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ABSTRACT
Tillering/branching pattern plays a significant role in determining the structure and
diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently,
it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development.
However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind
of turfgrass, remains unclear. Our study unveils the significant impact of trimming
on promoting the sprouting and growth of tiller buds in stolon nodes, along with an
increase in the number of tillers in the main stem. This effect is accompanied by spatial-
temporal changes in cytokinin and sucrose content, aswell as relevant gene expression in
axillary buds. In addition, the partial trimming of new-born tillers results in an increase
in sucrose and starch reserves in their leaves, which can be attributed to the enhanced
photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the
leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application
of H2O2 significantly increases the number of tillers after trimming by affecting the
expression of cytokinin-related genes, bolstering photosynthesis potential, energy
reserves and antioxidant enzyme activity. Taken together, these results indicate that
both endogenous production and exogenous addition of H2O2 enhance the inductive
effects of trimming on the tillering process in bermudagrass, thus helping boost energy
supply and maintain the redox state in newly formed tillers.

Subjects Molecular Biology, Plant Science
Keywords Trimming, Tillering, H2O2, Energy supplying, Bermudagrass

INTRODUCTION
After cultivating a lawn, it typically demands significant human and material resources to
enhance its visual appeal and extend its lifespan. Maintenance measures must align with the
corresponding technical requirements. Among these measures, trimming holds a pivotal
role in lawn maintenance (Gu et al., 2015). Regular and proper trimming can suppress the
apical dominance of turfgrass, maintain a level lawn, foster grass branching, and reduce the
competitiveness of weeds with higher elongation points (Busey, 2003; DeBels et al., 2012).
Tillering phenotype is closely associated with energy utilization efficiency and a plants’
adaptability to the environment, which, in turn, can enhance the resistance, adaptability,
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and overall utilization value of plants (Mason et al., 2014). However, the effects of trimming
on the tillering process remain largely unexplored and unclear.

Tillering or branching serves as a key determinant of plant stature, and its regulation
is a significant manifestation of developmental plasticity in plant stature. This plasticity
is closely linked to a plant’s ability to adapt to the environment and directly influences
its competitiveness for survival (Leyser, 2003). The process of tillering begins with the
emergence of an axillary bud, originating from the axillary meristem located at the leaf
axil. This bud undergoes two developmental stages, initiation and elongation, before
maturing into a tiller. The development of axillary buds is a complex process intricately
governed by external environmental factors, internal hormone levels, energy status, and
gene expression (Kebrom, 2017). Apical dominance is a well-recognized phenomenon in
which the growth of lower axillary buds is inhibited by the actively growing tip of the main
stem. Decapitation experiments have provided evidence that removing the growing tip
activates the lower axillary buds, resulting in their continuous growth and the subsequent
formation of new lateral branches. This process is closely intertwined with hormonal
regulation (Barbier, Dun & Beveridge, 2017). The strict polar transport of auxin dictates
that it cannot directly enter the axillary bud, but rather indirectly inhibits axillary bud
development through other signaling components (Bennett et al., 2016). Among these
signals, cytokinin (CKs) exerts its effects by directly entering the bud and promoting bud
outgrowth (Müller & Leyser, 2011). Exogenous application of CKs locally stimulates bud
outgrowth (Dun et al., 2012) and increases CKs biosynthesis in stems and axillary buds
during axillary bud outgrowth (Tanaka et al., 2006). Meanwhile, it has been shown that
foliar application of CK-derived compounds improved the number of productive tillers
and the grain yield in winter wheat and spring barley (Koprna et al., 2021).

Tiller initiation and elongation is an energy-consuming process. According to the
nutritional hypothesis, the competition for sugars between the apical meristem and
axillary meristem plays a vital role in maintaining apical dominance (Barbier et al., 2019).
Previous studies have shown that moderate exogenous sucrose treatment significantly
accelerate the initiation and sustained growth of axillary buds in several species, including
Arabidopsis, rose, and pea (Barbier et al., 2015; Mason et al., 2014). Recent studies have
demonstrated the importance of sugar as a crucial signalingmolecule that affects bud growth
(Lastdrager, Hanson & Smeekens, 2014). Sucrose has been identified as a long-distance
signal that regulates axillary bud development by inducing axillary bud release prior to
auxin action. Additionally, elevated sucrose levels inhibit the expression of BRANCHED1
(BRC1)/TEOSINTE BRANCHED1 (TB1), a key transcription factor in preserving bud
dormancy (Mason et al., 2014).

