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ABSTRACT
The mammalian crown originated during the Mesozoic and subsequently radiated into
the substantial array of forms now extant. However, for about 100 million years before
the crown’s origin, a diverse array of stem mammalian lineages dominated terrestrial
ecosystems. Several of these stem lineages overlapped temporally and geographically
with the crownmammals during the Mesozoic, but by the end of the Cretaceous crown
mammals make up the overwhelming majority of the fossil record. The progress of
this transition between ecosystems dominated by stem mammals and those dominated
by crown mammals is not entirely clear, in part due to a distinct separation of
analyses and datasets. Analyses of macroevolutionary patterns tend to focus on either
the Mammaliaformes or the non-mammalian cynodonts, with little overlap in the
datasets, preventing direct comparison of the diversification trends. Here I analyse
species richness and biogeography of Synapsida as a whole during the Mesozoic,
allowing comparison of the patterns in the mammalian crown and stem within a single
framework. The analysis reveals the decline of the stem mammals occurred in two
discrete phases. The first phase occurred between the Triassic and Middle Jurassic,
during which the stem mammals were more restricted in their geographic range than
the crownmammals, although within localities their species richness remained at levels
seen previously. The second phase was a decline in species richness, which occurred
during the Lower Cretaceous. The results show the decline of stemmammals, including
tritylodontids and several mammaliaform groups, was not tied to a specific event, nor
a gradual decline, but was instead a multiphase transition.

Subjects Evolutionary Studies, Paleontology, Zoology
Keywords Mammal, Synapsid, Diversity, Geographic range, Sampling

INTRODUCTION
Themammal lineage separated from the reptile-line amniotes during the Paleozoic between
315 and 330 million years ago (e.g., Crottini et al., 2012; Dos Reis et al., 2015; Laurin,
Lapauze & Marjanović, 2018; Brocklehurst et al., 2021). For the first 100 million years of
their evolutionary history, a substantial diversity of stem mammal lineages dominated
terrestrial ecosystems (Rubidge & Sidor, 2001; Brocklehurst, Kammerer & Fröbisch, 2013;
Brocklehurst et al., 2021). These stem mammals include a range of clades and forms, some
of which pass through the end-Permian and end-Triassic mass extinctions and persist
in the fossil record throughout much of the Mesozoic (Rubidge & Sidor, 2001; Tatarinov
& Matchenko, 1999). The identity and age of the youngest stem mammal is uncertain;
they potentially survived into the earliest Cenozoic (Goin et al., 2012; Huttenlocker et al.,
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2018; Rougier, Martinelli & Forasiepi, 2021). From this point until the present day, the
descendants of a single common ancestor have consistently been the sole representatives
of the mammal line, remaining today as the mammalian crown.

The mammalian crown, consisting today of monotremes, marsupials and placental
mammals, originated during the Mesozoic. The precise timing of this origin is uncertain,
due to the uncertain affinity of Triassic mammal-line fossils. Von Huene (1940) described
a premolar from the Rhaetian (latest Triassic) of Germany, suggesting it had similarities to
multituberculates (a now-extinct crown-mammal lineage). However, he did not include
detailed comparison of the specimen with multituberculates, nor did he included a
museum catalogue number, thus precluding further study of the specimen. The prevalence
of specimens based on limited material assigned to crown mammal lineages persists into
the Lower Jurassic, although many of these were more confidently assigned to species
level (e.g., Prasad & Manhas, 2007; Montellano, Hopson & Clark, 2008; Parmar, Prasad &
Kumar, 2013). But it is still unclear how reliable an identification based on such material,
dominated by isolated teeth, may be (Sansom, Wills & Williams, 2017; Brocklehurst &
Benevento, 2020). Also known from the Rhaetian and Early Jurassic are haramiyidans, a
lineage of mammals of uncertain affinity. Many phylogenetic analyses have found them
to be within the mammalian crown, as an outgroup to the clade containing marsupials
and placental mammals (e.g., Krause et al., 2014; Zheng et al., 2013; Bi et al., 2014; Zhou et
al., 2019). However, others have found haramiyidans to be stem mammals (Rougier et al.,
2007; Zhou et al., 2013; Luo et al., 2015a; Huttenlocker et al., 2018; Celik & Phillips, 2020),
while the analyses of Krause et al. (2020) and King & Beck (2020) found a polyphyletic
Haramiyida, with Haramiyidae and Haramiyavidae (the families known from the Triassic)
excluded from the mammalian crown. Hoffmann et al. (2020) recovered support for
different hypotheses depending on the method of analysis used; parsimony and tip-dated
Bayesian analyses found polyphyletic haramiyidans, while an undated Bayesian analysis
found haramiyidans within crown mammals. The inclusion or exclusion of haramiyidans
from the mammalian crown shifts the age of the mammalian crown node by between 25
and 40 million years (Cifelli & Davis, 2013; Luo et al., 2015b). Nevertheless, despite this
uncertainty surrounding the origin of modern mammals, an Upper Triassic-Lower Jurassic
origin of crown mammals is consistent with estimates derived from molecular clocks
(Meredith et al., 2011; Dos Reis et al., 2012; Dos Reis et al., 2015) and tip-dating approaches
(Upham, Esselstyn & Jetz, 2019).

