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ABSTRACT
Single-cell omics sequencing has rapidly advanced, enabling the quantification of
diverse omics profiles at a single-cell resolution. To facilitate comprehensive
biological insights, such as cellular differentiation trajectories, precise annotation of
cell subtypes is essential. Conventional methods involve clustering cells and manually
assigning subtypes based on canonical markers, a labor-intensive and
expert-dependent process. Hence, an automated computational prediction
framework is crucial. While several classification frameworks for predicting cell
subtypes from single-cell RNA sequencing datasets exist, these methods solely rely on
single-omics data, offering insights at a single molecular level. They often miss
inter-omic correlations and a holistic understanding of cellular processes. To address
this, the integration of multi-omics datasets from individual cells is essential for
accurate subtype annotation. This article introduces moSCminer, a novel framework
for classifying cell subtypes that harnesses the power of single-cell multi-omics
sequencing datasets through an attention-based neural network operating at the
omics level. By integrating three distinct omics datasets—gene expression, DNA
methylation, and DNA accessibility—while accounting for their biological
relationships, moSCminer excels at learning the relative significance of each omics
feature. It then transforms this knowledge into a novel representation for cell subtype
classification. Comparative evaluations against standard machine learning-based
classifiers demonstrate moSCminer’s superior performance, consistently achieving
the highest average performance on real datasets. The efficacy of multi-omics
integration is further corroborated through an in-depth analysis of the omics-level
attention module, which identifies potential markers for cell subtype annotation.
To enhance accessibility and scalability, moSCminer is accessible as a user-friendly
web-based platform seamlessly connected to a cloud system, publicly accessible at
http://203.252.206.118:5568. Notably, this study marks the pioneering integration of
three single-cell multi-omics datasets for cell subtype identification.
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INTRODUCTION
Recent strides in single-cell omics sequencing technologies have ushered in a new era of
cellular exploration, offering insights into developmental stages, cellular phenotypes, and
pathogenesis (Haghverdi & Ludwig, 2023; Li & Wang, 2021; Nomura, 2021). By delving
into the profiles of various modalities such as transcriptome and epigenome, single-cell
studies empower precise profiling at the individual cell level. This sharpens our
understanding compared to bulk sequencing methods that blend data from millions of
cells, masking the nuances between cell subtypes (Adossa et al., 2021). In this context,
accurate cell subtype identification has emerged as a pivotal requirement for in-depth
research into tissue heterogeneity, complex differentiation, and disease-related
developmental strategies at the cellular level (Shalek et al., 2014). Traditionally, cell subtype
prediction has relied heavily on single-cell RNA sequencing datasets, often employing
unsupervised learning-based approaches (Zhang et al., 2023). These methods typically
embark on clustering-based pipelines, reducing dataset dimensionality to distill
low-dimensional representations, conducting clustering to identify distinct cell groups,
and assigning cell subtypes through manual examination involving canonical cell
subtype-specific marker genes (Luecken & Theis, 2019). Yet, these approaches grapple with
a significant drawback: their reliance on extensive knowledge of various cell populations
and marker genes, entailing a labor-intensive, less reproducible process (Nguyen & Griss,
2022).

