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ABSTRACT
Various segmentation networks based on Swin Transformer have shown promise
in medical segmentation tasks. Nonetheless, challenges such as lower accuracy and
slower training convergence have persisted. To tackle these issues, we introduce a
novel approach that combines the Swin Transformer and Deformable Transformer
to enhance overall model performance. We leverage the Swin Transformer’s window
attention mechanism to capture local feature information and employ the Deformable
Transformer to adjust sampling positions dynamically, acceleratingmodel convergence
and aligning it more closely with object shapes and sizes. By amalgamating both
Transformer modules and incorporating additional skip connections to minimize
information loss, our proposed model excels at rapidly and accurately segmenting CT
or X-ray lung images. Experimental results demonstrate the remarkable, showcasing
the significant prowess of our model. It surpasses the performance of the standalone
Swin Transformer’s Swin Unet and converges more rapidly under identical conditions,
yielding accuracy improvements of 0.7% (resulting in 88.18%) and 2.7% (resulting in
98.01%) on the COVID-19 CT scan lesion segmentation dataset and Chest X-rayMasks
and Labels dataset, respectively. This advancement has the potential to aid medical
practitioners in early diagnosis and treatment decision-making.

Subjects Radiology and Medical Imaging, Computational Science, Data Mining and Machine
Learning, COVID-19
Keywords CT or X-ray lung images, Medical image segmentation, Multi-transformer, Unet

INTRODUCTION
The continuous evolution of deep learning has unlocked tremendous potential for
computer vision technology within the realm of medical image analysis. In the realm of
medical image analysis, medical image segmentation stands as a pivotal domain, wielding
paramount significance in clinical diagnosis and a wide array of medical applications (Du
et al., 2020).

Medical image segmentation plays a pivotal role in distinguishing and isolating specific
structures and areas of interest within medical images (Li et al., 2023). This process aids
healthcare professionals in comprehending and scrutinizing anatomical structures, as well
as identifying areas affected by lesions or anomalies in these images. The stability and
efficiency of medical segmentation, achieved through automated image segmentation
technology, are paramount for enhancing the diagnostic and treatment processes.
Automating this critical step not only makes clinical diagnoses more efficient but also
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enables doctors to make diagnoses with greater speed and precision, ultimately benefiting
patient care (Sharp et al., 2014; Qin et al., 2021).

Traditional techniques for medical image segmentation, such as edge detection (Torre
& Poggio, 1986), thresholding (Mallik et al., 2005), and region growth (Adams & Bischof,
1994), have historically been employed to address basic segmentation tasks. As machine
learning advanced, methods based on support vector machines (SVM) and K-means
clustering were introduced (Hartigan & Wong, 1979), enabling the handling of more
intricate images and enhancing segmentation accuracy. However, these approaches fell
short of meeting the increasingly demanding performance criteria. Over the past few years,
the emergence of deep learning technology has ushered in a revolutionary transformation
in the field of medical segmentation. This development has substantially elevated both the
accuracy and stability of medical image segmentation.

At this stage, based on deep learning methods, effective feature representation
segmentation patterns are learned from a large number of medical images through end-
to-end training so as to realize automatic and accurate medical image segmentation (Zhao
et al., 2019). Currently, deep learning-based medical segmentation mainly favors neural
networks with U-shaped structures. In 2015, U-Net was proposed (Ronneberger, Fischer
& Brox, 2015), and its appearance led to the application of deep learning in medical
segmentation. The classical U-structured network consists of an encoder and a decoder and
fuses semantic information at different scales through skip connections to realize pixel-level
medical segmentation prediction. It uses multiple down-sampling in the encoder part to
reduce the spatial resolution and extract the feature information, and then the encoder part
fuses the up-sampled feature maps with the skip-connected feature maps, so as to merge
the low-resolution semantic information with the high-resolution multi-scale information,
and ultimately get accurate segmentation prediction results. The simple and efficient
structure of the U-Net attracts researchers to extend this idea, and many researchers have
proposed U-Net++ (Cui, Liu & Huang, 2019), Residual U-Net (Zhang, Liu & Wang, 2018),
Dense U-Net (Wang et al., 2019), and Attention U-Net (Oktay et al., 2018) for 2D medical
image segmentation (Gu et al., 2019).