The mammalian stem includes several lineages overlapping in time with the mammalian
crown, including docodonts, tritylodontids, and morganucodontids (for summary see
Grossnickle, Smith & Wilson, 2019). As with the earliest crown mammal, the youngest
stem mammal is uncertain due to fragmentary material and uncertain phylogeny. If
haramiyidans, or at least their youngest representatives, are crown mammals, then
the youngest well-supported stem mammals are Lower Cretaceous tritylodontids and
docodonts (Tatarinov & Maschenko, 1999; Lopatin & Agadjanian, 2007; Leshchinskiy et al.,
2000; Lopatin et al., 2009). A single Upper Cretaceous non-mammalian cynodont has been
recorded from the Cenomanian of Australia (Musser et al., 2009). The specimen includes
a femur and tooth referred to the Probainognathia. Unfortunately, the only record of this
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cynodont is a published abstract giving no information of the morphology of the specimen,
and thus far no full description has been published, so it is difficult to assess the reliability of
this assignment. Moreover, the abstract does not provide a museum repository number so
the assignment cannot even be verified by direct examination of the specimen. Therefore,
although this specimen has been cited in discussions of a relict fauna isolated in Australia
during the Cretaceous (Leahey & Salisbury, 2013), it cannot be seriously considered in
discussion of the youngest non-mammalian synapsids. Another supposed non-mammalian
cynodont has been described from as late as the Paleocene: Chronoperates paradoxus (Fox,
Youzwyshyn & Krause, 1992). However, subsequent discussion of this specimen has not
widely accepted this assignment, with doubt cast on the presence of the postdentary bones,
and the dental morphology suggested to differ from those of non-mammalian cynodonts
(Sues, 1992; McKenna & Bell, 1997; Meng et al., 2003). It should also be noted that, if
Haramiyida are stem, rather than crown mammals (as discussed above), then at least one
mammalian stem lineage would be known to have survived through to the end of the
Mesozoic and into the earliest Cenozoic (Huttenlocker et al., 2018), with gondwanatherian
mammals (found by these authors within haramiyidans) known from the Eocene of South
America (Goin et al., 2012; Rougier, Martinelli & Forasiepi, 2021).

Before the end of the Mesozoic, the mammal-line fossil record had transitioned from
a set of ecosystems dominated by stem mammals to one where most or all specimens
belong to the mammalian crown (Grossnickle, Smith & Wilson, 2019). A series of discrete
radiations have been identified that set the seeds for the present diversification of modern
mammals: the Jurassic radiation of theriimorphs (e.g., Luo, 2007; Close et al., 2015), the
mid Cretaceous radiation of therian mammals coinciding with the diversification of
angiosperms (e.g., Grossnickle & Polly, 2013; Benson et al., 2013), a late Cetaceous therian
diversification (Wilson et al., 2012; Newham et al., 2014; Grossnickle & Newham, 2016),
and the radiation of eutherian mammals following the end Cretaceous mass extinction
(e.g., Slater, 2013; Wilson, 2013; O’Leary et al., 2013; Halliday, Upchurch & Goswami,
2016; Brocklehurst et al., 2021; Benevento, Benson & Friedman, 2019; Benevento et al., 2023).
Analyses of species richness and morphological diversity during the Mesozoic have also
documented the decline of stem mammal lineages (e.g., Ruta et al., 2013a; Lukic-Walther et
al., 2019; Varnham, Mannion & Kammerer, 2021). However, such analyses have examined
the modern mammals and the individual lineages of stem mammmals in isolation of each
other. With the exception of Hellert et al. (2023)’s analysis of diet and body size across the
major synapsid lineages, there has been no analysis documenting the diversification, either
morphological or species richness, of Synapsida as a whole throughout the Mesozoic,
rendering the transition between stem-dominated and crown-dominate ecosystems
unclear. In particular, the decline to extinction of the different stem mammal lineages
has been analysed in isolation (e.g., Ruta et al., 2013a; Ruta et al., 2013b; Lukic-Walther et
al., 2019) with more focus placed on the pattern of modern mammal radiations. Unlike,
for example, birds, where the transition to crown-dominated ecosystems may be easily
linked to the faunal turnover at the end-Cretaceous mass extinction (Longrich, Tokaryk
& Field, 2011; Prum et al., 2015), there is no large-scale event that may be easily tied to
the extinction of stem mammals. The lack of an analysis of crown and stem mammal
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diversification patterns under a single framework prevents direct comparison of the two
and prevents demonstration of either a gradual replacement of the stem lineages by ever
more crownward taxa, a rapid turnover under a single event, or a multiphase replacement
process.

