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ABSTRACT
We investigate the behavior of systems of cells with intracellular molecular oscillators
(‘‘clocks’’) where cell-cell adhesion is mediated by differences in clock phase between
neighbors. This is motivated by phenomena in developmental biology and in aggrega-
tive multicellularity of unicellular organisms. In such systems, aggregation co-occurs
with clock synchronization. To account for the effects of spatially extended cells, we
use the Cellular Potts Model (CPM), a lattice agent-based model. We find four distinct
possible phases: global synchronization, local synchronization, incoherence, and anti-
synchronization (checkerboard patterns). We characterize these phases via order
parameters. In the case of global synchrony, the speed of synchronization depends on
the adhesive effects of the clocks. Synchronization happens fastest when cells in opposite
phases adhere the strongest (‘‘opposites attract’’). When cells of the same clock phase
adhere the strongest (‘‘like attracts like’’), synchronization is slower. Surprisingly, the
slowest synchronization happens in the diffusive mixing case, where cell-cell adhesion
is independent of clock phase. We briefly discuss potential applications of the model,
such as pattern formation in the auditory sensory epithelium.

Subjects Biophysics, Computational Biology, Evolutionary Studies, Mathematical Biology
Keywords Cellular Potts Model, Synchronization, Aggregation, Biological clocks, Mathematical
modeling

INTRODUCTION
Synchronization of coupled oscillators is a common phenomenon in nature, for instance
the emergence of synchrony in neural networks (Singer, 1999; Hansel, Mato & Meunier,
1995; Uhlhaas et al., 2009), the synchronization of fireflies flashing (f.ex. Faust, 2010;
Ramírez-Ávila et al., 2019; Sokol, 2022), the coordination of circadian rhythms in eusocial
colonies (Siehler, Wang & Bloch, 2021; Frisch & Koeniger, 1994) or the synchronization of
intracellular molecular oscillatory processes in developmental biology (Jiang et al., 2000;
Bhat et al., 2019; Venzin & Oates, 2020; Deneke et al., 2016). Beginning with the seminal
works of Winfree (e.g., Winfree, 1987) and Kuramoto (e.g., Kuramoto, 1984) in the 1970s,
mathematical models of synchronization phenomena in networks of coupled oscillators
have been an intense area of study; see e.g., the books by Pikovsky, Rosenblum & Kurths
(2003) and Boccaletti et al. (2018), or surveys by Dörfler & Bullo (2014) and Rodrigues et al.
(2016).

The interplay of synchronization and spatial aggregation in systems ofmoving interacting
oscillators is much less well studied in models. The most influential work in this direction
is the investigation of swarming oscillators (‘‘swarmalators’’) by OKeeffe, Hong & Strogatz
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(2017) and subsequent works by Sar et al. (2022), OKeeffe, Ceron & Petersen (2022)
and Barciś & Bettstetter (2020). These ‘‘swarmalators’’ are mass points with internal
oscillators (‘‘clocks’’) which attract or repel each other according to their clock phase
difference, and also interact with each other via Kuramoto-like interactions.

One important potential application of systems of interacting moving oscillators is the
aggregation of biological cells mediated by cell–cell adhesion in aggregative multicellularity,
e.g., the slime bacteria myxobacteria (Shimkets & Kaiser, 1982; Zusman et al., 2007; Peruani
et al., 2012; Thutupalli et al., 2015), or the slime mold Dictyostelium discoideum (Bonner,
2008; Van Oss et al., 1996;Marée & Hogeweg, 2001). Indeed, these two systems also exhibit
intracellular oscillators (Gregor et al., 2010; Alber, Jiang & Kiskowski, 2004; Guzzo et al.,
2018; Arias Del Angel et al., 2020).

