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ABSTRACT
Background. The incidence of non-alcoholic fatty liver disease (NAFLD) associated
hepatocellular carcinoma (HCC) has been increasing. However, the role of glyco-
sylation, an important modification that alters cellular differentiation and immune
regulation, in the progression of NAFLD to HCC is rare.
Methods. We used the NAFLD-HCC single-cell dataset to identify variation in the
expression of glycosylation patterns between different cells and used the HCC bulk
dataset to establish a link between these variations and the prognosis of HCC patients.
Then, machine learning algorithms were used to identify those glycosylation-related
signatures with prognostic significance and to construct a model for predicting the
prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice
and clinical cohorts.
Results. The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the
following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher
NHGRM scores were associated with a poorer prognosis, stronger immune-related
features, immune cell infiltration and immunity scores. Animal experiments, external
and clinical cohorts confirmed the expression of these genes.
Conclusion. The genetic signature we identified may serve as a potential indicator of
survival in patients with NAFLD-HCC and provide new perspectives for elucidating
the role of glycosylation-related signatures in this pathologic process.
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INTRODUCTION
Over the past few years, there has been a notable increase in the prevalence of non-alcoholic
fatty liver disease (NAFLD), with an estimated global prevalence of approximately
32.4%, compared to 25.5% in or before 2005 (Riazi et al., 2022). NAFLD can advance
from simple fatty liver to steatohepatitis, liver fibrosis, cirrhosis, and potentially to
hepatocellular carcinoma (HCC) (Huang et al., 2023). Non-alcoholic steatohepatitis
(NASH), an advanced type of NAFLD, is associated with an estimated annual incidence rate
of HCC ranging from 0.5% to 2.6% in patients with NASH-induced cirrhosis (Huang et al.,
2023; Dolgin, 2023). Although the incidence rate of HCC linked to NAFLD is lower than
that of HCC linked to other causes, such as hepatitis C, the large number of people affected
by NAFLD still signifies a substantial population potentially at risk (Huang, El-Serag &
Loomba, 2021).

NAFLD is typically asymptomatic, and it is currently not advised to conduct regular
screening, even for high-risk patients. Therefore, NAFLD is often not intervened until
symptoms occur, making it less predictable and preventable (Westfall & Jeske, 2020).
Although noninvasive tests are useful for ruling out advanced liver disease in patients,
histological assessment remains the preferred approach for diagnosing, prognosing, and
monitoring the treatment of NAFLD; however, concerns exist regarding its accuracy and
pathologist expertise (Li et al., 2022; Paul, 2020;Kechagias et al., 2022). Hence, it is essential
to uncover a novel and precise approach to diagnose NAFLD, address the limitations of
pathological diagnosis, and identify potential therapeutic targets.

Glycosylation, an essential protein modification process, can affect cell differentiation,
tumor progression, and immune regulation (Ohtsubo & Marth, 2006; Josic, Martinovic &
Pavelic, 2019). Recent studies have highlighted its significant role in HCC progression by
modulating pro-tumor signaling pathways and altering protein function. For instance,
excessive O-GlcNAcylation can enhance hepatocyte malignancy (Zhu et al., 2012), and
the specific N-glycosylation of MerTK can promote HCC growth (Liu et al., 2022). Thus,
abnormal glycosylation, which is indicative of HCC protein alterations, could be a potential
diagnostic and prognostic biomarker. Given the unresolved challenges in diagnosing and
treating NAFLD, it is crucial to continue exploring the genes associated with NAFLD
glycosylation to gain new insights into prognosis and treatment strategies.

In this study, we focused on glycosylation-related genes (GRGs) in NAFLD by analyzing
single-cell data from patients with NAFLD-related HCC obtained from the GSE189175
dataset. Differentially expressed genes (DEGs) were identified in cells exhibiting high and
low levels of expression of GRGs. To further investigate the implications of these DEGs,
unsupervised cluster analysis was performed on patients with HCC using the Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, resulting in the
classification of patients into two distinct classes and the identification of differential
genes. Using weighted gene co-expression network analysis (WGCNA), candidate genes
associated with prognosis and glycosylation were identified. Subsequently, a comprehensive
approach involving univariate Cox regression, Least Absolute Shrinkage and Selection
Operator (LASSO), and multi-way Cox regression was employed to select six key
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genes for constructing a diagnostic model, namely the NAFLD-HCC GlycoGene Risk
Model (NHGRM). These essential genes present potential as molecular indicators and
treatment objectives for NAFLD, aiding a more thorough understanding of the function
of glycosylation in the development of NAFLD.

Overall, the results of this study offer new perspectives on NAFLD molecular markers
and potential therapeutic targets, advancing our knowledge of glycosylation in NAFLD
progression.

MATERIALS & METHODS
Data retrieving of single cell and bulk sequencing data
The Single-Cell RNA Sequencing (scRNA-seq) data for HCC (accession number:
GSE189175) (Rao et al., 2021) were sourced from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The dataset comprised tumor and
non-tumor cells from three paraneoplastic and tumor tissues, totaling 59,915 cells.
Subsequently, we obtained the TCGA-LIHC dataset from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/). The dataset comprised of 50 normal samples and 371
tumor samples containing RNA sequence data. To streamline further analysis, the RNA
sequence data from TCGA dataset were converted from fragments per kilobyte per million
(FPKM) to transcripts per million reads (TPM).

A comprehensive set of 636 GRGs was downloaded from the Molecular Signature
Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/) (Liberzon et al., 2015) (Table
S1), a web-based repository of annotated gene sets for biofunctional analysis. To investigate
the tumor microenvironment (TME), tumor immune infiltration was estimated using
ESTIMATE and CIBERSORT (Becht et al., 2016) methods.

Apart from the previously mentioned datasets, datasets associated with NAFLD, such
as GSE54236 (Villa et al., 2016), GSE89632 (Arendt et al., 2015) and GSE48452 (Ahrens et
al., 2013) were downloaded from the GEO database. Gene expression profile data and the
corresponding annotation files were obtained. For RNA-seq data, gene expression was
quantified and normalized using the ‘‘normalizebetweenarrays’’ function in the ‘‘limma’’
package, and log2 transformations were applied.