Recent years have witnessed the emergence of supervised-learning-based methods for
automating cell subtype prediction (De Kanter et al., 2019; Lin et al., 2020; Nguyen & Griss,
2022). These methods leverage machine learning algorithms or neural networks, training
models to learn cell subtype classification weights or parameters independently of marker
genes or manual inspection. While these methods exhibit promising performance, those
rooted solely in single-omics datasets harness information from a solitary molecular level.
Accumulating evidence suggests that multi-omics profiling offers more robust cell subtype
classification, as parallel profiles from multiple layers unveil cell subtype-specific networks
spanning various biological processes, such as epigenetic regulation and gene expression
(Bai, Peng & Yi, 2021). The integration of single-cell RNA sequencing (scRNA-seq) and
single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) has
facilitated the comprehensive characterization of critical transcription factors and
regulatory elements underlying various human cancers. Notably, this approach has been
applied to investigate clear cell renal cell carcinoma (Long et al., 2022), colorectal cancers
(Zhu et al., 2023), and breast cancers (Zhu et al., 2023), shedding light on the intricate
molecular landscape of these malignancies. The simultaneous profiling of multiple
single-cell omics data types has revealed distinct differentiation states within gastric
cancer. By elucidating the relationships between genetic lineages, DNA methylation
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patterns, and transcriptomic clusters at the single-cell level, researchers have gained
valuable insights into the heterogeneity of gastric cancer (Bian et al., 2023). Additionally,
the scWGS-RNA-seq method, designed to amplify single-cell DNA and RNA without
separating them, has proven instrumental in detecting unique cell subpopulations,
particularly in the context of true normal cells. By harnessing information from both the
genome and transcriptome, this approach, exemplified by the study conducted by Yu et al.
(2023), showcases the potential to unravel previously unseen cellular diversity and
heterogeneity. Nonetheless, integrating single-cell multi-omics datasets remains a
challenge due to the high dimensionality inherent to each dataset. Approaches to address
this challenge, including clustering methods and non-negative matrix factorization, have
been widely explored (Eltager et al., 2022; Taguchi & Turki, 2021). Recent studies have
introduced neural network-based strategies for single-cell multi-omics data integration,
capturing informative nonlinear features within the latent space (Leng et al., 2022; Lin
et al., 2022). Attention neural network has been adopted for bulk sequencing-based multi-
omics profiles to learn the feature’s relationship and the integrated representations.
MOMA has been introduced as disease classification method based on a multi-task
attention learning algorithm for two omics data integration and verified its utility for
biological analysis (Moon & Lee, 2022). SADLN, on the other hand, utilized a self-attention
mechanism to train and learn integrated latent features from multi-omics datasets. These
features were subsequently employed as input for a Gaussian Mixture model to discern
cancer subtypes effectively (Sun et al., 2023). MOCDN presented self-attention-based
neural network model to integrate three different omics profiles and identified biomarkers
of kidney renal cell carcinoma (Gong et al., 2023). These strategies have delved into the
causal factors governing cellular states, delivering promising results by unveiling potential
regulatory influences. Yet, the widespread adoption of multi-omics integration for cell
subtype prediction remains limited.

In this article, we propose moSCminer, a web-based cloud platform for cell subtype
classification framework integrating the single-cell multi-omics dataset based on the
omics-level attention neural network. Preprocessing and feature selection were performed
based on the transformation of each omics dataset to a gene-based matrix, considering the
biological interplay across gene expression, DNA methylation, and DNA accessibility.
To integrate multi-omics more efficiently by reducing the dimensionality of each omics,
not ignoring the distribution difference of each omics dataset, self-attention mechanism
was employed to each preprocessed omics dataset. Each feature was transformed to new
representations, factoring in their relative importance. Features from each omics were then
concatenated and delivered to the fully connected layers to predict the subtype of each cell.
Benchmarking moSCminer against various machine learning-based classifiers, our model
consistently outperformed the rest, boasting the highest average accuracy and weighted F1-
score across real datasets. In addition, our experiments show that omics-level attention
improves the prediction performance with the identification of the marker candidates to
distinguish the cell subtypes. To the best of our knowledge, this is the first study integrating
three single-cell multi-omics datasets for the cell subtype classification, showing the
improvement of prediction compared to the usage of single-omics.
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To enhance user efficiency in the experimental setting, we developed moSCminer as an
interactive web-based platform featuring intuitive interfaces that eliminate the need for
software installation. Users can upload their single-cell multi-omics datasets, and our
platform will automatically run our modules and provide the cell subtype annotation
results. For a comprehensive analysis of their single-cell multi-omics studies, we offer
visualizations of cell subtype classification results, identified marker candidate lists, and
relevant biological information—all easily accessible. To address computational cost
limitations, our platform is integrated with a cloud system, ensuring scalability for
analytical processes.