Another application is in vertebrate embryogenesis, where members of the Hes gene
family, which is known to play a central roles in determining cell fate in development,
display sustained intracellular oscillations in expression patterns (Kageyama, Ohtsuka
& Kobayashi, 2007; Hirata et al., 2002). Synchronized Hes oscillations are crucial for
somitogenesis (recently reviewed by Carraco, Martins-Jesus & Andrade (2022)), providing
the experimental foundation for the famed clock and wavefront model of somite pattern
formation originally proposed by Cooke & Zeeman (1976), see alsoMurray, Maini & Baker
(2011). Another example of the interplay of spatial pattern formation and intracellular
oscillators is in vertebrate limb development, where Hes1 was found to play a role in
regularizing the spatial pattern of precartilage condensations, aggregates of mesenchymal
cells (Bhat et al., 2019; Newman, Bhat & Glimm, 2021). While there is no known direct
link between the Hes family and cell–cell adhesion, there is a well-established link between
Notch signaling and Hes expression Kageyama, Shimojo & Isomura (2018), Kageyama,
Ohtsuka & Kobayashi (2007). The Notch pathway controls cell communication between
neighboring cells, but also may directly mediate cell–cell adhesion (Murata & Hayashi,
2016), making assumed mutual interdependence between intracellular oscillations and
cell–cell adhesion plausible.

Motivated by this, Glimm & Gruszka (2024) recently suggested a partial differential
equations (PDE) model that takes into account local cell–cell adhesion (as opposed to
attraction independent of the distance of two cells as in O’Keefe et al.’s swarmalators), as
well as a local Kuramoto-like interaction of oscillators. In a linear stability analysis, they
identfied a number of emerging behaviors –the possibility of aggregation or dispersion can
be combined with either global synchronization, only local synchronization (synchronized
patches), or incoherence.

A PDE model has the advantage of being amenable to analytic methods, but has the
drawback of dealing with cell densities instead of modeling cells individually. This means
that the effects of variations of cell size and shape are not modeled. To address this, we
present amodel based in part on the work ofOKeeffe, Hong & Strogatz (2017) andGlimm &
Gruszka (2024), but where cells are modeled via the Cellular Potts Model (CPM) (Graner
& Glazier, 1992). The CPM, also known as the Glazier-Graner-Hogeweg model, is a
computational lattice-based model that allows for spatially extended cells and incorporates
fluctuations in cell size and cell shape.
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Our minimalistic model incorporates cells with an intracellular oscillator. We subsume
the complex dynamics of intracellular oscillations into a single variable and assume that
adhesion between two cells depends on the relative oscillator phases, and that adjacent
cells influence each others’ oscillators. (Portions of this text were previously published
as part of a thesis; see Una, 2023). More specifically, in our CPM framework, each cell is
associated with an internal oscillator, or cell clock. Clocks interact locally viaKuramoto-like
interactions, where the type and strength of interactions is encapsulated by a parameter K .
Cell–cell adhesion between neighboring cells is influenced by the clock phase differences
with three different qualitative possibilites encoded by a parameter J : ‘‘like attracts like’’,
where cells in the same phase adhere to each other maximally (J > 0); ‘‘opposites attract’’,
where cells in opposite phases adhere to each other maximally (J < 0); and the purely
diffusive case where cell–cell adhesion is independent of clocks (J = 0). We investigate the
effects of the parameters J and K on oscillator synchronization and spatial aggregation.
We find four distinct types of steady phase states emerging from random initial conditions:
global synchronization, local synchronization, incoherence, and anti-synchronization
(checkerboard pattern). We define the four distinct phase states qualitatively with a phase
diagram and quantitatively with order parameters. Of particular interest is the case of
global synchronization, which occurs when the Kuramoto interaction parameter K is
positive, i.e., neighboring cells seek to synchronize their clocks. Here we find that initially,
synchronization advances fastest for negative J and slowest for positive J . But in the long
run, remarkably, synchronization is slowest in the ‘‘border case’’ J = 0, i.e., the purely
diffusive case when cell–cell adhesion is independent of clock phase. We give an intuitive
explanation of this phenomenon.

Our work is a high-level generic model of the interplay of intracellular oscillations and
cell–cell adhesion. It is motivated by examples from development biology and aggregative
multicellularity, but is not a model of a specific experiment. Instead, we seek to provide an
investigation of the broad types of patterns in space and synchronizations that are possible
with a set of minimal assumptions. However, we discuss potential applications to concrete
findings about pattern formation in the auditory sensory epithelia of many species, where
checkerboard patterns composed of sensory hair and supporting cells are established in
development and crucial for proper functioning (Togashi et al., 2011; Katsunuma et al.,
2022).

METHODS
The model
The model uses the framework of the Cellular Potts Model (CPM; see Graner & Glazier
(1992)) based on a rectangular lattice. Each cell is modeled as a group of lattice sites and
is associated with an internal oscillator (‘‘clock’’). Adhesion between cells is incorporated
into the model via the Hamiltonian, an energy function. Time evolution is modeled via an
energy minimization procedure in space and an updating rule for the clocks. (See Fig. 1
for a sketch of the schematics of the CPM.)