Although many CNN-based U-shaped segmentation networks have achieved excellent
performance, CNNs still can’t fully meet the needs of medical images with high accuracy
requirements. In 2017, a Transformer based on the attention mechanism was used in
the task of machine translation, and its emergence changed the direction of development
in the field of natural language processing (Vaswani et al., 2017). Later, researchers tried
to use Transformer for semantic segmentation tasks, and methods combining CNN
with Transformer appeared, such as TransUNet (Strudel et al., 2021; Chen et al., 2021).
TransUNet combines the powerful global capability of Transformer and the ability of
CNN to be sensitive to local image details, which greatly improves segmentation accuracy.
In 2020, Vision Transformer (ViT) was proposed (Dosovitskiy et al., 2020), which applies
Transformer to the field of computer vision andbreaks through the limitations of traditional
convolution. Since ViT uses a fixed-size global attention mechanism to deal with large-
scale images and complex scenes, which incur high computational complexity andmemory
consumption, researchers have addressed the limitations by improving ViT. To solve the
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limitations of ViT, different improvement schemes, such as the Swin Transformer (Liu
et al., 2021) and Deformable Transformer (Zhu et al., 2020) have been developed. Swin
Transformer adopts the mechanism of a shifted window to confine attention to the
window, which reduces the computational complexity of processing large-scale images.
The Deformable Transformer introduces the idea of variable convolution, which allows
the network to dynamically adjust the sampling position and shape, thus obtaining the
features and structures in the image more flexibly.

This article tackles the challenges posed by low accuracy in medical images, prolonged
model training times, and the limitations of single-structure models. We introduce a
novel medical segmentation model that combines the capabilities of Swin Transformer
and Deformable Transformer. Our approach utilizes the window attention mechanism
from the Swin Transformer to capture essential local feature information. Additionally, we
leverage the automatic adjustment capabilities of the Deformable Transformer to optimize
sampling positions, expediting model convergence.

To enhance the preservation of spatial information, we introduce skip connections
and feature fusion mechanisms. Our contributions can be summarized as follows: (1)
Combining Swin Transformer and Deformable Transformer: We merge the strengths
of Swin Transformer and Deformable Transformer to create a U-shaped structure. This
architectural choice significantly accelerates model training. (2) Add skip connections and
feature fusion: We augment the model with additional skip connections and feature fusion
techniques. These enhancements facilitate the fusion of feature information from different
scales, mitigating information loss and elevating prediction accuracy.

RELATED APPLICATIONS AND RESEARCH
Applications of medical image segmentation
Medical image segmentation has been a hot branch in the segmentation field and has
produced numerous medical image applications.
1. Organ segmentation: Medical image segmentation finds one of its most common

applications in the realm of organ segmentation (Gibson et al., 2018). This crucial task
involves delineating distinct organs or tissues within an image, with a focus on vital
structures like the heart (including its atria, ventricles, and associated blood vessels),
lungs, and brain (covering brain tissues and the intricate network of blood vessels).
The significance of organ segmentation lies in its capacity to aid medical professionals
at various stages, ranging from initial diagnosis to mid-term treatment decisions and,
ultimately, in formulating precise surgical plans.

2. Lesion area segmentation: Advancements in detection technology have led to the
identification and investigation of an increasing number of medical conditions,
including lesions like tumors and skin abnormalities (Xia, Yin & Zhang, 2019). Tumor
segmentation plays a pivotal role in various aspects of oncology, encompassing lung
tumor segmentation (Jiang et al., 2018), breast tumor segmentation (Singh et al., 2020),
brain tumor segmentation (Wadhwa, Bhardwaj & Verma, 2019), and more. Precise
tumor segmentation serves as a valuable tool for healthcare professionals by assisting
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them in pinpointing, quantifying, and assessing tumors. This, in turn, accelerates
the process of tumor diagnosis and facilitates the development of effective treatment
plans (Havaei et al., 2017).