I analyse synapsid species richness and distribution and their changes throughout the
Mesozoic, studying both crown and stem mammals under a single analytical framework in
order to identify the progress of the decline of the mammalian stem and the transition to
crown dominated ecosystems. I compare their species richness within areas of endemicity
(bioregions) and present a novel approach for comparing geographic range size under
incomplete sampling.

MATERIALS & METHODS
Dataset
The dataset of Synapsida from the Triassic until the end of the Cretaceous was downloaded
from the Paleobiology Database (PBDB; https://paleobiodb.org/) on the 13th April 2023.
The dataset includes all body fossils occurrences, excluding trace fossils (Data S1). The
occurrences were divided between crown and stem mammals using the Paleobiology
Database’s higher taxonomy, which classes crown mammals as the order ‘‘Mammalia’’,
and stemmammals as ‘‘Osteichthyes’’. The assignments to these higher taxawere checked to
ensure theywere accurate and up to date, as were the details of the occurrences and specimen
identities. The decision on what clades represent stem or crown mammals were derived
primarily from Zhou et al. (2019),Huttenlocker et al. (2018) and King & Beck (2020), which
include comprehensive phylogenetic analyses that broadly sampled the key clades and
had reasonably high support for the key nodes. All changes made to the dataset and their
justification are detailed in Data S2. These include: deletion of two occurrences that are not
considered reliable occurrences of Mesozoic synapsids; reassignment of six occurrences
from crown to stem mammals; deletion of three occurrences where specimens unnamed
in their original description were later assigned species names, but duplicate occurrences
were created in the PBDB; deletion of 12 occurrences that represent trace records but were
listed in in the download as body fossil records. The stage ages were updated to reflect the
most recent timescale of the International Commission of Stratigraphy.

From this dataset, three test datasets were created, with different assignments for
Haramiyida as discussed above. The first assigned Haramiyida (including Gondwanatheria,
following Huttenlocker et al. (2018)) to the mammalian crown (following Bi et al. (2014)
and Zhou et al. (2019)); the second to the mammalian stem (following Luo et al. (2015a),
Luo et al. (2015b) and Huttenlocker et al. (2018)); the third treated Haramiyidae and
Haramiyaviidae as stem mammals and the remaining Haramiyida as crown mammals
(following Krause et al. (2020), King & Beck (2020)). All analyses described below were
carried out on all three datasets to compare the results (Data S3–S5). The three datasets
were passed through the check_taxonomy() function of the R package fossilbrush (Flannery-
Sutherland et al., 2022) in R v 4.1.3 (R Core Team, 2022).
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Analysis of local diversity
The species richness of stemand crownmammalswas assessed at the local, rather than global
scale. Assessments of local diversity have the advantage that they represent comparisons
of species that could have interacted in life (Bambach, 1977; Close et al., 2019), as well as
mitigating the issue of spatial sampling heterogeneity that affects global diversity estimates,
where a wider geographic spread can sample species from a broader range of bioregions
and thus increase the diversity estimate (Benson et al., 2016; Benson et al., 2021; Close et al.,
2017; Close et al., 2020). The unit of spatial sampling used in this study is the bioregion,
a continuous geographic area containing a distinct assemblage of species (Sclater, 1858;
Wallace, 1876). Using such areas of endemicity ensures that the units of sampling are
biologically meaningful, representing assemblages of cohabiting species separated from
other such assemblages (Morrone, 1994; Linder, 2001; Oliveira, Brescoit & Santos, 2015;
Elder et al., 2017; Ferrari, 2017; Brocklehurst & Fröbisch, 2018).

