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ABSTRACT
The fecal microbiota plays an important role in maintaining animal health and is
closely related to host life activities. In recent years, there have been an increasing
number of studies on the fecal microbiota from birds. An exploration of the effects of
species and living environments on the composition of gut microbiota will provide
better protection for wildlife. In this study, non-injury sampling and 16S rDNA
high-throughput sequencing were used to investigate the bacterial composition and
diversity of the fecal microbiota in silver pheasants (Lophura nycthemera) and golden
pheasants (Chrysolophus pictus) from Tianjin Zoo and Beijing Wildlife Park.
The results showed that the abundance of Firmicutes was the highest in all fecal
samples. At the genus level, Bacteroides was the common dominant bacteria, while
there were some differences in other dominant bacteria genera. There were
significant differences in fecal microbial composition between the golden pheasants
from Tianjin Zoo and Beijing Wildlife Park. The metabolic analysis and functional
prediction suggested that the gut microbiota composition and host metabolism were
influenced by dietary interventions and living conditions. The results of this study
provide the basis for further research of intestinal microbial of L. nycthemera and
C. pictus, and valuable insights for conservation of related species.
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INTRODUCTION
The gut microbiota of animals contains complex microbes which can regulate host
digestion (Clemente et al., 2012), metabolism (Valdes et al., 2018), and immune responses
(Waite & Taylor, 2014). Previous studies have shown that gut microbial communities can
reflect phylogenetic relationships and can further help us understand animal health
(Palinauskas et al., 2022; Viney, 2019). Unlike other vertebrates, birds have short
gastrointestinal tracts and short food retention time to support the requirement of flight
(Kohl, 2012). Avian gut microbes are mainly composed of Firmicutes, Proteobacteria,
Actinobacteria, and Bacteroidota (Waite & Taylor, 2014). Avian gut microbial
communities are affected by the host species and living conditions, including
environmental factors and diet (Bodawatta et al., 2022; Kohl, 2012; Sun et al., 2022).
For instance, Yang, Deng & Cao (2016) found that the common dominant phyla included
Firmicutes, Proteobacteria, and Actinobacteria among three wild goose species (white-
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fronted geese, bean geese, and swan geese), but the proportion of these common dominant
phyla was different among species. The finding suggests that the host species is the
potential driver leading the differentiation of goose gut microbiota. Laviad-Shitrit et al.
(2019) found that there was a correlation between species phylogeny and gut microbial
communities among four wild waterbird species (great cormorants, little egrets,
black-crowned night herons and black-headed gulls). Mohsin Bukhari et al. (2022) found
that, under captive conditions in Avian Conservation and Research Center, the gut
microbiota of ring-necked pheasants was dominated by Firmicutes, Actinobacteriota, and
Proteobacteria, with Bacillus, Oceanobacillus, and Teribacillusas as the dominant genera,
whereas the gut microbiota of green pheasants was dominated by Firmicutes,
Proteobacteria, and Bacteroidota, with Bacillus and Lactobacillus as the dominant genera.
Thus, even under the same living environment, including the temperature, humidity and
other conditions, as well as the type of food provided by the external environment, the host
species is considered to be the main factor leading to the different composition and
characteristics of avian gut microbiota.

The gut microbiome of birds was derived primarily from the environment since birth.
Environmental factors affect the behavior, foraging, and growth of birds, thus are
important in shaping the composition and characteristics of avian gut microbes (Liu et al.,
2022; Xie et al., 2016; Yao et al., 2023). Chi et al. (2019) found that, for both wild and
captive bharals, Firmicutes and Bacteroidetes were the common dominant phyla while
Bacteroides and Alistipes were the common dominant genera. The researchers also found
that the abundance of Firmicutes in wild bharals was significantly higher than that in
captive bharals whereas the abundance of Bacteroidetes in captive bharals were
significantly higher than that in wild bharals.Wang et al. (2020) found that, although there
were four common abundant phyla (Firmicutes, Proteobacteria, Actinobacteria, and
Bacteroidota) of gut microbiota in wild black-necked cranes living in six overwintering
areas, the variance in alpha and beta diversities were found among different living areas.
Similarly, Gu & Zhou (2021) found the similar discrepancy in both community
composition and alpha-diversity of gut microbiota in wild hooded cranes living at Poyang
Lake, Shengjin Lake, and Caizi Lake respectively.