METHODS
The proposed model comprises three key steps: (1) Preprocessing, (2) feature selection,
and (3) cell subtype classification utilizing omics-level attention. The workflow of this
model is visually represented in Fig. 1.

Preprocessing and feature selection
To effectively integrate a multi-omics dataset, the conventional approach involves
converting the sparse DNA methylation and DNA accessibility dataset matrices into

Figure 1 Workflow illustrating the proposed cell subtype prediction model based on the integration of single-cell multi-omics data.
Full-size DOI: 10.7717/peerj-17006/fig-1
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gene-based matrices (Taguchi & Turki, 2021; Xu, Begoli & McCord, 2022). Here’s a
breakdown of our preprocessing steps:

For gene expression data, we initially removed genes that lacked read counts for all
samples. Subsequently, read counts were normalized according to library size and
log-transformed using the ‘Scanpy’ Python package (Wolf, Angerer & Theis, 2018).

Concerning the DNA methylation dataset, we adopted a strategy where CpGs within
2 kb of the promoter regions of each gene were grouped to form a cluster (referred to as
CpG cluster). We calculated the cluster’s average methylation values. This approach aligns
with existing research demonstrating that the distribution of CpG density around
promoter regions is closely linked to gene transcription and expression regulation (Deaton
& Bird, 2011; Tian et al., 2022). To mitigate bias stemming from frequent missing values
during model training, we performed mean imputation, eliminating CpG clusters with
missing values for all samples.

In the case of DNA accessibility, we considered the summation of accessibility values for
each gene body, which may be associated with transcription (Xu, Begoli & McCord, 2022).
To achieve this, we summed all accessibility peaks within each transcription region to
represent gene activity.

Subsequent to preprocessing, features lacking a common gene-based relationship across
any omics were filtered out. This was essential to prevent overfitting resulting from high
dimensionality, while simultaneously facilitating multi-omics integration grounded in
biological connections. Min-max normalization was conducted on the gene expression and
DNA accessibility datasets to align their value ranges with that of the DNA methylation
dataset.

Cell subtype classification based on the omics-level attention
To empower neural networks for more effective cell subtype classification, we harnessed a
self-attention mechanism. This mechanism trains the model to discern the relative
importance of each feature (Lin et al., 2017). The self-attention approach was applied
individually to each omics dataset. The model subsequently reconstructed features based
on their learned importance weight for each omics. These features from all omics datasets
were concatenated, creating a new feature representation for cell subtype classification.

Let k represent the number of features, xi 2 Rk denote the ith sample, and
x ¼ ðx1; . . . ; xnÞ 2 Rn�k represent a matrix containing all xi. For each feature j 2 f1:kg, we
generated am-dimensional embedding vector ej using random vectors to represent xi to bxi
through multiplication (Beykikhoshk et al., 2020).

x̂ðjÞi ¼ fe ej; x
ðjÞ
i

� �
¼ ejx

ðjÞ
i ; (1)

The model assigns an attention score, aj, to each feature j as follows:

�xðjÞi ¼ tanh W1x̂
ðjÞ
i þ b1

� �
(2)

Choi et al. (2024), PeerJ, DOI 10.7717/peerj.17006 5/19

http://dx.doi.org/10.7717/peerj.17006
https://peerj.com/


sðjÞi ¼ W3tanh W2x̂
ðjÞ
i þ b2

� �
(3)

aðjÞi ¼
exp sðjÞi

� �
Pk

l¼1 exp sðlÞi
� � (4)

cðjÞi ¼
Xk
j¼1

aðjÞi �xðjÞi ; (5)

whereW1,W2,W3 are the weights and b1 and b2 are the bias terms for each layer. sðjÞi is the
attention score representing the importance of each feature x̂ðjÞi for the ith sample, which is
converted to aðjÞi via normalization using the softmax function. Based on this, x̂ðjÞi is
transformed into a new feature representation of cðjÞi by the weighted sum of the encoded
feature vectors �xðjÞi and normalized attention scores aðjÞi . Each omics dataset underwent this
self-attention mechanism. Transformed representations were then concatenated and
forwarded to two fully connected layers, culminating in a softmax function for cell subtype
classification.