Reactive oxygen species (ROS) comprise a class of oxygen-containing radicals, such as
superoxide (O2

·−) and hydrogen peroxide (H2O2). They serve as ubiquitous signaling
molecules and play a crucial role in various vital physiological processes in plants
(Ivanchenko et al., 2013). In recent years, studies have demonstrated that ROS plays a
vital role in regulating plant cell growth, directly or indirectly affecting plant growth
and development. For example, ROS have been found to be involved in the elongation
of root cells (Dunand, Crèvecoeur & Penel, 2007), seed germination (Müller et al., 2009)
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and pollen tube development (Potocký et al., 2007). Among ROS molecules, H2O2 has a
longer half-life and can function as a long-distance signaling molecule (Mhamdi & Van
Breusegem, 2018). Some studies have shown a correlation between H2O2 metabolism and
bud growth. Respiratory burst oxidase homolog (rboh) mutant plants displayed a highly
branched phenotype, while the application of H2O2 suggested a negative effect of H2O2

on bud outgrowth (Sagi et al., 2004; Chen et al., 2016). In rosebushes, quiescent buds are
prevented from outgrowth due to high levels of H2O2 (Porcher et al., 2020). However, it has
been demonstrated that both clipping and grazing can induce H2O2 production and gene
expression related to antioxidant pathways in the herbaceous perennial sheepgrass (Huang
et al., 2014). Nevertheless, the regulation of regeneration and tiller processes following
grass construction and the associated mechanisms involving H2O2 remain unclear.

Bermudagrass (Cynodon dactylon (L.) Pers.) is a widely used warm-season turfgrass that
also serves as excellent ground cover and greenery due to its fast planting and strong stress
resistance (Beard, 2002). At present, most bermudagrass varieties are established through
asexual propagation, which heavily relies on the continuous production of tillers from
stolon nodes, aboveground stems, and underground stem nodes. To optimize the quality
of bermudagrass lawns and alleviate pressure on turfgrass resources, it is recommended to
trim the grass to maximize its tiller capacity. This practice helps maintain the desired height
and increase the density of bermudagrass lawns. However, the physiological and molecular
mechanisms underlying the regulation of bermudagrass tillering by trimming remain
unclear, particularly concerning the involvement of H2O2 in this process. In this study,
we aim to characterize the spatio-temporal distribution changes of two well-established
regulators, sugar and cytokinin, in response to trimming, and to investigate the potential
involvement of H2O2 in trimming-induced tillering.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint (https://www.
researchsquare.com/article/rs-3133950/v1)

Plant material and growth conditions
The experimental material used was bermudagrass ‘A12359’ (2n = 36), which was planted
in 30 pots (diameter: 15.5 cm, height: 17.5 cm) on November 3, 2021, and cultivated
in the greenhouse of Binhai Grass Germplasm Resources Breeding Base located in the
northern area of Ludong University, Yantai City, Shandong Province (121◦36′N, 37◦53′E).
It received watering every two days and was provided with fresh 1/2-strength Hoagland’s
nutrient solution (formula: NH4H2PO4 (0.5 mM), KNO3 (2.5 mM), Ca (NO3)2·4H2O
(2.5mM),MgSO4·7H2O (1mM), H3BO3 (23µM), ZnSO4·7H2O (0.38µM), CuSO4·5H2O
(0.16 µM), MnCl2·4H2O (4.5 µM), H2MoO4 (0.2 µM), Fe-EDTA (25 µM).) once a week
to ensure adequate supply of water and nutrients. After the bermudagrass had developed
abundant stolons, it was decapitated.

Trimming treatment
The experimental materials were cultivated to have two tillers and then trimmed. During
each treatment, bermudagrass was uniformly trimmed using auxiliary tools to maintain
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a stubble height of 5 cm. Both control and treatment groups consisted of six biological
replicates. Tiller buds containing two leaves and one central bud were defined as tillers.
From the beginning of the experiment until 10 days after treatment, the number of tillers
was counted every 2 h. At 2, 4, 6, 8 and 10 h after treatment, the number of tillers on
the main stem of bermudagrass in both the control and treatment groups were counted
multiple times, and the dynamic change curve of the number of tillers in response to
grass trimming was plotted. When bermudagrass produces more stolons, the stolons with
uniform growth were selected and labeled accordingly. Two groups, control and trimming,
each consisting of five stolons, were established. Trimming was simulated by removing the
topmost stem node. From the beginning of the experiment to 6 days after treatment, the
length of tiller buds at different nodes was measured daily. Subsequently, tiller buds at the
second node of the control and trimming groups were compared to analyze the pattern of
their dynamic changes in response to trimming.