Silver pheasants (Lophura nycthemera) and golden pheasants (Chrysolophus pictus) are
classified under the Phasianidae family within the order Galliformes, but belong to two
different genera, Lophura and Chrysolophus, respectively. Silver pheasants are mainly
distributed in China, Cambodia, Myanmar, Thailand, and Vietnam (Dong et al., 2013),
while the golden pheasant is an endemic species in China (Liu et al., 2021). Many studies
have focused on the activity rhythms, habitat selection and captive management of these
two pheasant species recently, for example, Kullu et al. (2016) studied the effect of nitrogen
and mineral retention by increasing the dietary supply of carotenoids in captive golden
pheasants, as well as the influence of different levels of green vegetables on egg production
performance (Kullu et al., 2017). However, the gut microbiome of L. nycthemera and
C. pictus is still poorly known. For instance, Mushtaq et al. (2021) found that Escherichia
coli is predominant isolated from fecal samples for both L. nycthemera and C. pictus in
captive conditions.
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Considering that species and habitat environment mainly work as potential drivers of
diversity in avian gut microbiota (Wang et al., 2022), this study is the first time to
investigate differences in the composition of gut microbiota in L. nycthemera and C. pictus
under different captive environments based on 16S ribosomal DNA (rDNA)
high-throughput sequencing technology. By investigating the relationship between fecal
microbiota composition and living conditions for these two species of pheasants, it will
provide scientific reference for the ex-situ conservation of pheasants in captivity.

MATERIALS AND METHODS
Sample collection
Twelve fresh fecal samples for each pheasant species were collected fromMay 2020 to May
2021, based on the non-invasive sampling technique (de Flamingh et al., 2023). All fecal
samples were divided into four groups, namely SCB (six silver pheasants from Beijing),
SCT (six silver pheasants from Tianjin), GCB (six golden pheasants from Beijing) and
GCT (six golden pheasants from Tianjin) (Table 1). The sample collection complied with
the current laws of China and were approved by Animal Ethics Committee of Tianjin
Normal University. Fecal samples of L. nycthemera and C. pictus were collected without
direct contact with the animals. We collected fecal samples immediately after animals had
defecated in their cages, and stored samples in a portable ice box. Samples were then
transported and stored at −80 �C.

DNA extraction and 16S rDNA sequencing
Total DNAwas extracted from fecal samples using the CTABmethod (Arseneau, Steeves &
Laflamme, 2017). DNA quality was assessed by electrophoresis on a 1% (w/v) agarose gel
and purity was determined on a NanoDrop 2000 UV-vis spectrophotometer. Following
successful DNA extraction, the V3–V4 region of the 16S rDNA gene was amplified using
the following specific PCR primers: Forward primer 341F (5′-CCTACGGGNGGCWGCA
G-3′) and reverse primer 805R (5′-GACTACHVGGGTATCTAATCC-3′). The PCR
reaction (total volume of 20 µL) included template DNA, primers, DNA polymerase, 5 ×
Fast Pfu Buffer, and dd H2O. PCR amplification products were assessed by electrophoresis
on a 2% (w/v) agarose gel. Finally, the purified amplicons were analyzed on an Illumina
MiSeq platform (Illumina, San Diego, CA, USA), according to the standard protocols by
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The libraries were
constructed by double-ended sequencing and didn’t spiked with phiX libraries. The raw
reads were deposited into the NCBI Sequence Read Archive (SRA) database under
PRJNA941118 (accession number: SRR24436453–SRR24436476).

Bioinformatics and statistical analysis
The microbial communities of fecal samples from L. nycthemera and C. pictus were
studied, and the data obtained were quality filtered using QIIME (version 1.9.1) (Caporaso
et al., 2010) after 16S rDNA high-throughput sequencing (D’Amore et al., 2016; Jiang &
Takacs-Vesbach, 2017; Jiang et al., 2022). The sequencing results consisted of
double-ended sequence data. Initially, the pairs of reads were merged into a single
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sequence based on the overlap between PE reads. Subsequently, quality control and
filtering of sequencing data was conducted to remove low-quality sequences and chimera
sequences. High-quality sequences were then compared, clustered, and classified to obtain
information on the composition and diversity of microbial communities. Operational
taxonomic unit (OTU) sequences with 97% similarity were annotated and analyzed using
RDP classifier (version 2.11) according to the silva138/16s_bacteria database. Venn
diagrams were generated to compare the numbers of shared OTUs and unique OTUs
among the fecal microbial communities from different groups using R (version 3.3.1).
The microbial composition of each fecal sample from the phylum to genus level were
presented by community bar-plots. Alpha diversity indices including Chao, Ace, Shannon
and Simpson indices were calculated using Mothur (version 1.30.2) to reflect the
abundance and diversity of microbial communities (Schloss et al., 2009). The coverage
indices calculated using Mothur reflect whether the sequencing results represent the real
situation of the microorganisms in each sample. A Wilcoxon rank test was used for
comparisons between different groups and p ≤ 0.05 was considered statistically significant
by using the FDRmethod. Principal Co-ordinates Analysis (PCoA) based on weighted and
unweighted UniFrac distances were carried out to determine differences between two
groups specifically (groups based on different species, different environments), and an
Analysis of Similarities (ANOSIM) test based on an R vegan package was used to compare
the variability between different groups (Van Horn et al., 2016).