More specifically, lattice sites are denoted by bold variables i= (i1,i2) or j= (j1,j2). At
every time step, each lattice site i belongs to one of N cells or to the extracellular matrix
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Figure 1 Schematics of the cellular potts model. Left: Cells are modeled as sets of lattice sites. We pic-
ture three cells with indices (‘‘spins’’) 1–3. The index 0 denotes the extracellulcar matrix (medium). Each
cell has a clock whose current value is represented by the color of the cell. Each configuration of the lattice
has a Hamiltonian (energy)H, which encodes various biological phenomena such as adhesion and elas-
ticity. Right: Time evolution is modeled via so-called ‘‘spin flips’’. A lattice site is chosen at random and
a change of its index to that of a neighboring cell is proposed. This change is accepted with the displayed
probability which depends on the change1H in the Hamiltonian it causes. Here T is a given constant, the
‘‘temperature.’’ See the text for more details.

Full-size DOI: 10.7717/peerj.16974/fig-1

(ECM). Cells are numbered with an index that ranges from 1 to N . We use the notation
σ t (i)= 0 if the site i belongs to the medium at time step t , and σ t (i)= s if i belongs to the
sth cell (s= 1,...,N ). Additionally, each cell s= 1,...,N has an internal clock. This clock
is a time-dependent scalar θ ts . For notational simplicity, we will suppress the superscript t
unless necessary.

The governing Hamiltonian is

H=
∑

neighboring
lattice sites i,j

(1−δσ (i),σ (j))f (σ (i),σ (j))+λ
∑
cell s

(Area(s)−Atarget)2. (1)

The Hamiltonian encodes the compressibility of the cells and cell–cell adhesion. The
second term of the Hamiltonian is a cell area constraint term. Here A(s) is the area of the
cell with index s, i.e., the number of lattice sites it occupies. Atarget is the target area, a fixed
reference area, and λ is a parameter that encodes the compressibility of the cell: the larger
λ is, the less fluctuations in size there are. (Our choices of Atarget and λ are based on the
work of Zhang et al. (2011); see Table 1.)

Crucially, the first term of the Hamiltonian describes cell–cell adhesion between adjacent
cells. The symbol δij is the Kronecker delta: δi,j = 1 if i= j, and δi,j = 0 if i 6= j. The cell–cell
adhesion term f (σ1,σ2) depends on the clock values of the adjacent lattice sites with indices
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Table 1 Parameter table. An asterisk * marks parameter values taken from Zhang et al. (2011).

Parameter Value Description

Lattice dimensions 126× 126 Cartesian (square) lattice size with periodic boundary
conditions

T 20 Temperature*
θ0 U ([0,2π ]) Uniform initial distribution of initial clock phases
Atarget 25 Target cell area*
λ 25 Area constraint coefficient*
ω 0.001 Clock speed
JMM 0 Medium–medium contact local product adhesion energy*
JCM = J0 16 Medium-cell contact local product adhesion energy*

2 Neighbor order*
N 445 Cell count

σ1 and σ2 and is given by

f (σ1,σ2)=

{
J0(1− J cos(θσ1−θσ2)) if σ1 6= 0 and σ2 6= 0
J0 if σ1= 0 or σ2= 0

(2)

Recall that the index σ = 0 represents extracellular matrix, which has a contact energy of
J0. The parameter J encodes the effect of clock phases on adhesion. For J > 0, the function
f (σ1,σ2) is minimized when θσ1 = θσ2 , so cells of like clock phases adhere to each other
the strongest (‘‘like attracts like’’). For J < 0 in contrast, f (σ1,σ2) is minimized when
θσ1 = θσ2+π , and so then cells of opposite clock phases adhere to each other strongest
(‘‘opposites attract’’).

Time evolution is modeled via so-called spin flips. For this, a lattice site is selected
randomly and it is proposed to change its index to that of a neighboring lattice site. Such
a spin flip is accepted with a probability that depends on the change in the Hamiltonian
function 1H it would entail. Specifically, it is given by

Prob(spin flip)=

{
1 if 1H≤ 0
e−1H/T if 1H> 0

(3)

where T is the so-called temperature of the system. Higher temperatures make it more
likely for spin flips to occur but alsomake it more likely for cells to fragment, dissolving into
each other. A Monte Carlo Step (MCS) consists of the number of spin flips corresponding
to the total number of sites in the lattice. Simulation time is commonly measured in MCS.