3. Cell nucleus segmentation: Within genetic biology and cell biology, the segmentation
of cell nuclei holds significant importance (Lagree et al., 2021). Achieving precise
segmentation and localization of cell nuclei is essential for researchers, as it enables
quantitative analysis of these nuclei and facilitates the study of various cellular biological
properties.
Segmentation tasks in the medical field encompass a broad spectrum of applications,

ranging from bone segmentation to blood vessel segmentation and beyond. These
specialized investigations into medical image segmentation have been instrumental in
propelling the field of medicine forward. They have enabled the automation and intelligent
analysis of medical images, ultimately resulting in heightened efficiency and precision in
medical diagnosis and treatment.

Research on medical image segmentation technology
The swift progress of deep learning has spurred noteworthy breakthroughs in computer
vision technology, particularlywithin the realmofmedical image segmentation. Researchers
have crafted specialized network models designed for diverse medical image segmentation
tasks, leveraging the potency of deep learning to attain remarkable success in this domain.

Traditional methods (Torre & Poggio, 1986; Sharifi, Fathy & Mahmoudi, 2002;
Pellegrino, Vanzella & Torre, 2004) mainly apply edge information for medical image
processing. Along with the development of deep learning, CNN-basedmethods (Kayalibay,
Jensen & van der Smagt, 2017; Hofbauer, Jalilian & Uhl, 2019) utilize convolutional neural
networks to extract more important information from image blocks and significantly
improve segmentation prediction image quality. The emergence of full connectivity has
greatly inspired research workers, producing methods such as Batra et al. (2019); Zhou et
al. (2017) for pixel-level classification tasks. To solve the gradient vanishing, increasing
the depth of the network methods such as Abedalla et al. (2021); Ikechukwu et al. (2021)
further improved the ability to capture both detailed and global information. With the
continuous deepening of the network, networks such as KiU-Net (Valanarasu et al., 2020),
DeepLevel Network (Wang et al., 2018), PSPNet (Zhao et al., 2017), etc. have emerged. The
emergence of the attention mechanism brought a boom to the segmentation field, resulting
in methods such as Li et al. (2020); Fu et al. (2019) that utilize attention to adaptively select
important information, enhancing the network’s ability to recognize complex information.
Despite their excellent performance, the methods based on convolutional neural networks
suffer from the disadvantages of high computational cost and poor migration ability.
Therefore, it is necessary to study semantic segmentation detection networks that utilize
only Transformer.

The Transformer architecture (Vaswani et al., 2017) introduced in 2017 has proven
to be highly effective in various sequence-to-sequence natural language processing tasks.
It also quickly paved the way for innovative approaches to pixel-level classification tasks.
The subsequent lightweight Swin Transformer likewise yielded the excellent medical
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semantic segmentation Swin UNet (Cao et al., 2022). The emergence of the Deformable
Transformer brought to the Transformer structure the adaptive deformability to divert
attention to important information regions. Vision Transformer and Swin Transformer
have the disadvantages of a large number of parameters and slow convergence speed
with small sensory fields, respectively. In order to better utilize the resources and reduce
the number of parameters while speeding up the convergence of the model, the Swin
Transformer and Deformable Transformer are proposed in this article. In this article,
we propose a U-shaped segmentation network that mixes both Swin Transformer and
Deformable Transformer.

