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ABSTRACT
Background. Wheat (Tritium aestivum L.) production is critical for global food
security. In recent years, due to climate change and the prolonged growing period of
rice varieties, the delayed sowing of wheat has resulted in a loss of grain yield in the
area of the middle and lower reaches of the Yangtze River. It is of great significance to
screen for natural germplasm resources of wheat that are resistant to late sowing and
to explore genetic loci that stably control grain size and yield.
Methods. A collection of 327 wheat accessions from diverse sources were subjected
to genome-wide association studies using genotyping-by-sequencing. Field trials were
conducted under normal, delayed, and seriously delayed sowing conditions for grain
length, width, and thousand-grain weight at two sites. Additionally, the additive main
effects and multiplicative interaction (AMMI) model was applied to evaluate the
stability of thousand-grain weight of 327 accessions across multiple sowing dates.
Results. Four wheat germplasm resources have been screened, demonstrating higher
stability of thousand-grain weight. A total of 43, 35, and 39 significant MTAs were
determined across all chromosomes except for 4D under the three sowing dates,
respectively. A total of 10.31% of MTAs that stably affect wheat grain size could be
repeatedly identified in at least two sowing dates, with PVE ranging from 0.03% to
38.06%. Among these, six were for GL, three for GW, and one for TGW. There were
three novel and stable loci (4A_598189950, 4B_307707920, 2D_622241054) located in
conserved regions of the genome, which provide excellent genetic resources for pyramid
breeding strategies of superior loci. Our findings offer a theoretical basis for cultivar
improvement and marker-assisted selection in wheat breeding practices.

Subjects Agricultural Science, Bioinformatics, Genetics, Molecular Biology, Plant Science
Keywords Wheat, Sowing dates, Grain size, Stability, Genome-wide association study, Breeding

INTRODUCTION
One of the world’s most staple and widely consumed crops, wheat (Triticum aestivum L.)
is essential for food security around the world. Wheat breeding has undergone several
stages, including disease resistance breeding (Wang et al., 2020), semi-dwarf breeding
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(Peng et al., 1999), and high yield and quality breeding (Zhang et al., 2022), as a result,
vital gains have been made. Despite the area harvested remaining unchanged, the global
wheat yield increased from 27,316 hg/ha in 2000 to 34,919 hg/ha in 2021 (FAO 2022,
https://www.fao.org/faostat/en/). In recent years, however, the growth of yield per unit area
has gradually slowed down in each wheat-producing country and increasingly narrower
genetic basis of wheat germplasms, wheat breeding has entered the climbing stage (Li et
al., 2019; Yan et al., 2019). A key factor in meeting consumption demand will be how to
increase production in the face of population growth, urbanization, and climate change.

Grain size is an important factor that directly affects both yield and quality in wheat,
which is quantified by grain shape and weight. Increasing grain size is therefore one
efficient method to increase yield and improve end-use efficiency of wheat (Gupta et
al., 2020; Xin et al., 2020). Recently, many studies have characterized the wheat grain
size and multiple QTLs or genes have been found using different mapping strategies. A
QTL (QTKW.caas-5DL) for thousand-grain weight was identified and validated in a RIL
population of Doumai/Shi4185, which explained 12.5–17.4% of the phenotypic variance
and was fine mapped into an approximate 3.9 Mb physical interval on chromosome 5D
(Song et al., 2022). A QTL cluster with the largest PVE (phenotypic variance explanation)
of 21.2% for thousand-grain weight was detected on chromosome 4B (Yang et al., 2022).
Qgl1.hau.1B, a stable QTL for grain length with the PVE of 7.67%–14.45%, was fine
mapped into a 0.98-Mb physical interval. The causal gene TaGL1-B1 encodes carotenoid
isomerase and overexpression of which can enhance grain length through interaction with
TaPAP6 (Niaz et al., 2023). KL-PW is a major grain length gene at the P1 locus in Polish
wheat, which encodes a MIKC-type MADS-box protein and significantly increased grain
length of wheat (Chai et al., 2022). The PGS1 basic helix-loop-helix protein regulates
Fl3 to affect grain development in both wheat and rice. TaPGS1 overexpression altered
expression levels of genes that are related to seed development and increased grain size
and weight (Guo et al., 2022). In addition, several other genes controlling wheat grain
size were isolated by homology cloning, such as TaGW2 (Su et al., 2011; Lv et al., 2022),
TaD11-2A (Xu et al., 2022), TaTGW6 (Hanif et al., 2016).

