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ABSTRACT
Background: Myeloid-derived suppressor cells (MDSCs) have crucial
immunosuppressive role in T cell dysfunction in various disease processes. However,
the role of MDSCs and their impact on Tregs in COPD have not been fully
understood. The aim of the present study is to investigate the immunomodulatory
role of MDSCs and their potential impact on the expansion and function of Tregs in
COPD patients.
Methods: Peripheral blood samples were collected to analyze circulating MDSCs,
Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and
their potential impact on the expansion and function of Treg in COPD. A total of 54
COPD patients and 24 healthy individuals were enrolled in our study. Flow
cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs),
monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on
MDSCs and Tregs in peripheral blood.
Results: Our results revealed a significantly higher percentage of G-MDSCs and
M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls.
Additionally, a significantly higher proportion of peripheral blood Tregs was
observed in COPD patients. Furthermore, an increased expression of cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in
COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not
CD8+Tcells, was found to be increased in patients with COPD compared to controls.
Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also
observed in COPD patients. A positive correlation was observed between the
accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the
percentage of circulating M-MDSCs is positively associated with the level of PD-1
(r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD.
Conclusion: The recruitment of MDSCs, accumulation of Tregs, and up-regulation
of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1,
suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the
expansion and activation of Treg at least partially in COPD.
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INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease, characterized by
persistent flow limitation and aberrant systemic inflammation (Brightling & Greening,
2019; Adeloye et al., 2022). Smoking is one of the most well-established risk factors for
COPD (Riley & Sciurba, 2019; Adeloye et al., 2022). A growing body of evidence suggests
that autoimmune response plays a fundamental role in COPD pathogenesis and has
garnered significant attention (Caramori et al., 2018; Hou & Sun, 2020). The imbalance
between proinflammatory responses and immunosuppressive cells, such as MDSCs and
Tregs, or cytokines to self-antigens may contribute to immune dysfunction and disease
progression of COPD.

T cells are considered critical in controlling airway inflammation induced by cigarette
smoke (Caramori et al., 2018). Regulatory T cells (Tregs) are responsible for inhibiting
T cell activation and are essential for maintaining peripheral immune homeostasis
(Sakaguchi et al., 2020). However, the precise role of Treg cells in the disturbed immune
homeostasis of COPD has not been thoroughly investigated and the results of previous
research are not entirely concordant (Hou & Sun, 2020). The number of Treg cells
fluctuates in both COPD patients and animal models (Demoor et al., 2010; Gong et al., 2017;
Sales et al., 2017). The impaired suppression of CD4+Tcell activation and reduced IL-10
secretion may suggest the impaired function of Treg cells in COPD (Hou & Sun, 2020).

PD-1 and its ligands (PD-L1/PD-L2), which play a crucial role in regulating T-cell
activation and Treg cell development, have garnered considerable attention (Gianchecchi
& Fierabracci, 2018; Adamczyk & Krasowska, 2021). PD-L1 has been found to be more
effective than PD-L2 in inhibiting T-cell activation and is particularly important in
maintaining tissue tolerance (Mi et al., 2021). PD-1/PD-L1 axis primarily maintains
immunologic homeostasis under normal circumstances and mediates immune escape
during the development of tumors (Cha et al., 2019). PD-1-targeted antibody drugs have
shown significant anti-tumor efficacy in certain solid tumors, further confirming their key
role in the immune response. In contrast, studies on PD-1/PD-L1 in non-neoplastic
diseases, including pulmonary inflammatory diseases, are relatively insufficient. Current
research has demonstrated that PD-1/PD-L1 can be induced by inflammatory factors in
chronic infectious diseases (Chinai et al., 2015). Additionally, peripheral blood
lymphocytes from COPD patients expressed significantly higher levels of PD-1 (McKendry
et al., 2016; Tan et al., 2018). However, the conclusions were inconsistent. Some scholars
detected that the low level of PD-L1 in DCs of COPD patients might be part of the
mechanisms promoting disease progression (Stoll, Virchow & Lommatzsch, 2016).