Each cell s= 1,...,N in the model has an internal oscillating clock. For each cell
s= 1,...,N , we update its cell clock θ ts each MCS via

θ t+1s = θ ts +ω · (1+K ·
1

# neighbors of s

∑
neighbor u of s

sin(θu−θs)) (4)

Note that a cell’s internal clock advances at the uniform clock speedω, but is additionally
influenced by the clocks of its neighbors in a Kuramoto-type way (Kuramoto, 1984). HereK
is the clock coupling strength between neighboring cells. It controls how neighboring cells’
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Table 2 Meaning of parameters J andK .

Parameter Sign Effect

J J > 0 Adherence strongest for same clock phase (‘‘Like attracts
like’’)

J < 0 Adherence strongest for opposite clock phases (‘‘Opposites
attract’’)

K K > 0 ‘‘Neighbors seek to synchronize’’
K < 0 ‘‘Neighbors seek to anti-synchronize’’

clocks influence each other. For K > 0, neighboring cells seek to synchronize their clock
phases. For K < 0, neighboring cells seek to anti-synchronize their clocks.(The meanings
of the crucial parameters J and K are summarized in Table 2.) As in other models (OKeeffe,
Hong & Strogatz, 2017; Glimm & Gruszka, 2024), we note that all equations only depend
on differences of clock phases, so that they are invariant under shifts in clock phase space
in the form θ ts → θ ts −ω · t . Effectively, this means we can assume that the uniform clock
speed is zero and that only the terms with the K−factor in the update Eq. (4) enter into
changes of the clocks at each MCS. In this sense, the choice of ω actually does not enter
into the calculation apart from scaling K .

Parameters
The aim of our model is a high-level generic investigation of the interplay of adhesion
and synchronization with minimal assumptions. Since it is not modeled on a concrete
experimental setup, we chose to adopt the approach of Zhang et al. (2011), who used
CPM simulations to investigate and validate Steinberg’s differential adhesion hypthesis
(Steinberg & Takeichi, 1994). The parameter values Zhang et al. (2011) chose are based
on experimental studies by Armstrong (1971) and Steinberg & Takeichi (1994). Armstrong
used retinal cells from chicken embryos, Steinberg used mouse L-cells. The paraments of
Zhang et al. (2011) were not the result of direct measurements, but calibrated viamatching
quantities such as cell size and velocity distributions of individual cells to retinal cell data
(Mombach et al., 1995;Mombach & Glazier, 1996) and ensuring that cells do not fragment.
Our parameter values are indicated in Table 1. The lattice length scale is approximately
2 µm per pixel, the time scale is about 10,000 MCS per hour (Zhang et al., 2011). Note
that our confluency is 70%, a typical value for in vitro experiments. Our oscillator velocity
ω= 0.001(clock change per MCS) corresponds to a period of about 7,000 MCS and thus
very roughly on the order of one hour. This is the same order of magnitude as oscillations
of Hes1 expression in somitogenesis (Kageyama, Ohtsuka & Kobayashi, 2007). We point
out that in ourmodel, only the differences between clock phases of neighboring cells matters
for dynamical updates. Since all oscillators are assumed to have the same clock velocity ω,
this means that simulations are actually independent of the value of ω and only depend on
the effective value of the clock coordination parameter K . Accordingly, in our graphs, the
color of the cells correponds to the phase shift relative to a clock that advances at a steady
speed ω. We acknowledge that this independence of our simulation results on ω breaks
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down if we drop the assumption that every cell has the exact same speed in favor of a more
realistic distribution of speeds, but this is outside the scope of the current work.

Order parameters for characterizing phases
In the Results section, we will show that our model displays qualitative different types
of behaviors for different choices of the parameters J and K . This is analogous to phase
states in statistical physics. Phase transitions are often described quantitatively by order
parameters, approppriately defined quantities that characterize the state of the system; see
e.g., Nolting (2018). We define here three order parameters for our model. In the Results
section, we will use these to characterize the phases.