To train the model, we utilized cross-entropy loss as the loss function:

L ¼ �
XC
i¼1

yi logðŷiÞ; (6)

where C denotes the number of cell subtypes, and y and ŷ represent the true and
model-predicted subtype probability distributions, respectively. To prevent overfitting, we
incorporated dropout in the fully connected layers.

Implementation of web-based platform connected with the cloud
system
We have developed moSCminer as a user-friendly web-based platform connected to a
cloud system for enhanced user accessibility and convenience. The platform is designed to
automate the analysis process and reduce user intervention. Here are the key features:

� User-friendly interface: The platform boasts a user-friendly interface accessible without
requiring users to log in. Whether you have an account or prefer the guest mode,
uploading your single-cell multi-omics datasets is a breeze.

� Automated cloud-based analysis: Our web-based platform handles the entire analysis
pipeline, encompassing preprocessing, feature selection, and cell subtype classification.
These computationally intensive tasks are executed on a cloud system, sparing users the
need to manage complex computations.

� Email notifications: Users are promptly notified of their analysis results via email. These
results encompass cell subtype annotations and lists of high-importance biomarker
candidates identified during the prediction step.
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� Interactive visualizations: We understand the significance of visualizing and interpreting
results. Thus, our platform offers interactive visualizations of cell subtype classification
results. Users can easily access and download various types of figures, including box
plots, scatter plots, heatmaps, and correlation plots. These visual aids provide valuable
insights into the data.

� Marker candidates: Our platform offers information on marker candidates, making it
easier for users to distinguish cell subtypes effectively.

� Scalability: To address potential computational limitations, our platform is connected to
a cloud system, ensuring scalability for analysis tasks of varying complexities.

The front-end of the website was meticulously crafted using HTML5, JavaScript, D3,
JQuery, and CSS3. On the backend, a web server was developed using Node.js (Tilkov &
Vinoski, 2010). The preprocessing, feature selection, and cell subtype classification
modules were implemented using Python, utilizing libraries such as Tensorflow (Abadi
et al., 2015) and Scikit-learn (Pedregosa et al., 2011). The Linux Bash Shell was also
employed to facilitate these tasks.

In summary, moSCminer represents a powerful tool for single-cell multi-omics data
analysis. Its user-friendly interface, automated cloud-based analysis, interactive
visualizations, and scalability make it a valuable resource for researchers seeking to extract
meaningful insights from complex datasets. Additionally, its ability to integrate multiple
single-cell omics datasets offers improved cell subtype prediction, opening new avenues for
understanding cellular heterogeneity and differentiation processes.

RESULTS
Experimental design
Dataset
To evaluate the performance of the proposed model, we acquired three publicly available
single-cell multi-omics datasets from the Gene Expression Omnibus repository:
GSE154762 (Yan et al., 2021), GSE136718 (Wang et al., 2021), and GSE140203 (Ma et al.,
2020). The GSE154762 dataset comprised 899 single human oocytes and somatic cells
having nine cell subtypes, obtained through scChaRM-seq. The GSE136718 dataset
consisted of 210 cells with eight subtypes related to mouse embryo development, obtained
through scNOMeRe-seq. Both datasets provided profiles for three omics types (gene
expression, DNA methylation, and DNA accessibility), and information on cell subtypes
for each sample. For the robust testing with the different scenarios, we also obtained adult
mouse skin datasets composed of 32,321 cells with 22 cell subtypes from GSE140203,
which provided gene expression and DNA accessibility data based on SHARE-seq. The
number of samples and cell subtypes for each dataset are summarized in Table 1. For the
number of features, the number of features varies greatly for each sample. GSE154762
dataset had 23,513 genes, while for DNA methylation, each sample had different number
of features ranging from 4,233 to 12,500,793, and similar to DNA accessibility, having
different number of features from 36,449 to 94,472,780. GSE136718 dataset consists of
gene expression profiles with 24,963 genes, where for DNA methylation, samples showed
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Table 1 Number of samples for each cell subtype