The MDSCs, a type of immature myeloid cells, are known for their immunosuppressive
properties (Hegde, Leader & Merad, 2021). Predominantly, MDSCs are further classified
into granulocyte-like MDSCs (G-MDSCs) and MNP-like MDSCs (M-MDSCs) based on
their morphology and specific surface molecules (Hegde, Leader & Merad, 2021).
The suppressive capacity of MDSCs in inhibiting the expansion of Tregs is
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well-documented (Veglia, Perego & Gabrilovich, 2018; Hegde, Leader & Merad, 2021).
Numerous studies have shown that MDSCs significantly impair adaptive antitumor
immunity and are closely associated with unfavorable clinical outcomes in cancer (Veglia,
Perego & Gabrilovich, 2018; Veglia, Sanseviero & Gabrilovich, 2021). However, the role of
MDSCs was relatively inadequate in the case of non-neoplastic diseases, such as COPD.
Additionally, the potential impact of MDSC subsets on Treg in COPD remains not yet
fully understood.

Therefore, our study aimed to investigate the clinical significance of PD-1/PD-L1 axis
expression, Tregs, and myeloid-derived cell subsets in the peripheral blood of COPD
patients in order to explore the immuneregulatory role of MDSCs in COPD.

MATERIALS AND METHODS
Study design and patients
A total of 54 stable COPD patients spirometric stages I–IV (confirmed according to the
Global Initiative for Obstructive Lung Disease (GOLD)) and 24 age-matched donors with
normal lung function considered controls were enrolled. COPD was defined as follows: a
post-bronchodilator FEV1/FVC ratio < 0.7 and FEV1 of less than 80% of the predicted
value. COPD subjects with exacerbations within the 2-month prior to the study were
excluded. Other exclusion criteria included the following: cancer, asthma, heart disease,
autoimmune diseases, infectious diseases and administration with immunomodulatory
drugs. Ethics committee approval (No. 18190-0-01) was obtained for the trial protocol at
Tsinghua Changgeng Hospital. The remaining samples obtained from the patients after
testing were utilized, and as a result, the ethics committee granted a waiver of informed
consent for their use (No. 18190-0-01).

Cell collection
Fresh peripheral blood samples were isolated from each subject and subjected to
Ficoll-Paque Plus (GE Healthcare, Pittsburgh, PA, USA) layering and centrifugation (200
× 6 g for 5 min). Through Ficoll-Paque gradient centrifugation, human peripheral blood
mononuclear cells were subsequently isolated.

Flow cytometry analysis
Human PBMC were freshly obtained and stained with fluorochrome (APC, FITC, PE,
PerCP-Cyanine5.5)-conjugated antibodies. For surface staining, the following antibodies
were used: CD25 (cat. 12-0257-42), PD-1 (cat. 61-2799-42), PD-L2 (cat. 25-9952-42),
CTLA-4 (cat. 85-46-1529-42), CD4 (cat. 25-0049-42), CD127 (cat. 17-1278-42), CD14
(cat. 61-0149-42), HLA-DR (cat. 25-9952), CD14 (cat. 61-0149-42), PD-L1 (cat. 85-12-
5888-42), CD15 (cat. 11-0159-42), CD33 (cat. 56-0338-42), CD3 (cat. MHCD0327),
CD11b (cat. 46-0118-42) for 30 min at 4 �C according to surface marker staining of each
subpopulation and the corresponding isotype-matched controls were also used.
eBioscience provided all of the antibodies we used. The gated strategies to identify Treg
(CD3+CD4+CD25+CD127−/low), G-MDSCs (CD15+CD33+ CD11b+CD14-HLA-DR−/low)
and M-MDSCs (CD14+ CD15- CD11b+CD33+ HLA-DR−/low) were shown respectively in
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the below section. The data in this study were acquired using CytoFLEX instrument
(Beckman Coulter, Pasadena, CA, USA) and analyzed using CytExpert for DxFLEX
(Beckman Coulter, Pasadena, CA, USA).

