 essential ones out of the total 204,961 reviewed
human proteins in UniProt. On further observation, it has been also noted that these 5,662
proteins are related to the cause of various human diseases like COVID-19 and others.
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Figure 5 Performance metrics of MLmodels on the yeast dataset. Out of seven ML models, EPI-SF us-
ing RF performs the best compared to the others.

Full-size DOI: 10.7717/peerj.17010/fig-5

Table 2 Performance indicator of centrality-based essential protein identification methodologies on
the yeast dataset.

Methodologies Precision Recall F-Score

Local Average Connectivity (LAC) (Li et al., 2011) 0.471 0.464 0.599
Degree Centrality (DC) (Jeong et al., 2001) 0.376 0.363 0.503
Density of Maximum Neighborhood Component (DMNC)
(Lin et al., 2008)

0.376 0.363 0.503

Betweenness Centrality (BC) (Anthonisse, 1971) 0.398 0.393 0.532
Closeness Centrality (CC) (Sabidussi, 1966) 0.266 0.260 0.391
Bottle Neck (BN) (Pržulj, Wigle & Jurisica, 2017) 0.381 0.373 0.512
Information Centrality (IC) (Stephenson & Zelen, 1989) 0.438 0.432 0.569
Eigenvector Centrality (EC) (Bonacich, 1987) 0.408 0.401 0.540
Subgraph Centrality (SC) (Estrada & Rodriguez-Velazquez,
2005)

0.408 0.401 0.540

DeepEP (Zeng et al., 2019) 0.580 0.520 0.550
EPI-SF using Random Forest 0.703 0.720 0.711

CONCLUSION
The proposed method EPI-SF has a high level of efficiency in predicting essential proteins.
The process involves the extraction of distinctive features from protein sequences, which
are subsequently utilized as input for ML models in order to discern essential proteins.
ML models have demonstrated superior effectiveness in the identification of essential
proteins compared to classic centrality-based approaches such as LAC (Li et al., 2011),
BC (Anthonisse, 1971), CC (Sabidussi, 1966), and others. The reason behind this arises
from the reliance on centrality-based techniques, which exclusively take into account the
direct or indirect interconnections around a given protein. Consequently, these techniques
may not always yield valuable insights in some scenarios and may be inapplicable if
the protein under investigation lacks any links. However, the problem associated with
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centrality approaches can be addressed by considering the protein sequence as a primary
feature, which is the main focus of this suggested study. Moreover, the protein sequence
holds greater physiological significance compared to the connections in PPIN. A total of
seventy-one notable features derived from three primary classifications, namely PAAC,
PCP, and AAC. These classifications have been employed to construct the feature dataset
using protein sequences. The yeast dataset is utilized to assess the effectiveness of the model
prior to its application on the human PPIN. The predictions made by the model about
human essential proteins and genes offer compelling evidence supporting their association
with potential therapeutic targets for many diseases, including COVID-19. The current
utility of the model is limited to the yeast and human PPIN interactome. However, there
is potential for its application to be extended to additional organisms through our future
research endeavors.
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