Wheat grain size-related traits are complex quantitative traits that tend to be sensitive
to environments, whereas climate is the biggest individual driver contributing to agricul-
tural production variability (Gupta et al., 2020). With the changing climate, rainy weather
frequently appears in the area of the middle and lower reaches of the Yangtze River,
resulting in wheat sowing dates being delayed. Late sowing results in a decrease in wheat
yield, with an estimated reduction of 50–60 kg/mu. In cases of severe late sowing, the yield
reduction can exceed 30%. The sowing date mainly regulates individual development and
population formation by affecting the pre-winter accumulated temperature. On the other
hand, late-sown wheat is vulnerable to high temperatures during its late growth stage,
especially during filling. As it generally flowers late, this results in the grain filling period
overlapping with period of high temperature and water stress, which can drastically
reduce the final yield and affect grain quality (Ahmed & Fayyaz-ul Hassan, 2015). From
economic and environment-friendly viewpoints, therefore, one of the most important
objectives of modern wheat breeding programs is to screen wheat genotypes with stable

Hong et al. (2024), PeerJ, DOI 10.7717/peerj.16984 2/18

https://peerj.com
https://www.fao.org/faostat/en/
http://dx.doi.org/10.7717/peerj.16984


yields and wide adaptation to diverse environments. In the meantime, identifying loci
that stably control grain size under late-sown stressed conditions will also become an
important research topic. Stable MTAs identification can provide a foundation for
exploring candidate genes, gaining further insights into the molecular mechanisms behind
crop yield formation and environmental responses. Additionally, it can offer genetic
resources for marker-assisted selection for stable-yield breeding.

Natural populations are rich in genetic resources, making them a powerful tool for
identifying natural variations and superior alleles. In this study, a collection of 327 wheat
accessions from different sources were used to characterize grain size in three sowing
dates at multiple sites. The AMMI model combined with genome-wide association
analysis enabled us to screen stable germplasm resources and identified several loci that
stably control grain size under late-sown stressed conditions. Our results will provide a
theoretical basis for wheat breeding with high and stable yields.

MATERIALS & METHODS
Plant materials and field trials
A collection of 327 wheat accessions of Chinese and foreign origin, including cultivars,
breeding lines, and landraces, was used in this study (Table S1). To evaluate the perfor-
mance of wheat grain size and late sowing tolerance (late sowing can make wheat more
susceptible to pre-winter freezing damage and high temperature stress during the filling
period), field trials were conducted in Yangzhou (YZ, 32◦N, 119◦E) and Yancheng (YC,
33◦N, 120◦E) under three different sowing dates, namely stage I (27 October, normal
sowing), stage II (10 November, delay), and stage III (24 November, seriously delay).
Yangzhou and Yancheng are located in distinct regions of the same wheat ecological zone,
both ensuring the normal growth of wheat in practice. The environmental conditions
of Yangzhou and Yancheng exhibit some notable differences. Compared to Yangzhou,
Yancheng is located closer to the Yellow Sea, with lower average annual temperatures
and rainfall. For each sowing date, all accessions were grown in rows 0.6m long and 0.3m
apart at a sowing rate of 12 seeds per row according to randomized complete blocks
with three replications. Therefore, each repeated block consists of 327 rows with an
approximate area of 80 m2. Two sites adopt the same experimental design. Irrigation and
management at each site followed local practices.

Phenotype evaluation and statistical analysis
Five plants with consistent growth of each accession were bulk-harvested and threshed
after full maturation. Phenotypic evaluation of wheat grain size, including thousand-
grain weight (TGW), width (GW), and length (GL), was conducted on a 200–300
grain subsample using a digital imaging system (WSeen SC-G automatic seed selection
and thousand grain weight analysis system). All cracked grains were removed before
measurement to exclude trial errors.