The bioregions were defined according to the method described by Brocklehurst &
Fröbisch (2018): within each time bin, the collections defined in the PBDB were grouped
in two hierarchical cluster analyses: the first by geographic distance and the second
by taxonomic distance. Clusters found in both cluster analyses represent continuous
geographic areas with a distinct set of taxa. The geographic distances between collections
were based on the palaeo-coordinates provided in the PBDB download, and were calculated
using the lets.distmat() function in the letsR package (Vilela & Villalobos (2015); all
analytical code is presented in Data S6). The taxonomic distances were calculated using
the modified Forbes metric (Alroy, 2015), using code provided in Brocklehurst, Day &
Fröbisch (2018). The bioregions in each time bin were calculated using a modified version
of the code provided in Brocklehurst & Fröbisch (2018). The bioregions were grouped at a
cluster node height of 100km i.e., collections with consistent faunas within 100km of each
other were grouped into bioregions. This ensures that the bioregions represent local areas,
and that the spatial scale of the analysis is maintained between time bins (Brocklehurst &
Fröbisch, 2018).

Within each bioregion, occurrence counts of each synapsid species were extracted.
Higher taxa were also included, provided no occurrences of subtaxa were found within
the region, e.g., if an occurrence is not named to species level, but is assigned to the genus
Thomasia, and no occurrences of Thomasia named to species level are recorded, then the
genus-level occurrence of Thomasia is included as a separate taxon. If, however, there is
one occurrence of Thomasia hahni, and another assigned only to the genus Thomasia, then
the genus-level occurrence is discarded, as it is not clear if it represents another occurrence
of T. hahni or a different species of Thomasia.

Species richness of crown and stemmammals within each bioregion was estimated using
shareholder quorum subsampling (Alroy, 2010; Chao & Jost, 2012), where occurrences are
subsampled to a fixed level of coverage to produce more accurate estimates of relative
richness. This was carried out using the estimateD() function in the R package iNEXT
(Hsieh, Ma & Chao, 2016). A coverage quorum of 0.9 was applied, as using coverage levels
lower than this produces imprecise results (Close et al., 2018; Brocklehurst & Fröbisch,
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2018). The mean of the subsampled richness of stem and crownmammals in all bioregions
in each time bin was used to compare local diversity trends.

The above means of comparing diversity trends between stem and crown mammals
includes all bioregions in each time bin with sufficient sampling, whether they contain
both or just one of the two groups. Thus, the observed trends will be influenced both
by the geographic ranges of the two groups as well as the overall spatial sampling (more
discussion of this issue below). An alternative, direct comparison of the relative diversities
of stem and crown mammals within each bioregion was carried out. Within each time bin,
bioregions containing both stem and crown mammal occurrences were identified and the
ratio of crown to stem mammals calculated.

Geographic range and spatial sampling
A group’s decline in geographic range may not necessarily be concurrent with their decline
in species richness; they may remain abundant and diverse in local areas, but have a
more restricted geographic range, or vice versa. Therefore, it is necessary to examine
the geographic spread of the localities in which stem mammals are found to obtain a
complete picture of their decline relative to crown mammals. However, assessment of
geographic range is hampered by heterogeneity in geographic sampling, with a wider
spread of sampling in certain time intervals relative to others (Benson et al., 2016; Benson
et al., 2021; Close et al., 2017; Close et al., 2019). It is therefore necessary, when comparing
the trends in geographic range of crown and stem mammals, to account for the geographic
spread of sampling of synapsids.

The geographic spread of sampling of synapsids was assessed by calculating theminimum
spanning tree (MST) length between each collection in each time bin, as recommended by
Close et al. (2017). The minimum spanning tree represents the shortest branching network
that connects all points in space. By summing the length of each segment connecting two
points, one may obtain an estimate of the total spatial distance represented by the sample,
incorporating a combination of spatial sampling signals (Close et al., 2017). The minimum
spanning tree was calculated using the mst() function in the R package ape (Paradis,
Claude & Strimmer, 2004). The minimum spanning tree length was also calculated for
localities containing crown and stem mammals. These latter values were divided by the
total synapsid MST length, to indicate the proportion of the geographic sampling of
synapsids that contained either crown or stem mammals. This allows estimates of their
ranges in different time bins to be directly comparable, as they are normalised by the total
geographic spread of sampling of synapsids, rather than comparing observed range sizes
that would be subject to inconsistent patterns of spatial sampling between time bins.