METHOD
Overall architecture
As illustrated in Fig. 1, the network architecture proposed in this article comprises an
encoder, a decoder, and skip connections. In the encoder, the medical image is partitioned
into non-overlapping ‘‘tokens’’ of size 4×4. Subsequently, a linear embedding layer is
applied to transform the image into a sequence of data, allowing it to be processed by the
Transformer. This sequence data vector undergoes two key transformations. First, it learns
local information using the window self-attention mechanism of the Swin Transformer,
enhancing its global awareness through hierarchical window shifting. Second, local detail
capture is improved by incorporating deformable convolution from the Deformable
Transformer, enabling adaptive feature extraction in local regions. After each Transformer
block in the encoder, patch merging is employed to down-sample the data and increase its
dimensionality. The decoding process mirrors these operations. The patch-expanding layer
is used for up-sampling and dimensionality reduction, and it integrates feature information
from neighboring scales into skip connections for fusion. This multi-scale information
addition mitigates information loss during the encoding process due to down-sampling,
thereby elevating segmentation accuracy. The final patch expanding layer performs a
4-fold up-sampling to restore the sequence features to the original image dimension and
resolution. Finally, the resulting image is linearly transformed back to its original pixel-level
segmentation prediction form.

Swin Transformer block
In contrast to ViT, which employs multi-head self-attention (MSA) for feature extraction,
Swin Transformer utilizes a more advanced shift window-based MSA (W-MSA and SW-
MSA). The shiftedwindowmechanism treats eachwindowas an individual element, thereby
enhancing the connections between elements across windows during the shifting process.
This approach effectively reduces the computational and storage demands associated with
long sequences, making Swin Transformer highly efficient in processing large-sized images.
As depicted in Fig. 2, each Swin Transformer module comprises several components,
including a window-based multi-head attention module, GELU nonlinear activation
function, multi-layer perceptron (MLP), and LayerNorm (LN) layer. These components
collectively enable the Swin Transformer to effectively handle large-sized images while
optimizing computational efficiency and memory usage.
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Figure 1 Overall structure of the model. The Swin Transformer and Deformable Transformer serve as
the backbone network. Patch merging and patch expanding technologies are employed in the Encoder and
Decoder, respectively, to modify the size of feature maps. Furthermore, the model incorporates additional
skip connections to enhance multi-scale information fusion, ensuring the retention of crucial information.

Full-size DOI: 10.7717/peerj.17005/fig-1

The two attention modules (W-MSA and SW-MSA) in Swin Transformer are applied in
successive Transformer modules. Based on the shift window mechanism, the two modules
are used in different configurations, which can be represented as Swin Transformer
modules:

γ̂ l
=W −MSA

(
LN

(
γ l−1))

+γ l−1 (1)
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Figure 2 Swin Transformer block. The attention blocks with a movable window are composed of W-
MSA and SW-MSA attention modules.

Full-size DOI: 10.7717/peerj.17005/fig-2
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Similar to the conventional self-attention calculationmethod, where γ̂ l and γ l represent
the outputs of the first W-MSA module and MLP module, respectively.

Attention(Q,K ,V )= SoftMax
(
QKT
√
d
+B

)
V (5)

where Q,K ,V∈M
2
×d represents query, key, and value matrices.M 2 represents the number

of patches in a window, and d represents the dimensions of query and key. Since the relative
positions of the axes are in [-M+1,M-1], the parameterized bias matrix is B∈(2M−1)×(2M+1).

Deformable Transformer block
Unlike the Deformable Convolutional Networks (DCNs) in CNNs, which primarily
concentrate on more informative regions within the feature map through the deformation
of the convolutional filter’s receptive field, the Deformable Attention Transformer employs
a distinct strategy. It involves learning multiple sets of undisclosed offsets that are used
to shift keys and values toward significant regions. Consequently, this approach allows
candidate keys and values to be dynamically shifted towards important areas, thereby
augmenting the inherent self-attention module with increased adaptability and efficiency
in capturing crucial informational features.

As shown in Fig. 3A is the Deformable Transformer Block, which has a similar structure
to the Swin Transformer. In Fig. 3B, there is the Deformable attention module. To obtain
the offset of the parameter points, the feature input x ∈RH×W×C is mapped to the query
token q= xWq and generates the position reference point p∈RHG×WG×2. The q is fed into
the offset network to generate the offset 1p.Here is the specific formula provided below:

q= xWq,k̃= x̃Wk,ṽ = x̃Wv (6)

1p= offset (q),x̃ =φ(x;p+1p). (7)

The generated offset 1p and the reference position p from the input features make up
the position p+1p that generates the displacement. The sampled features x are obtained
by adding new displacements to the processing input x̃ . Finally, the generated q,k̃,ṽ are
fed into the standard multi-head attention to obtain the desired features.