Statistical analysis
Data are expressed as the mean ± SEM. Comparisons between multiple groups were
performed by variance (ANOVA) analysis, while statistical analysis was performed with
Student’s t-test between two groups. An evaluation of the correlation was made using
Spearman’ s rank correlation coefficient. Data were analyzed using GraphPad PRISM
software (Version 8.0 for Windows; San Diego, CA, USA). Statistical significance was
determined at a threshold of p < 0.05 (� for p < 0.05,�� for p < 0.01, ��� for p < 0.001, ���� for
p < 0.0001).

RESULT
Participants’ clinical characteristics and demographics
A total of 54 COPD patients (25 in stages I–II and 29 in stages III–IV) and 24 healthy
individuals participated in the study from September 9, 2021, to May 1, 2022. The clinical
features of all the participants are provided in Table 1. In comparison with healthy
subjects, COPD patients had no significant differences in age or smoking history. The sex
ratio was unequal mostly because the incidence rate of COPD is higher among males than
females in China.

The frequency of MDSCs subsets in peripheral blood was significantly
increased in COPD patients
To assess the role of MDSCs, we measured the proportion of two different subsets of
MDSCs (M-MDSC and G-MDSC). The results depicted in Fig. 1 demonstrated a
significantly higher proportion of M-MDSC in the peripheral blood of COPD patients
compared to controls controls (9.02 ± 0.63 versus 16.33 ± 1.12, p < 0.0001) (Figs.1C and
1D). Additionally a greater diversity of G-MDSC percentages was observed in the

Table 1 Participants’ clinical characteristics and demographics.

Variables Healthy controls COPD

Subjects (No.) 24 54

Age (year) 73.6 ± 7.3 74.5 ± 8.2

Gender (male/female) 17/7 36/18

Current/Ex-smokers 5/11 14/24

Smoking history (pack-year) 21.80 (0–100) 26.18 (0–100)

FEV 1 (% of predicted) – 51.47 ± 18.40

FEV 1/FVC (%) – 51.15 ± 13.98

Oral corticosteroid use 0 0

Notes:
The data are presented as mean ± standard error of mean (SEM) or mean (range).
Abbreviations: COPD, patients with stable chronic obstructive pulmonary disease; FEV 1, forced expiratory volume in
one second; FVC, forced vital capacity.
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peripheral blood of COPD patients compared with controls (1.68 ± 0.14 vs. 2.67 ± 0.21,
p < 0.01) (Figs.1E and 1F).

The frequency of Tregs and the CTLA-4 expression on Tregs in COPD
patients peripheral blood
To investigate whether MDSC recruitment promotes Treg expansion in patients with
COPD, we proceeded to analyze the frequency of circulating Tregs in their blood. As
shown in Fig. 2B, there was a significantly increased proportion of Tregs (7.26 ± 0.29 versus
9.07 ± 0.38, p < 0.01) in COPD patients peripheral blood in comparison with controls
(Fig. 2B). Furthermore, the frequencies of Tregs were found to be elevated in COPD
patients in GOLD stage I/II or stage III/IV on Tregs compared with matched healthy
subjects (Fig. 2C).

Figure 1 The frequency of MDSCs subsets in peripheral blood was significantly increased in COPD patients. (A) The gated strategies to identify
M-MDSCs; (B) Gated strategies for identifying G-MDSCs; (C and D) a higher diversity of M-MDSC percentages was observed in the peripheral
blood of COPD patients compared with controls (n = 54 and 24, respectively); (E and F) the percentages of G-MDSCs in peripheral blood of COPD
patients were higher than those in control (n = 54 and 24, respectively). Data were expressed as mean ± SEM, ��p < 0.01; ���p < 0.001.