SPSS software v21.0 (IBM SPSS, Armonk, NY, USA) was used for descriptive statistical
analysis, analysis of variance (ANOVA), and Pearson correlation analysis. Linear mixed
models for multi-environment trial (MET) were performed in the R package ‘‘lme4’’ to
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obtain the best linear unbiased prediction (BLUP) of grain size under each sowing date
by combining field trail data from Yangzhou and Yancheng (Bates et al., 2015). Genotype
and site were considered random effects.

The AMMI model combines analysis of variance and principal component analysis
into a unified approach, incorporating the strengths of both methods. Currently, it has
been widely used in regional yield analysis for important crops such as rice, maize, barley,
canola, and soybeans. To evaluate the stability of wheat grain size, TGW in six different
environments of sites and sowing dates combination was analyzed by AMMI model in the
R package ‘‘Agricola’’. Firstly, the significance of genotype-by-environment interactions
(GEI) was determined by ANOVA. Then, principal components that reached significant
level in interactions (IPCAs) were selected by principal component analysis and their
contribution rates were also analyzed. Finally, the stability parameter D (the Euclidean
distance between the point of accession and the origin in the principal component space
of interactions) was introduced to evaluate the stability of each accession on TGW. The
detailed model and formula derivation referred to Pan et al. (2022).

SNP calling and Genotyping
To genotype this wheat population (327 accessions), genotyping-by-sequencing strategy
(Wallace & Mitchell, 2017) was performed by Novogene Co., Ltd. Pooled libraries were
sequenced using Illumina Hiseq PE150. In total, 601Gb of clean data were obtained,
with an average of 1.8Gb for each accession. The average sequencing depth of GBS tags
was 7.61 x. After quality control, high-quality reads were aligned to the wheat genome
(Chinese Spring genome v2.1) using the Burrows-Wheeler Aligner (Li & Durbin, 2009;
Zhu et al., 2021). In this study, SNPs with minor allele frequency (MAF) ≤ 5% and
missing rate ≥ 20% were excluded. As a result, a total of 69,441 high-quality SNPs were
obtained at the genome-wide level.

Population genetics
To obtain a comprehensive understanding of the population structure in this study, we
applied two distinct approaches based on 69,441 SNPs, namely the clustering algorithm
ADMIXTURE and principal components analysis (PCA). Admixture clustering of
individuals was performed with genetic clusters predefined as K = 1 to 10 in the software
Admixture (Alexander, Novembre & Lange, 2009). Maximum likelihood estimates were
generated for each accession derived from each of the K populations, and the cross-
validation error (CV_error) was used to identify the best K value. PCA was performed
in the software GCTA to characterize the genetic relationships among accessions in
this population and validate the divided subgroups from the clustering algorithm
ADMIXTURE (Wang et al., 2021).

The vcftools software was utilized to measure the nucleotide diversity (5) of the wheat
population for each chromosome and the genetic differentiation index (Fst) between
different subgroups, using a sliding-window approach with 10 Mb windows sliding in
5 Mb steps (Danecek et al., 2011). Linkage disequilibrium (LD) was estimated as the
correlation coefficient (r2) for all pairs of SNPs within 20 Mb using PopLDdecay software
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(Zhang et al., 2019). LD decay curves for each subgenome were determined by graphing r2

values against the physical distance.

GWAS for wheat grain size under normal and late-sown stressed
conditions
GWAS was performed using a FarmCPU model incorporating population structure in the
R program ‘‘rMVP’’ (Yin et al., 2021). BLUP values of grain size were used as the overall
performances of the 327 wheat accessions. The genome-wide significance thresholds
(8.89× 10−5) were determined using a uniform threshold of 1/n, where n is the effective
number of independent SNPs calculated using the Genetic type 1 Error Calculator (Li et
al., 2012). The phenotypic variance explanation (PVE) of SNPs that exceeded the LOD
threshold was examined by the R function ‘‘aov()’’ and the Pearson correlation coefficient
(r) between trait values and stable MTAs was also calculated using Excel 2021. MTAs
repeatedly detected under at least two individual sowing dates were considered to be
stable in this study.