Exogenous treatment
Three pots of bermudagrass exhibiting similar growth were divided into three groups:
one group was sprayed with 50 µM 6-Benzylaminopurine (6-BA), the second group was
sprayed with 200 mM sucrose, and the third group was sprayed with distilled water as a
control. To measure the length of tiller buds at the end of the treatment, six stolons were
selected for each treatment. The treatments were performed every other day for a total of
six times.

Four treatment levels were established for bermudagrass, including a non-trimming
group consisting of a control and exogenous H2O2, and a trimming group consisting of a
control and exogenous H2O2, with six replicates per treatment level. Bermudagrass with a
consistent initial tiller count of four was selected. The leaves were treated with 2 mMH2O2

until they were dripping, and this process was repeated every other day (concentrations
were determined by pre-experimentation). The tillers were counted after each treatment
until the 8th day.

Gene expression analysis
From each of the first four nodes of bermudagrass stolons, 0.1 g was taken after 6 h
of trimming treatment. 0.1 g of nodal sample was taken after 0, 1, 3, 6, 12, and 24 h
upon trimming treatment. Additionally, 0.1 g of nodal sample was taken after exogenous
H2O2, including four treatment levels. Three replicates of each sample were ground to
powder in liquid nitrogen. Total RNA was extracted using the Plant RNA Kit with genomic
DNA enzyme (Vazyme Biotech Co., Ltd, Jiangsu, China), and the RNA concentration
and quality were measured using a NanoDrop microspectrophotometer (Eppendorf,
Barkhausenweg, Germany). Subsequently, 5 µL of RNA was reverse transcribed to obtain
cDNAwith HiScript II 1st Strand cDNA Synthesis Kit with genomic DNA enzyme (Vazyme
Biotech Co., Ltd, Jiangsu, China), which was then employed as a template for qRT-PCR
(Quantitative real-time reverse transcription-PCR, Thermo Fisher Scientific, Waltham,
MA, USA) to detect gene expression using SYBR qPCR Master Mix (Vazyme Biotech Co.,
Ltd, Jiangsu, China).
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Zeatin and sugar measurement
After 24 h of trimming, nodes were collected and freeze-dried in liquid nitrogen, then
stored at −80 ◦C until needed. The dried plant materials were then homogenized and
powdered in a mill.

For zeatin detection, 100 mg of dried powder was extracted with 1.5 mL of a mixed
solution of MeOH: H2O: FA (79.9: 20: 0.1). The extract was vortexed and subjected to
ultrasound for 30 min, then stored at 4 ◦C for 12 h. After centrifugation, supernatants were
collected. The residue was reextracted with one mL of MeOH under ultrasound for 30 min
and centrifuged. The supernatants were combined, evaporated to dryness under a nitrogen
gas stream, and reconstituted in 100 µL of a mixed solution of MeOH: H2O (50: 50).

For sugar detection, 30 mg of dried powder was extracted with a mixed solution of
Ethanol: H2O (80: 20) in a volume of 700 µL. The extract was vortexed and subjected
to ultrasound for 30 min, placed in a 70 ◦C water bath, and kept there for 2 h. Next,
700 µL of chloroform was added and supernatants were collected after centrifugation. The
supernatants were then evaporated to dryness under a nitrogen gas stream and reconstituted
in a mixed solution of ACN: H2O (75: 25) in a volume of 100 µL.

Finally, the solution was filtered through a 0.22 µm filter for further LC-MS analysis.
Phytohormones contents were detected by Guocangjian (http://www.targetcrop.com/)

based on the Sciex 4500 LC-MS/MS platform.

OJIP fluorescence transient test
After trimming the first node of bermudagrass stolon for 6 and 24 h, intact leaves (the two
foremost leaves of the stolon) and the leaves of newly formed tillers were collected in each
treatment, which was repeated six times. The samples to be tested were subjected to the
dark treatment for 30 min before being measured by a chlorophyll fluorimeter (PAM2500).
The leaves of H2O2 exogenous treatment at the four treatment levels were also measured
using a chlorophyll fluorometer (PAM2500) to obtain OJIP fluorescence transient curves.