Full-size DOI: 10.7717/peerj.16988/fig-1
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It has been established that CTLA-4 is essential for Treg-mediated immunosuppression
and Tregs expressing CTLA-4 demonstrate enhanced immunosuppressive properties.
The expression of CTLA-4 (11.96 ± 0.61 versus 15.74 ± 0.77, p < 0.01) was significantly
elevated on Tregs of COPD patients (Fig. 2D), indicating a heightened suppressive
function of Tregs in COPD. Furthermore, the expression of CTLA-4 were upregulated in
COPD patients in GOLD stage I/II or stage III/IV on Tregs compared with matched
healthy individuals (Fig. 2E). However, no significant difference in CTLA-4 expression on
Tregs was observed between GOLD stages I/II and stages III/IV COPD patients (Fig. 2E).

The abnormal expression pattern of PD-L1 but not PD-L2 on MDSCs
subsets in COPD patients
Although the role of MDSCs-mediated T-cell suppression under neoplastic disease has
been extensively studied, their function and mechanism have not been fully elucidated in
COPD. MDSCs exerted their immunosuppressive activities by expression or secretion of
mediators or molecules, including PD-L1/PD-L2, which can lead to T cell exhaustion.
In this study, we investigated the expression of PD-L1 and PD-L2 on different subsets of
MDSCs using anti-CD274 (PD-L1) and anti-CD273 (PD-L2) antibodies. We detected PD-
L1/PD-L2 expression on MDSC subsets. There was increased upregulation of PD-L1 on
M-MDSCs in COPD patients compared to the control group (68.07 ± 4.67 versus 89.27 ±
1.93, p < 0.0001, Figs. 3B and 3F). In contrast, significantly decreased expression of PD-L1
by G-MDSCs was seen in COPD patients blood compared with control group (70.59 ±
4.48 versus 53.74 ± 2.68, p < 0.001, Figs. 3D and 3H). There was no statistically significant

Figure 2 The frequency of Tregs and the CTLA-4 expression on Tregs in COPD patients peripheral blood. (A) The gated strategies for Tregs; (B
and C) The increased percentage of Tregs in COPD patients peripheral blood compared with controls (n = 54 and 24, respectively); (D and E) the
increased expression of CTLA-4 on Tregs in COPD patients compared with controls (n = 54 and 24, respectively). Data were expressed as mean ±
SEM, �p < 0.05; ��p < 0.01; ���p < 0.001. Full-size DOI: 10.7717/peerj.16988/fig-2
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difference observed in the expression level of PD-L2 between M-MDSC (Figs. 3A and 3E)
or G-MDSCs (Figs. 3C and 3J) between the COPD and control groups.

The expression of PD-1 on T cell subsets in COPD peripheral blood
The expression of PD-1, the receptor of PD-L1/L2, was assessed on CD4+T cells, CD8+T
cells and Treg cells. Compared to the controls, the expression pattern of PD-1 was higher
on CD4+T cells (18.23 ± 1.08 versus 23.87 ± 1.23, p < 0.001; Fig. 3I) and Tregs (20.02 ± 1.06
versus 23.84 ± 1.14, p < 0.05; Fig. 3J), but not on CD8+Tcells (data not shown). Next,
subgroup analysis was performed based on the degree of airflow obstruction according to
the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. It is

Figure 3 The abnormal expression patternof PD-L1 on MDSCs subsets and the expression of PD-1 on T cell subsets in COPD patients
peripheral blood. (A and E) The expression level of CD273 (PD-L2) on M-MDSC in COPD patients peripheral blood; (B and F) the expression
level of CD274 (PD-L1) on M-MDSC in COPD patients peripheral blood; (C and G) the expression level of CD273 (PD-L2) on G-MDSC in COPD
patients peripheral blood; (D and H) the expression level of CD274 (PD-L1) on G-MDSC in COPD patients peripheral blood; (I and K) the
expression of PD-1 on CD4+T cells in COPD patients peripheral blood; (J and L) the expression of PD-1 on Treg in COPD patients peripheral blood;
Data were expressed as mean ± SEM, �p < 0.05; ��p < 0.01; ���p < 0.001. n = 54 and 24 for COPD patients (25 in stages I–II and 29 in stages III–IV)
and controls respectively. Full-size DOI: 10.7717/peerj.16988/fig-3
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noteworthy that COPD patients in GOLD stages I/II or stages III/IV exhibited a significant
upregulation of PD-1 expression Ion CD4+Tcells, but not CD8+Tcells, compared to the
control group (Fig. 3K). The expression of PD-1 on Treg showed a slight increase in
patients with COPD in stages III/IV compared to those in stages I/II, although this
difference was not statistically significant (21.53 ± 1.55 versus 25.83 ± 1.58, p = 0.0597;
Fig. 3L).