The first order parameter is a classical parameter quantifying synchronization due to
Kuramoto (1984). It is given by

rglobal=

∣∣∣∣∣∣ 1N
N∑
j=1

e iθj

∣∣∣∣∣∣ (5)

where N is the total number of cells in the simulation. The resulting rglobal then satisfies
0≤ rglobal ≤ 1. The parameter rglobal quantifies how synchronized all cells’ clocks are at a
specified MCS. If rglobal= 1, all the cells’ clocks are synchronized. If rglobal= 0, all the cells’
clocks are entirely unsychronized or anti-synchronized, meaning that all of their values are
spread around the time clock evenly such that all values cancel each other out or there are
synchronized groups of opposite phases that cancel each other out.

The second order parameter is a local version of rglobal. For each cell, we compute a
modified r−value via an average over its nearest neighbors (order 2). These values are then
averaged over all cells:

rlocal=
1
N

∑
cellk

∣∣∣∣∣∣ 1sk
∑

neighbor j of k

e iθj

∣∣∣∣∣∣ (6)

where the first sum is taken over all cells in the simulation, sk is the number of neighbors
(order 2) of cell k and the second sum is taken over all neighbors of cell k. Note that
rglobal = 1 (complete global synchronization) implies rlocal = 1, but not vice versa. Also
note that complete randomness of phases does not typically lead to rlocal= 0 because the
second sum in the Eq. (6) is taken over a relatively small number, leading to large random
variations. Numerically, we found that incoherence corresponds to a value of rlocal of
roughly 0.2; see also the discussion in the subsection ‘‘Phase Diagram’’.

The third order parameter (‘‘checkerboard parameter’’) quantifies the extent to which
neighboring cells’ clock phases are in opposite phase (phase difference π). We need some
tolerance since neighboring cells will not be completely in opposite phase all the time.
We chose a tolerance of 6.25% from total anti-synchronization between neighboring cells.
More explicitly,

ψ = total number of pairs of neighboring lattice sites (k,j)

such that θk−θj ∈
[
π−

π

8
,π+

π

8

]
(modulo 2π)
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1For K ≥ 1 or K ≤−1, individual clocks
can stop or run backwards; see Eq. (4).
Values of J with J > 1 or J <−1 mean
nonpositive cell–cell interaction energies.
This means that lattice sites corresponding
to the same cell can have higher interaction
energies than sites corresponding to
different cells. This causes fragmentation of
cells, an unphysical behavior.

2Note that not all images in Fig. 2 for K > 0
show perfect global synchronization,
but we verified that all approached
synchronization eventually if simulations
are allowed to continue; see also Fig. 6.

Computational implementation
To implement the Cellular Potts Model, we used the open-source software CompuCell3D,
version 4.2.5 (Swat et al., 2012) on a standard PCs (Intel(R) Core(TM) i5-6600 CPU @
3.30 GHz, 16 GB RAM). Further analysis of the simulation data and generation of graphics
were performed with Matlab. Figure 2 displays the results of 49 simulation runs, each of
which took roughly 8–10 h individually.

RESULTS
Phase diagram
We concentrate on investigating the effects of the two parameters J and K encoding the
interactions of clock synchronization and cell–cell adhesion. See Table 2 for the physical
meaning of these parameters. The ranges −1<K < 1 and −1< J < 1 are meaningful for
simulations1. Starting with random initial conditions for cell positions and clock values,
we ran simulations to determine the long-term behavior for different values of J and
K . The results are summarized in the phase diagram in Fig. 2. We used movies of the
simulations to confirm that the simulation duration of 250,000 MCS was sufficiently
long to guarantee convergence to an obvious phase state; see also Section ‘‘Dynamics of
Synchronization’’. (Movies of all simulations are available online on the Zenodo repository
at DOI 10.5281/zenodo.10681751).

The phase diagram in Fig. 2 clearly displays qualitatively different types of behaviors.
To investigate these phases, we use the three order parameters defined in Order Section
‘‘Parameters for Characterizing Phases’’. Their heat maps are shown in Fig. 3. Note
that all except rlocal display very sharp step-like transitions between small and large
values. This allows to quantify the different phases. We identify four different phases:
The first is characterized by large rglobal. We call it ‘‘global synchronization.’’ Large
values of the checkerboard parameter ψ characterize another phase, which we call
‘‘anti-synchronization.’’ (Specifically, we can consider ψ > 1000.) There are two more
phases, which we call ‘‘incoherence’’ and ‘‘local synchronization’’. The transition between
incoherence and local synchronization is more gradual as clusters of synchronized cells
become smaller with decreasing negative K . Nevertheless, we can utilize the parameter rlocal
to distinguish between definite local synchronization (rlocal≈ 1) and definite incoherence
(rlocal≈ 0.2).