RESULTS
Phenotypic variation of wheat grain size under normal and late-sown
stressed conditions
Phenotypic variability of the 327 wheat accessions was observed in all the field trials, as
showed in a statistical table (Table S2) and frequency distribution plots (Figs. 1A and
1B). Among the three traits related to grain size, TGW had the highest coefficient of
variation. Moreover, the coefficient of variation for TGW in YC (17.44%–20.50%) was
higher than that in YZ (15.97%–17.43%) under different sowing dates. Late-sown stressed
conditions could affect the distribution of each trait. With the sowing date being delayed,
the average TGW decreased, but alterations of GL and GW varied across sites. ANOVA
results showed significant variations among genotypes, sites, sowing dates, genotype-by-
site interactions, and genotype-by-sowing date interactions for all three traits measured
(Table 1). TGW, GL, and GW were highly positively correlated with each other and the
significances were not affected by sites or sowing dates (Figs. 1C and 1D).

Stability analysis of TGW
TGW is a crucial indicator of grain yield, as it more directly reflects the final yield com-
pared to GL and GW. The ANOVA was proceeded to look at genotype-by-environment
interactions of TGW and the result demonstrated a significant GEI effect, emphasizing the
utility of AMMI analysis in identifying stable genotypes. A total of five IPCAs that reached
significant level were extracted by principal component analysis. The contribution rate
of each IPCA was 31.95% (IPCA1), 28.90% (IPCA2), 17.03% (IPCA3), 13.51% (IPCA4),
and 8.61% (IPCA5) (Table 2). Based on the contribution rates and scores of these IPCAs,
the stability parameter D was calculated for each accession and subsequently sorted in
ascending order (Table S1). As shown on the biplot, D value referred to the distance
between accession and origin (Fig. S1). Among the 327 wheat accessions, four accessions
with low D values (<0.10) were screened, including Nonglin46, Ningmai23, Ningmai19,
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Figure 1 Frequency distribution and Pearson’s correlation coefficients between grain size-related
traits under different sowing dates at YZ (A, C) and YC (B, D) sites. Asterisks (* and **) represent the
significance at 0.05 and 0.01 level, respectively. YZ and YC represent Yangzhou and Yancheng, respec-
tively. stage I, stage II, and stage III represent normal, delayed, and seriously delayed sowing conditions,
respectively. GL, GW, and TGW represent grain length, grain width, and thousand-grain weight, respec-
tively.

Full-size DOI: 10.7717/peerj.16984/fig-1

and Yangmai3, which exhibited good resistance to late-sown stressed conditions.
Interestingly, out of the four screened varieties, three of them originate from the area of
the middle and lower reaches of the Yangtze River in China, where the sowing date of
wheat is prone to delays due to rainy weather frequently appearing. This outcome suggests
that the breeding practices in this region are specifically designed for local conditions,
and these main popularized varieties can be used for improvement of late sowing tolerant
varieties in other regions.

Population structure, linkage disequilibrium, and molecular diversity
In this study, all the accessions were initially divided into genetic clusters labeled as K,
ranging from 1 to 10, in order to elucidate the population structure. A notable inflection
point at K = 2 was clear in the cv_error graph, and cv_error values decreased slowly
without any discernible valleys as the K increased, suggesting that genetic exchanges
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Table 1 Analysis of variance for wheat grain size.

Source df Mean of squares TGW

TGW GL GW

Genotype 326 753.45** 2.84** 0.71**

Site 1 6631.95** 2.40** 9.25**

Sowing date 2 3961.51** 0.39** 1.30**

Genotype× Site 326 37.19** 0.12** 0.06**

Genotype× Sowing date 652 22.02** 0.12** 0.03**

Site× Sowing date 2 2841.02** 0.98** 4.23**

Genotype× Site× Sowing date 652 22.05** 0.11** 0.04**

error 3880 1.82 0.05 0.02

Notes.
** The significance at 0.01 level.

Table 2 PCA of genotype-by-environment interactions of TGW.

Source df Mean of squares Contribution rates (%)

Genotype× Environment 1630 25.10**

IPC1 330 38.49** 31.95
IPC2 328 35.02** 28.90
IPC3 326 20.76** 17.03
IPC4 324 16.57** 13.51
IPC5 322 10.63** 8.61

Notes.
** The significance at 0.01 level.

occur frequently within this population (Fig. 2A). At K = 2, individuals were divided
into two relatively separated subgroups based the degree of artificial selection, which
was also reflected by discrete clusters in the PCA plot (Figs. 2B and 2C). Subgroup
1 comprised nearly all landraces, whereas subgroup 2 mainly consisted of modern
cultivated varieties (Table S1). At K = 3, the landrace subgroup remained unchanged,
while finer subdivisions could be observed within the subgroup of modern cultivated
varieties, which to some extent corresponded to agro-ecological regions (Figs. 2B and
2D).