Starch content determination
After trimming the stem nodes for 0 and 24 h, the leaves of newly formed tillers were
sampled, dried, and weighed (0.5 g). Each treatment was replicated three times. A total of
6–7 ml of 80% ethanol was added to the sample, followed by extraction in a water bath
maintained at 80 ◦C for 30 min before centrifugation. This extraction process was repeated
twice, and the precipitate was collected. Next, 3 ml of distilled water was added to the
precipitate, which was then boiled in a water bath for 15 min. After cooling, 2 ml of chilled
9.2 M perchloric acid was added, and the sample was extracted for 15 min and centrifuged.
The precipitate was then mixed with 4.6 M perchloric acid for 15 min and centrifuged. The
precipitate was washed twice, and combined with centrifugal liquid to make a constant
volume of 50 ml. A total of 1 ml of the extract and 5 ml of anthrone were mixed and shaken
well in a boiling water for 10 min. The mixture was then cooled and the wavelength was
measured at 625 nm with a spectrophotometer to calculate the starch content (Ahamed et
al., 1996).
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H2O2 content determination
After being subjected to trimming treatment for 0, 1, 3, 6, 12, 24, 48 and 72 h, the sample
was weighed at 0.1 g. Subsequently, nine times the volume of PBS (pH 7.0–7.4, 0.1 mol/L)
was added following a weight (g) to volume (mL) ratio of 1:9. The supernatant homogenate
was mechanically shaken under an ice-water bath and collected for determination using a
hydrogen peroxide (H2O2) test kit (Jiancheng, Nanjing, China).

Antioxidant enzyme activity assay
After treatment, 0.25 g of the sample was ground in liquid nitrogen. Subsequently, 4 ml
of phosphate buffer (150 mM, pH =7.0) was added, and the mixture was centrifuged at
12,000 r/min and 4 ◦C for 20 min. The resulting supernatant was considered as the crude
enzyme extract.

The activity of superoxide dismutase (SOD) was measured according to the method
previously described, which was based on the reduction of its inhibition to nitro blue
tetrazolium (NBT) (Dhindsa, Plumb-Dhindsa & Thorpe, 1981). For peroxidase (POD)
activity assay, we followed the procedure outlined by Pütter & Becker (1983). Catalase
(CAT) activity was determined essentially according to the method described by EI-
Moshaty (El-Moshaty et al., 1993). The decrease in H2O2 was monitored at 240 nm and
quantified using the molar extinction coefficient of 36 M−1 cm−1.

RESULTS
Trimming induces tillering in bermudagrass
To determine the effect of trimming on tillering in bermudagrass, we first measured the
tillering process in the main stem and stolon node in response to trimming. Two days after
trimming, a significant difference in tiller count was observed in the main stem compared
to the control group, and this difference became more pronounced as the treatment period
extended. On the 10th day of treatment, the control group had nine tillers while the
trimming group had 13 tillers, representing a 44% increase in tiller generation resulting
from trimming (Fig. 1B). In addition, trimming stimulated the outgrowth of tiller buds
located at the morphologically upper 1st, 2nd, and 3rd nodes of the stolon, with the most
significant effect observed at the 1st node. However, trimming could not promote the
growth of tiller buds at the 4th node (Figs. 1C and 1D).

We further analyzed the dynamic change pattern of the 2nd buds in response to
trimming. It was found that on the second day after treatment, tiller buds appeared longer
compared to the control, and the difference gradually increased with the extension of
treatment time. On the 6th day of treatment, the length of the tiller buds that underwent
trimming treatment was 3.2 times longer than the control (Figs. 1E and 1F). Throughout
the treatment, there was no significant change in the length of tiller buds in intact stolons,
while the length of tiller buds showed an S-shaped growth pattern after trimming. These
results indicated that the sprouting and growth of tiller buds occurred earlier in the
trimming group than in the control group.

After trimming treatment, the marker gene TEOSINTE BRANCHED1 (TB1), which
inhibits bud outgrowth, was down-regulated after 6 h and reached its lowest expression
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Figure 1 Trimming induces tillering in bermudagrass. (A) Phenotype of the effect of trimming on the
main stem tillering. (B) Response of main stem tiller count to changes in trimming time, with asterisks in-
dicating significant differences between intact and trimmed samples by t -test (P < 0.05). (C) Phenotype
of the effect of trimming on the stolon tillering. (D) Changes in length of stolon tiller buds at the 1st, 2nd,
3rd, and 4th nodes after 6 d of trimming treatment, with asterisks indicating significant differences be-
tween intact and trimmed samples by t -test (P < 0.05). (E) Phenotype of the change in the length of tiller
buds at the 2nd node. (F) Response of tiller bud length at the 2nd node to changes in trimming time, with
asterisks indicating significant differences between intact and trimmed samples by t -test (P < 0.05).