Process for single cell sequencing
The scRNA-seq data were subjected to quality control (QC) using the R packages ‘‘seurat’’
(Butler et al., 2018) and ‘‘singleR’’ (Aran et al., 2019). To ensure data accuracy, genes that
manifest expression in a population of less than three individual cells, cells containing a
gene count below 200 or in excess of 7,000, and those with mitochondrial gene content
surpassing 5% were excluded from the analysis. Following these filters, a total of 318,234
cells were selected for subsequent analysis. The selected cells were then subjected to scaling
and normalization using a linear regression model with log normalization.

To identify genes with high variability, we employed the ‘‘FindVariableFeatures’’
function from the Seurat package and identified the top 3,000 genes that exhibited
significant variability. To mitigate any potential batch effects that might influence
subsequent analyses, the harmony package was utilized for batch-effect normalization
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across the specimens. By assessing the top 20 principal components (PCs) using the t-
distributed StochasticNeighbor Embedding (t-SNE) algorithm,wewere able to visualize the
formation of distinct clusters within the dataset. The ‘‘FindNeighbors’’ and ‘‘FindClusters’’
functions were then utilized with the resolution parameter set to 1, resulting in the
identification of 23 distinct cell clusters.

To ascertain the DEGs within each cluster, we leveraged the ‘‘FindAllMarkers’’ function
from ‘‘seurat’’ package. The ‘‘singleR’’ package was employed to annotate the cell types
based on the characteristicmarkersof the identified clusters. The annotationsweremanually
validated against published literature.

AddModuleScore
We assigned a glycosylation activity score (G-score) to each cell using the AddModuleScore
function in the Seurat R package. Principally, the row-means function was employed to
calculate the mean expression values of all genes. Based on this mean, the expression
matrix was divided into multiple bins according to the specified number set using the nbin
parameter. After setting a random number of seeds, 100 background genes were randomly
selected from each bin in the matrix. Next, we computed the gene expression ranking for
each cell by using the area under the curve (AUC) value of the chosen GRGs. This approach
facilitated the evaluation of the proportion of gene sets manifesting elevated expression,
wherein cells possessing augmented AUC values signified enhanced magnitudes of gene
transcription. Subsequently, we divided all the cells into high G-score and low G-score
groups according to the median G-score.

Gene set variation analysis
To explore the enriched biological pathways in different G-score subgroups, we conducted
a gene set variation analysis (GSVA) using the GSVA R package. The results of this analysis
are presented as bar graphs illustrating all the significantly different pathways.

Unsupervised clustering analysis
Differential gene analysis was conducted between the high and low G-score groups in the
single-cell data using the FindMarkers function with designated criteria (min.pct = 0.25,
logfc.threshold = 0.25). A total of 193 genes with an adjusted P-value (p.adj) below 0.05,
were identified as significant.

Thus these 193 genes were subsequently utilized to construct consensus clusters and
determine subtypes within the TCGA-LIHC dataset using the ConsensusClusterPlus
(Wilkerson & Hayes, 2010) R package. The partitioning around the median (PAM)
algorithm was employed, and distances were measured using ‘‘1-Pearson’’ correlation
coefficients. To ensure robustness, 100 bootstrap replicates were performed, randomly
selecting 80% of the patients from the GEO cohort. The k-values (number of clusters)
used for clustering ranged from two to nine. Finally, a Pearson correlation analysis was
performed to assess the associations among essential genes and 193 previously identified
genes.
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Gene set enrichment analysis
To assess glycosylation scores in each participant in the TCGA-LIHC cohort, we performed
single-sample gene set enrichment analysis (ssGSEA). Participants with high glycosylation
were distinguished from those with low glycosylation.

Weighted gene co-expression network analysis
We employed weighted gene co-expression network analysis (WGCNA) (Langfelder &
Horvath, 2008) to study the gene co-expression networks in the TCGA-LIHC dataset. The
following steps were performed: (1) The ‘goodSamplesGenes’ function is used to filter out
genes with missing data; (2) Tumor samples are classified and outliers are removed; (3) A
cut line (minimum module size of 100) is implemented; (4) Ascertaining the optimal soft
threshold to compute the adjacency matrix through a graphical approach; (5) Generation
of an adjacency matrix to assess genetic interconnectivity within the network; (6) Using
the adjacency matrix as a starting point, build a topological overlap matrix (TOM);
(7) Conduct a hierarchical clustering using the average linkage approach while taking
TOM differences into account; (8) Dynamically trimming the dendrogram to pinpoint
modules characterized by elevated correlation coefficients (r > 0.25) and congruent
transcriptional patterns; (9) Utilization of Pearson’s correlation assay to investigate
relationships between eigengenes (epitomizing module transcriptional profiles) and
clinical attributes; (10) Isolation of modules that manifest strong associations with clinical
parameters, encompassing glycosylation index, vitality status, and longevity of survival, for
ensuing in-depth analysis.

Constructing risk scoring method
We performed differential gene expression analysis to compare different glycosylation
groups in the scRNA-seq data of NAFLD-associated HCC patients. The primary objective
was to identify the gene modules linked to glycosylation and survival outcomes using
WGCNA. Subsequently, univariate analysis was employed to select genes that exhibited
statistically significant correlations with overall survival (OS) of patients (P <0.001). To
refine the gene set and establish robust prognostic associations, LASSO analysis was applied,
resulting in the identification of risk coefficients. The ‘‘glmnet’’ software tool was used to
build a risk model that assigned a risk score based on the LASSO coefficients to each HCC
patient in the TCGA-LIHC dataset. The patients were separated into NHGRM_low and
NHGRM_high groups using the median risk score as a criterion. The Kaplan–Meier (K-M)
method was used to generate prognostic survival curves. The accuracy of the prediction
results was further validated using an independent dataset (GSE54236) (Villa et al., 2016)
through survival analysis and the computation of AUC values.