Genome-wide linkage disequilibrium analysis revealed the slowest LD decay and
longest LD distance for the A subgenome, while the D subgenome exhibits the opposite
trend (Fig. 2E). The mean Fst estimate between subgroup 1 (landraces) and subgroup 2
(cultivars) was 0.28 and high genetic differentiation could be observed at whole genome
level. In comparison to the D genome with a5 value of 2.89E-07, A (2.42E-06) and B
(2.32E-06) genomes showed extensive nucleotide diversity (Fig. 3). Notably, certain
segments of the genome displayed low degree of genetic differentiation among subgroups
and overall genetic diversity (especially on the D subgenome), indicating that these
segments may contain a significant number of repetitive sequences or have been relatively
conserved during the process of selection and domestication. In contrast, other segments
showed a higher degree of differentiation among subgroups despite low overall nucleotide
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diversity (at 100–150 Mb on chromosome 3A), suggesting that strong selection occurred
during wheat breeding in these regions.

Marker-trait associations
Genome-wide association studies of wheat grain size identified 43, 35, and 39 MTAs
under three sowing dates, respectively, across all chromosomes except for 4D in this
study. The repeatedly identified MTAs include a set of MTAs that were detected under
late-sown stressed conditions, showing consistency with normal-sown conditions, as well
as a set of MTAs that were specifically and repeatedly detected under late-sown stressed
conditions. We referred to these MTAs as stable loci.

Under normal sowing condition (stage I), a total of 43 significant MTAs were detected
to associate with grain size, including 16 for GL, 13 for GW, and 13 for TGW (Fig. S2,
Table S3). For GL, the range of LOD value for each MTA was between 4.05–6.94. Seven
MTAs exhibited PVE of less than 1%, indicating minor effects. However, three MTAs
located on the 2D and 3D chromosomes exhibited major effects, explaining 13.10%
(2D_587607700), 11.71% (2D_622241054), and 13.49% (3D_170207472) of the PVE,
respectively. For GW, the PVE ranged from 0.01% to 22.80%, with five MTAs displaying
significant major effects, explaining 22.80% (1B_587916353), 12.88% (3A_152168836),
12.07% (3B_487351200), 19.14% (5A_691891912), and 17.10% (6D_450824747) of the
PVE, respectively. For TGW, most of the significant MTAs detected exhibited major
effects, except for 2D_309856702 (1.57%), 3B_459942548 (3.50%), 5B_688598683
(0.01%), and 6A_584257945 (9.71%).
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Under delayed sowing condition (stage II), a total of 35 significant MTAs were detected
that are related to grain size, with 13 MTAs affecting GL, 9 MTAs affecting GW, and 13
MTAs affecting TGW (Fig. S3, Table S4). For GL, the LOD values of each significant MTA
ranged from 4.29 to 14.75, with PVE ranging from 0.30% to 21.03%. Among them, six
MTAs explained a relatively high PVE, namely 2D_622241054 (12.92%), 4A_598189950
(15.86%), 5B_473824350 (12.51%), 6B_619025969 (13.34%), 6B_661282224 (21.03%),
and 7D_524516821 (17.27%). For GW, the LOD range of MTAs is between 4.03–9.76, out
of which four MTAs exhibited major effects and accounted for 24.99% (1A_405294165),
10.04% (2B_610553852), 16.80% (4B_622203495), and 38.06% (5A_31907623) of
PVE, respectively. As for TGW, most loci had PVE less than 10%, and only three MTAs
located on chromosomes 4A, 6A, and 7A exhibited major effects, accounting for 18.55%
(4A_22859078), 10.09% (6A_584257945), and 18.70% (7A_607804063) of PVE, respec-
tively.