Predicted the function of gut microbiota by PICRUSt
PICRUSt is a software package that predicts the functional capabilities of microbial
communities. In this study, PICRUSt was used to predict the potential functions of each
fecal sample based on 16S rRNA gene sequencing data (Langille et al., 2013). The genes,
their function and the abundance of metabolic pathways were predicted and summarized
into the Kyoto Encyclopedia of Genes and Genomes (KEGG) database which is a
systematic analysis of gene function, and genome information. By comparing the gut
microbial data of L. nycthemera and C. pictus to the database of orthologous groups Cluster
of Orthologous Groups of proteins (COG) and KEGG (Kanehisa, 2019; Kanehisa et al.,
2023; Kanehisa & Goto, 2000; Tatusov et al., 2000), we obtained the corresponding
functional and metabolic pathway prediction information for phenotypic prediction using
BugBase (Ward et al., 2017). R software (v4.1.2; R Core Team, 2021) was utilized for
statistical analyses and visualization of the identified pathways.

Table 1 Information regarding the silver pheasants and golden pheasants used in this study.

Group Species Living environment Number Diet

SCT Silver pheasant Tianjin Zoo 6 Feed pelleted feed and chopped vegetables once a day.

GCT Golden pheasant Tianjin Zoo 6 Feed pelleted feed and chopped vegetables once a day.

SCB Silver pheasant Beijing Wildlife Park 6 Feed pheasant feed, vegetables and fruits once a day.

GCB Golden pheasant Beijing Wildlife Park 6 Feed pheasant feed, vegetables and fruits once a day.
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RESULTS
Analysis of gut microbiota composition from different groups
A total of 24 fecal samples from both species were analyzed and 1,700,701 optimized
sequences were obtained, with an average length of 411 bp (Table S1). According to 97%
similarity, 2,949 OTUs were obtained and could be classified into 42 phyla, 130 classes, 279
orders, 428 families, and 847 genera. Of the 2,949 OTUs, 745 OTUs were shared in all four
groups, whereas 183, 169, 122, and 756 OTUs were unique to group SCT, SCB, GCT, and
GCB, respectively (Fig. 1A). At the genus level, there were 258 genera shared by four
groups, while the group GCB contained the largest unique genus (Fig. 1B).

At the phylum level, Firmicutes was dominant in all four groups (SCT: 47.56%; SCB:
43.91%; GCT: 72.48%; GCB: 35.22%), followed by Bacteroidota (SCT: 21.89%; SCB:
26.56%; GCT: 15.74%; GCB: 14.52%); Actinobacteriota (SCT: 14.35%; SCB: 9.50%; GCT:
6.50%; GCB: 20.17%) and Proteobacteria (SCT: 10.84%; SCB: 13.88%; GCT: 2.58%; GCB:
18.79%) (Fig. 2A, Table 2).

At the genus level, the dominant genera shared by SCT and SCB included Bacteroides
(SCT: 11.07%, SCB: 13.24%), Burkholderia-Caballeronia-Paraburkholderia (SCT: 4.50%,
SCB: 10.38%), and norank _f__norank_o__Clostridia_UCG-014 (SCT: 3.36%, SCB: 3.76%).
The remaining dominant genera in the SCT were Streptococcus (5.24%), Bifidobacterium
(5.06%), Romboutsia (4.43%), Clostridium_sensu_stricto_1 (3.87%), and Collinsella
(3.35%); the remaining dominant genera of SCB were unclassified_f__Lachnospiraceae
(6.97%), Rikenellaceae_RC9_gut_group (4.66%), Ruminococcus_torques_group (4.11%),
Olsenella (3.50%), and Desulfovibrio (3.48%) (Fig. 2B, Table 3). The common genera in
both GCT and GCB included Bacteroides (GCT: 6.63%, GCB: 4.47%), Subdoligranulum
(GCT: 3.47%, GCB: 3.46%), and Ruminococcus_torques_group (GCT: 2.72%, GCB: 6.29%).
The remaining dominant genera in GCT were Clostridium_sensu_stricto_1 (15.22%),
Lactobacillus (12.18%), Anaerosporobacter (9.10%), unclassified_f__Lachnospiraceae
(3.01%), Faecalibacterium (2.93%); and the remaining dominant genera in GCB were
Burkholderia-Caballeronia-Paraburkholderia (14.07%), Olsenella (7.54%), Bifidobacterium
(4.24%), Streptococcus (4.06%), and Rikenellaceae_RC9_gut_group (3.99%) (Fig. 2B,
Table 3).

The microbial composition from all 24 fecal samples divided into four groups in this
study was also compared at the class, order, and family levels (Figs. S1 and S2).