Methods for assessing the independence and validity of predictive
models
We developed a composite nomogram with parameters combining NHGRM, age, TMN
stage, grade, and gender to predict the OS at 1, 3, and 5 years in patients with HCC. Using
calibration curves and receiver operating characteristic (ROC) curves, the precision of this
nomogram was evaluated using calibration and receiver operating characteristic curves.
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To determine its net benefit, decision curve analysis (DCA) was conducted. To investigate
the prognostic importance of the NHGRM, subgroup analyses were conducted to assess its
prognostic value in various clinical subgroups, including age, gender, and clinical stage.

Explorating the association between prognostic models and
neoplastic immunological features and their influence on
immune-modulating therapeutics
We used the CIBERSORT R package to assess the relative proportions of different cell types
in different NHGRM groups. This software package helps assess the components present
in the TME, with higher scores indicating a higher abundance of these components. In
addition, certain immune cells expressmolecules called immune checkpoints thatmodulate
immunological activation and curb hyperactive immune reactions. The expression profiles
of an array of established immune checkpoint genes (ICG) derived from the scholarly corpus
were meticulously examined across two disparate populations. This assessment sought to
substantiate the model’s competency in forecasting responses to immunotherapy.

Animals and experimental procedure
C57BL/6J mice were obtained from Shanghai Jiesijie Laboratory Animal Co., Ltd.
(Shanghai, China) and housed under controlled conditions (23 ± 2 ◦C temperature,
60 ± 10% humidity, a 12-hour light-dark cycle, and free access to food and water). All
animal experiments were approved by the Animal Experimental Ethics Committee of the
Xiamen University (approval no. XMULAC20200055). After one week of acclimatization,
the mice were randomly divided into two groups: a high-fat diet (HFD) model group and
a normal diet control group (C group), with six mice in each group. In order to induce
NAFLD mouse model according to previous method (Van Herck, Vonghia & Francque,
2017), mice were given a high-fat diet which consisting of 77.5% regular feed, 0.5% sodium
cholate, 2% cholesterol, 5% soybean, 5% sucrose, and 10% lard for 16 weeks to induce
a NAFLD mouse model. The mice in the control group were fed a normal diet. After 16
weeks, euthanasia of themicewas carried out by cervical dislocation according to the AVMA
Guidelines on Euthanasia, and liver tissue samples were weighed and collected. Specifically,
the mice were administered an intraperitoneal injection of 1% sodium pentobarbital
solution at a dose of 80 mg/kg before being sacrificed for cervical dislocation. The thumb
and index finger were placed on either side of the neck, at the base of the mouse skull.
In contrast, the base of the tail or hind limbs is quickly pulled, causing separation of
the cervical vertebrae from the skull. All mice were sampled and included in subsequent
analyses. Liver tissue was used for quantitative Polymerase Chain Reaction(qPCR) and
kept in RNase-free tubes before RNA extraction. The liver tissue used for the sections was
rinsed with ice-cold PBS before hematoxylin–eosin staining.

RT-PCR
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was employed to extract total RNA from
in vitro cultured cells, followed by cDNA synthesis using a Reverse Transcription Master
kit (Invitrogen, Carlsbad, CA, USA). Subsequently, TB Green Premix Ex Taq II (TaKaRa,
Shiga, Japan) was used to conduct quantitative real-time PCR (qRT-PCR). The primer
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sequences used in this study are listed in Table S4. Relative gene expression was evaluated
using the comparative 2(−11CT) method, with mRNA levels normalized to expression in
normal mouse livers.

Hematoxylin–eosin staining
The tissues were fixed in 4% paraformaldehyde for at least 24 h and subsequently embedded
in paraffin. Sections of 4µmthickness were obtained using a Leicamicrotome.Hematoxylin
and eosin (H&E) staining was performed to visualize the tissue structure. Prior to staining,
lung, liver, spleen, and kidney tissues were treated with 4% paraformaldehyde. Tissue
sections were embedded in paraffin and secured to ensure a consistent section thickness of
5 µm. Following a standardized protocol, all samples were stained with H&E staining.

ShuGuang cohort and immunofluorescence
Formalin-fixed paraffin-embedded (FFPE) liver tissue blocks from NAFLD-HCC patients
at ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
under ShuGuang Hospital Institutional Review Board (IRB)-approved protocols (No.
2018-630-59-01), and all patients gave informed consent for the collection of clinical
information, tissue collection, and study testing. For immunofluorescence of liver samples,
sections of liver FFPE tissues were incubated withOsteopontin (OPN), S100A9 and RAMP3
separately for 30 min at 37 ◦C The nucleus was stained with DAPI (Table S5).

Statistical analysis
Frequencies and proportions were used to present categorical variables, whereas median
(interquartile range) or mean (standard deviation) was used to show continuous variables.
Using the K-M technique, the median overall survival was calculated along with 95%
confidence intervals. The Kruskal–Wallis H-test was used to compare the statistical
differences among the distinct cupro-clusters. The log-rank test was used to evaluate the
differences in overall survival between the training and validation cohorts. The correlation
coefficients between the components and the risk score were calculated using Spearman’s
analysis. Except where otherwise noted, a P-value of 0.05 or less was considered statistically
significant. All data analyses were performed using R version 4.1.2.