Full-size DOI: 10.7717/peerj.16985/fig-1

level at 12 h, indicating a consistent effect of trimming on stolon tiller bud induction
(Fig. 2A). Regarding organ-specific expression, TB1 was significantly down-regulated at
the 2nd and 3rd nodes after 6 h of trimming compared to the control (Fig. 2B).
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Figure 2 TB1 expression dynamics after trimming in stem nodes of bermudagrass. (A) Changes in
TB1 expression over time of trimming, with asterisks indicating significant difference between each trim-
ming time and 0 h by t -test (P < 0.05). (B) Changes in TB1 expression at each stem node after 6 h of
trimming, with asterisks indicating significant differences between intact and trimmed samples by t -test
(P < 0.05).

Full-size DOI: 10.7717/peerj.16985/fig-2

Trimming induced temporal and spatial changes in CKs biosynthesis
Considering that CKs is induced by decapitation and promotes bud outgrowth, we assessed
the changes in CKs biosynthesis in response to trimming. The active form of CKs zeatin
(tZ) accumulated significantly only at the 1st node of the stolon (Fig. 3A). The spatial
expression pattern of the genes related to CKs biosynthesis showed that LONELY GUY1
(LOG1) and ISOPENTYL TRANSFERASE1 (IPT1) and were significantly up-regulated at
the 1st and 2nd nodes 6 h after trimming treatment (Figs. 3B and 3C). We identified 15
cytokinin oxidase/dehydrogenase (CKX) genes in the bermudagrass genome and examined
their temporal response to trimming. Subsequently, we screened the two most promising
genes, CKX10 and CKX12 (Fig. S1). Our results revealed a significant down-regulation of
CKX10 and CKX12 at the 1st-3rd nodes following a 6 h trimming treatment (Figs. 3D and
3E). Furthermore, the time-course expression of these genes at the 1st node showed that
LOG1 was rapidly up-regulated by 3.1 times 1 h after trimming treatment and maintained
this expression level until 12 h after trimming (Fig. 3F). IPT1 was slightly induced at the
early stage of treatment and peaked at 12 h after treatment, showing a 273-fold increase
(Fig. 3G). Meanwhile, CKX10 and CKX12 exhibited a rapid down-regulation of 0.66-fold
and 0.27-fold, respectively, at 1 h after trimming, followed by a sustained downward
trend. (Figs. 4G and 4I). Therefore, our results indicated that trimming stimulated the
accumulation of CKs, which was dependent on the node position.

Next, we investigated the effects of exogenously applied 6-BA, a synthetic cytokinin,
on tiller bud induction. The results demonstrated that the exogenous application of 6-BA
effectively induced tiller buds at the 2nd, 3rd, 4th, and 5th nodes (Fig. S2).
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Figure 3 Altered CKs and cytokinin-related genes in stem nodes of bermudagrass after trimming. (A)
Zeatin content at 1–4 nodes 24 h after trimming. (B, C) Changes in IPT1 and LOG1 at 1–4 nodes 6 h af-
ter trimming, with asterisks indicating significant differences between intact and trimmed samples by t -
test (P < 0.05). (D, E) Changes in CKX10 and CKX12 at 1–4 nodes 6 h after trimming, with asterisks indi-
cating significant differences between intact and trimmed samples by t -test (P < 0.05). (F, G) Changes in
IPT1 and LOG1 over time of trimming, with asterisks indicating significant differences between each trim-
ming time and 0 h by t -test (P < 0.05). (H, I) Changes in CKX10 and CKX12 over time of trimming, with
asterisks indicating significant differences between each trimming time and 0 h by t -test (P < 0.05).