Relationship of MDSCs subsets, Tregs and PD-1/PD-L1 expression in
COPD peripheral blood
The percentages of M-MDSCs cells were found to be positively correlated with the
expression of PD-1 on CD4+T cells (r = 0.42, p = 0.001; Fig. 4A) and CD8+T cells (r = 0.36,
p = 0.008) (Fig. 4B). Furthermore, upon further analysis, it was discovered that there was a
positive correlation between the percentages of M-MDCS and the expression of PD-1
(r = 0.51, p < 0.0001; Fig. 4C) and CTLA-4 (r = 0.42, p = 0.0014; Fig. 4D) on Tregs. We also
found a positive relationship between the percentages of M-MDSCs and Treg cells in
COPD patients (r = 0.315, p = 0.02; Fig. 4E).

Notably, the percentages of G-MDSCs cells were positively related to the percentages of
M-MDSCs (r = 0.39, p = 0.0037) (Fig. 4F). Our findings further demonstrated that the
increased percentages of G-MDSCs was associated with the increased expression of PD-1
on CD4+T cells (r = 0.299, p = 0.028; Fig. 4G) and PD-1 on Treg (r = 0.297, p = 0.028;
Fig. 4H). However, the proportions of G-MDSC or M-MDSC failed to significantly
correlate with lung function in COPD patients.

Relationship between pack year of cigarette smoking and the
frequency of MDSCs subsets, Tregs and PD-1/PD-L1expression
The risk of COPD increases with pack-years of smoking. In our study, we observed a
negative correlation between the number of pack-years of smoking and the expression of
PD-1 on CD4+T cells (r = −0.33, p = 0.04; Fig. 4I), Tregs (r = −0.37, p = 0.02; Fig. 4J), and
percentages of G-MDSCs cells (r = −0.35, p = 0.03; Fig. 4K) in COPD patients, but not the
percentages of M-MDSCs, PD-L1 expression on MDSCs subsets and CTLA-4 expression
on Treg.

DISCUSSION
It is widely recognized that MDSCs have the ability to inhibit the expansion and activation
of Tregs in various pathological conditions (Hegde, Leader & Merad, 2021). A sufficient
understanding about the role of MDSC subsets and potential relationships between MDSC
subsets and Tregs in COPD has not yet been achieved. In this study, we observed
significantly elevated percentage of circulating M-MDSCs displayed a high degree of
positive correlation with suppressive Tregs in COPD, accompanied by a significantly
increased expression of PD-1/PD-L1 axis on specific immune cells.

MDSCs have been extensively studied in patients with cancer, but there is a lack of
research on their role in non-malignant conditions, particularly in COPD. Some
researchers reported that circulating MDSCs were up-regulated in COPD (Scrimini et al.,
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2013; Kalathil et al., 2014; Deshane et al., 2015; Scrimini et al., 2015; Wu et al., 2015).
However, another study reported that COPD was not associated with perturbations in the
percentages or the function of MDSCs in peripheral blood (Tan et al., 2014). Furthermore,
there is limited investigation into the subsets of MDSCs in COPD patients. In our study
PBMCs from COPD contained both an elevated frequency of G-MDSCs and M-MDSCs
compared to controls group, which is in line with previous on MDSCs (Scrimini et al.,
2013; Kalathil et al., 2014; Deshane et al., 2015; Scrimini et al., 2015; Wu et al., 2015).