Dataset Cell subtype Number of samples

GSE154762 FGO 81

GO1 40

GO2 46

Granulosa 93

Immune 20

MI 155

MII 90

StromaC1 189

StromaC2 185

GSE136718 2 cell 76

4 cell 67

8 cell 31

ICM 36

Late4cell 22

Morula 24

TE 21

Zygote 12

GSE140203 ahighCD34+ bulge 1,556

alowCD34+ bulge 1,877

Basal 7,787

Dermal Fibroblast 1,121

Dermal Papilla 766

Dermal Sheath 398

Endothelial 927

Granular 291

Hair Shaft-cuticle-cortex 1,166

Infundibulum 4,139

IRS 672

Isthmus 689

K6+ Bulge companion layer 514

Macrophage DC 263

Medulla 981

Melanocyte 187

ORS 1,029

Schwann cell 163

Sebaceous gland 181

Spinous 3,146

TAC-1 3,370

TAC-2 1,008
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the different number of CpGs from 659,456 5,729,653 and the number of sites from
5,807,264 to 51,503,457 for DNA accessibility. GSE140203 dataset had 23,297 genes and
the number of sites from 1,000 to 101,593 for DNA accessibility. Through preprocessing
and feature selection steps, GSE154762 dataset had total of 1,608 features (793 genes, 373
CpG clusters 442 accessibilities) and GSE136718 dataset consists of total of 303 features
having 101 feature for each omics, respectively. Total of 762 features having 381 features
for each omics were selected for GSE140203 dataset.

Model optimization
The hyperparameters of our proposed model were optimized for each dataset using a grid
search approach. Each dataset was randomly split into training and testing sets at an 8:2
ratio. We selected the parameter combination with the best testing accuracy. We utilized
the ‘adam’ optimizer (Kingma & Ba, 2015), with a learning rate of 1e−3, 300 training
epochs, and a batch size of 128. From the optimization results presented in Table S1, we
determined that the embedding vectors ej and �xi had sizes of 128 and 64, respectively. The
number of hidden nodes in the fully connected layer was set at 100, and the dropout rate
was 0.2.

Performance evaluation with the baseline methods
To assess the effectiveness of our proposed method, we compared its performance to that
of several machine learning-based classifiers, including Support Vector Machine (SVM),
Random Forest (RF), Logistic Regression (LR), and Naive Bayes (NB), implemented using
the ‘Scikit-learn’ package (Pedregosa et al., 2011). Similar to our model, we optimized each
classifier for each dataset through grid search, selecting the hyperparameter combination
yielding the highest average accuracy for the testing dataset. Those results are shown in
Tables S2–S4. We performed five-fold cross-validation to evaluate accuracy, the weighted
F1-score, the Matthews correlation coefficient (MCC), and the Area under the ROC Curve
(AUC) as evaluation metrics. Additionally, we used the same multi-omics features selected
during the feature selection step for the baseline methods. As illustrated in Fig. 2 and
Table 2, moSCminer outperformed the baseline methods, achieving an average weighted
F1-score of 0.954 and 0.986 for the GSE154762 and GSE136718 dataset, respectively,
compared to the second-highest average F1-score of 0.916 and 0.970 achieved by RF.
For the largest dataset of GSE140203, composed of 32,321 cells with 22 cell subtypes, our
method achieved the highest classification performance with an average AUC of 0.983,
where RF obtained 0.926. The cell subtype-wise performance results were reported in
Table S5. For GSE136718 and GSE154762 datasets, relatively having small number of
samples and subtypes, moSCminer generally demonstrated the best or similar prediction
performance compared to other methods. But, when applied to more complex cell subtype
prediction task using GSE140203 dataset, moSCminer outperformed all the baseline
methods and its variant for all 22 cell subtypes, achieving the best performance.