RESULTS
Local diversity
The local diversity estimates of stem and crown mammals during the Triassic and early
stages of the Jurassic are broadly consistent across all three datasets (Fig. 1). Following a peak
in the Lower Triassic, stem mammals experience an interval of consistent mean diversity,
with similar ranges of values within each bioregion, throughout the Triassic and initial
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stages of the Lower Jurassic. There is a peak in mean diversity of stem synapsids observed
in the Rhaetian, but this is largely driven by a single exceptional locality: Habay-la-Vieille II
in Belgium, of the Sables de Mortinsart Formation (Godefroit, 1999). This locality contains
numerous synapsid teeth obtained by sieving; it may be that the collection method enables
the collection of larger number of species than macro-vertebrate assemblages, or that
the naming of numerous species based on limited material has resulted in an over-split
taxonomy (Lukic-Walther et al., 2019). Excepting this locality, other bioregions have
diversity estimates within the range observed in other Triassic stages. The Rhaetian is also
the only Triassic stage in which the sampling of crown mammals is sufficient to make a
diversity estimate in all three datasets, and in all three it is found to be lower than that of
stem synapsids. Rhaetian localities containing both stem and crownmammals are primarily
dominated by stem mammals, although if haramiyidans are considered crown synapsids a
minority of localities contain greater species richness of crown mammals (Fig. 2). During
the initial stages of the Lower Jurassic, it is only when all haramiyidans are included within
crown that crown mammals have sufficient sampling to calculate diversity, which is lower
than that estimated for the Rhaetian, and remains lower than that of stem mammals (Fig.
1A).

Through the Middle Jurassic the ranges of local diversity values observed in stem
and crown mammals are consistent, with mean estimates extremely similar (Fig. 1). If
haramiyidans are considered crown mammals or polyphyletic, mean diversity of crown
mammals is found to be higher during the Middle Jurassic, but the difference is not
substantial. In localities containing both stem and crown synapsids, the proportion of
species represented by crown and stem mammals are on average roughly equal (Fig. 2).
The mean diversity of both decreases briefly across the transition to the Upper Jurassic,
but that of crown mammals rapidly increases and is substantially higher than that of stem
mammals for the rest of theUpper Jurassic (Fig. 1). In all three datasets, localities containing
both crown and stem mammals have on average nearly 80% of species representing crown
mammals (Fig. 2).

All three datasets suggest that mean crown mammal diversity falls below that of stem
mammals during the early stages of the Lower Cretaceous (Fig. 1). It should be noted,
however, that for this interval stemmammals are only known from one locality of uncertain
age (see Discussion), so it is unclear to what extent this represents a true signal, or whether
the higher mean diversity of stem mammals is a quirk of a single community. Within
this locality, between 20 and 40% of species are crown mammals, depending on whether
haramiyidans are considered crown or stem (Fig. 2). The reduced diversity of crown
mammals is observed in multiple localities, with both the mean and maximum local
diversity lower than at any point in the Jurassic (Fig. 2). The mean diversity of crown
mammals recovers during the Aptian and Albian, remaining at a similar level for the
rest of the Cretaceous. With the exception of haramiyidans and the uncertain Australian
cynodont (see Introduction) no stem mammals are known from the Upper Cretaceous;
if haramiyidans are considered stem synapsids, then their mean diversity in the latest
Cretaceous is considerably lower than that of crown synapsids, and lower than at any
other point in the Mesozoic (Fig. 1B). However, if haramiyidans are considered stem
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Figure 1 Species richness (subsampled) of Mesozoic crown and stemmammals through time. Each
translucent point represents the diversity within a bioregion. The solid line represents the mean diversity
in each time bin. (A) Haramyida are included in crown mammals. (B) Haramyida are included in stem
mammals. (C) Haramyida are polyphyletic, with Haramyidae and Haramyavidae included in stem mam-
mals and others included in crown mammals.