Analysis of differences in gut microbiota between different groups
Based on Wilcoxon rank test, the top abundance at the phylum level were compared and
the results showed that the average relative abundance of Firmicutes in GCT (72.48%) was
significantly higher than that in GCB (35.22%), and the average relative abundance of
Patescibacteria, Chloroflexi, Nitrospirota, Verrucomicrobiota, and Methylomirabilota in
GCT were significantly lower than that in GCB. The main difference between GCB and
GCT groups was the living condition. Similarly, the gut microbiota of L. nycthemera in
different living conditions also showed significant differences, such as the abundance of
Fusobacteriota in SCT was significantly higher than that in SCB, while, the average relative
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abundance of Verrucomicrobiota in SCT was significantly lower than that in SCB.
In addition, the gut microbiota of different species varies significantly even when they live
in the same environment. For example, the average relative abundance of Fusobacteriota,
Chloroflexi, Nitrospirota in GCT were significantly lower than that in SCT, the average
relative abundance of Deferribacterota in SCB was significantly higher than that in GCB
(Fig. 3).

Wilcoxon rank test analysis of the top genera revealed that the abundance of
Bifidobacterium, Megamonas, and Solobacterium in SCT were significantly higher than
that in SCB, and the abundance of Clostridium_sensu_stricto_1, Anaerosporobacter, and
Cellulosilyticum in GCT were significantly higher than that in GCB. The main difference
between GCB/GCT and SCB/SCT groups was the living condition. Similarly, there were
significant interspecific differences under the same living condition. For example, the
abundance of Christensenellaceae_R-7_group, UCG-005, and norank_f__norank_o__
Clostridia_vadinBB60_group in SCB were significantly higher than that in GCB. Further,
the abundance of Subdoligranulum, Bifidobacterium, and norank_f__norank_o__
Saccharimonadales in SCB were significantly lower than that in GCB.

The abundance of Psychrobacter, Fusobacterium, UCG-002 in SCT were significantly
higher than in GCT, while, the abundance of Cellulosilyticum in SCT was significantly
lower than that in GCT (Fig. 4).

Differences in alpha and beta diversity among four groups
The curve trends for all samples were similar, thus four groups had similar abundance and
uniformity in terms of gut microbiota (Fig. S3). The alpha diversity index including Chao’s
index, Ace’s index, Simpson’s index, and Shannon’s index were calculated (Table S2).
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Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.16979 6/22

http://dx.doi.org/10.7717/peerj.16979/supp-3
http://dx.doi.org/10.7717/peerj.16979/supp-10
http://dx.doi.org/10.7717/peerj.16979/fig-1
http://dx.doi.org/10.7717/peerj.16979
https://peerj.com/


Firmicutes

Bacteroidota

Actinobacteriota

Proteobacteria

Desulfobacterota

Patescibacteria

unclassified_k__norank_d__Bacteria

Chloroflexi

Spirochaetota

Acidobacteriota

Planctomycetota

Verrucomicrobiota

Gemmatimonadota

Synergistota

Cyanobacteria

Myxococcota

Fusobacteriota

GAL15

Nitrospirota

Campilobacterota

others

P
er

ce
n
t

o
f

co
m

m
u
n
it

y
ab

u
n
d
an

ce
o

n
P

h
y
lu

m
le

v
el

SC
T1

SC
T2

SC
T3

SC
T4

SC
T5

SC
T6

SC
B
1

SC
B
2

SC
B
3

SC
B
4

SC
B
5

SC
B
6

G
C
B
1

G
C
B
2

G
C
B
3

G
C
B
4

G
C
B
5

G
C
B
6

G
C
T1

G
C
T2

G
C
T3

G
C
T4

G
C
T5

G
C
T6

0

0.2

0.4

0.6

0.8

1

Bacteroides

Burkholderia-Caballeronia-Paraburkholderia

Clostridium_sensu_stricto_1

Olsenella

Lactobacillus

Ruminococcus_torques_group

unclassified_f__Lachnospiraceae

Rikenellaceae_RC9_gut_group

Subdoligranulum

norank_f__norank_o__Clostridia_UCG-014

Collinsella

Desulfovibrio

Streptococcus

Bifidobacterium

unclassified_o__Bacteroidales

Anaerosporobacter

Romboutsia

Faecalibacterium

Erysipelatoclostridium

Enorma

others

P
er

ce
n
t

o
f

co
m

m
u
n
it

y
ab

u
n
d
an

ce
o

n
G

en
u
s

le
v
el

SC
T1

SC
T2

SC
T3

SC
T4

SC
T5

SC
T6

SC
B
1

SC
B
2

SC
B
3

SC
B
4

SC
B
5

SC
B
6

G
C
B
1

G
C
B
2

G
C
B
3

G
C
B
4

G
C
B
5

G
C
B
6

G
C
T1

G
C
T2

G
C
T3

G
C
T4

G
C
T5

G
C
T6

0

0.2

0.4

0.6

0.8

1

A

B
SCT SCB GCB GCT

SCT SCB GCB GCT

Figure 2 Microbial composition of all fecal samples at the phylum/genus level. (A) Bar plots showing the top 20 phyla in terms of relative
abundance in all samples; (B) bar plots showing the top 20 genera in terms of relative abundance in all samples. A relative abundance of less than 1%
and no annotation results were classified as “others.” Full-size DOI: 10.7717/peerj.16979/fig-2