Effectiveness of omics-level attention
Our proposed method leverages omics-level attention to transform features into new
representations, capturing the relative importance weights for cell subtype classification.
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To assess the impact of omics-level attention on prediction performance, we implemented
a variant of our model by removing the attention components, referred to as “moSCminer
(no-attn),” and conducted 5-fold cross-validation to compare performance. Notably,
without the attention module, classification performance decreased (Fig. 2 and Table 2).
For the GSE136718 dataset, the average accuracy dropped from 0.986 to 0.957, while for
relatively having larger datasets with more samples and complex cell subtypes, a significant
performance drop was observed for average accuracy, from 0.956 to 0.816 (GSE154762),
and from 0.983 to 0.856 (GSE140203). Similar performance change was also shown in the
cell subtype-wise performance results (Table S5). These results underscore the
effectiveness of omics-level attention in our proposed method and the importance of new

Figure 2 Performance comparison of moSCminer with its variant and the baseline methods based on five-fold cross-validation. A horizontal
line within the box represents the median of performance values for each method. Full-size DOI: 10.7717/peerj-17006/fig-2

Table 2 Average performance results for cell subtype predictions of moSCminer with its variant and the baseline methods based on five-fold
cross-validation.

Dataset Metric moSCminer (omics-attn) moSCminer (no-attn) RF SVM LR NB

GSE136718 Accuracy 0.986 0.957 0.971 0.971 0.957 0.757

F1-score 0.986 0.958 0.970 0.970 0.955 0.748

MCC 0.983 0.951 0.968 0.967 0.951 0.722

AUC 0.991 0.979 0.983 0.980 0.972 0.861

GSE154762 Accuracy 0.956 0.816 0.917 0.862 0.827 0.518

F1-score 0.954 0.817 0.916 0.862 0.826 0.512

MCC 0.948 0.784 0.902 0.838 0.796 0.439

AUC 0.977 0.895 0.933 0.926 0.903 0.728

GSE140203 Accuracy 0.983 0.856 0.944 0.790 0.829 0.382

F1-score 0.983 0.855 0.944 0.786 0.827 0.379

MCC 0.981 0.838 0.938 0.763 0.808 0.326

AUC 0.983 0.897 0.926 0.845 0.870 0.654

Note:
The bolded font was used to highlight the method that exhibited the highest performance among the various approaches.
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feature representations derived from feature transformation in cell subtype classification
using single-cell multi-omics data.

Cell subtype prediction improvement by multi-omics integration
To evaluate whether cell subtype classification based on multi-omics integration improved
performance, we conducted five-fold cross-validation and compared our model’s
performance using either single omics or a combination of two omics datasets. We denoted
gene expression as ‘gene,’ DNA methylation as ‘methyl,’ and DNA accessibility as ‘acc.’ As
shown in Table 3, utilizing single-omics dataset could provide the performance higher
than 0.9, for example, the average accuracy of 0.962 in GSE136718 using gene expression
profiles, or 0.950 using DNA accessibility data in GSE140203. However, the proposed
model, when trained using all three multi-omics datasets, consistently achieved the highest
average prediction performance across all three datasets. This indicates that integrating
omics datasets from different biological layers enhances the cell subtype classification
model’s accuracy compared to using single omics data.

Identification of marker candidates for cell subtype prediction
During the training phase of moSCminer, the omics-level attention scores were learned,
providing relative importance scores for cell subtype classification. Features with the
highest attention scores hold the potential to be cell marker candidates for cell subtype
annotations. We analyzed the attention scores obtained from moSCminer for GSE136718
and GSE154762 datasets and identified the top 30 features with the highest scores from
each omics for further examination (Table S6). To assess the relevance of these features to
cell subtype classification within cells, we compared the normalized abundance differences
between the cell subtypes. We conducted one-way analysis of variance (Lix, Keselman &
Keselman, 1996) to test the statistical significance of the subtype differences. The results
(Fig. 3) revealed that features with the highest attention scores exhibited significant
differences among subtypes, with a p-value < 0.01, providing evidence that moSCminer
can identify features highly relevant for distinguishing cell subtypes within cells.