RESULTS
scRNA profiling of NAFLD-HCC
As shown in Fig. S1, we aimed to identify glycosylated hub genes of prognostic significance
in NAFLD-associated HCC by a combination of algorithms. Briefly, through four steps:
(1) Using the Seurat R package’s AddModuleScore function, all cells were scored with G-
scores based on 636 GRGs (Table S1), then divided into high and low G-score subgroups
via median to identify differential genes in the scRNA-seq dataset; (2) Based on these
differentially expressed genes, an unsupervised clustering algorithm was used to classify
hepatocellular carcinoma patients in the TCGA database into two categories to verify that
glycosylation levels can influence patient prognosis; (3) Using the GRGs as a reference, the
ssGSEA algorithmwas used to calculate the glycosylation level of each patient in the TCGA-
LIHC, and then the WGCNA was used to screen for modules that were highly correlated
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with prognosis and glycosylation level; (4) then using univariate Cox-LASSO-multivariate
Cox regression to screen the features among the modules and build a model that can
predict the prognosis of HCC patients. Figure 1 provides a comprehensive view of the
single-cell landscape of NAFLD-associated HCC tumors and paracancerous samples from
the GSE189175 dataset. Subsequent categorization using the t-SNE method partitioned all
cells into 23 distinct clusters contingent on the entire range of gene expression (resolution
=1) (Fig. 1A). The triad of samples incorporated in this study demonstrated no discernible
batch effects, as evidenced by the even distribution of cells within each individual specimen
(Fig. 1B). In order to identify the major cellular subpopulations in the single cell data
set, we used automated annotation combined with manual annotation to classify all cells
into hepatocyte, myeloid cells, NK/T cells, cholangiocyte, and endothelial cells (Fig. 1C).
Specifically, automated annotationwas performed using the singerRR package, andmanual
annotation referenced a number of recognized cell markers (Fig. 1F and Fig. S2A). Figure
1D depicts the distribution of tumor and normal cells in the profiling of NAFLD-HCC.
Based on the AddModuleScore function, all cells were assigned a score related to GRGs and
were subsequently divided into subgroups with high and low G-scores through the median
(Fig. 1E). FindMarkers fuction (min.pct = 0.25, logfc.threshold = 0.25, p_val_adj <0.05)
in Seurat R package was used to obtain 193 differential expression genes between the high
and low G-score groups(Table S1). In the present study, cells with high G-scores were
predominantly found in hepatocytes, myeloid cells and endothelial cells (Fig. 1G). In an
attempt to understand the probable biological mechanisms underlying these differences,
we performed differential and functional examinations. To explore the biological pathways
enriched in different G-score subgroups, the GSVAmethod was conducted, and it revealed
that processes such as oxidative phosphorylation, adipogenesis, and fatty acid metabolism
pathways were significantly prevalent in the high G-score group, as shown in Fig. 1H.

Prognosis, clinical features and immune pattern of HCC patients
closely related to glycosylation levels
To explore the effect of glycosylation levels on the prognosis and pathologic features of
HCC patients, we used an unsupervised machine learning approach to group the 343 HCC
patients in TCGA, using the differential genes obtained in Table S2 as a reference, with
the best effect at the threshold value K =2 (Fig. 2A). The distribution of the cumulative
distribution function (CDF) values across different groups in unsupervised clustering
analysis is illustrated in Fig. 2B. We analyzed the differential genes between group 1 and
group 2 using limma R package, and the results showed that the genes highly expressed in
group 1 were TMSB10, MYBL2, CA9 and EPCAM (Fig. 2C).

Additionally, a K-M survival analysis conducted for prognosis demonstrated superior
outcomes for cluster 1 compared with cluster 2 (P < 0.001) (Fig. 2D). The distribution
and differences in clinical information between clusters 1 and 2 are depicted in Fig. S6,
which includes aspects such as cancer type, Child-Pugh classification, gender, history,
grading, medical history, TNM staging, overall staging, and vascular invasion. Moreover,
using the ESTIMATE method, we identified differences in the stromal score (Fig. 2E) and
immune score (Fig. 2F) between clusters 1 and 2. These results suggest that the prognosis,
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clinical features and immune pattern of HCC patients are closely related to the level of
glycosylation.
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ence in stromal scores (E) and immune scores (F) between cluster 1 and cluster 2, as determined by esti-
mate algorithm. ∗, p< 0.05; ∗∗ P < 0.01.

Full-size DOI: 10.7717/peerj.17002/fig-2

Identification of glycosylation-associated prognostic hub genes by
ssGSEA and WGCNA
In order to further identify the prognostic characteristics of the found glycosylation-related
genes, using GRGs as a reference, we calculated the glycosylation scores of each HCC
patient in the TCGA cohort using ssGSEA, and patients were categorized into high- and
low-glycosylation groups according to the median glycosylation score (different from
the G-score mentioned above). Our K-M survival analysis revealed that the group with
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Full-size DOI: 10.7717/peerj.17002/fig-3

high glycosylation had a less favorable prognosis than the group with low glycosylation
(P = 0.005) (Fig. 3A), suggesting that glycosylation might be a risk factor for HCC,
validating our above findings. To narrow down GRGs potentially closely associated with
HCC prognosis, we utilized WGCNA to construct a gene co-expression network for
patients with HCC. (Figs. S5A–S5B). Furthermore, we performed gene clustering between
different modules using the dynamic tree cutting and dynamic hybrid methods (Fig. 3B).
Figure 3C shows the correlation between phenotypic traits and the expression of different
modules, displaying the correlation coefficients (P-values). The MEturquoise and MEgrey
modules identified by WGCNA exhibited an association with glycosylation and survival
status and were thus selected for further examination in subsequent stages.

Screening of glycosylation-related signatures for predicting HCC
survival status using machine learning methods
MEturquoise and MEgrey modules, which are related to glycosylation and patient
prognosis, included 767 genes. (Table S3). To further investigate the connection between
these genes and the prognosis of patients withHCC, we referred to a previous study to create
a prognostic marker for GRGs. (Wang et al., 2022). After performing univariate regression
analysis, 223 genes with P-values lower than 0.001 were identified. Subsequently, we
used LASSO Cox regression analysis to filter out the most specific features (Figs. 4A–4B).
Ultimately, under the optimal regularization setting, we constructed a model with six
features using multivariate Cox regression, the coefficients of which are shown in Fig.
4C. Among them, SPP1, SAPCD2, and S100A9 were positively correlated, while SOCS2,
RAMP3, and CSAD were negatively correlated. We divided the HCC-TCGA cohort into a
training cohort(n= 172) and a validation cohort (n= 171) and then scored and classified
them into NHGRM_low and NHGRM_high. We utilized the log-rank test to compare
differences in OS between subgroups, and found that in both cohorts, the OS of the
NHGRM_high group was shorter than that of the NHGRM_low group (Figs. 4D–4E).