In Fig. 3C, displacement variables are generated by variable convolution. The
input feature map size is downsampled by a factor of r (HG = H/r,WG =W /r).
The values of the parameter positions are constrained to the 2D coordinate system
{(0,0),....,(HG−1,HG−1)} , and the mesh shape HG×WG is normalized to a range of
(−1,1) , where (−1,−1) denotes the upper left corner and (1,1) denotes the lower right
corner.

The application of deformable attention enables the efficient modeling of token
relationships by directing attention to critical regions within the feature graph. These key
regions are determined by employing multiple sets of variable sampling points generated
by an offset network. Within the offset network, bilinear interpolation is utilized to sample
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Figure 3 Deformable Attention block. (A) This block is structured with a standard attention network ar-
chitecture. (B) Deformable Attention introduces relative position deviation by incorporating an offset net-
work to enhance the multi-head attention of the output. (C) Provides an overview of the detailed struc-
ture of the offset network.

Full-size DOI: 10.7717/peerj.17005/fig-3

features from the featuremap. Subsequently, these sampled feature keys and values undergo
projection, yielding the deformed keys and values. Finally, standard multi-head attention
is employed to extract and consolidate these deformed features. This approach enhances
the learning of deformable attention by introducing robust relative positional bias via the
positional deformed points.

Decoder
Just as in the encoder, the decoder undergoes initial processing by the Deformable
Transformer block followed by the Swin Transformer block, ensuring symmetry in the
final model design. To bring the feature map back to the pixel dimensions of the input
image, the encoder employs a patch-expanding layer for up-sampling. Through multiple
up-sampling iterations, the feature map is gradually restored to the original image size,
ultimately enabling the completion of the segmentation prediction task.

Patch expanding layer: After the feature map undergoes a linear layer, doubling its
dimensionality, we apply rearrangement and image transformation techniques. These
techniques serve the dual purpose of augmenting the size of the image features and
reducing the feature dimensionality. Following this, via the patch Expanding layer, the
feature map is upscaled to a higher-resolution feature map while halving the feature
dimension compared to the input dimension.

Patch concat layer: To tackle the issue of information loss during the encoding
process resulting from consistent downsampling, it is imperative to integrate multi-scale
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information fusion. The patch concatenation layer assumes a pivotal role by amalgamating
information from the encoder at the same scale, information from neighboring scales, and
information from the decoding process. These three components are concatenated and
fused through a comprehensive concatenation approach. This fusion mechanism facilitates
the exchange of information between the decoding and downsampling phases, effectively
bridging shallow and deep features. Consequently, it alleviates spatial information loss
attributable to downsampling and contributes to improved segmentation accuracy in the
final output.

Skip connection
The encoding process involves preserving sequence information in a dictionary for later
use in the decoding phase. This stored information is then relayed to the decoder, aiding
in the recovery of fine details and the integration of contextual information. This approach
effectively mitigates the loss of feature information. The skip connection is a crucial
component, as it enables the segmentation network to more effectively capture contextual
details within the image, ultimately resulting in improved segmentation accuracy in the
final output.

EXPERIMENTS
Datasets
COVID-19 CT scan lesion segmentation dataset: This dataset is COVID-19 lesion masks
and their frames from three public datasets (Morozov et al., 2020; Jun et al., 2020). The
dataset contains 2,729 large-size lung CT public datasets with masks. We applied a 9:1 ratio
to randomly divide the dataset into training and test sets.

Chest XrayMasks and Labels dataset: This dataset is a public, open segmentation
dataset (Jaeger et al., 2013; Candemir et al., 2013). The dataset contains a training set of
704 X-ray scans and corresponding masks and a training set of five images. To increase
the experimental robustness and accuracy, we integrate the dataset and redistribute the
training set and test set in a 9:1 ratio.