Zhang et al. (2024), PeerJ, DOI 10.7717/peerj.16979 7/22

http://dx.doi.org/10.7717/peerj.16979/fig-2
http://dx.doi.org/10.7717/peerj.16979
https://peerj.com/


Table 2 Mean relative abundance of the 10 most abundant taxa at the phylum level.

Sample group Top 10 abundant phyla (%)

SCT Firmicutes (47.56)

Bacteroidota (21.89)

Actinobacteriota (14.35)

Proteobacteria (10.84)

unclassified_k__norank_d__Bacteria (2.22)

Desulfobacterota (2.00)

Patescibacteria (0.31)

Fusobacteriota (0.15)

Cyanobacteria (0.12)

Chloroflexi (0.09)

SCB Firmicutes (43.91)

Bacteroidota (26.56)

Proteobacteria (13.88)

Actinobacteriota (9.50)

Desulfobacterota (3.67)

Patescibacteria (0.52)

Spirochaetota (0.44)

Verrucomicrobiota (0.28)

Synergistota (0.24)

Planctomycetota (0.22)

GCT Firmicutes (72.48)

Bacteroidota (15.74)

Actinobacteriota (6.50)

Proteobacteria (2.58)

Desulfobacterota (2.30)

Patescibacteria (0.16)

unclassified_k__norank_d__Bacteria (0.07)

Synergistota (0.05)

Spirochaetota (0.03)

Campilobacterota (0.02)

GCB Firmicutes (35.22)

Actinobacteriota (20.17)

Proteobacteria (18.79)

Bacteroidota (14.52)

Patescibacteria (3.23)

Desulfobacterota (3.13)

Chloroflexi (1.22)

unclassified_k__norank_d__Bacteria (1.07)

Acidobacteriota (0.49)

Spirochaetota (0.33)
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Table 3 Mean relative abundance of the 10 most abundant taxa at the genus level.

Sample group Top 10 abundant genera (%)

SCT Bacteroides (11.07)

Streptococcus (5.24)

Bifidobacterium (5.06)

Burkholderia-Caballeronia-Paraburkholderia (4.50)

Romboutsia (4.43)

Clostridium_sensu_stricto_1 (3.87)

norank_f__norank_o__Clostridia_UCG-014 (3.36)

Collinsella (3.35)

Rikenellaceae_RC9_gut_group (3.06)

Faecalibacterium (3.04)

SCB Bacteroides (13.24)

Burkholderia-Caballeronia-Paraburkholderia (10.38)

unclassified_f__Lachnospiraceae (6.97)

Rikenellaceae_RC9_gut_group (4.66)

Ruminococcus_torques_group (4.11)

norank_f__norank_o__Clostridia_UCG-014 (3.76)

Olsenella (3.50)

Desulfovibrio (3.48)

Collinsella (3.09)

unclassified_o__Bacteroidales (2.97)

GCT Clostridium_sensu_stricto_1 (15.22)

Lactobacillus (12.18)

Anaerosporobacter (9.10)

Bacteroides (6.63)

Subdoligranulum (3.47)

unclassified_f__Lachnospiraceae (3.01)

Faecalibacterium (2.93)

Ruminococcus_torques_group (2.72)

unclassified_o__Bacteroidales (2.64)

norank_f__norank_o__Clostridia_UCG-014 (2.50)

GCB Burkholderia-Caballeronia-Paraburkholderia (14.07)

Olsenella (7.54)

Ruminococcus_torques_group (6.29)

Bacteroides (4.47)

Bifidobacterium (4.24)

Streptococcus (4.06)

Rikenellaceae_RC9_gut_group (3.99)

Subdoligranulum (3.46)

Collinsella (3.36)

Desulfovibrio (3.02)
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Under the same living condition in Tianjin Zoo, both ACE and Chao indices in SCT
(824.4 and 839, respectively) were higher than that in GCT (659.9 and 633, respectively),
while the Simpson index in SCT (0.06) was lower than that in GCT (0.13). Similar results
were observed when comparison between SCB and GCB was conducted. The comparison
of diversity differences of the same species in different environments showed that the ACE
(SCT = 824.4, SCB = 870.3), Chao1 (SCT = 839, SCB = 867.1), Simpson (SCT = 0.06,
SCB = 0.08), and Shannon (SCT = 4.11, SCB = 4.34) indices were not significantly
different. The same condition appeared in the index’s comparison between GCT and GCB.
Thus, the results revealed that there were no significant differences in the diversity and
abundance of gut microbiota between four groups (Fig. S4). However, Coverage indices of
four groups were above 99.7%, indicating these data could adequately reflect the true
situation of microorganisms in fecal samples for both L. nycthemera and C. pictus.