Zhou et al. (2024), PeerJ, DOI 10.7717/peerj.17002 11/31

https://peerj.com
https://doi.org/10.7717/peerj.17002/fig-3
http://dx.doi.org/10.7717/peerj.17002#supp-6
http://dx.doi.org/10.7717/peerj.17002#supp-6
http://dx.doi.org/10.7717/peerj.17002#supp-10
http://dx.doi.org/10.7717/peerj.17002


Moreover, the ROC curves showed good prognostic accuracy in the training cohort
(AUC:0.824 for 1-year, 0.817 for 3-year, 0.818 for 5-year) (Fig. 4F) and validation cohort
(AUC:0.816 for 1-year, 0.669 for 3-year, 0.653 for 5-year) (Fig. 4G). In this instance, the
AUC values of the model in the training cohort varied between 0.81 and 0.82, indicating
that it has a strong chance of accurately predicting the prognosis of HCC patients. Similar
outcomes were observed in the validation cohort.

Development and validation of prognostic nomogram
To better predict the prognosis of patients with NAFLD-associated HCC, we constructed
and validated a prognostic nomogram combining risk scores and traditional clinical
features. TNM system (tumor-node-metastasis) staging, ‘‘Tumor (T)’’ describes the size
and extent of the primary tumor, ‘‘Node (N)’’ reflects the presence and extent of spread to
nearby lymph nodes, and ‘‘Metastasis (M)’’ indicates whether the cancer hasmetastasized to
other organs. The univariate Cox regression analysis, represented in a forest plot, indicated
that ‘T’ (hazard ratio (HR)=1.699, 95% confidence interval (CI):1.365−2.115, P <0.001),
‘history’ (HR =1.459, 95% CI [1.113–1.913], P = 0.006), and ‘Risk Score’ (HR =1.158,
95% CI [1.114–1.205], P <0.001) are prognostic factors impacting the OS of HCC patients
(Fig. 5A). The multivariate Cox regression analysis further suggested that ‘cancer type’ (HR
=1.883, 95% CI [1.095–3.240], P = 0.022), ‘history’ (HR =2.039, 95% CI [1.097–3.769],
P = 0.024), and ‘Risk Score’ (HR =1.173, 95% CI [1.117–1.232], P <0.001) affect the OS
of HCC patients (Fig. 5B). A nomogram was subsequently constructed to predict the 1-,
3-, and 5-year survival rates of patients with HCC in the TCGA cohort (Fig. 5C). DCA
was conducted to compare the clinical utility of each characteristic and nomogram based
on the threshold probability. These findings indicated that augmenting the risk score with
clinical variables has the potential to enhance the accuracy of survival prediction (Fig. 5D).
The nomogram, ‘Risk’, and ‘Stage’ emerged as the superior predictors. As shown in Fig.
5E, the AUC values of the nomogram and glycosylation-based risk grouping in predicting
patient prognosis were 0.834 and 0.826, respectively, which were markedly superior to
those of other clinical features. The calibration curve revealed consistency between the 1-,
3-, and 5-year survival rates predicted by the nomogram and actual survival rates (Fig. 5F).

Different clinical features in different NHGRM groups
To explore the differences between the different NHGRM groups, we assessed seven
clinical characteristics. Vascular invasion status was categorized into macro, micro, and
none, with significant differences observed across these categories (P = 0.0065 formacro vs.
microvascular, P = 0.0005 for macro vs. none, and P = 0.0026 for microvascular vs. none)
(Fig. 6A). The ‘T’ feature revealed statistically significant disparities in risk scores across
the T1 and T2/3/4 (P = 3.9e−06 for T1 vs. T2, P = 2.4e−07 for T1 vs. T3, and P = 0.00029
for T1 vs. T4) (Fig. 6B). The ‘stage’ feature also displayed notable differences in risk scores
between stages I and II/III (P = 1.4e−05 for stage I vs. stage II, P = 8.7e−09 for stage I
vs. stage III) (Fig. 6C). The history of patients also showed a significant variation in risk
scores (P = 0.0018) (Fig. 6D). The grade feature demonstrated significant differentiation
between G1 and other grades (P = 0.00012 for G1 vs. G2, P = 1e−08 for G1 vs. G3, and
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Figure 4 Establishment and confirmation of a model involving 6 Glycosylation-related signatures
within the TCGA-HCC cohort. (A) 10-fold cross-validation was used to adjust the parameter selection.
(B) LASSO coefficients are depicted on the Y -axis, while the X-axis represents -log(lambda). (C) The fig-
ure presents the coefficients of the 6 GRGs selected using LASSO regression analysis, with blue represent-
ing positively correlated genes and red representing negatively correlated genes. KM method analysis of
OS differences between different subgroups in the TCGA-HCC training cohort (D) and validation cohort
(continued on next page. . . )
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Figure 4 (. . .continued)
(E) was assessed by log-ranking test. (F) The time-dependent ROC curve showcases the prognostic ac-
curacy of the NHGRM for 1-, 3-, and 5-year OS in the training set, with respective AUC values of 0.824,
0.817, and 0.818. (G) AUC values for the risk score’s prediction of in the validation cohort were shown.

P = 0.0011 for G1 vs. G4), with a noticeable difference between G2 and G3 (P = 0.0013)
(Fig. 6E). However, there was no statistically significant difference in the gender features
(P = 0.097) (Fig. 6F). Finally, cancer types represented by tumor-free and with tumor
exhibited a significant discrepancy in HR risks (P = 0.03) (Fig. 6G).