Full-size DOI: 10.7717/peerj.16985/fig-3

Trimming increased the energy allocation towards the tillering
process by enhancing photosynthesis
Since tillering is an energy-consuming process, we sought to investigate whether
photosynthesis played a role in the response to trimming by measuring various
photosynthesis-related parameters. Leaves of plants show a characteristic polyphasic Chl a
fluorescence induction curve under high intensity continuous light illumination, termed
as the OJIPSMT transient. The OJIP fluorescence transient curve exhibited an elevation at
both 6 and 24 h after trimming, with a more pronounced enhancement observed at 24 h
compared to 6 h (Fig. 4A). To further study the effect of trimming on the photosynthetic
system, we derived additional parameters through the JIP test (Table S2). It is evident
that some parameters were enhanced after treatment. Notably, basic photosynthetic
parameter (Mo), quantum yield parameter (ϕEo) and efficiency parameter (9o), as well
as performance index PIcs (P<0.01) showed highly significant differences after 6 h of
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Figure 4 Effect of trimming on photosynthesis and sugar content in bermudagrass. (A) Effects of trim-
ming on OJIP fluorescence transients in newly formed tiller leaves. (B) Changes in sucrose content in
newly-formed tiller leaves after 24 h of trimming. (C) Changes in starch content in newly-formed tiller
leaves after 24 h of trimming. An asterisk (*) indicates significant differences between intact and trimmed
samples, as determined by t -test (P < 0.05).
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trimming. The performance indices PIABC, PITotal, and PIcs, which provide a more accurate
reflection of the photosynthetic state, also increased after trimming as seen in Table S2.

Sucrose is the end product of photosynthesis, and starch serves as the primary storage
form of photosynthates. In line with the increased potential for photosynthesis, there was
a 44.28% increase in sucrose content (Fig. 4B) and a 57.77% increase in starch content
(Fig. 4C) in the leaves of newly formed tillers following trimming.

We further studied the effect of trimming on sugar levels in stolon nodes by analyzing
both the sugar content and expression level of the sucrose biosynthesis gene, sucrose
phosphate synthase (SPS). Our findings indicated that sucrose and glucose content
significantly increased at the 3rd and 4th nodes (Figs. 5A and 5B), with fructose content
notably higher at the 3rd node compared to the control (Fig. 5C). Moreover, SPS was
significantly up-regulated at the 1st, 2nd, and 3rd nodes of the stolon compared to the
control 6 h after trimming treatment (Fig. 5D). The time-course expression analysis of
SPS at the 3rd node revealed that it was up-regulated starting from 3 h after trimming,
reaching its peak at 12 h (Fig. 5E). Furthermore, exogenously spraying sucrose induced the
formation of tiller buds (Fig. S2).
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H2O2 facilitated trimming-induced tillering by enhancing
photosynthesis
Given the role ofH2O2 in controlling bud outgrowth, we examined its response to trimming
and its effect on tillering. Our findings indicated that H2O2 levels in both the clipped leaves
and newly-formed tillering leaves increased rapidly within 1 h of trimming and remained
elevated for 24 h. At 48 h after treatment, H2O2 levels in the leaves of newborn tillers
decreased to a level below that of the control and did not increase (Fig. 6A). Moreover, the
exogenous application of H2O2 resulted in a 1.7-fold increase in the number of tillers in
intact plants (Figs. 6B and 6C). Trimming stimulated tillering, which was further enhanced
by the application of H2O2.

Chlorophyll fluorescence in the leaves of the newly-formed tillers was measured. The
exogenous application of H2O2 led to an increase in the values represented by the OJIP
curve for the leaves of untrimmed-plants, and the enhancing effects of trimming on the
OJIP curve were further amplified by the application of H2O2 (Fig. 7A). Consistently, the
application of exogenous H2O2 to intact plants resulted in a 1.48-fold increase in sucrose
content, which was further increased by 1.55-fold upon trimming (Fig. 7B). Similarly,
exogenous H2O2 increased starch content in intact plants, with the highest starch content
observed in the trimming+H2O2 treatment group, showing a 1.41-fold increase compared
to the trimming treatment group (Fig. 7C).

The dual role of H2O2 in regulating plant growth prompted us to assess the antioxidant
capacity of plants treated with H2O2. Interestingly, the activities of SOD, POD, and CAT
were enhanced by both trimming and exogenous H2O2 after 24 to 72 h of trimming
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treatment. Importantly, exogenous H2O2 further enhanced the antioxidant enzymes
activity triggered by trimming after 48 h of exogenous treatment (Figs. 8A–8C).

Our results showed that bothCKs andH2O2 promoted bermudagrass tillering. Therefore
we considered about interplay of CKs and H2O2 in regulation of tillering after trimming.
Exogenous H2O2 promotes the up-regulation of CKs biosynthetic genes IPT1 and LOG1 in
intact plants. The trimming+ H2O2 treatment exhibited the strongest up-regulation trend,
being 1.39-fold and 0.96-fold higher than the trimming treatments, respectively (Figs. 9A
and 9B). RegardingCKX10 andCKX12, these genes were significantly down-regulated after
exogenous H2O2 treatment in intact plants, with trimming+ H2O2 showing a 0.52-fold
and 0.12-fold decrease compared to the trimming group (Figs. 9C and 9D).