Treg, a subpopulation of CD4+T cells with immunosuppressive function, plays a crucial
role in the suppression of inflammatory pathology. Previous studies have yielded
conflicting results regarding the specific role of Treg in COPD. Chiappori et al. (2016)

Figure 4 Relationship of MDSCs subsets, Tregs and PD-1/PD-L1 expression in COPD peripheral blood. (A and B) The percentages of
M-MDSCs cells were positively correlated with the expression of PD-1 on CD4+T cells (A, r = 0.32, p = 0.001, n = 54) and CD8+T cells (B, r = 0.36,
p = 0.008, n = 54); (C and D) the percentages of M-MDCS were positively correlated with the expression of PD-1 on Treg (C, r = 0.36, p = 0.008,
n = 54) and CTLA-4 on Tregs (D, r = 0.42, p = 0.0014, n = 54); (E) the percentages of M-MDCS were positively correlated with the percentages of
M-MDSCs and Treg cells in COPD patients (r = 0.315, p = 0.02, n = 54); (F) the percentages of G-MDSCs cells were positively related to the
percentages of M-MDSCs in COPD patients (r = 0.29, p = 0.028, n = 54); (G and H) increased percentages of G-MDSCs was associated with the
increased expression of PD-1 on CD4+T cells (G, r = 0.299, p = 0.028, n = 54) and Treg (H, r = 0.297, p = 0.028, n = 54) and in COPD patients; (I-K)
Relationship between smoking pack-years and PD-1 expression on CD4+T cells (I), PD-1 expression on Tregs (J, r = −0.33, p = 0.04, n = 54), and
percentages of G-MDSCs (K, r = −0.35, p = 0.03, n = 54) in COPD peripheral blood. Full-size DOI: 10.7717/peerj.16988/fig-4
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demonstrated lower numbers of circulating Treg cells in COPD patients. According to
another study, smokers with COPD also have significantly fewer Treg cells in their lungs
(Lee et al., 2007). Conversely, accumulating evidence shows that the frequency of Tregs is
increased both in mice exposed to smoke (Gong et al., 2017) and COPD patients (Plumb
et al., 2009; Kalathil et al., 2014). Consistent with these findings, our study revealed that the
proportion of circulating Treg cells in COPD patients was increased compared with the
control groups (Kalathil et al., 2014) and showed an positive correlation with the
percentage of M-MDSCs, consistent with studies that suggest MDSCs may be crucial to
Treg expansion (Kalathil et al., 2014).

Previous research has established the critical role of CTLA-4 in the development and
suppressive function of Tregs (Zheng et al., 2006; Wing et al., 2008) and CTLA-4+ Tregs
have increased suppressive capacity (Read, Malmström& Powrie, 2000;Núñez et al., 2020).
Our result indicate that there is an increased expression of CTLA-4 on Tregs in COPD
patients, and a positive correlation between the percentage of M-MDSCs and the
expression of CTLA-4 on Tregs. This suggests that MDSCs may also play a role in
modulating the suppressive function of Tregs.

The PD-1/PD-L1(L2) signaling is known to regulate immune tolerance in many
immune-mediated diseases, including cancer, autoimmune diseases, and, as emphasized
recently, in chronic inflammation and regulates T cell activation negatively and regulates
the generation and function of Treg (Adamczyk & Krasowska, 2021; Filippone et al., 2022).
PD-1 is expressed on Tregs and partially proved to represse Treg suppressive function
(Kumagai et al., 2020; Lowther et al., 2016) and high PD-1 expression on Treg cells
indicates enhanced Treg function (Asano et al., 2017). Previous research has demonstrated
that treatment with anti-PD-1 can mitigate lung damage and neutrophilic inflammation
(Ritzmann et al., 2021) and acute exacerbations of COPD (Tan et al., 2018), suggesting the
involvement of the PD-1 axis in the pathogenesis of COPD. McKendry et al. (2016)
discovered that the expression of PD-1 on lung CD8+T cells was elevated in individuals
with COPD compared to controls. Similarly, our study revealed a higher level of PD-1
expression on CD4+ T cells and Tregs, but not on CD8+ T cells, in GOLD stage I/II and
stage III/IV COPD patients compared to controls. These findings align with previous
research.