Predicting the composition and immune profile of immune cells in the
tumor microenvironment in different NHGRM groups
To explore the mechanisms underlying the prognostic differences between patients with
different risk scores, we calculated the proportional distribution of 22 immune cell types
in the TCGA-LIHC dataset using the CIBERSORT algorithm (Fig. 7A). Furthermore, we
explored the effect of the level of infiltration of 22 cell types on the prognosis of patients,
and we explored the effect of infiltration levels of 22 cell types on patient prognosis, and
we found that HCC patients with higher levels of NK-activated cell infiltration had a
better prognosis, however, HCC patients with higher levels of macrophage M1 infiltration
had a worse prognosis, and there were no significant differences between the other cells
(Fig. 7B). Interestingly, the levels of NK-activated cells, T cells CD8, and mast-activated
cell infiltration were higher in the NHGRM_low group than in the NHGRM_high group.
However, the levels of macrophageM0 infiltration were higher in the NHGRM_high group
(Fig. 7C). Moreover, we explored the expression levels of immune checkpoints in different
NHGRM groups. TNFRSF18, IFNG, PDCD1, LGALS9, LDHA, IL12A, CD80, YTHDF1,
TNFRSF9, HAVCR2, TNFSF9, CD86, VTCN1, CTLA4, TNFRSF4, ICOS, and TNFSF4
were less expressed in the low-NHGRM group compared to the NHGRM_high group.
However, ICOSLG, SIGLEC15, PVR, IL23A, FGL1, JAK2 and CD274 were expressed at
higher levels in the low-NHGRM group (Fig. 7D).

Validation of the NAFLD-HCC glycogene risk model in vivo and in vitro
We further validated our prognostic models using the external HCC dataset, GSE54236.
Survival outcomes between the NHGRM_low and NHGRM_high groups were found to be
significantly different in the K-M survival analysis conducted using risk stratification
(P = 0.036) (Fig. 8A). This distinction validates the robustness of our risk models,
demonstrating that NHGRM_high patients experienced poorer survival outcomes.
Moreover, the ROC curves showed good prognostic accuracy in the GSE54236 HCC
cohort (AUC:0.811 for 1-year, 0.725 for 2-year, 0.612 for 3-year) (Fig. 8B).

To further explore the NAFLD-HCC glycogene risk model (NHGRM) signatures in
the progression of NAFLD-HCC, we constructed a high-fat diet-induced NAFLD model
in mice by feeding for 16 weeks (Fig. S4A). Mouse liver appearance (Fig. S4B), body
weight (Fig. S4C), liver weight (Fig. S4D), fat weight (Fig. S4E), and serum triglycerides
(Fig. S4F) were displayed at a higher level in the high-fat diet group compared with the
normal diet group at 16 weeks. HE staining of liver tissues showed the presence of steatosis
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Figure 5 Construction and assessment of a prognostic nomogram. (A) The forest plot illustrates the
outcomes of the univariate Cox regression, indicating that ‘T’, ‘history’, and ‘risk score’ are significant
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tinued on next page. . . )
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Figure 5 (. . .continued)
performed to evaluate the clinical utility of each feature and nomogram based on threshold probability.
The lines higher on the DCA curve indicate greater net benefits. Among these, the nomogram, ‘Risk’ and
‘Stage’ demonstrated superior effects. (E) The nomogram plot and the glycosylation-based risk grouping
yielded significantly higher AUC values in predicting patient prognosis than those of other clinical fea-
tures. (F) The calibration curve demonstrates the consistency between the 1-, 3-, and 5-year survival rates
forecasted by the nomogram and the actual survival rates. TNM system (tumor-node-metastasis) staging,
‘‘Tumor (T)’’ describes the size and extent of the primary tumor, ‘‘Node (N)’’ reflects the presence and ex-
tent of spread to nearby lymph nodes, and ‘‘Metastasis (M)’’ indicates whether the cancer has metastasized
to other parts of the body.
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Figure 6 Boxplots represent the distribution and statistical significance of seven distinct features in
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Full-size DOI: 10.7717/peerj.17002/fig-7

and inflammatory infiltration in the livers of the NAFLD group (Figs. 8C–8F). These
results indicated that the experimental mice successfully modeled NAFLD. Furthermore,
we examined the mRNA levels of six signatures in mouse liver and showed that Ramp3,
S100a9, Sapcd2, Spp1 and Csad were exhibited at higher levels in the NAFLD group
compared to NC group (Figs. 8G–8I, 8K, 8L). Socs2 expression was higher in the NC group
(Fig. 8J).

Subsequently, two NAFLD datasets were identified for further external validation.
The GSE48452 dataset was divided into four groups: control, NASH, healthy obese, and
steatosis. Using the t -test, we observed differences in the expression levels of five NHGRM
signatures(CSAD, RAMP3, S100A9, SOCS2, and SPP1, SAPCD2 not detected) across these
groups, as illustrated in Figs. 9A–9E. Notably, the expression of SOCS2 in the NASH
group was downregulated compared to that in the control or healthy obese groups, while
the NASH group exhibited higher SPP1 expression (P = 0.0023 for NASH vs. Control,
P = 0.0059 for NASH vs. healthy obese). We also conducted correlation analyses to clarify
the relationships between these NHGRM signatures and several physiological variables in
the dataset, including Body Mass Index (BMI), adiponectin, leptin, lar, and NAS scores.
For instance, CSAD showed a positive correlation with lar, leptin, and BMI, but was
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Figure 8 (. . .continued)
mice fed with a high-fat diet. (G–L) The box plots display the expression differences in six signatures
(RAMP3, S100A9, SAPCD2, SOCS2, SPP1, and CSAD) between the normal control (NC) group and the
NAFLD group. ∗∗, P < 0.01; ∗∗∗,P < 0.001.

negatively correlated with adiponectin. (Fig. 9F). The remaining dataset, GSE89632, was
divided into three groups: simple steatosis, NASH, and healthy controls. Through the
Kruskal-Walli’s test, we also discovered statistically significant variations in the expression
levels of these NHGRM signatures across these groups. (P = 5.6e−07 for CSAD, P = 0.024
for RAMP3, P = 1.7e−05 for S100A9, P = 6.6e−10 for SOCS2, and P = 0.00023 for SPP1)
(Figs. 9G–9K). Figure 9L illustrates the relationships between NHGRM signatures and
various physiological variables including BMI, cholesterol, triglycerides, transaminases,
waist circumference, hemoglobin, and age. For example, CASD was positively correlated
with total cholesterol and transaminases, whereas SOCS2 was negatively correlated with
alkaline phosphatase, BMI, and waist circumference.