Under seriously delayed sowing condition (stage III), a total of 39 significant MTAs
were detected, with 13 each for GL, GW, and TGW (Fig. S4, Table S5). As for GL, the PVE
of each MTA ranged from 0.23% to 21.66%. Among them, six MTAs had major effects,
including 1B_558317639 (14.50%), 2A_712168308 (13.00%), 2D_622241054 (12.94),
4A_598189950 (14.79%), 5A_451968303 (15.71%), 6B_661282224 (21.66%). For GW,
five MTAs showed major effects and could explain PVE of 15.13% (1B_466412697),
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Table 3 Repeatedly identified SNP for grain size under normal- and late-sown stressed conditions.

Traits SNP Chromosome Position(bp) Ref Alt Sowing dates LOD PVE(%) Correlation

2A_612223880 2A 612223880 T C Stage I and III 4.98–5.98 0.26–0.54 0.05–0.07
2D_622241054 2D 622241054 G T Stage I, II, and III 6.94–14.75 11.71–12.94 0.34–0.36
4A_598189950 4A 598189950 T C Stage II and III 5.44–5.46 14.79–15.86 (−0.38)–(−0.40)
4B_307707920 4B 307707920 G A Stage I, II, and III 4.05–5.58 5.93–7.06 0.24–0.27
6B_661282224 6B 661282224 A G Stage II and III 5.10–6.80 21.03–21.66 (−0.46)–(−0.47)

GL

7A_13137024 7A 13137024 A G Stage II and III 4.52–4.63 1.53–1.72 0.12–0.13
4A_678723323 4A 678723323 G A Stage I and II 4.10–4.66 2.43–2.56 0.15–0.16
5A_31907623 5A 31907623 A G Stage II and III 4.81–5.50 35.86–38.06 (−0.60)–(−0.62)GW

5B_42550541 5B 42550541 C T Stage II and III 4.03–8.74 0.03–0.72 0.02–0.08
TGW 6A_584257945 6A 584257945 G A Stage I, II, and III 4.20–8.68 9.71–10.10 0.31–0.32

Notes.
A minus sign (−) preceding correlation coefficient indicates negative correlation.

25.70% (1B_682158610), 35.86% (5A_31907623), 11.59% (7B_658023779), and 29.70%
(7D_524516821) respectively. For TGW, the LOD of MTAs ranged from 4.12 to 11.84. Six
MTAs could explain over 10% of PVE, namely, 2B_11347661 (10.08%), 2D_316459408
(11.14%), 5B_541942664 (11.26%), 6A_584257945 (10.10%), 6B_552167191 (10.09%),
and 7A_620653950 (15.92%).

Based on the consistent identification of linkage SNP, multiple loci can be repeatedly
identified at two or three sowing dates (Table 3). The correlation coefficient (r) between
genotype and phenotype ranged from 0.05 to−0.47 (the minus sign denotes a negative
correlation). Stable loci for GL located on chromosomes 2A, 2D, 4A, 4B, 6B, and 7A.
Among these, 4B_307707920 was detected in all cases and exhibited stable r values, de-
spite not being the major effector. Furthermore, four loci were exclusively detected under
late-sown stressed conditions. Interestingly, three of them exhibited r values exceeding
0.35. Stable loci for GW located on chromosomes 4A, 5A, and 5B. 4A_678723323 and
5B_42550541 had lower r values under the first two and last two sowing dates, respec-
tively, while 5A_31907623 had higher r values under the last two dates. Only a single locus
was repeatedly detected to be associated with TGW in all cases, which had stable r values
and showed major effects under late-sown stressed conditions. The identification of these
stable MTAs provides preliminary genomic positions for the subsequent exploration of
genes related to wheat adaptation to the challenging environment.