Full-size DOI: 10.7717/peerj.17004/fig-1

Brocklehurst (2024), PeerJ, DOI 10.7717/peerj.17004 8/23

https://peerj.com
https://doi.org/10.7717/peerj.17004/fig-1
http://dx.doi.org/10.7717/peerj.17004


Figure 2 Proportion of species representing crownmammals within bioregions containing
representatives of both the crown and stem. Each translucent point represents the proportion within a
bioregion. The solid line represents the mean proportion in each time bin. (A) Haramyida are included in
crown mammals. (B) Haramyida are included in stem mammals. (C) Haramyida are polyphyletic, with
Haramyidae and Haramyavidae included in stem mammals and others included in crown mammals.

Full-size DOI: 10.7717/peerj.17004/fig-2
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Figure 3 Spatial sampling and geographic range of crown and stemmammals. (A) Minimum spanning
tree length between all collections containing synapsid fossils within each time bin (a proxy for the spatial
extent of sampling). (B–D) The proportion of the minimum spanning tree length representing collections
containing crown mammals (blue) and stem mammals (red). (B) Haramyida are included in crown mam-
mals. (C) Haramyida are included in stem mammals. (D) Haramyida are polyphyletic, with Haramyidae
and Haramyavidae included in stem mammals and others included in crown mammals.

Full-size DOI: 10.7717/peerj.17004/fig-3

mammals, then in localities containing representatives of both the crown and the stem,
crown mammals make up between 60 and 80% of species (Fig. 2B).

Geographic range
The geographic ranges of crown and stem mammals, normalised relative to the total
spatial sampling of synapsids, show broadly consistent patterns through time in all three
datasets (Fig. 3). Through the Triassic and Lower Jurassic, the stem mammals are found
across almost all of the geographic range in which synapsids are found. Following their
appearance in the Rhaetian, the crown mammals occupy only a small portion of this range.
Between the Lower and Middle Jurassic there is an abrupt increase in the geographic range
of crown mammals, which occupy nearly the total range of synapsid sampling. The range
of stem mammals decreases and is more restricted than that of crown mammals for most
of the Middle and Upper Jurassic. The range of stem mammals further contracts during
the Lower Cretaceous. Even when haramiyidans are considered stem synapsids, by the
Upper Cretaceous their observed range represents only about 20% of the total geographic
sampling of synapsids (Fig. 3B).
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DISCUSSION
The analyses do not tie the replacement of stem mammals with the crown lineages to a
single event. Instead, two distinct phases may be identified. The first phase occurred during
the Jurassic and represents a restriction on the geographic range of the stem mammals
relative to the crown, but with little decrease in their local species richness. It is unclear
exactly when this happened; across the Triassic/Jurassic boundary, stem mammals are
found across almost all the geographic sampling range of synapsids (Fig. 4A), while crown
mammals have a very limited range. For much of the Lower Jurassic, there is not sufficient
sampling to assess the relative ranges of the two groups, but by the Middle Jurassic, the
geographic range of crown mammals has substantially increased and is greater than that
of the stem mammals in all three datasets (Figs. 3 and 4B). This remains the case for most
of the remainder of the Mesozoic. By the Middle Jurassic, crown mammals have spread
across both Laurasia and Gondwana (Fig. 4B). At this same time, however, stem mammals
become increasingly rare in the fossil record across the southern continents of Gondwana.
In fact, if haramiyidans are assumed to belong to the mammalian crown, then the only
stem mammals known from Gondwanan localities from the Middle Jurassic until the end
of the Cretaceous is the putative Probainognathan cynodont from Australia discussed in
the introduction.

Despite this geographic restriction, the species richness of stem mammals within the
regions in which they are found does not show any substantial decrease. Both the mean
and maximum richness of stem mammals within localities as late as the Upper Jurassic
remain at levels observed through much of the Triassic (Fig. 1). Even as crown mammals
were becoming more species rich, both globally and within localities which they share with
stem mammals, there is little appreciable change in the diversity of the stem. This result
implies that the geographic restriction of the stem mammals is not due to competitive
replacement by the crown mammals; if it were, one would expect the median richness of
stem mammals to decrease in the Middle and Upper Jurassic localities that they share with
crown synapsids. It appears instead that the rapid radiation and spread of crown mammals
during the Middle Jurassic was independent of the decline of stem mammals. Either
the stem mammals were eliminated from localities by other factors e.g., shifting climate,
competition with reptile groups radiating at the time, and the crown mammals dispersed
into these regions subsequently, or the crown mammals entered regions already occupied
by stem mammals, but occupied different ecological niches. Stem mammal lineages such
as tritylodontids and docodonts include medium-sized herbivores (Kalthoff et al., 2019),
aquatic piscivores (Ji et al., 2006), specialised burrowers (Luo et al., 2015b), and arboreal
insectivores (Meng et al., 2015), niches which crown mammals would not occupy until the
Cretaceous (with the exception of Haramiyida, of uncertain stem/crown affinity, which
includes herbivorous and arboreal forms (Meng et al., 2014)).