Principal Co-ordinates Analysis (PCoA) was used to evaluate the beta diversity of fecal
microbial composition (Fig. 5). Based on the weighted Unifrac distances, the contribution
rates of PC1 and PC2 were 46.32% and 28.5%, respectively. The contribution rates of PC1
and PC2 were 38.77% and 17.73%, respectively based on the unweighted Unifrac distances
(Fig. 5). The results showed that there was a significant difference between GCT and GCB
under both weighted_unifrac (R = 0.4222, P = 0.0050) and unweighted_unifrac
(R = 0.1796, P = 0.0910), leading the complete separation between these two groups.
However, there was no significant difference in beta diversity among individuals of
L. nycthemera from different living conditions (P > 0.05, Fig. S5).
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The comparisons of gut microbiome profile were performed by linear discriminant
analysis (LDA) effect size (LEfSe) in order to examine differences among the four groups
(Fig. S6).

Gut microbiota functional profile prediction
Based on the 16S rDNA sequencing results, the functional composition of COG was
relatively similar in all samples, mainly related to the processing of genetic information
such as transcription, translation, replication, transport, and metabolism of substances, as
well as various metabolic pathways related to life activities (Fig. S7).

Statistical analysis on the abundance of KEGG metabolic pathways at Level 1 revealed
that all four groups had the highest abundance in the metabolism pathway, with the higher
relative abundance in Level 2 categories such as global and overview maps, carbohydrate
metabolism, and amino acid metabolism (Fig. 6). The relative abundance of carbohydrate
metabolism, amino acid metabolism, membrane transport and metabolism of vitamins
were compared to explore impacts caused by environment and species. Among them,
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carbohydrate and amino acid metabolism pathways showed differences between species
under different living conditions (GCB VS GCT) (P < 0.05) (Figs. S8A, S8B). Using
BugBase phenotype prediction analysis, seven phenotypes of gut microbiota in all fecal
samples were predicted. The relative abundance of Gram-negative and biofilm forming
micro-organisms were significantly higher in GCB than that in GCT, while the relative
abundance of Gram-positive bacteria was significantly lower in GCB than that in GCT
(Figs. S8C–S8E).
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DISCUSSION
In this study, we analyzed the fecal microorganisms of L. nycthemera and C. pictus living at
Tianjin Zoo and Beijing Wildlife Park by 16S rDNA high-throughput sequencing
technology. Analysis of fecal microorganisms facilitated our insight into the processes of
nutrient utilization as well as the metabolic regulation of the hosts. In the comparison of
alpha diversity and species abundance of gut bacteria, the differences between sample
groups were not significant. In contrast, beta diversity analysis revealed significant
differences in the structural composition of the gut microbiota between GCT and GCB.

The effects of different environments (Beijing vs Tianjin) on the same
species
The gut microbiota of L. nycthemera and C. pictus were mainly Firmicutes, which occupied
the largest proportion in both Tianjin group and Beijing group. The result was consistent
with reported studies on the gut microbiota of birds and mammals (Hird et al., 2015;
Oakley et al., 2014). Firmicutes can digest proteins and break down complex
carbohydrates, polysaccharides, and fatty acids, which facilitates the efficient absorption of
energy and nutrients from food (Clarke et al., 2014). Our analysis revealed that the relative
abundance of Firmicutes was significantly higher in GCT than that in GCB. Firmicutes can
help C. pictus degrade fibers into volatile fatty acids, thus improving absorption capacity
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(Turnbaugh et al., 2009). We analyzed dietary differences between living conditions,
hoping to explain the difference on abundance of Firmicutes. The main food was pelleted
feed and chopped vegetables in Tianjin Zoo, while the Beijing Wildlife Park mainly
provides a wider variety of foods, including pheasant feed, seasonal vegetables, and fruits.
Thus, golden pheasants had a broader source of energy and did not have a high demand for
Firmicutes. The difference caused by diet was consistent with previous studies (Bibbo et al.,
2016), for example, the change in the gut microbiota of great tits (Parus major) was
induced by the dietary changes (Davidson et al., 2020).