Furthermore, we examined the protein expression levels of NHGRM signatures in the
livers of patients with HCC. Immunohistochemical staining images from the Human
Protein Atlas database showed that CSAD and SAPCD2 were highly expressed in patients
with tumors, compared to normal liver, while SOCS2 was lowly expressed in patients with
HCC (Figs. 10A–10C). Since there is no data of OPN (SPP1 gene), S100A9, and RAMP3
in HPA database, we detected their expression in tumor tissues and paracancerous tissues
using immunofluorescence staining in shuguang cohort, and the results showed that OPN,
S100A9, RAMP3 were highly expressed in tumor tissues compared with paracancerous
tissues (Figs. 10D–10F). We also detected the expression of characterized genes in the
single-cell dataset (Fig. S3). It consistent with the trend of protein levels in liver tissue
(Fig. S3C). Specifically, CASD was highly expressed in myeloid cells, while RAMP3 was
highly expressed in endothelial cells (Fig. S3D). In summary, we explored the expression
of NHGRM signatures in one tumor dataset and two NAFLD datasets, NAFLD animal
models, and human tissue samples.

DISCUSSION
Alterations in glycosylation patterns have been observed in hepatic pathologies and are
implicated in tumorigenesis, progression, and metastasis, suggesting that the modulation
of glycosylation impacts a range of proteins integral to the pathogenesis of NAFLD
(Ramachandran et al., 2022). Moreover, increased core fucosylation, branching, and
sialylation of glycans have been identified in individuals diagnosed with NASH and HCC
(Ramachandran et al., 2022). The functional contributions of glycosyltransferases, along
with other biochemical pathways, such as phosphoric acid oxidation, FASN-mediated
lipid biosynthesis, and glycolysis, known as the ‘‘Warburg effect,’’ are deemed critical to
the progression of these hepatic diseases (Gabbia, Cannella & De Martin, 2021; Che et al.,
2019; Zhan, Su & An, 2016). Therefore, investigating the specific mechanism of GRGs in
NAFLD and NAFLD-associated HCC will provide new clues for diagnosis, prognosis, and
treatment.
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Figure 9 Validation was performed on the external datasets GSE48452 and GSE89632. (A–E) T -test
analysis of box plots showing the variances in expression levels of five GRGs within the GSE48452 dataset
group. (F) Heat map from the GSE48452 dataset illustrating the relationship between glycation genes
and several physiological parameters. Dark blue in the graph indicates positive correlations, dark red in-
dicates negative correlations, and entries with stars indicate statistical significance. ∗,P < 0.05; ∗∗,P <
0.01; ∗∗∗,P < 0.001. (G–K) Box plots show the comparison of expression levels of five GRGs among three
groups in the GSE89632 dataset. (L) Heat map demonstrating the correlation between glycation genes and
various physiological variables within the GSE89632 dataset. Colors and asterisks have the same meaning
as above.
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Single-cell sequencing technology can detect tumor microenvironments and extract
gene expression profiles from HCC cells, which is crucial for early detection and treatment
targeting of NAFLD-related HCC (Hedlund & Deng, 2018; Zou et al., 2023). However, it
also poses challenges, such as the initial isolation and culturing of individual cells. Many
analytical techniques can inadvertently damage cells during the process, contributing to
inaccurate results. Therefore, in our study, we integrated bulk RNA-seq and scRNA data
to fully utilize their respective advantages. We investigated GRG expression patterns using
single cell sequencing datasets. We initially identified a multitude of cell subpopulations
within HCC and observed that GRG activity varied among these cell lineages. According
to the GSVA algorithm, our analysis revealed a strong enrichment of the high G-score
subgroup in oxidative phosphorylation, adipogenesis, fatty acid metabolism, and glycolysis
signaling pathways, all of which warrant further rigorous investigation. To determine
the GRGs most relevant to NAFLD-HCC prognosis, we applied unsupervised clustering
analysis.

To establish a prognostic model for TCGA liver cancer, we used a univariate-lasso-
multivariate Cox regression model. Using LASSO-Cox regression analysis, we further
reduced overfitting and identified six signatures: SPP1, SOCS2, SAPCD2, S100A9, RAMP3,
and CSAD. We constructed the optimal glycosylation-related prognostic features and
validated them using GSE54236. A scoring formula was derived by utilizing LASSO
coefficients and GRG expression levels, resulting in a risk score. Based on this, patients
withHCCwere categorized into theNHGRM_low andNHGRM_high groups. Remarkably,
the NHGRM_high group exhibited worse prognosis, irrespective of clinical parameters.
After the prognostic features in both the training and validation cohorts demonstrated
good predictive capabilities, we investigated the underlying mechanisms. As expected,
disparities in immune infiltration and immune checkpoint levels were observed between
the NHGRM_low and NHGRM_high groups, which could potentially lead to tumor
heterogeneity.

Glycosylation is considered to be the most complex post-translational modification
involved in cell signaling and communication, tumor cell dissociation and invasion, cell–
matrix interactions, tumor angiogenesis, immune regulation, and metastasis formation
in tumor development (Pinho & Reis, 2015). Core petaloid glycosylated alpha-fetoprotein
(AFP-L3) can be a sensitive and specific circulating biomarker for the early diagnosis of
HCC, suggesting that glycosylation-associated genes play an important role in the early
diagnosis of tumors. Therefore, in this study, we focused on the expression of key genes
closely related to glycosylation during the progression of NAFLD to HCC, as well as the
expression patterns in different cells, to shed light on themechanism of NAFLD progression
to HCC.