DISCUSSION
Trimming triggered tillering in bermudagrass by inducing cytokinin
The development and growth of tillers have a significant impact on the overall growth
of plants. Currently, decapitation has been demonstrated to induce tiller formation in
many species such as pea, Arabidopsis, and rose (Morris et al., 2005; Tatematsu et al.,
2005;Mason et al., 2014). However, there are fewer studies on the effect of decapitation on
perennial herbs. In barley, simulated grazing through clipping revealed that a certain degree
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of clipping could increase the number of tillers (Yuan, Li & Yang, 2020). This finding is
consistent with our results, which indicate that trimming promotes tillering in the main
stem and tiller bud development in the stolon node (Fig. 1).
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BRC1/TB1 is considered a key transcription factor for inhibiting lateral bud outgrowth.
Multiple pathways regulating branching and tillering converge to regulate the expression of
BRC1/TB1 (Takeda et al., 2003; Minakuchi et al., 2010). In a previous study conducted on
bermudagrass, the transcriptional level of BRC1/TB1 was found to be negatively correlated
with tiller capacity (Zhang & Liu, 2018). We observed significant inhibition of this gene at
the 2nd and 3rd nodes of bermudagrass stolon after trimming treatment (Fig. 2B). These
results suggest that TB1 may play a role in the trimming-induced tillering at specific node
positions.

The development of tillers/branches and their formation process are regulated by
interactions between multiple plant hormones. The accumulation of CKs in lateral buds
and stems, as well as the expression of related genes, reflects the important role of CKs
in regulating lateral bud outgrowth (Young et al., 2014). Rapid accumulation of CKs
in stem nodes and axillary buds has also been observed in pea (Cao et al., 2023) and
rose (Roman et al., 2016) after decapitation. Moreover, decapitation induces transient
expression of CKs biosynthetic genes IPT and LOG (Cao et al., 2023; Tanaka et al., 2006).
While deactivation of cytokinin is the sole responsibility of the enzyme called cytokinin
oxidase/dehydrogenase, CKX (Jiang et al., 2016). Reducing CKX expression promotes
the accumulation of CKs in organs, it demonstrated in rice (Ashikari et al., 2005) and
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barley (Zalewski et al., 2010). Some studies also shown that exogenous application of CKs
oxidase/dehydrogenase inhibitors in winter wheat and spring barley increased the CKs
activity (Nisler et al., 2021). In our study, both CKs content and its biosynthetic genes were
found to increase only at the 1st node after trimming. The CKX gene was significantly
down-regulated at 1st to 3rd node (Fig. 3). This is consistent with findings in pea, where
CKs levels were significantly enhanced at the upper nodes after decapitation (Cao et al.,
2023). Therefore, trimming enhances CKs accumulation in bermudagrass stolons and the
accumulation of CKs induced by trimming may depend on the distance from the site of
trimming.

Trimming enhanced energy supply during the tillering process
Regrowth and tillering after trimming require sufficient energy supply to the newly
formed tillers (Barbier et al., 2019). We observed an improvement in the photosynthetic
rate of bermudagrass after trimming, with photosynthetic products accumulating in
the leaves (Fig. 4). This result suggests that trimming can promote the accumulation
of energy metabolites for tiller production. Our finding is consistent with the results of
studies on tea trees, where enhanced photosynthetic performance contributed to bud
growth (Yue, Wang & Yang, 2021). Light and sucrose serve as signals and energy sources
for bud growth, thereby regulating plant growth and development. Moreover, sugars
(photosynthates) act as signalingmolecules to induce axillary buddevelopment (Signorelli et
al., 2018). Decapitation is a means to rapidly induce sugar signal transduction and promote
axillary bud release (Mason et al., 2014). Decapitation induces axillary bud development
by reducing competition for sugars in the apical bud, leading to an accumulation of sugars
in the axillary buds and thus triggering a series of pathways that induce axillary bud
germination. In tobacco, the expression of sucrose biosynthesis genes, SPS and sucrose
phosphate phosphatase (SPP), is up-regulated after topping (Wang et al., 2018). Similarly,
after the topping of chrysanthemums, the expression levels of sucrose carriers (SUCs) and
Sugars Will Eventually be Exported Transporters (SWEETs) increased (Sun et al., 2021).
Meanwhile, the sucrose content increased significantly after trimming (Mason et al., 2014).
Our results also showed significant up-regulation of the SPS gene and accumulation of
sugar content at the 3rd and 4th nodes (Fig. 5), suggesting the potential role of sugar in
trimming-induced bud development.