Bacteroidota is often dominant in the mammalian gut microbiota and can degrade
polysaccharides as well as polymers such as carbohydrates and plant cell walls (Fujisaka,
Watanabe & Tobe, 2023; Thomas et al., 2011). In this study, the relative abundance of
Bacteroidota was second only to Firmicutes in the composition of gut microbiota from
both L. nycthemera and C. pictus, which is consistent with the previous study on gut
microbiota of captive bharals (Chi et al., 2019). Studies on the gut microbiota of model
mice have shown that a high ratio of Firmicutes/Bacteroidota improves the extraction
efficiency of mice for food (Clarke et al., 2012; Magne et al., 2020). The Firmicutes/
Bacteroidota ratios of L. nycthemera and C. pictus in the Tianjin Zoo were increased to
adapt to the single food type for energy acquisition and allowed for suppression of
intestinal pathogenic bacteria.

The abundance of Verrucomicrobia was significantly lower in SCT than that in SCB,
and this phylum is mainly comprised of environmental microorganisms that are
free-living and saccharolytic based on previous study (Bergmann et al., 2011). Thus, the
difference in Verrucomicrobia phylum is primarily attributed to the varying living
environments between Beijing Wildlife Park and Tianjin Zoo, including disparities
ecological conditions.

The dominant genera varied among the four groups. GCT had a relatively high level of
Clostridium_sensu_stricto_1, Anaerosporobacter and Cellulosilyticum. Among them,
Clostridium_sensu_stricto_1 is able to break down cellulose, while, the genus
Anaerosporobacter was related with host heath. Anaerosporobacter belonging to family
Lachnospiraceae, was found in the gut of broiler chickens previously, and could be used as
a probiotic to enhance the efficacy of a vaccine against Campylobacter (Nothaft et al.,
2017). Cellulosilyticum, could catabolize cellulose, is one of the probiotic species found in
gut microbiota of hooded cranes (Zhao et al., 2017). In our study, the relative abundance of
genus Anaerosporobacter and Cellulosilyticum from C. pictus were higher in Tianjin Zoo
than that in Beijing Wildlife Park. The abundance of Olsenella, which could produce
short-chain fatty acids to maintain the function of intestinal epithelial cells (Wang et al.,
2021), is higher in GCB than in GCT. Therefore, even within the same species, there are
variations in their capacity to regulate probiotics across different environments,
consequently resulting in varying levels of animal health between different regions.

The abundance of Bifidobacterium, Megamonas, and Solobacterium in SCT were
significantly higher than that in SCB. Various strains of Bifidobacterium which are the
beneficial bacteria could use complex carbohydrates as the substrate. This genus has been
reported to suppress diarrhea and could be utilized as probiotics (Feng et al., 2019).
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In clinical trials, age, geographic origin, and race all directly influence the abundance of
Bifidobacterium in the gut. The decrease of Bifidobacterium abundance is associated with a
high intake of vegetables and diet (Feng et al., 2019), which may be the underlying cause for
the differences observed between Tianjin and Beijing in our study. Members of
Megamonas could produce acetic and propionic acid in rodents. It has been shown to be a
substrate to form lipogenesis and cholesterol, which may affect weight loss rate in dogs
(Kieler et al., 2017). Thus, in this study we speculated that different living environments
provide different diets, leading to the diverse gut microbes of the same species. The role of
these gut bacteria in L. nycthemera and C. pictus requires further experimental verification
due to the absence of individual data such as weight and age.

Differences in gut composition between species (silver pheasants and
golden pheasants) under the same living environment
First, we compared the gut microbiota of L. nycthemera and C. pictus in Beijing Wildlife
Park (SCB and GCB), and there were no significant differences in diversity or richness.
The dominant flora in the two groups were Firmicutes followed by Bacteroidota in SCB
and Actinobacteriota in GCB, respectively. Desulfobacterota was the most different phyla
between SCB and GCB in Beijing Wildlife Park. Jian et al. (2021) revealed that the diet of
laying hens supplemented with valine resulted in a significant reduction in the abundance
of cecal pathogenic bacteria, such as Deferribacterota, improving intestinal health. Based
on the preliminary analysis of gut microbiota, we found that the two species L. nycthemera
and C. pictus differ in their ability to utilize cellulose and protein from food, but more data
on amino acid metabolism are needed to detail the specific differences. At the genus level,
the relative abundance of Bifidobacterium and Subdoligranulum in GCB were significantly
higher than that in SCB. Based on previous studies, Subdoligranulum, one of the producers
of butyrate, could protect the host health (Chassard, de Wouters & Lacroix, 2014). Many
strains of Bifidobacterium also have been used to alter gut microbial ecology and improve
host health. The Bifidobacterium has demonstrated important roles in the metabolism of
host-derived glycans. Furthermore, probiotics have been reported to affect the gut-brain
axis, as a common probiotic, Bifidobacterium may influence the functioning of the brain
and central nervous system (Presti et al., 2015). Since the diet and living conditions were
almost the same in this study, it is plausible that genetic variations between silver pheasants
and golden pheasants at the Beijing Wildlife Park may underlie the observed differential
abundance of Bifidobacterium and Subdoligranulum.