Based on previous research, it has been observed that, MDSCs in tumor-bearing mice
may exhibit increased expression of PD-L1 under hypoxia (Noman et al., 2014).
Furthermore, chronic inflammation induced by LPS has been found to up-regulate the
PD-1/PD-L1 axis and lead to the accumulation of MDSCs (Liu et al., 2021). Additionally, a
study conducted by Rui et al. (2022) revealed that exposure to cigarette smoke results in the
upregulation of PD-L1 in rats with COPD. There is limited information about PD-L1/PD-
L2 expression in MDSC subsets in COPD as far as we know. In line with these results, we
found the up-regulationof PD-L1 but not PD-L2 on M-MDSCs subsets in COPD patient
peripheral blood (Kalathil et al., 2014; Liu et al., 2021). Interestingly, a notable decrease in
the expression of PD-L1 by G-MDSCs was observed in patients with COPD. This finding
leads us to suspect that the functionality of G-MDSCs may be more severely impaired in
individuals with COPD.
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Smoke is the most important risk factor for COPD. However, the relationship between
smoking and MDSC subset frequency in COPD remains poorly understood. Worth
mentioning, pack-years of smoking were negatively correlated with the percentages of
G-MDSCs cells in our study and imply an inducible decrease in the number of G-MDSCs
by smoking. Matsuda et al. (2018) revealed that smoking suppresses PD-1 expression and
limited serum sPD-L1 in rheumatoid arthritis (RA) patients (Luo et al., 2018). It has,
however, been suggested an inducible expression of PD-L1 by smoking (Calles et al., 2015;
Psomas et al., 2019). Our findings indicate a negative correlation between pack-years of
cigarette smoking and the expression of PD-1 on Tregs and CD4+ T cells. The conflicting
conclusions could potentially be attributed to the varying roles of the PD-1/PD-L1 axis in
different conditions.

As in other studies, the present work also has some limitations. Firstly, the present study
is descriptive in nature and confirmation of this explanation will requires further
experiments in vitro. Secondly, despite our interesting findings, the relatively small sample
size and single center design may restrict the generalizability of our results. Additionally,
certain risk factors such as physical exercise and dietary intake were not taken into
account, potentially influencing the relationship between pack year of cigarette smoking
and our findings. Fourthly, the fixation and membrane rupture of cells are required for the
detection of Foxp3, which may lead to the destruction and death of lymphocytes.
Therefore, Treg cells were characterized by CD3+CD4+CD25+CD127−/low in our study.
If FMO controls is used as negative controls, in place of isotype controls, the results of our
study would be more accurate. Therefore, caution should be exercised when interpreting
the association between these variables.

CONCLUSIONS
In conclusion, we observed the accumulation of circulating MDSCs subsets,
immunosuppressive Tregs and upregulation expression of the PD-1/PD-L1, not PD-L2, on
these two cell populations in COPD patients and we speculated that PD-1/PD-L1 axis may
be involved in MDSCs, especially M-MDSCs, induced Tregs expansion and activation at
least partially in COPD patients. Additionally, smoking status was inversely related to the
percentage of G-MDSCs and decreased expression of PD-L1 by G-MDSCs, implying the
negative effects of smoking on G-MDSCs cells production and the impaired
immunosuppressive function of G-MDSCs. However, our result need more experiments in
vitro and in vivo to prove. A comprehensive and in-depth understanding of MDSC subsets
in COPDmay help to provide useful prognostic indicators and effective therapeutic targets
for the disease.
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