Moreover, the overlap of the top 30 feature lists with the highest attention scores from
each omics for the GSE136718 dataset is depicted in the Venn diagram (Fig. 4). This

Table 3 Average cell subtype classification performance using different combinations of omics datasets.

Dataset GSE154762 GSE136718 GSE140203

Number of omics Metric Accuracy F1-score Accuracy F1-score Accuracy F1-score

Multi-omics Gene+Methyl+Acc 0.917 0.916 0.986 0.986 – –

Gene+Methyl 0.871 0.871 0.891 0.878 – –

Gene+Acc 0.740 0.728 0.957 0.956 0.983 0.983

Methyl+Acc 0.868 0.864 0.581 0.552 – –

Single omics Gene 0.697 0.690 0.962 0.962 0.768 0.760

Methyl 0.841 0.837 0.452 0.357 – –

Acc 0.340 0.288 0.443 0.315 0.950 0.951

Choi et al. (2024), PeerJ, DOI 10.7717/peerj.17006 11/19

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136718
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140203
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136718
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154762
http://dx.doi.org/10.7717/peerj.17006/supp-6
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136718
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154762
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136718
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140203
http://dx.doi.org/10.7717/peerj.17006
https://peerj.com/


illustrates that moSCminer identifies a subset of features common to multiple omics,
reinforcing their potential as robust marker candidates for cell subtype classification.

To further assess the biological relevance of the top 30 features from each omics for each
cell type, we conducted a manual literature review. During the preprocessing step, as omics

Figure 3 Normalized abundance difference between the cell subtypes for the top three features from each omics of GSE136718 dataset showing
the top average attention scores. Full-size DOI: 10.7717/peerj-17006/fig-3
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features were transformed into a gene-based matrix for multi-omics integration, we
examined whether any features exhibited high attention scores in all three omics types.
In the case of the GSE136718 dataset, we identified four gene-based features that
overlapped among the top 30 features from each omics: H2-Q1, Ccdc64, C130026I21Rik,
and 4933407C03Rik (Fig. 4). H2-Q1 gene was reported to be transcribed in the brains of
the E14.5 embryos in mice and is also expressed in the adult brain, suggesting a potential
functional role in both adult and embryonic brains (Ohtsuka et al., 2008). In case of
Ccdc64, a synonym of Bicdr1 gene, high expression levels of Ccdc64 at early embryonic
stages inhibit neuritogenesis and decrease during embryonic development, thereby
controlling neuronal differentiation (Schlager et al., 2010).

We also found evidence that other features not in the overlap have the potential to be
cell markers: Prdm10 is known to support cell growth and survival during early embryonic
development (Han et al., 2020). Bptf regulates genes and signaling pathways essential for
the development of key tissues in the early mouse embryo (Landry et al., 2008). TAF3 and
Shb are reported to be involved in embryonic stem cell differentiation (Kriz et al., 2006; Liu
et al., 2011).

For GSE154762 dataset, we did not find overlapping features in any of the three omics
datasets. However, several features from each omics dataset demonstrated biological
relationships with human oocytes and somatic cells: CAMK1D is reported as a potential
follicular cell biomarker correlated with oocyte quality, embryo competence, and
pregnancy outcome (Yerushalmi et al., 2014). TMOD3 plays a crucial role in oocyte

Figure 4 Venn diagram showing the overlap of the top 30 feature lists having the highest attention
scores from each omics for GSE136718 dataset. Full-size DOI: 10.7717/peerj-17006/fig-4
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maturation by controlling the density of the cytoplasmic actin mesh (Jo et al., 2016).
MYO5B may play an important role in actin cytoskeleton remodeling during oocyte
maturation (Jia et al., 2022). TMEFF2 was studied for its upregulation in early oocyte
development in the primordial and primary follicle stages (Yu et al., 2020). These findings
illustrate that moSCminer can provide cell marker candidates with the potential to serve as
markers for cell subtype annotations.