DISCUSSION
Effects of sowing dates on wheat growth and development
In recent years, the extended growth period of rice varieties and the frequent occurrence
of rainy weather have resulted in a progressively delayed sowing period of wheat in eastern
China, especially across mid-lower reaches of the Yangtze River (Han et al., 2019). Effects
of sowing dates on the growth and development of wheat are primarily manifested in
the pre-winter freezing damage and the high-temperature-forced ripening during the
grain-filling stage. As wheat grows, it exhibits degrees of sensitivity to temperatures during
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different growth stages (Slafer & Rawson, 1995). If wheat is sown on schedule, a sudden
spring cold may result in freezing damage to the vigorously growing wheat seedlings with
high accumulated temperature before winter (Basheir et al., 2023). During the grain-
filling stage, heat stress will result in forced ripening, thereby a decrease of grain filling
duration, total aboveground biomass, and grain yield (Liu et al., 2016). In this study, we
established three sowing dates with a maximum time gap of approximately one month
to ensure that the test materials were exposed to different light, temperature, water, and
air conditions at various growth stages. The result showed that with the sowing date
being delayed, the average TGW decreased, but alterations of GL and GW varied across
sites. As described by Zhang et al. (2013), the wheat cultivars Jingdong8 and Lunxuan987
experienced a 5-day delay in sowing, resulting in yield reductions of 9.2% and 10.6%
respectively. With a 10-day delay in sowing, both varieties experienced a further decrease
in yields by 3.8%. Moreover, there was a significant decrease in TGW of wheat. Another
study also demonstrated that delaying the sowing date has varying impacts on plant height
and grain yield for 15 popularized wheat varieties in the Huanghuai region (Wang et al.,
2022). ANOVA results showed significant variations among genotypes, sowing dates and
genotype-by-sowing date interactions for wheat grain size. These findings align with the
previous study conducted byWang et al. (2021). Grain size-related traits are complex
quantitative traits that are largely influenced by environments. In this study, the trial sites
(Yangzhou and Yancheng) are located in different regions with varying conditions such as
light, temperature, and water. Therefore, significant effects were detected at the trial sites.
By using the AMMI model, four accessions with stable TGW were screened, which can be
exploited for crop improvement.

Comparison of the stable MTAs to known QTL
In this study, a total of 117 significant MTAs were detected to associate with wheat grain
size under three sowing dates. Most of these loci were expressed as an environment-
dependent pattern, which were identified under single sowing condition. However, we
have still detected several highly stable MTAs, with the maximum number for GL and the
least for TGW. We further compared their physical positions with known QTL identified
previously.Miao et al. (2022) refined 394 initial TGW QTL into 67 MQTLs through
the integration of individual maps from 45 studies using Meta-QTL analysis. Here, the
stable and major MTA (6A_584257945) for TGW at 584 Mb on chromosome 6A was
discovered within the genomic region of MQTL-6A-6 (535–593 Mb). The stable MTAs
for GL on chromosomes 2A (2A_612223880) and 6B (6B_661282224) were co-located
with MQTL-2A-4 (509-613Mb) and MQTL-6B-5 (603-713Mb), respectively. The stable
MTAs for GW on chromosomes 4A (4A_678723323) and 5B (5B_42550541) were co-
located with MQTL-4A-4 (666–679 Mb) and MQTL-5B-2 (10–80 Mb), respectively.
Although these MQTLs were from TGW, co-detections revealed hotspot genomic regions
that control wheat grain size, owing to the strong correlation among these traits. In
another Meta-QTL analysis conducted by Saini et al. (2022), 89 MQTLs were found
to associate with grain morphology-related traits. Among these, MQTL5A.3 located
within 11–40.3 Mb on chromosome 5A and overlapped with MTA 5A_31907623. As
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for MTA 7A_13137024, although it was beyond the genomic region of MQTL7A.1, the
overlapping confidence interval suggested that they were likely to be the same locus. On
chromosome 2D, 4A, and 4B, no previously reported MQTLs neighbored the GL-related
MTAs 2D_622241054, 4A_598189950, and 4B_307707920, respectively. They could
potentially be novel discoveries.

Candidate genes of the stable and novel MTAs
Genes are genetic factors that regulate phenotype, and identifying the causal gene of MTA
will facilitate genetic analysis of important agronomic traits in crops. In this study, we
revealed three novel and stable MTAs for GL under late-sown stressed conditions. MTA
4A_598189950 was detected under stage II and III, it was able to account for 15.86% and
14.79% of PVE, with high correlation coefficients−0.40 and−0.38, respectively, between
genotype and phenotype. At this locus, TaRGB1 (TraesCS4A03G0746100) was an obvious
candidate gene which is orthologous to rice RGB1 and encodes the heterotrimeric G
protein β-subunit (G β). G protein signaling pathway is one of the important pathways
for regulating seed size in model crops. Knock-down of RGB1 result in short seeds due
to reduced cells number of hull, suggesting that RGB1 positively regulate seed length
(Utsunomiya et al., 2011). Otherwise, the presence of RGB1 serves as the basis for the
impacts of G γ on controlling rice seed size (Li, Xu & Li, 2019; Ren, Ding & Qian, 2023).
Spikelet hulls undergo maturation before wheat grains begin filling, determining the scale
of the cavity in which the integuments produce the seed coat. Both spikelet hull and seed
coat have an impact on ultimate grain morphology, including grain length (Hong, Zhang
& Xu, 2023). Referring to the WheatOmics database (http://wheatomics.sdau.edu.cn/), it
appears that TaRGB1 highly expressed in spike, which raises the possibility that it may be
a candidate gene for GL-related MTA 4A_598189950.