Figure 4 summarizes the phases. Global synchronization in the right half K > 02 and
anti-synchronization (checkerboard pattern) in the quadrant J < 0,K ≤ 0 are both readily
visibly identifiable. This is straightforward to understand: For K > 0, neighboring cells
seek to synchronize; and since all cells adhere to each other, this eventually leads to global
synchronization for all values of J . (The dynamics of synchronization differ by whether
J is positive or negative though; we investigate this in ‘‘Dynamics of Synchronization’’.)
The anti-synchronized phase state is characterized by cells of opposite phases attracting
each other (J < 0). Furthermore, cells seek to anti-synchronize with their neighbors (for
K < 0). The resulting behavior is a checkerboard-style distribution of cell phases where
cells minimize their energy by surrounding themselves with cells of the opposite phase.
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70% Confluence (445 cells) for 250,000 MCS

K
-1 -0.6667 -0.3333 0 0.3333 0.6667 1

0.95

0.6333

0.3167

J 0

-0.3167

-0.6333

-0.95

Figure 2 Parameter sweep of the model showing the state after 250,000MCS. Cells are
colored according to their clock phase. (Specifically, the colors show the clock phase difference
relative to a standard clock moving at constant clock speed ω starting at 0.) Values shown are J ∈
{−0.95,−0.6333,−0.3167,0,0.3167,0.6333,0.95} and K ∈ {−1,−0.6667,−0.3333,0,0.3333,0.6667,1}.
Simulation runs were each of N = 445 cells and identical initial conditions (random distribution of clock
phases).

Full-size DOI: 10.7717/peerj.16974/fig-2

The other two phases (local synchronization (synchronized spatial clusters) and
incoherence (quasi-random spatial distribution of phases)) both occur in the quadrant
J ≥ 0,K ≤ 0. For very negative K and small J , we have incoherence. In the case large J and
K close to 0, cells tend to sort by phases and clusters de-synchronize sufficiently slowly that
persistent locally synchronized clusters form.
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Figure 3 Heat maps of the three order parameters (rglobal, rlocal, checkerboard parameterψ). Note the
jump-like transitions along the lines K = 0 for rglobal, as well as J = 0 and K = 0 for ψ . There is a simi-
lar sharp sharp transition of rlocal along K = 0 for J < 0 and a curve in the quadrant J > 0,K ≤ 0. This
separates the parameter space into four phases: global synchronization (rglobal ≈ 1); local synchronization
(rlocal ≈ 1,rglobal = 0); antisynchronization (checkerboard pattern) (large ψ); and incoherence (all order
parameters ‘‘small’’, see Fig. 4).

Full-size DOI: 10.7717/peerj.16974/fig-3

Movies show that global synchronization and anti-synchronization are essentially
static distributions, where the cells’ positions and shapes fluctuate, but the overall spatial
distribution of clock phases stays the same. Incoherence and local synchronization are
dynamic phases, where cells or cell clusters in different clock phases constantly move
relative to each other, yielding a behavior in which each snapshot in time is different, but
characteristic of the typical distribution.

To further characterize the incoherence phase, we compared the resulting distributions
of clock values to the distribution obtained by chance. The results are summarized in
Fig. 5. Note that the distributions of clock values for the incoherent phase is essentially
indistinguishable to a uniform random distribution on the interval [0,2π). There is a
marked difference to the anti-synchronization (checkerboard) phase, with two peaks at
the distance π . Interestingly, the ‘‘local synchronization’’ case also gives a distribution
indistinguishable from chance. This is because in the representation of Fig. 5, all spatial
information is lost, so spatially completely mixed clock phases and spatially clustered clock
phases give similar distributions.