The precise timing of the appearance and spread of crownmammals is not only obscured
by the geographically patchy record of the Lower Jurassic, but also by a size-based bias in
preservation. Prior to the Rhaetian (latest Triassic), the Triassic record is dominated by
large-bodied synapsids, with small-bodied taxa being rare and fragmentary (Lukic-Walther
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Figure 4 The geographic location of mammal fossils on palaeocontinental reconstructions. Created
using the R package Chronosphere (Kocsis & Raja, 2023). (A) Rhaetian (Late Triassic); (B) Bathonian
(Early Jurassic); (C) Kimmeridgian (Late Jurassic); (D) Valanginian (Early Cretaceous); (E) Maastrichtian
(Late Cretaceous).

Full-size DOI: 10.7717/peerj.17004/fig-4

et al., 2019). The sudden peak in Rhaetian synapsid diversity (Fig. 4), is likely due to
increased sampling of micro-vertebratesin the latest Triassic, driven by study of mammals
and lepidosaurs (e.g., Sigogneau-Russell & Hahn, 1994; Heckert, 2004; Van den Berg et al.,
2012). Such sites are not absent from earlier in the Triassic but have been less frequently
exploited (Gaetano et al., 2012; Lukic-Walther et al., 2019). Thus, there may be a diversity
of small-bodied synapsids unsampled from earlier in the Triassic.

The second phase in the decline of stemmammals, where the diversity of stemmammals
within each locality falls consistently below that of crown mammals, is difficult to date
reliably. The incomplete spatial sampling during the Upper Jurassic and Lower Cretaceous
makes it difficult to assess to what extent the signals observed are local exceptions as
opposed to true global signals. The Upper Jurassic peak in crown mammal species richness
relative to that of stem mammals does coincide with morphological diversification of
eutherian mammals (Close et al., 2015; Grossnickle, Smith & Wilson, 2019) but may in part
be driven by a few exceptional localities, such as the Guimarota largerstätte (Martin,
2001), and the Morrison Formation localities at Como Bluff (Prothero, 1981; Carrano &
Velez-Juarbe, 2006) and Dinosaur National Monument (Engelmann, 1991). The apparent
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dominance of crown mammals at this time may be a local signal representing patterns
in these localities/regions, especially since areas outside North America and Europe are
particularly poorly sampled in this time interval. This peak may also be influenced further
uncertainty in the phylogenetic relationships of mammals, in particular the relationships
of Eutriconodonta, a diverse lineage of mammals included within the crown in this
study (following Zhou et al., 2019; Huttenlocker et al., 2018; King & Beck, 2020), but which
some have suggested they are a potentially paraphyletic series of outgroups to the crown
(e.g., Rougier, Apesteguía & Gaetano, 2011; Krause et al., 2020; Celik & Phillips, 2020),
mostly based on postcranial characters. Eutriconodonta have been poorly represented
in most phylogenetic analyses, but represent a diverse lineage in the Mesozoic, particularly
during the mid-late Jurassic (Butler & Sigogneau-Russell, 2016). It was decided to include
Eutriconodonta within the crown for this analysis, based on the poor support values for a
stem position found by the analyses positing this relationship (Krause et al., 2020; Celik &
Phillips, 2020) and the findings of Luo, Kielan-Jaworowska & Cifelli (2002) which included
a broader sampling of species within this lineage and relevant characters than many other
analyses. But it should be noted that using a stem position for Euthriconodonta would
remove a large number of mid-late Jurassic species from the crown, and potentially shift
the crown radiation to later in the Cretaceous.