OPN is an extracellular glycosylated phosphoprotein that promotes cell adhesion by
interacting with several integrin receptors (Oyama et al., 2018). It has been demonstrated
that OPN O-glycosylation self-regulates its biological activity and influences its
phosphorylation status (Kariya et al., 2014). However, extracellular OPN promotes obesity
and regulates lipid synthesis, which in turn leads to hepatic steatosis (Nomiyama et al.,
2007; Nuñez Garcia et al., 2017). In HCC, OPN is also highly expressed, which is closely
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related to its mode of glycosylation and the mechanism of promoting cell adhesion for
tumor metastasis, which is consistent with our study. Not only that, recent scRNA-Seq
analysis of human cirrhotic (Ramachandran et al., 2019) and HCC (Zhang et al., 2019)
livers showed increased expression of SPP1 in inflammatory cell subsets (i.e.,MFs, T cells,
dendritic cells, and NK cells). In our results, SPP1 was highly expressed in HCC patients
and was increased in NK and Myeloid cells, suggesting that it is closely associated with the
level of inflammation, and chronic inflammation leads to the progression of cirrhosis and
HCC. Suppressor of cytokine signaling 2 is a protein that in humans is encoded by the gene
(Elliott & Johnston, 2004). There are few reports between SOCS2 and glycosylation, so the
link between them is not clear for the time being. However, previous studies have shown
that SOCS2, as an anti-inflammatory substance, can inhibit inflammation and apoptosis
during the progression of NASH by activating the activation of NF- κB, and its expression
inmacrophages was confirmed. There are few reports between SOCS2 and glycosylation, so
the link between them is not clear for the time being. However, previous studies have shown
that SOCS2, as an anti-inflammatory substance, can inhibit inflammation and apoptosis
during the progression of NASHby activating the activation of NF- κB, and its expression in
macrophages was confirmed (Li et al., 2021). SOCS2 plays a protective role in tumorigenesis
andmay be associated with its activation of specific cell deathmodalities such as Ferroptosis
(Chen et al., 2023). A positive correlation between survival time and SOCS2 expression
level in HCC tumor patients was also found in our study. This suggests the need to go
further to explore the effects of possible glycosylationmodifications on SOCS2 function and
activity. SAPCD2, as an oncogene, can promote cell proliferation and tumor development,
potentially affecting pathways such as PI3K/Akt, MAPK, and Hippo, although its direct
effect on immune checkpoints is not yet clear (Zhang et al., 2022). The four glycosylation
sites at the extracellular N-terminal end of RAMP3 play important physiological roles in
binding to other proteins (Flahaut et al., 2003). Interestingly, a genome-wide study found
an association between low-grade fat accumulation and rs10859525 and rs1294908, which
are located upstream of SOCS2 and RAMP3, respectively, suggesting that SOCS2 and
RAMP3 may serve as predictors of NAFLD disease progression (Di Stefano et al., 2015). It
is well known that S100A9 is a regulator of bone marrow-derived immune cells, and it has
been reported that glycosylation-dependent interactions between S100A9 and the complex
between CD69 are required for regulatory T cell differentiation (Lin et al., 2015). CSAD, a
protein-coding gene, plays a role in regulating taurine metabolism and is associated with
diseases such as Stiff-Person Syndrome and various autoimmune disorders (Sköldberg et
al., 2004). Some studies have reported that overexpression of CSAD improves fatty liver,
but it is less commonly reported in disease progression to e.g., NASH and HCC (Tan et al.,
2022). In conclusion, all six-signature required for our model have some ability to predict
disease, but the causal link between their expression and disease still needs to be further
explored.

Research may also be able to identify and screen for potential beneficiaries of
immunotherapy because glycosylation,which exhibits higher sensitivity to immunotherapy,
may have a substantial impact on the metabolic pathways associated with HCC,
including bile acid metabolism and fatty acid metabolism (Shi et al., 2022). With the
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rapid development of immunotherapy, significant advancements have been made in the
treatment of HCC. Atezolizumab (anti-PD-L1) in combination with Bevacizumab (anti-
VEGF-A) is the only guideline-recommended preferred regimen for first-line treatment
(Finn et al., 2020). Anti-PD1 drugs are used as treatment choices in various regions after the
use of anti-angiogenesis tyrosine kinase inhibitors (TKIs) (Sangro et al., 2021). Moreover,
extensive research has demonstrated that immune checkpoint inhibitors (ICPIs) have
significant effects on HCC therapy, with over 200 types of immunotherapeutic drugs
currently undergoing clinical trials (Zheng et al., 2021). The study carried out by Peng et al.
(2021) identified and validated seven immune-related genes (IRGs) associated with HCC.
These IRGs are strong independent prognostic factors for the survival of patients with
liver cancer. They may reveal information on immune cell infiltration into the TME and
the state of immune suppression and may predict how well HCC patients will respond to
immunotherapy (Peng et al., 2021). In our study, we found that some of the targets PDCD1,
CTLA4, etc., which are already pharmacologic, were more highly expressed in the high-risk
group. Our study also revealed a correlation between glycosylation levels and immune cell
infiltration. A meta-study that included 26 studies noted that in patients with HCC, high
NK cell levels were associated with better overall survival and disease-free survival (Xue et
al., 2022). Cytotoxic T-lymphocytes (CTL) consistently possess CD8 surface antigen and
play a role in anti-tumor immune responses. Studies have shown that high expression of
CD8+ TIL is associated with a favorable prognosis in a variety of tumors, including HCC
(Sun et al., 2015; Zhao et al., 2019). We found that the low-risk group had higher levels of
infiltration of NK-activated cells, CD8 T cells, and mast-activated cells, while the high-risk
group had higher levels of macrophages of the M1 type.

Although this study identified signatures associated with glycosylation that can be used
to predict prognosis in patients with NAFLD-related HCC, it is not without limitations.
Because of the heterogeneity of HCC and the fact that our features were developed
and validated in a relatively small sample size cohort, validated only in our own small
clinical cohort, it is important to validate the predictive power of the model in a large
multicenter cohort before applying it to clinical practice. Our animal model did not
develop tumors because high-fat diet-induced tumor models in mice take longer (more
than a year) and have lower tumor incidence. Although we detected genes associated with
the characteristics of patients with NAFLD-HCC, however, more in-depth exploration
through further experimental work is still needed to understand the potential molecular
pathways from NAFLD to HCC.

CONCLUSIONS
In this study, we constructed a prognostic model that can be used to predict the prognosis
associated with NAFLD-HCC based on glycosylation levels and validated it at the animal
and clinical levels, providing new perspectives on the role of glycosylation in tumorigenesis
and development.
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