Next, we compared the gut microbiota of L. nycthemera and C. pictus in Tianjin Zoo
(SCT and GCT), and the biggest difference in abundance of gut microbiota at the phylum
level were Chloroflexi, Nitrospirota and Methylomirabilota. Zhu et al. (2022) found that
the application of cotton straw biochar and Bacillus compound biofertilizer could improve
the secretion of organic acids and amino acid compounds by Methylomirabilota and other
strains. Another study showed that the relative abundance of Methylomirabilota increased
in fully saturated soils, indicating the improvement of oxygenic denitrifiers, specifically
NC10 members (Schmitz et al., 2023). Because Methylomirabilota can be commonly found
in soil, L. nycthemera and C. pictus were under the same living conditions in Tianjin, the
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different abundance of Methylomirabilota may be caused by the ability of soil
microorganisms to colonize the intestinal tracts of the different species through the food
consumed. At the genus level, the relative abundance of Cellulosilyticum in GCT was
significantly higher than that in SCT. Previous studies revealed that Cellulosilyticum could
convert cellulose into metabolites (Zhao et al., 2017). Our analysis revealed that avian gut
microbial composition, which were fed the same diet and inhabited the same environment,
was largely species dependent. This study demonstrates that the host is a dominant factor
in shaping the microbial communities and the conclusion was similar with previous
reports (Fu et al., 2021; Garcia-Amado et al., 2018). Importantly, this study provides basic
research on the intestinal microflora of different avian species, which will be imperative for
future studies.

Metabolic analysis and functional prediction
These findings will help us understand the gut microbiota of L. nycthemera and C. pictus,
and thus provide a theoretical basis for the protection and animal welfare. The differences
in the metabolic pathways of C. pictus between Tianjin Zoo and Beijing Wildlife Park were
significant (P < 0.05). In the prediction of synthetic function, the relative abundance of
carbohydrate metabolism in GCB was higher than those in GCT, while, the relative
abundance of amino acid metabolism pathways in GCB was lower than those in GCT.
We hypothesized that the increased variety of food types in Beijing Wildlife Park led to a
higher abundance of gut microbiota related to carbohydrate metabolism, such as
Christensenellaceae related with the catabolism of cellulose and hemicellulose, and
Candidatus Saccharimonas associated with cellulose degradation. These results suggested
that the differences in diets could affect the components of the gut microbiota.

The results of our BugBase phenotypic prediction analysis showed that the relative
abundance of Gram-negative bacteria in GCB was significantly higher than that in GCT,
consistent with the high relative abundance of Burkholderia-Caballeronia-
Paraburkholderia in GCB, which belongs to Proteobacteria. Some species in Burkholderia-
Caballeronia-Paraburkholderia are pathogenic to humans and animals, by causing
pulmonary infections and respiratory diseases (Depoorter et al., 2016). Moreover, the
abundance of probiotics Clostridium_sensu_ stricto_1 (Doulidis et al., 2023) and
Lactobacillus (Xiao et al., 2021), were higher in GCT compared with GCB. Based on the
analysis of the proportion of pathogenic bacteria and probiotics, we preliminary speculated
the health of C. pictus under different living conditions. Combining the dominant bacteria
analysis and phenotype prediction at the genus level, it is tentatively hypothesized that
GCT improves digestion and absorption capacity, while GCB fecal microorganisms have a
relatively higher abundance of pathogenic bacteria, which may lead to potential disease
risk. Due to the presence of numerous unannotated gene sequences, which impede our
comprehensive analysis of metabolic functions, the investigations of metabolomics and
transcriptomics further will elucidate the association between fecal microorganisms and
host species, including L. nycthemera and C. pictus.
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CONCLUSIONS
We analyzed the fecal microorganisms of L. nycthemera and C. pictus in Tianjin Zoo and
Beijing wildlife Park using high-throughput sequencing. The main composition of the gut
microbiota was consistent with the results of many bird studies, including Firmicutes and
Bacteroidota. There were no significant differences in the diversity of the gut microbiota,
but there were significant differences in the proportion of dominant bacteria at the genus
level among four groups. These results suggested that the diets and living conditions affect
the gut microbiota of these birds, as well as the functional differences in metabolism of
host. The relative abundance of gut microbiota related to cellulose decomposition was
higher in GCB than the GCT, indicating that the difference in cellulose content in the diet
between Tianjin and Beijing is the major factor. The analysis on phenotypic prediction
revealed that GCB has a potentially high risk of disease, which should attract zookeepers’
attention on animal health. This study provides data for an in-depth understanding of the
fecal microorganisms of silver pheasants and golden pheasants under different living
conditions, and also provides a scientific reference for the use of gut microbiota to improve
the health of captive animals.
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