The images in datasets have a resolution of 512×512, and their size is also 512×512.

Experiment results on COVID-19 CT scan lesion segmentation dataset
Our proposed model capitalizes on the strengths of Swin Transformer and Deformable
Transformer to accelerate convergence and improve prediction accuracy. Given the
intricate nature of the self-attention mechanism in Transformers, both training and
inference operations necessitate large datasets. In cases where training data is insufficient,
performance degradation and poor generalization can occur.To mitigate these challenges,
we incorporate the weights of Swin Transformer, which were trained on the ImageNet-1K
dataset, into ourmodel using transfer learning. This approach aims to alleviate the potential
impact of performance degradation in our Transformer model due to the limited volume
of medical dataset data.

In this experiment, Dice Similarity Coefficient (DSC) and Hausdorff distance (HD),
two crucial evaluation indices in medical segmentation networks, are employed.
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The Dice Similarity Coefficient (DSC) gauges the similarity between two sets, with a
value range of [0, 1]. A higher value signifies greater similarity between the two sets. The
calculation involves comparing the enclosed regions in the output prediction image with
the original label image to obtain the similarity measure.

Dice=
2TP

FP+2TP+FN
. (8)

The above formula describes the calculation method for the DSC. In this formula, true
positive (TP) represents samples correctly predicted as positive, while the sum of false
positive (FP) and false negative (FN) accounts for instances of false alarm and missed
detection. The denominator encompasses all correct and incorrect results, and the
numerator denotes the accurate number of predicted samples.

HD signifies the maximum distance between the predicted segmentation boundary
and the actual region. A smaller HD value indicates a reduced prediction boundary
segmentation error and higher quality. Given that the boundary of the reference image is
X, the predicted image boundary is Y, and ‘d’ represents the distance between two points,
HD can be expressed by the formula provided.

dH (X ,Y )=max{dXY ,dYX }=max
{
max
x∈X

min
y∈Y

d(x,y),max
y∈Y

min
x∈X

d(x,y)
}
. (9)

To mitigate the impact of outlier values and ensure the overall stability of the metric, the
actual Hausdorff Distance is determined by selecting the top 95% of distances arranged in
ascending order. This approach helps eliminate the influence of extreme values, promoting
a more robust assessment of segmentation performance.

As depicted in Fig. 4, our proposed model consistently attains superior segmentation
accuracy across various numbers of training epochs. Notably, when the training epochs
are limited, our model outperforms the Swin U-Net, which relies solely on the Swin
Transformer, by swiftly entering the smoothing convergence phase. Our experiments
affirm that our model achieves both higher segmentation accuracy and faster convergence
speed.

To verify the validity of our model, we are conducting comparative experiments on
different kinds of models.

As shown in Table 1, our proposed model achieves the highest segmentation accuracy;
the DSC is 88.18%, which is 1.08% and 0.72% higher than Swing UNet using only Swin
Transformer and TransUNet combining Transformer with CNN, respectively. The HD
index is the lowest at 9.47. This indicates that our method has better edge prediction.

To demonstrate the effectiveness of the model, we conducted ablation experiments
under the COVID-19 CT scan region segmentation dataset. The rigor of the experiment is
ensured by conducting control-variable experiments under the condition of specifying a
training epoch of 300.

The results of our ablation experiments, as presented in Table 2, unequivocally
demonstrate that the inclusion of the Deformable Transformer and skip connections
leads to a significant enhancement in final segmentation prediction accuracy. Notably,
within the encoder–decoder pipeline, the impact of the Deformable Transformer is
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Figure 4 Comparison of model segmentation accuracy. The red section represents the prediction accu-
racy of our model, while the blue section represents the prediction accuracy of SwinUnet.

Full-size DOI: 10.7717/peerj.17005/fig-4

Table 1 Comparison table of different model experiments.