H2O2 contributed to trimming-induced tillering by enhancing
photosynthesis and antioxidant capacity
ROS, particularly H2O2, have been demonstrated to be important regulators of bud
outgrowth. Studies have shown that H2O2 levels remain high in the dominant bud (Chen
et al., 2016; Porcher et al., 2020). In rosebush, the H2O2 content was found to gradually
decrease only in the buds and not in the neighboring stems after decapitation, suggesting
that local changes in H2O2 content were not a result of a systematic response to wounding
(Porcher et al., 2020). On the contrary, the H2O2 content showed a continuous increase in
both the clipped leaves and the adjacent intact leaves in the newly formed tillers (Fig. 6A),
suggests that trimming-induced tillering is accompanied by early H2O2 accumulation. This
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result contradicts previous research and suggests that trimming may result in a wounding
response in bermudagrass.

Exogenous application of H2O2 has been shown to severely reduce bud outgrowth
in tomato and rosebush by increasing the H2O2 levels (Chen et al., 2016; Porcher et al.,
2020). However, we obtained opposite results in our study, where exogenous H2O2

was found to promote tillering after trimming in bermudagrass (Figs. 6B and 6C).
Nevertheless, the fact that bud outgrowth requires a reduced status led us to consider
the effects of H2O2 on antioxidant capacity. Studies have shown that activation of the
H2O2 scavenging system, such as an increase in glutathione (GSH) level, is linked to
greater bud outgrowth. Furthermore, pretreatment with H2O2 has been shown to enhance
antioxidant-related enzyme activity and improve stress resistance (Guler & Pehlivan, 2016;
Sathiyaraj et al., 2014). Additionally, grazing in sheepgrass has also been shown to increase
the expression of antioxidant-related genes (Huang et al., 2014). These findings indicate
that early burst of H2O2 enhances the antioxidant enzyme activities induced by trimming,
which is consistent with our results (Fig. 8). Additionally, we observed that hydrogen
peroxide improved the photosynthetic properties of bermudagrass and increased the
accumulation of energetic substances (Fig. 8). This aligns with previous studies that have
shown exogenous H2O2’s ability to restore photosynthetic efficiency in tomato (Nazir,
Hussain & Fariduddin, 2019) and increase sugar and starch content in melons (Ozaki et
al., 2009). Moreover, H2O2 further upregulated the genes related to CKs biosynthesis and
downregulated its degradational genes under trimming condition. These findings imply an
integration between H2O2 and CKs in inducing tillering of bermudagrass. Taken together,
it is possible that H2O2 acts as a second messenger, rather than an oxidized molecular, in
response to trimming, helping to maintain the redox status and enhance energy supply
during tiller growth. Our findings suggest that the role of H2O2 in controlling tillering in
trimming-tolerant bermudagrass differs from its regulatory role in bud outgrowth in other
species.

CONCLUSION
Trimming has become an essential part of bermudagrass lawn management. Our study
suggests that, similar to decapitation in other species, trimming-induced tillering is
accompanied by the inhibition of TB1 expression and the accumulation of CKs in nodes.
Trimming promotes energy supply to the regrowth of newly formed tillers by enhancing
photosynthesis. H2O2 responds rapidly to trimming, and exogenous application of H2O2

increases the number of tillers in bermudagrass. H2O2 not only enhances photosynthetic
potential and energy reserves, but also primes antioxidant enzymes to maintain the redox
status of newly formed tillers. Meanwhile, it affects the expression of CKs-related genes.
Therefore, H2O2 appears to be a second messenger that relays trimming-related signals
and stimulates regrowth after trimming (Fig. 10).
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Figure 10 Signaling pathway of trimming-induced tillering in bermudagrass. Trimming induces CKs
production in axillary buds, promoting their growth and activating the H2O2 mechanism. Moreover, this
helps enhance the photosynthesis and accumulation of energetic material, while also increasing antioxi-
dant enzyme activity to maintain the redox state of bermudagrass and promote tiller formation. It also can
stimulate the up-regulation of CKs biosynthetic genes IPT and LOG, inhibited the expression of the cy-
tokinin catabolic gene CKX, which affected the tillering state of bermudagrass after trimming.
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