MTA 4B_307707920 neighbors the centromeric region, within which highly repetitive
sequences affect genes’ fine mapping and strong linkage disequilibrium suppresses
recombination frequencies (Su et al., 2019; Hong, Zhang & Xu, 2023). This locus had
no obvious candidate gene. At the end of chromosome 2D, MTA 2D_622241054 was
repeatedly detected under all sowing conditions and demonstrate major effects. In
previous study, GWAS and knockdown experiments have revealed the role of TaARF12
(on chromosome 2A) in regulating wheat plant height and grain yield (Li et al., 2022). It is
worth noting that mutations in rice ARF12 also led to short GL and decreased TGW (Qiao
et al., 2021), suggesting its conserved functional mechanism across species. Here, we have
identified TaARF12-2D (TraesCS2D03G1217700), a homolog to TaARF12, which is a
promising candidate for MTA 2D_622241054 on chromosome 2D and is highly expressed
in the stem and spike according to WheatOmics database.

In future research directions, conducting haplotype analysis and expression level
detection on the candidates mentioned above will enable rapid determination of the
correlation between phenotype and genotype, while also facilitating the acquisition of
superior haplotypes. Furthermore, with the mature application of gene editing technology
in wheat, there is potential for uncovering the underlying molecular mechanisms of these
candidates.
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Breeding utilization and marker-assisted selection
Wheat has always been a focus of breeders in terms of its yield and quality. In recent
years, marker-based mapping approaches have become important means of revealing
associations between target traits and genetic regions (Hong, Zhang & Xu, 2023). In this
study, three novel GL-related loci were found to show stability in normal- and late-sown
stressed conditions. These loci are located within conserved regions of the wheat genome,
with MTA 4B_307707920 neighboring the centromeric region, while 2D_622241054
and 4A_598189950 are in regions of low genetic differentiation and nucleotide diversity.
Notably, prolonged natural selection and artificial domestication may have caused certain
loci or regions to undergo selection sweeps, which is consistent with a previous study (Li
et al., 2022). Unsurprisingly, we found that TaTB1, a wheat domestication gene related to
inflorescence architecture, is located in selection sweeps and near 4A_598189950. Studies
have shown that altering the dosage or function of TaTB1 can help increase wheat yield
(Dixon et al., 2018). Thus, these novel and stable loci possess a higher value for breeding
purposes.

The novel and stable loci can be screened using linkage markers to assist in selecting
plants with excellent grain size characteristics. In practice, marker-assisted selection can
greatly shorten the breeding cycle and reduce unnecessary human, material, and financial
inputs. At the same time, it can also help breeders select stable and high-yielding wheat
varieties, thereby improving agricultural production efficiency. Hence, the identification
of loci associated with wheat grain size through GWAS, coupled with marker-assisted
selection, will provide new ideas and methods for wheat breeding, making greater
contributions to global food security.

CONCLUSION
The occurrence of yield losses in wheat production due to delayed sowing, influenced
by multiple factors, necessitates the identification and cultivation of wheat varieties that
exhibit tolerance towards late-sown stressed conditions. Additionally, the exploration of
yield-related loci that demonstrate consistent performance across diverse environments
represents an effective and eco-friendly strategy. This study successfully identified ten
loci that consistently influence wheat grain size across multiple sowing dates using
GWAS analysis. It is worth noting that three of these loci were previously unidentified.
Furthermore, four wheat germplasm resources were identified as suitable candidates for
breeding purposes, as they demonstrated high stability in terms of thousand-grain weight
under late-sown stressed conditions, as determined by AMMI analysis. These findings
provide a solid basis for the development of wheat varieties with both high yield and those
adapted to late sowing.
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