Framework Average DSC↑ Average HD↓

U-Net(a) 87.24 14.4986
FCN(b) 86.55 16.4849
Deeplab-V3(c) 86.42 15.6495
TransUNet(d) 87.10 11.4432
HiFormer(e) 86.14 17.6833
Swin UNet(f) 87.46 11.5819
Our model 88.18 9.4747

Notes.
a(Ronneberger, Fischer & Brox, 2015).
b(Dung et al., 2019).
c(Wang et al., 2018).
d(Chen et al., 2021).
e(Heidari et al., 2023).
f(Cao et al., 2022).
*Average Dice-Similarity Coefficient (DSC); Average Hausdorff Distance(HD).

particularly evident during the decoder phase. It initiates the extraction of feature
maps through local attention via shift windows, facilitating the collection of localized
feature information. Subsequently, deformable attention blocks enhance local tokens by
incorporating global relationships into the modeling process. This alternation between
local and global attention mechanisms contributes to an enriched model representation.
The addition of skip connections supplements the encoding information with that of the
decoding process, mitigating the loss incurred by consecutive downsampling, ultimately
resulting in improved segmentation accuracy.
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Table 2 Comparative experiments. The experiments were conducted under the same conditions, and
the results were obtained by adding a Deformable Transformer module and a Skip connection at different
locations.

Framework No deformable
transformer

Encoder
deformable
transformer

Decoder
deformable
transformer

Encoder+Decoder
deformable
transformer

No add 86.70 87.09 87.35 87.35
Add 1/4 connection 87.30 87.35 87.36 87.38
Add 1/8 connection 87.39 87.43 87.43 87.55
Add 1/4+1/8 connection 87.40 87.46 87.59 87.69

Notes.
*This experiment uses the evaluation indicator Average Dice-Similarity Coefficient (DSC).

Table 3 Different model experiments.

Framework Average DSC↑ Average HD↓

U-Net 97.75 5.1981
FCN 97.69 4.6562
Deeplab-V3 97.85 4.8562
TransUNet 97.37 5.314
MISSformer 88.39 75.6275
HiFormer 97.65 4.9371
Swin UNet 95.31 4.70
Our model 98.01 4.0674

Notes.
*Average Dice-Similarity Coefficient (DSC); Average Hausdorff Distance(HD).

Experiment results on Chest Xray Masks and Labels dataset
To increase the robustness of the experiment, we selected the Chest Xray Masks and Labels
dataset for supplementary experiments. In order to solve the problem of randomness
and instability caused by a small number of test sets in factor data set planning, we
re-plan the training and test ratio of the data set and increase the number of test pictures.
Dice-Similarity Coefficient (DSC) and Hausdorff Distance (HD) were used as evaluation
indexes.

The results in Table 3 show that our proposed model achieves excellent results under
different data sets with an accuracy rate of 98.01%, indicating that the model has good
generalization ability and robustness. In addition, as shown in Fig. 5, our proposed model
almost perfectly segments lung organs from CT images, and medical workers visually
observe the size and shape of the lungs, speeding up the diagnosis and treatment of the
disease.

CONCLUSION
The U-shaped segmentation network we introduced, integrating the features of the Swin
Transformer and Deformable Transformer, demonstrates the capability to automatically
segment lung tissue from chest CT or X-ray images. This segmentation enables the
observation of abnormal organ damage, comprehension of organ location and shape,
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Figure 5 Automatic segmentation result. The lung image is segmented automatically through the net-
work.

Full-size DOI: 10.7717/peerj.17005/fig-5

and contributes to enhancing the accuracy of diagnosis and treatment. Leveraging the
strengths of Transformer blocks and incorporating skip connections for capturing long-
range interactive information, our segmentation network exhibits accelerated convergence
during training and attains superior prediction accuracy.

Medical image segmentation technology enables automatic organ recognition and
lesion detection, the main work of the model at this stage is to optimize for improving
the accuracy, and there is not much work on lightweight segmentation models with high
accuracy. Therefore, our next stage of research is to lighten the Transformer and reduce
the model parameters so that they can be applied to the actual testing equipment.
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