Dynamics of synchronization
For positive values of K , cells’ clocks eventually globally synchronize as shown in Fig. 2.
When we investigated the dynamical paths to synchrony however, we found substantial
qualitative differences depending on the sign of the parameter J (positive, negative or zero).
Figure 6 illustrates this with K = 1 and three different values of J . To quantify the initial
progress of synchronization for different values of J , Fig. 7A shows the order parameter
rglobal over time (MCS) up to 20,000 MCS. There is a clear hierarchy of J -values –the speed
of synchronization is highest for the most negative value of J and decreases with increasing
J with J =+0.95 corresponding to the slowest rate of progress. This can be seen also by
the first two columns in Fig. 6. Why is this? Again, Fig. 6 provides an important insight:
For negative J , ‘‘opposites attract’’ and hence at t = 10,000 MCS, it is clearly visible that
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Figure 4 Diagram of the four phases of the model. See Fig. 3 for order parameters.
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for J =−0.95, there are large regions of synchronized cells with cells of the opposite phase
interspersed. (For example regions of orange cells with interspersed small blue cells, some
slightly fragmented.) This proximity of cells of opposite clock phases early on leads to
rapid synchronization. In contrast, this is not the case for J =+0.6333 (positive J , so ‘‘like
attracts like’’) or J = 0 (clock phase has no influence on adhesion). One also observes that
synchronized regions have more gradual transitions for J = 0 than for J =+0.6333. For
instance for J =+0.6333, red and green cells tend to be separated by much smaller buffers
of yellow and orange cells than is the case for J = 0.

These observations can be quantified via the local parameter rlocal, shown in Fig. 7C:Here,
the order is reversed and initially, the smaller J , the slower the rate of local synchronization.
For negative J (‘‘opposites attract’’), the local synchronization even decays before increasing
again.

The long-term rate of synchronization is plotted in Fig. 7B. The relationship between
order of J−values and speed of synchronization seen in Fig. 7A is not preserved in the
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Figure 5 Histograms of distributions of clock phases for some of the simulations from Fig. 2. Each of
the N = 445 cells gives one data point in the interval [0,2π). We used 20 bins. Here ‘‘random’’ denotes a
random sample obtained by choosing n = 445 random numbers in [0,2π) with uniform probability dis-
tribution. Note that the resulting distributions for the ‘‘incoherent’’ phase data is essentially indistinguish-
able from the random distribution. Interestingly, the same is true for the example of the ‘‘locally synchro-
nized’’ phase, but not the ‘‘anti-synchronized’’ (or checkerboard) phase, which is bimodal.

Full-size DOI: 10.7717/peerj.16974/fig-5

long run. Some of this may be due to the small sample size (n= 10). However, it is very
clear that synchronization progresses most slowly for J = 0, the case where clock phase
does not influence adhesion. At 250,000 MCS, complete synchronization had not been
reached. (Illustrated also in Fig. 6 and Fig. 4.) This is in contrast to positive or negative
values of J , where complete synchronization was achieved at that time. (Even for J = 0,
synchronization was eventually achieved if the simulation was allowed to keep running;
see time t = 400,000 MCS in Fig. 6.)

Why is synchronization especially slow for J = 0? An intuitive explanation is as follows:
Synchronization proceeds especially fast (for positive K ) if the clock phase distribution has
sharp spatial gradients, i.e., if many cells of very different clock phases are neighbors. In
contrast, configurations with shallow clock gradients (gradual transitions of clock values)
exhibit slower synchronization.With this principle, it is clear that for negative J , ‘‘opposites
attract’’ and one indeed gets fields of cells with sharp clock gradients which synchronize
quickly, as we noted before. But also the case of positive J (‘‘like attracts like’’) creates
sharp gradients, but with a different mechanism: Early on, synchronized clusters form as
cells with similar phases effectively move towards each other. Because of cell–cell adhesion,
these clusters have relatively sharply defined edges (Fig. 6), meaning sharp clock gradients,
again leading to faster synchronization. In contrast, for J = 0, clock gradients are much
more gradual, allowing regions of different clock phases to persist longer.
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Figure 6 Progress of synchronization forK = 1 and different values of J . Cells are colored by the clock
phase difference relative to a standard clock moving at constant clock speed ω as in Fig. 2.
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DISCUSSION
We proposed a model of synchronization and aggregation of individual oscillators. In
contrast to previous models (OKeeffe, Hong & Strogatz, 2017; Glimm & Gruszka, 2024), the
oscillators were not just point particles, but entities with extended, fluctuating boundaries
motivated by the behavior of biological cells in vitro (Zhang et al., 2011). We found four
distinct phase states on which a simulation run can settle into depending on the parameters
J and K values. By changing whether or not cells seek to synchronize or anti-synchronize
with their neighbors (K ) and whether or not cells seek out others with the same or
opposite phase (J ), we found cells globally synchronize, only locally synchronize, globally
anti-synchronize, or remained incoherent. The anti-synchronization phase (‘‘checkerboard
pattern’’) is not found in the previous models with point particles and thus is made possible
because of spatially extended cells.