DISCUSSION AND CONCLUSIONS
In this study, we introduced an innovative omics-level attention-based framework for cell
subtype prediction using single-cell multi-omics datasets. Our approach involved several
critical steps, including data preprocessing, feature selection, and the application of an
omics-level attention mechanism. These steps were designed to harness the power of
multi-omics data and improve cell subtype classification accuracy.

Our preprocessing step involved transforming each omics dataset into a gene-based
matrix. This conversion allowed us to identify features with biological relationships based
on promoter and transcription information, facilitating effective multi-omics integration.
The subsequent application of the omics-level attention mechanism was a key aspect of our
approach. By transforming features in each omics dataset into new representations that
captured their relative importance weights, we enabled the model to make more informed
cell subtype predictions. These transformed representations were then concatenated and
used as input for the fully connected layers, with the final cell subtype predictions
generated using the softmax function.

The performance of our proposed model was evaluated by comparing it to baseline
classifiers using real-world datasets. Through five-fold cross-validation, our model
consistently outperformed all other methods, demonstrating robust and superior
classification performance. These results underscored the effectiveness of our approach in
accurately predicting cell subtypes.

Furthermore, we conducted experiments to investigate the impact of the omics-level
attention module and multi-omics integration. Our findings confirmed that the integration
of gene expression, DNA methylation, and DNA accessibility data, coupled with the
omics-level attention mechanism, significantly improved cell subtype prediction accuracy.
This validation further highlighted the advantages of our approach in handling complex
multi-omics datasets.

In our experiments, the moSCminer was tested using single-cell multi-omics datasets,
which comprised two or three distinct omics profiles. However, it is essential to note that
our proposed method is not limited to only three omics types. moSCminer allows its
application to multi-omics datasets with varying numbers of omics data. This flexibility is
achieved by omics-level attention, by employing a self-attention module for each omics
dataset, which generates new representations based on the learned relative importance of
features. Subsequently, these features are concatenated and used as input for cell subtype
classification. An extensible version of moSCminer can be accessed at https://github.com/
joungmin-choi/moSCminer. In addition, moSCminer is originally proposed for cell
subtype classification based on single-cell multi-omics dataset integration and provides the
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best predictions when trained to learn representations from multiple features grounded in
biological connections. However, recognizing the challenge posed by the lack of single-cell
multi-omics datasets, we conducted an evaluation of moSCminer’s performance using
single omics for cell subtype classification, along with baseline methods. Through five-fold
cross-validation for each single omics profiles utilizing the GSE140203 dataset,
moSCminer consistently outperformed the other baseline methods in cell subtype
classification (Table S7). But still, moSCminer achieved the best prediction performance of
0.983 when using multi-omics dataset to classify cell subtypes aligning with our original
purpose.

One notable contribution of this study was the development of moSCminer, a
user-friendly web-based platform connected to a cloud system. This platform was designed
to address common challenges faced by researchers, such as the complexity of software
installation and scalability limitations associated with deep learning tools. moSCminer not
only simplifies the user experience but also offers easy accessibility to our model. With its
intuitive interfaces and visualization capabilities for prediction results, moSCminer
provides a practical solution for researchers seeking efficient cell subtype annotation.

In summary, our proposed model represents a significant advancement in single-cell
omics studies. By effectively addressing cellular heterogeneity and providing accurate cell
subtype annotation, we believe that our approach will contribute to the advancement of
research in this field. We believe that the proposed model will help to improve the
single-cell omics studies resolving cellular heterogeneity, providing accurate cell subtype
annotation.
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