During the initial stages of the Lower Cretaceous, there is an apparent revival of stem
mammal diversity, with both their median and proportionate local richness being similar
to or in some datasets exceeding that of crown mammals. However, again, there is a strong
indication that this is an artefact of spatial sampling biases. Between the late Berriasian and
the Hauterivian, stem mammals are known from only a single locality of uncertain age
(the Teete Locality of Russia, Batylykh formation (Averianov et al., 2018; Averianov et al.,
2021)) (Fig. 4D). Within this locality, between 60 and 80% of species are crown mammals,
depending on whether haramiyidans are considered crown or stem. All other sampled
localities contain only crown mammals. The high apparent richness of stem mammals
during this time may therefore represent only the signal of a single, far-north locality to
which stemmammals may be geographically restricted. As this locality lay within the Arctic
Circle during the Lower Cretaceous, it is possible that the locality represents an extreme
refugia where unusual, ‘‘relict’’ faunas are able to survive, as has been posited for other high
latitude localities in other time intervals. Alternatively, it may be that the poor geographic
sampling during these stages, restricted entirely to the northern continent of Laurasia, is
responsible for the lack of stem-mammal-bearing localities. In either event, the apparently
high diversity of stem mammals during the Lower Cretaceous should not be treated as a
global signal.

Global sampling of synapsids improves during the Barremian, Aptian and Albian,
with sampling in both Laurasia and Gondwana, yet stem mammals are still only known
from a spatially restricted set of localities(Russia and Japan). Moreover, at this point their
species richness, both absolute and relative to crown mammals, decreases. Crown mammal
diversity at this point rises to a level that would be maintained for the rest of the Cretaceous
(Fig. 1). This radiation of crownmammals has been linked to the ecological re-organisation
of terrestrial ecosystems driven by the radiation of angiosperms and associated insect groups
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between 100 and 50 million years ago (Meredith et al., 2011; Chen, Strömberg & Wilson,
2019; Benton, Wilf & Sauquet, 2022). During the early stages of angiosperm diversification,
mammals (therians and their stem) exhibit low morphological disparity (Grossnickle &
Polly, 2013; Wilson et al., 2012), and it has been noted that several stem lineages disappear
during this event (Luo, 2007;Grossnickle & Polly, 2013; Benson et al., 2013). As angiosperms
continue to diversify, crown mammal lineages (including therians, multituberculates and
dryolestids) increase both their species richness (Figs. 1 and 2) and their morphological
diversity (Grossnickle & Newham, 2016; Grossnickle, Smith & Wilson, 2019).

In fact, if haramiyidans are considered crown mammals, then only one uncertain
representative of the mammalian stem (the Australian probainognathian) is known from
the Upper Cretaceous; it is possible that the Angiosperm Revolution marked the final
replacement of the mammalian stem by the crown. If haramiyidans are considered stem
mammals, however, they represent a continuation of the stem not only into the upper
Cretaceous, but beyond the end Cretaceous mass extinction, with gondwanatherians
(assigned to haramiyidans in this study) persisting into the Eocene (Goin et al., 2012). An
alternative interpretation, found by Luo et al. (2015a) and Luo et al. (2015b) but not tested
here, is that the majority of Haramyida are stem mammals but Gondwanatherians are
within the crown. If this is the case, then the mammalian stem is again inferred to have
finally died out around the time of the angiosperm terrestrial revolution. In any case, by
the latest Upper Cretaceous, gonwanatherian haramiyidans are not only at considerably
lower diversity than crown mammals, but are spatially limited to southern Gondwana
(Argentina, Madagascar and India) (Fig. 4E).

CONCLUSIONS
Unlike the radiation of other modern lineages such as birds, it is difficult to tie the decline
and disappearance of the stem lineages of mammals to a particular event like the end
Cretaceous mass extinction. In part this is due to the tendency to consider the evolution
of the mammalian crown and stem in separation. On analysing the two groups in a single
dataset and analytical framework, it is possible to identify a two-phase decline of the
mammalian stem and replacement by the crown mammals that persist into the present
day. The first phase occurred between the Triassic and Middle Jurassic. Although the lack
of substantial sampling in the Lower Jurassic prevents precise tracking of the progress
of this phase, by the middle Jurassic the stem mammals were more restricted in their
geographic range than the crown mammals, although within localities that they are found
their species richness remained at similar levels to that seen in the Triassic. The second
phase was a decline in species richness, which occurred during the Lower Cretaceous,
although again poor sampling during this interval again prevents precise identification of
the timing and duration of this decline. By the Upper Creteaceous, stem mammals were
either entirely extinct or restricted to a few lineages in the southern hemisphere (depending
on the relationships of Gondwanatherians).
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