For K > 0, we observed eventual global synchronization. The dynamics of
synchronization differ by the parameter J though. Synchronization happens fastest for
J < 0, the case where cells of opposite clock phases adhere most strongly. Indeed, there is
a short transitory checkerboard pattern that quickly gives rise to uniform synchrony. This
does not happen for J ≥ 0. Most surprisingly though is the result that synchronization
happens the slowest in the case of J = 0, when mixing of cells is purely diffusive. In this
case, shallow gradients of clock phases appear which persist for much longer than the
sharper gradients for J > 0 or J < 0.
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Figure 7 Synchronization of cells over time for different values of J and fixedK = 1. (A) Parameter
rglobal as a function of time (MCS) up to t = 20,000 MCS, covering the initial phase of synchronization.
(B) Parameter rglobal as a function of time (MCS) up to t = 250,000 MCS, covering the long term behavior.
(C) Parameter rlocal as a function of time (MCS) up to t = 20,000 MCS, covering the initial phase of syn-
chronization. (All graphs are based on n= 10 runs for each curve.).
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The possibility of persistent checkerboard patterns as one of the phases in our model
is particularly interesting, since such checkerboard patterns are found in vivo in the
auditory sensory epithelium of the cochlea of many species, composed of sensory hair
cells and supporting cells (Togashi et al., 2011; Katsunuma et al., 2022). Both hair cells
and supporting cells differentiate from pluripotent ectodermal cells (Wan, Corfas & Stone,
2013). The spatiotemporal determination of cell fate is arguably not completely understood,
but it is influenced by members of the Hes/Hey genes, such as Hes1, which is known to
undergo oscillatory expression in many developmental processes (Tateya et al., 2011;
Hirata et al., 2002). Hes1 is thought to inhibit differentiation into hair cells. When Hes1
is knocked out, the checkerboard pattern is disturbed and in fact the number of hair cells
is increased relative to the number of supporting cells (Tateya et al., 2011). Crucial for
normal development is the expression of two adhesion molecules, nectin-1 and -3, which
are produced by the hair cells and supporting cells. There is good evidence that heterotypic
adhesion between these two cell types is the mechanism by which the checkerboard pattern
is maintained. When nectin-3 was knocked out, the checkerboard pattern was disrupted,
but there were still equal numbers of hair cells and supporting cells (Togashi et al., 2011).

Our model then gives a possible mechanism for the interplay of cell fate and spatial
arrangements from an initially uniform field of pluripoptent cells, namely via intracellular
oscillators such as Hes1 and their interplay with cell adhesion molecules. In this scenario,
cells in a clock phase of highHes1 expressionwould differentiate into supporting cells, those
in a phase with low Hes1 expression into hair cells. Normal development then corresponds
to the case of negative K (cells with high Hes1 suppress Hes1 production in neighboring
cells) and negative J , meaning heterotypic adhesion. This yields a checkerboard pattern;
see Fig. 2. The experiment of knocking out nectins by Togashi et al. (2011) then correspod
to changing J from negative values to J = 0. This results in breaking up the checkerboard
pattern into incoherent patterns, i.e., patterns without a correlation between clock phase
and spatial position. Note that in these patterns, clock phases are spatially mixed and there
is no bias towards any clock phase (Fig. 5), which is consistent with the observation that
the numbers of hair cells and supporting cells remained equal (Togashi et al., 2011).

These observations point to the possibility of interesting insights our simple model,
or more elaborate variants of it, can provide. Still, we need to stress that the model
is minimalistic in that we concentrate on two core interactions –synchronization and
aggregation. The cost of this generality is specificity. For further work, tayloring the core
model to specific phenomea such as pattern formation in the auditory sensory epithelium
as sketched above requires refining and enhancing it by matching parameters, but also
potentially including phenomena that are not part of our current generic model such as
cell polarity, chemotaxis, or dealing explicitly with cell differentiation.
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